This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Income in the United States, Its Amount and Distributi 1909-1919, Volume II: Detailed Report

Volume Author/Editor: Wesley Clair Mitchell, editor
Volume Publisher: NBER
Volume ISBN: 0-87014-001-9
Volume URL: http://www.nber.org/books/mitc22-1
Publication Date: 1922

Chapter Title: Pareto's Law and the Problem of Mathematically Describing the Frequency Distribution of Income

Chapter Author: Frederick R. Macaulay
Chapter URL: http://www.nber.org/chapters/c9424
Chapter pages in book: (p. 344-394)

CHAPTER 28

PARETO'S LAW AND THE GENERAL PROBLEM OF MATHEMATICALLY DESCRIBING THE FREQUENCY DISTRIBUTION OF INCOME

The problem of formulating a mathematical expression which shall describe the frequency distribution of income in all places and at all times, not only closely, but also elegantly, and if possible rationally as opposed to empirically, has had great attractions for the mathenatical economist and statistician. The most famous of all attempts at the solution of this fascimating problem are those which have been made hy Vilfrelo Pareto. Professor Pareto has been intensely interested in this subject for many years and the discussion of it runs through nearly all of his published work. The almost inevitable result is that "Parcto's Law" appears in a number of slightly different forms and Professor Pareto's feelings concerning the "law" run all the way from treating it as inevitable and innmutable to speaking of it as "merely empirical."

In its best known, most famous, and most dogmatic form, Pareto's Law runs about as follows:

1. In all countries and at all times the distribution of income is such that the upper (income-tax) ranges of the income frequency distribution curve may be described as follows: If the logarithms of income sizes be charted on a horizontal scale and the logarithms of the numbers of persons having an income of a particular size or over be charted on a vertical seale, then the resulting observational points will lie approxinately along a straight line. In other words, if
$x=$ income size and
$y=$ number of persons having that income or larger
then $\log y=\log b+m \log x$

$$
\text { or } y=b x^{m} .1
$$

2. In all countries and at all recent times the slope of this straight line fitted to the cumulative distribution, that is, the constant m in the equation $y=b x^{m}$, will be approximately 1.5. ${ }^{2}$
3. The rigidity and universality of the two preceding conclusions strongly

[^0]suggest that the shape of the income frequency distribution curve on a double \log seale is, for all countries and at all times, inevitably the same not only in the upper (income-tax) range but throughout its entire length.
4. If then the nature of the whole income frequency distribution is unchanging and unchangeable there is, of course, no possibility of economic welfare being increased through any change in the proportion of the total income going to the relatively poor. Economie welfare can be increasel only through increased production. In other words, Pareto's Law in this extreme form constitutes a modern substitute for the Wages Fund Doctrine.
This is the most dogmatic form in which the "law" appears. In his later work Professor Pareto drew further and further away from the confidence of his first position. He had early stated that the straight line did not seem adequate to describe distributions from all times and places and had proposed more complicated equations. ${ }^{1}$ He has held more strongly to the significance of the sinilarity of slopes but he has wavered in his faith that the lower income portions of the curve (below the income-tax mininum) were neeessarily sinilar for all countries and all tines. He has given up the suggestion that existing distributions are inevitable though still speaking of the law as true within certain definite ranges. To translate from his Manuel (p. 391): "Some persons would deduce from it a general law as to the only way in which the inequality of incomes can be diminished. But such a conclusion far transeends anything that can be derived from the premises. Empirical laws, like those with which we are here concerned, have little or no value outside the limits for which they were found experimentally to be true." Indeed Professor Pareto has himself drawn attention to so many difficulties inherent in the crude dogmatic form of the law that this chapter must not be taken as primarily a criticism of his work but rather as a note on the general problem of mathematieally deseribing the frequency distribution of incomes.
Almost as soon as he had formulated his law Professor Pareto recognized the impossibility of extrapolating the straight line formula into the lower income ranges (outside of the income-tax data which he had been using). The straight line formula involves the absurdity of an infinite number of individuals having approximately zero incomes. Professor Pareto felt that this zero mode with an infinite ordinate was absurd. He believed that the curve must have a definite mode at an income size well above zero ${ }^{2}$ and with a finite number of income recipients in the modal group.

