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'Fluctuation-induced transitions between coexisting periodic attractors in a
periodically driven nonlinear oscillator have been investigated theoretically and
by analogue electronic experiment. Calculations and measurements of the corre-
sponding activation energies are in good agreement, and have enabled the position
of the kinetic phase transition (KPT) line to be established over its full range.

The kinetics of an oscillator is a long-standing and important problem of clas-
sical and quantum statistical physics, for two reasons. On the one hand, many
real physical systems can be well modelled by such oscillators and, on the other,
comparatively simple solutions can be obtained for models of this kind, in particu-
lar for an underdamped nonlinear oscillator (see [1]). Interesting new phenomena
arise if an underdamped nonlinear oscillator is driven by a nearly resonant force.
Since the frequency of the eigenvibrations of the oscillator depends on their ampli-
tude, there is a certain range of the forcing amplitude in which there are co-existing
stable states of vibration with comparatively small and large amplitudes respec-
tively. The corresponding eigenfrequencies are self-consistently in comparatively
bad or good resonance with the field frequency WF. The bistability of a periodi-
cally driven oscillator has been observed for cyclotron motion of an electron in a
quadrupole trap [2]. It has been discussed also in the context of optical bistability
[3], and in acoustics and engineering.

An oscillator bistable in a periodic field provides an example of a bistable
system far from thermal equilibrium, for which the co-existing attractors are limit
cycles. The quantities of particular interest and importance for nonequilibrium
bistable systems are the probabilities Wmn of fluctuational transitions between
the stable states (n, m = 1,2). For weak intensity of the fluctuations (induced by
external noise, or resulting from coupling to a thermal bath) these probabilities
are very much smaller than the characteristic reciprocal relaxation time( s) of the
system t;:l. In the general case, the probabilities W12 and W21 of the transitions
1 -+ 2 and 2 -+ 1 are strongly different (exponentially different, for Gaussian
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Only within a narrow range of the parameters of the system are WI and W2 of
the same order of magnitude. In this range a kinetic phase transition occurs
and although the fluctuations about each stable state are small, large fluctuations
then come into play, related to transitions between the states. A feature of these
fluctuations is that they are infrequent, the characteristic time scale being,....W-1,

and they would therefore be expected to give rise to high supernarrow peaks (of
width ,....W ~ t;l)in the spectral density of the fluctuations (SDF) and in the
susceptibility at the frequency of the co-existing limit cycles and its overtones (we
note that a nonequilibrium system can amplify a weak signal, i.e., the imaginary
part of the susceptibility can be negative) [1]. The intensity of the peaks should
(and for the SDF does [4])display an extremely sharp dependence on the distance
to the transition point. Since the supernarrow peaks in the susceptibility are due
to fluctuations (caused by the noise driving the oscillator), then, in a certain range
of the noise intensity B, the amplitude of a signal due to an additional weak force
should increase with increasing B. This is a prerequisite for stochastic resonance
(SR) - an interesting phenomenon that has attracted much attention recently in
view of various applications [5]. In contrast to the "conventional" SR observed
at low frequencies, in the case of a periodically driven oscillator there arises [6]a
high-frequency form of stochastic resonance (HFSR).

Wepresent below some results on fluctuations in a nonlinear oscillator obtained
recently by means of analog simulation and theoretically. The model investigated
is described by the equation

f, lewl ~ WF, ew = WF - Wo, (J(t)f(t')) = 2fBe(t - t')
Here, f(t) is Gaussian white noise. For small friction coefficient f and small
frequency detuning of the driving force with respect to the eigenfrequency of the
oscillator Wo, and also for a comparatively small field amplitude F, the motion
of the oscillator is primarily vibrations at a frequency WF with slowly varying
amplitude and phase. The dynamics of the latter depends on the values of two
dimensionless parameters, f3 and TJ, and also on the dimensionless noise intensity

f3 = 3hlF2 /32w~lewI3, TJ = f/lewl, a = 31"YIB/16w~f (3)

(the kinetics of slow variables is basically the same whether the model (2) is used
or fluctuations are assumed to be due to the coupling.to a thermal bath; the main
point is that the power spectrum of the noise f(t) should be flat in a range ~ lewl
about WF). The range of f3, TJ where the two at tractors coexist as calculated and
measured in the experiment is enclosed by the approximately triangular region
shown in Fig.I. On the upper branch of f3(TJ2) the small-amplitude limit cycle



(the stable state 1) merges with an unstable one and disappears, whereas on the
lower branch this occurs to the large-amplitude limit cycle (the stable state 2). A

fluctuating periodically driven
nonlinear oscillator was one of the
first physical systems without de-
tailed balance for which the prob-
abilities of transitions between co-
existing stable states were ana-
lyzed [7]. It followsfrom the the-
ory [7] that, to logarithmic accu-
racy, the dependence of Wnm on
the noise intensity is of activation
type,

The values of the activation ener-
gies Rt•2 for the transitions from
the states 1,2 depend on the pa-
rameters p, 1/ and are given by the
solution of a variational problem.

Such an activation dependence on the noise intensity for a system without detailed
balance has indeed been observed in our experiments. The experimental mean first

passage times (MFPT) and acti-
vation energies Rt•2 are shown in
Figs.2 and 3. As expected, the
activation energy for escape from
the small-amplitude limit cycle
decreases with increasing P (i.e.,
with increasing field amplitude)
until Rt becomes equal to 0 at the
bifurcation point where the sta-
ble state disappears. Conversely,
R2 increases with increasing p.
The data are in reasonably good
agreement with the results of the
numerical solution of the varia-
tional problem for Rt,2: there are
no adjustable parameters in ei-
ther the theory or the experiment.
It followsfrom the expressions

(1),(4) that for the most ofthe valuesof p, 7] the ratio ofthe stationary populations
of the states Wt/W2 ex: exp (-(R2 - Rd/a) is either exponentially large or small,
and only for Rt ~ R2 are the populations of the same order of magnitude.

Fig.l The phase diagram as calculated
(full lines) and measured (squares [4]). The
calculated KPT line (dashed) is compared
with experimental measurements (circles).

-1 8ex.
Fig.2 Dependence of the experimental

MFPT on reciprocal noise intensity for 7]2 =
0.033.



The KPT phase-transition line
f3c(TJ2) as given by the condition
R1 = R2 is shown dashed in Fig. 1.
It was found analytically for small
values of .,,2 (we note that f3c is
a nonanalytic function of .,,2 for
small .,,2, f3c( .,,2) - f3c(O) ex .,,)
and in the vicinity of the spin-
ode point K, and it was evaluated
numerically in between using the
calculated values of R1,2' The ex-
perimental points (circles), which
were obtained from the condition
W12 = W21, are seen to be in good
agreement with the theory. The

supernarrow peaks in the SDF, corresponding to those anticipated [7] in the sus-
ceptibilityof the system, were observed previously [4].•In conclusion, we note that the calculated and measured activation energies are
in satisfactory agreement and that they have enabled us to establish the position
of the KPT line (Fig.1) over the full range of.,,2 from zero up to the spinode point
K.
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Fig.3 The experimental and theoretical
activation energies for .,,2= 0.033.
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