[^1]Having come to the conclusion that the income frequency distribution curve must inevitably have a definite mode well above zero income and tail off in both directions from that mode, Professor Pareto was led to think of the possibilities of the simplest of all frequency curves, the normal curve of error. However, after examination and consideration, he felt strongly that the normal curve of error could not possibly be used. He became convinced that the normal curve was not the law of the data for the good and sufficient reason that the part of the data curve given by income-tax returns is of a radically different shape from any part of a normal curve. ${ }^{1}$

Professor Pareto finds a further argument against using the norinal curve in the irrationality of such curve outside the range of the data. The mode of the complete frequency curve for income distribution is at least as low as the minimum taxable income. Income-tax data prove this. However, a normal curve is symmetrical. Hence, if a normal curve could describe the upper ranges of the income curve as given by income-tax data then in the lower ranges it would cut the y axis and pass into the second quadrant, in other words show a large number of negative incomes.

Now, aside from the fact that this whole argument is unnecessary if the data themselves cannot be described even approximately by a normal curve, Professor Pareto's discussion reveals a curious change in his middle term. If he had said that a synmetrical curve on a natural scale with a mode at least as low as the income-tax minimum would show unbelietably large negative incomes we could follow him but when he states that not only can there be no zero incomes but that there can be no incomes below "the minimum of existence" we realize that he has unconsciously changed the meaning of his middle term. Having examined a mass of income-tax data, all of which were concerned with net money income and from these data having formulated a law, he now apparently without realizing it, changes the meaning of the word income from net money income to money calue of commodities consumed, and assumes that those who receive a money income less than a certain minimum must inevitably die of starvation.

[^2]Children receive in general negligible money incomes. Many other persons in the community are in the same position. A business man may "lose money" in a given year, in other words he may have a negative money income. There seems no essential absurdity in assuming that a large number of persons receive money incomes much less than necessary to
(Note 1 page 346 concluded.)
Chart 28A showing curves fitted to observations on the heights of men illustrates the appearance of the norinal curve on a natural scale and on a natural $x \log y$ scale. That chart also illustrates another fact of importance in this discussion, namely, that fitting to a different function of the variable gives a different fit.

support existence. When in 1915 Australia took a census of the incomes of all persons "possessed of property, or in receipt of income," over 14 per cent of the returns showed incomes; "deficit and nil." ${ }^{1}$

Professor Pareto's realization of the impossibility of describing income distributions by means of normal curves led him to the curious conclusion that such distributions were somehow unique and could not be explained upon any "chance" hypothesis. "The shape of the curve which is furnished us by statistics, does not correspond at all to the curve of errors, that is to say ${ }^{2}$ to the form which the curve would have if the acquisition and conservation of wealth depended only on chance." ${ }^{3}$ Moreover, while Professor Pareto's further suggestion of possible heterogencity in the data corresponds we believe to the facts, his reason for making such a suggestion, namely that the data camot be adequately described by a nomal curve, is irrelevant." "Chance" data distributions are no longer thought of as necessarily in any way similar to the normal curve. Even error distributions commonly depart widely from the normal curve. The best known system of mathematical frequency curves, that of Karl Pearson, is intended to deseribe homogeneous material and is based upon a probability fomdation, yet the normal curve is only one of the many and diverse forms vielded by his fundamental equation $\frac{d \log y}{d x}=\frac{x+a}{b_{0}+b_{1} x+b_{z} x^{2}}$.
While Pareto's Law in its straight line form was at least an interesting suggestion, his efforts to amend the law have not been fruitful. His attempts to substitute $\log _{\alpha} N=\log _{e} A-a \log _{e}(x+a)$ or even $\log _{a} N=$ $\log _{c} A-a \log (x+a)-\beta x$ for the simpler $\log N=\log A-a \log x$ have not materially advanced the subject. ${ }^{6}$ The more complicated curves have the same fundamental drawbacks as the simpler one. Among other peculiarities they involve the same absurdity of an infinite number of persons in the modal interval and none below the mode. Along with the doubling of the number of constants, there comes of course the possibility of inproving the fit within the range of the data. Such improvement is, however, purely artificial and empirical and without special significance, as can be easily appreciated by noticing the mathematical characteristics of the equation.
A number of other statisticians have at various times fitted different types of frequency curves to distributions of income, wages, rents, wealth,
${ }^{1}$ Compare Table 29A.
; My italics.
Manuel. .p. 385.4 See also Cours, pp. 416 and 417.
i Vid. Cours. pp. 416 and 417.

- Professor A. W. Flux in a review of Pareto's Cours d'Economic Potitique (Economic Journal, March, 1897) drew attention to the inadequacy of Paret's's conception of what were and what
were not - CC. Cours, vol. II. p. 305. note.
or allied data." However, no one has advanced such claims for a "law" of income ${ }^{2}$ distribution as were at one time made by Professor Pareto. When considering the possibility of helpfully describing the distribution of income by any simple mathematical expression, one inevitably begin; by examining "Pareto's Law." It is so outstanding. Let us therefore examine Pareto's Law.

1. Do income distributions, when plotted on a double log scale, approximate straight lines closely enough to give such approximation much significance?

Before attenıpting to answer this question it is of course necessary to decide how we shall obtain the straight line with which comparison; are to be made.

Professor Pareto fitted straight lines directly by the method of least squares to the cumulative distribution plotted on a double \log scale. The disadvantage of this procedure is that, though one may obtain the straight line which best fits the cumulative distribution, such a straight line may be anything but an admirable fit to the non-cumulative figures. For example, if a straight line be fitted by the method of least squares to Prussian returns for 1886 (as given by Professor Pareto) the total number of incone recipients within the range of the data is, according to the fitted straight line, only $5,399,000$ while the actual number of returns was $5,557,000$, notwithstanding the fact that Prussia, 1886, is a sample which rums much nore nearly straight than is usual. How bad the discrepancy may be where the data do not even approximate a straight line is seen in Professor Pareto's Oldenburg material. There the least-squares straight line fitted to the cumulative distribution on a double \log scale gives 91,222 persons having incomes over 300 marks per annum while the data give only 54,309 .
${ }^{1}$ Among others. Karl Pearson. F. Y. Edgeworth. Henry L. Moorc. A. L. Bowley. Lucien March. J. C. Kapteyn. C. Bresciani. C. Gini. F. Savorgnan.
${ }^{2}$ Professor H. L. Moore. in his Laves of Wages, is coneerned primarily with wages not income.
Professor J. C. Kapteyn has presented a pretty but somewhat hypothetical argument suggesting that the skewness in the income frequency curve should be such that ploting on a $\log x$ basis would climinate it.

- In several cases we feel at once that the effect of the causes of deviation cannot le independent of the dimension of the quantities observed. In such cases we may conclude at once that the frequency curve will be a skew one. To take a single cxanple:
- Suppose 1000 men to begin trading. each with the same capital: in order to see how their
wealth will be distributed after the lapse of 10 years, consider first what will be their condition at some earlier epoch. say at the end of the fifth year.
"We may admit that a certain trader A will then only possess a capital of $\mathbf{£ 1} \mathbf{1 0 0}$. while another may possess $£ 100.000$.
- Now if a certain cause of gain or loss comes to operate. what will happen?
- For instance: Let the price of an article in which both A and B have invested their capital. rise or fall. Then it will be evident that if the gain or loss of A be $£ 10$. that of B will not be £10. but $£ 10.000$: that is to say. the effect of this cause will not be independent of the capital, but proportional to it."
J. C. Kapteyn. Skew Frequency Curres in Biology and Statistics. p. 13.

The reason for this peculiarity of the fit to the cumulative distribution becomes clear when we remember that the least-squares straight line inay easily deviate widely from the fint datum point while a straight line giving the same number of income recipients as the data must necessarily pass through the first datum point. ${ }^{1}$

A straight line fitted in such a manner that the total number of persons and total amount of income correspond to the data for these items gives what seems a much more intelligible fit. Charts 28 B to 28 G show cumulative United States frequency distributions from the income-tax returns for the years 1914 to 1919 on a double log scale (Professor Pareto's suggestion). Two straight lines are fitted to each distribution-one a solid least-squares line fitted to the cumulative data points and the other a dotted line so fitted that the total number of persons and total amount of income correspond to the data figures. While the least-squares line may appear much the better fit to these cumulative data, a mere glance at Tables 28B to 28 G will reveal the fact that such a line is, to say the least, a less interpretable fit to the non-cumulative distribution. ${ }^{2}$ It is, of course, evident that neither line is in any year a sufficiently grod fit to the actual non-cunulative distribution to have much significance. No mathematics is necessary to demonstrate this. ${ }^{3}$

[^3]

CHART 28E
UMITED STATES IMCOME TAX RTTUROLS 1917

CUMULATIVE FREOURMCY DISTRIRUTMOH -AND
FITITD (leati sewareg) STRAIGHT LINE
Sceles logarithmic

UNITED STATES IMCOME TAX RETURNS 1918
CUMULATIYE FREOUEICY DISTRIBUTIOH AND
FITIED (Lent Squares) STRAGGTT LIME
Scoles Logarit hmic.

TABLE 28B

UNITED STATES INCOME-TAX RETURNS, 1914

	A	B	C		
Income elass	U. S. in-come-tax returns	Least-squares straight line	Straight line giving correct total returns and income	Per cent A is of B	$\begin{gathered} \text { Per } \\ \text { cent } \\ \text { A is } \\ \text { of } \mathrm{C} \end{gathered}$
\$ 3,000-\$ 4,000	$(82,754)$				
4,000- 5,000	66,525	101,241	84,683	65.7	78.6
5,000- 10,000	127,448	160,545	115,347	79.4	110.5
10,000- 15,000	34,141	38,630	32,716	88.4	104.4
15,000- 20,000	15,790	15,853	14,102	99.6	112.0
20,000- 25,000	8,672	8,230	7,589	105.4	114.3
25,000- 30,000	5,483	4,879	4,631	112.4	118.4
30,000- 40,000	6,008	5,380	5,267	111.7	114.1
40,000- 50,000	3,185	2,793	2,835	114.0	112.3
$50,000-100,000$	5,161	4,430	4,756	116.5	108.5
100,000-150,000	1,189	1,065.5	1,241	111.6	95.8
150,000- 200,000	'406	437.3	535	92.8	75.9
200,000-250,000	233	227.1	288.1	102.6	80.9
250,000-300,000	130	134.6	175.5	96.6	74.1
300,000-400,000	147	148.46	199.9	99.0	73.5
400,000- 500,000	69	77.06	107.6	89.5	64.1
500,000-1,000,000	114	122.20	180.4	93.3	63.2
1,000,000 and over	60	62.78	107.5	95.6	55.8
Total (over 4,000)	274,761	344,256. 00	274,761.0		

TABLE 28C
UNITED STATES INCOME-TAX RETURAS, 1910

	A	B	C		
Income class	U.S. in-come-tax returns	Leastsquares straight line	Straight line giving correct total returns and income	Per cent A is of B	Per cent A is of C
\% 3,000-\$ 4,000	(69,045)				
4,000- 5,0000	58,949 120,04	92,064			
5,000- 10,000	120,402	154,507	68,540 119,634	64.0	86.0
$\begin{array}{ll}10,000- & 15,000 \\ 15,000- & 2000\end{array}$	34,102	10,358	119,634 33,013	77.9	100.6
$\begin{array}{ll}15,000- & 20,000 \\ 20,000 & 25000\end{array}$	16,475	17,406	14,724	84.5 94	103.3
$\begin{array}{ll}20,000- & 25,000 \\ 25,000- & 3000\end{array}$	9,707	17,372 $\mathbf{9 , 3}$	14,724 8,124	94.7 1036	111.9
$\begin{array}{ll}25,000- & 30,000 \\ 30,000- & 40,000\end{array}$	6,196	5,716	8,124 5,050	103.6	119.5
$\begin{array}{ll}30,000- & 40,000 \\ 40,000-5000\end{array}$	7,005	6,508	5,050 5,875	108.4	122.7
40,000- 50,000	4,100	6.008 3,503	5,875 3,241	107.6	119.2
50,000-100,000	6,847	5,803	3,241 5,653	117.0	126.5
100,000-150,000	1,793	1,536	5,653 1,560	116.4	121.1
150,000-200,000	'724	1,562.5	1,560	116.7	114.9
$200,000-250,000$ $\mathbf{2 5 0} 000-30000$	386	356.6	685.4 383.8	109.3	104.1
$250,000-300,000$ $300,000-40000$	216	217.5	383.8 238.6	108.2 99.3	100.6
$300,000-400,000$ $400,000-500,000$	254	247.7	238.6 277.6	99.3 1025	90.5
400,000-500,000	122	133.3	277.6 153.2	102.5 91.5	91.5
500,000-1,000,000	209	$\underline{223.8}$	153.2 267.1	91.5	79.6
1,000,000 and over	120	223.8 133.6	267.1 177.3	93.4 89.8	78.2 67.7
Total (over \$4,000)	267,607	338,825 . 0	267,607 . 0		

TABLE 28D
UNITED STATES INCOME-TAX RETURNS, 1916

	A	B	C		
Income class	U. S. incometax returns	Least-squares straight line	Straight line giving correct total returns and income	Per cent A is of B	Per cent A is of C
\$ 3,000-\$ 4,000	$(85,122)$				
4,000- 5,000	72,027	139,096	86,588	51.8	83.2
5,000- 6,000	52,029	84,759	54,221	61.4	96.0
6,000- 7,000	36,470	56,533	36,899	64.5	98.8
7,000- 8,000	26,444	39,846	26,516	66.4	99.7
$\begin{array}{lr}8,000- & \mathbf{9 , 0 0 0} \\ \mathbf{9 , 0 0 0} & \mathbf{1 0 , 0 0 0}\end{array}$	19,959	29,292	19,801	68.1	100.8
$\begin{array}{rr}9,000- & 10,000 \\ 10,000- & 15000\end{array}$	15,651	22,529	15,445	69.5	101.3
$\begin{array}{ll}10,000- & 15,000 \\ 15,000- & 20,000\end{array}$	45,309	60,668	42,879	74.7	105.7
$\begin{array}{ll}15,000- & 20,000 \\ 20,000- & 25,000\end{array}$	22,618	26,120	19,311	86.6	117.1
$\begin{array}{ll}\mathbf{2 0 , 0 0 0 -} & 25,000 \\ \mathbf{2 5 , 0 0 0 -} & 30,000\end{array}$	12,953	14,044	10,726	92.2	120.8
$\begin{array}{ll}25,000- & 30,000 \\ \mathbf{3 0 , 0 0 9 -} & 40,000\end{array}$	8,055	8,558	6,705	91.1	120.1
$\begin{array}{ll}30,009- & 40,000 \\ 40,000- & \mathbf{3 0 , 0 0 0}\end{array}$	10,068 5,611	9,731	7,854	103.5	128.2
50,000- 60,000	3,621	5,232 3,189	4,362 2730	107.2	128.6
60,000- 70,000	2,548	2,129	2,730	113.5 119.8	132.6
70,000- 80,000	1,787	1,499	1,334.8	119.2	133.9
80,000- 900000	1,422	1,102	996.8	129.0	142.7
90,000-100,000	1,074	847	777.5	120.8	138.1
100,000- 150,000	2,900	2,282.1	2,158.4	127.1	134.4
150,000-200,000	1,284	-282.6	2,1982.1	1270.7	132.1
200,000-250,000	726	528.2	539.9	137.4	134.5
250,000-300,000	427	321.9	337.6	132.6	126.5
300,000-400,000	469	366.1	395.3	123.1	118.6
400,000- 500,000	245	196.8	219.6	124.5	111.6
500,000-1,000,000	376	329.6	387.4	114.1	97.1
1,000,000-1,500,000	97	85.83	108.7	1130	89.2
1,500,000-2,000,000	42	36.96	48.88	113.6	85.9
2,000,000-3,000,000	34	31.98	44.19	106.3	76.9
3,000,000-4,000,000	14	13.77	19.91	101.7	70.3
4,000,000-5,000,000	9	7.40	11.05	121.6	81.4
5,000,000 and over	10	19.76	32.87	50.6	30.4
Total (over \$4,000)	344,279	510,374.00	344,279.00		

TABLE 28E
UNITED STATES INCOME-TAX RETURNS, 1917

TABLE 28F

UNITED STATES INCOME-TAX RETURNS, 1918

	A	B	C		
Income class	$\begin{aligned} & \text { U. S. } \\ & \text { income-tax } \\ & \text { returns } \end{aligned}$	Least-squares straight line	Straight line giving correct total returns and income	Per cent A is of B	Per cent A is of C
\$ 1,000-8 2,000	(1,516,938)				
2,000- 3,000	1,496,878	1,375,372	1,470,366	108.8	101.8
3,000- 4,000	610,095	537,892	-566,044	113.4	107.8
4,000- $\quad \mathbf{5 , 0 0 0}$	322,241	269,674	280,477	119.5	114.9
5,000- $\quad \mathbf{6 , 0 0 0}$	126,554	155,513	160,366	81.4	78.9
6,000- 7,000	79,152	99,102	101,389	79.9	78.1
7,000- 8,000	51,381	67,184	68,258	76.5	75.3
8,000- 9,000	35,117	47,740	48,266	73.6	72.8
9,000- 10,000	27,152	35,628	35,795	76.2	75.9
10,000- 11,000	20,414	26,793	26,832	76.2	76.1
11,000- 12,000	16,371	21,283	21,231	76.9	77.1
12,000- 13,000	13,202	16,999	16,873	77.7	78.2
13,000- 14,000	10,882	13,638	13,515	79.8	80.5
14,000- 15,000	9,123	11,328	11,165	80.5	81.7
15,000- 20,000	30,227	35,214	34,486	85.8	87.7
20,000- 25,000	16,350	17,654	17,097	92.6	95.6
25,000- 30,000	10,206	10,181	9,762	100.2	104.5
30,000- $\quad 40,000$	11,887	10,886	10,336	109.2	115.0
40,000- 50,000	6,449	5,458	5.121	118.2	125.9
50,000- 60,000	3,720	3,147	2,928	118.2	127.0
60,000- 70,000	2,441	2,006	1,852	121.7	131.8
70,000- 80,000	1,691	1,359.5	1,246	124.4	135.7
80,000- 90,000	1,210	966.2	881.4	125.2	137.3
90,000- 100,000	934	721.0	653.7	129.5	142.9
100,000-150,000	2,358	1,822.3	1,636.3	129.4	144.1
150,000-200,000	866	712.7	629.8	121.5	137.5
200,000-250,000	401	3.57 .3	312.1	112.2	128.5
250,000-300,000	247	206.0	178.3	119.9	138.5
300,000- 400,000	260	220.3	188.7	118.0	137.8
400,000- 500,000	122	110.5	93.55	110.4	130.4
500,000-750,000	132	119.28	99.70	110.7	132.4
750,000-1,000,000	46	46.66	38.36	98.6	119.9
1,000,000-1,500,000	33	36.88	29.85	89.5	110.4
1,500,000-2,000,000	16	14.42	11.50	111.0	139.1
2,000,000-3,000,000	11	11.40	8.96	96.5	122.8
3,000,000-4,000,000	4	4.46	3.44	89.7	116.3
4,000,000-5,000,000	2	2.24	1.71	89.3	117.0
$5,000,000$ and over	1	4.86	3.60	20.6	27.8
Total (over \$2,000)	2,908,176	2,769,408.00	2,908,176.00		

TABLE 28G

UNITED STATES INCOME-TAX RETURNS, 1919

	A	B	C		
Income class	U.S. income-tax returns	Least-squares straight line	Straight line giving correct total returns and income	Per cent A is of B	Per cent A is of C
\$ 1,000-8 2,000	(1,924,872)				
2,000- 3,000	1,569,741	1,984,285	1,673,688	79.1	- 93.8
3,000- 4,000	742,334	764,739	660,950	97.1	-112.8
4,000- $\quad 5,000$	438,154	379,330	333,645	115.5	131.3
5,000- 6,000	167,005	216,921	193,470	77.0	86.3
6,000- 7,000	109.674	137,278	123,953	79.9	88.5
7,000- $\quad 8,000$	73,719	92,511	84,273	79.7	87.5
8,000- $\quad 9,000$	50,486	65,403	60,066	77.2	88.1
9,000- 10,000	37,967	48,583	44,980	781	84.4
10,000- 11,000	28,499	36,386	33,887	78.3	84.1
11,000- 12,000	22,841	28,796	27,027	79.3	84.5
12,000- 13,000	18,423	22,921	21,600	80.4	85.3
13,000-14,000	15,248	18,329	17,395	83.2	87.7
14,000-15,000	12,841	15,181	14,459	84.6	88.8
15,000- 20,000	42,028	46,868	45,162	89.7	03.1
20,000- 25,000	22,605	23,249	22,797	97.2	99.2
25,000- 30,000	13,769	13,294	13,228	103.6	104.1
30,000- $\quad 40,000$	15,410	14,084	14,219	109.4	108.4
40,000- $\quad 50,000$	8,298	6,986	7,178	118.8	115.6
50,000- $\quad \mathbf{6 0 , 0 0 0}$	5,213	3,994	4,162	130.5	125.3
60,000- 70,000	3,196	2,528	2,665	126.4	119.9
70,000- 80,000	2,237	1,704	1,813	131.3	123.4
80,000- $\quad \mathbf{0 0 , 0 0 0}$	1,561	1,205	1,292	129.5	120.8
90,000-100,000	1,113	894	968.3	124.5	114.9
100,000-150,000	2,983	2,240	2,461 . 5	133.2	121.2
150,000-200,000	1,092	863.2	971.6	126.5	112.4
200,000-250,000	-522	428.1	490.4	121.9	108.4
250,000-300,000	250	245.0	284.4	102.0	87.9
300,000-400,000	285	259.2	306.0	110.0	93.1
400,000-500,000	140	128.6	154.4	108.9	90.7
500,000-750,000	129	137.32	168.2	93.9	76.7
750,000-1,000,000	60	52.89	66.4	113.4	90.4
1,000,000-1,500,000	34	41.25	52.95	82.4	64.2
1,500,000-2,000,000	13	15.89	20.90	81.8	62.2
2,000,000-3,000,000	7	12.40	16.69	56.5	42.0
3,000,000 and over	11	12.15	17.27	90.5	63.7
Total (over \$2,000)	3,407,888	3,929,905.00	3,407,888.00		

Why do the least-squares straight lines appear graphically such good fits to the cumulative distributions (for at least the later years) when a merely arithmetic analysis shows even this fit to the cumulative data to be so illusory? Because the percentage range in the number of persons is so extremely wide. The deviations of the cumulative data on a double log scale from the least-squares straight line are minute when compared with the percentage changes in the data from the smallest to the largest incomes. But this is not helpful. The fact that there are 100,000 times as many persons having incomes over $\$ 2,000$ per annum as there are persons having incomes over $\$ 5,000,000$ per annum, does not make a theoretical reading for a particular income interval of twenty or thirty per cent over or under the data reading an unimportant deviation. Charting data on a double \log scale may thus become a fertile source of error unless accompanied by careful interpretation. ${ }^{1}$ This fact has long been recognized by engineers and others who have had much experience with similar problems in curve fitting.

Another matter of some importance must be noted here. The deviations of the data from the straight lines might be much less than they are and yet constitute extremely bad fits. The data points (even on a noncumulative basis) do not flutter erralically from side to side of the fitted lines; they run smoothly, passing through the filted line at small angles in the way that one curve cuts another. Now, in curve fitting, such a condition always strongly suggests that the particular mathematical curve used is not in any sense the "law" of the data.
2. Are the slopes of the straight lines fitted to income data from different times and places similar in any significant degree?
${ }^{1}$ The dangers of fitting curves with such a combination as a cumulative distribution and a double log scale. without further analysis. is well illustrated by the results Professor Pareto obtained for Oldenburg. To the Oldenburg data he fitted the rather complicated equation $\log N=\log A-a \log (x+a)-B x$ and obtained the following results. (The value Pareto gives for β, namely .0000631 . does not check with his calculated figures given below. $\beta=$. 0000274 is evidently what he intended.)

Income in marks (over)	N	Logarithms of N		
		Observed	Calculated	Δ
300	54,309	4.7349	4.7349	
600	24,043	4.3810	4.4368	-.0558
900	16.660	4.2217	4.2304	-.0086
1.500	9.631	3.9837	3.9409	+.0428
3.000	3.502	3.5443	3.5008	+.0435
6,000	994	2.9974	2.9997	-.0023
9.000	445	2.6484	2.6671	-.0187
15.300	140	2.1461	2.1838	+.0377
30.000	25	1.3979	1.3364	+.0615

[^4]If income distributions charted on a double log scale not only cannot be approximately represented by straight lines, but also differ radically (Note 1 page 363 concluded.)

Income in marks	Number of persons		Per cent actual are of computed
	Actual	Computed	
300- 600	30,266	26,969	112.2
600- 900	$7,3 \times 3$	10,342	71.4
900-1,500	7,029	8,270	85.0
1,500-3,000	6.129	5,560	110.2
3,000-6,000	2,508	2,169	115.6
6,000-9,000	549	534	102.8
9,000-15,300	305	312	97.8
15,300-30,000	115	131	87.8
Over 30,000	25	22	113.6
Total	54,309	54.309	100.0

The fit no longer impresses ouc as quite so good. See Chart ssH below.

in shape, it is of course not of great importance whether the straight lines fitted to such data from different times and places have or have not approximately constant slopes. For example, a comparison of Chart 28C showing the cumulative distribution of United States income-tax returns for 1915 on a double log scale and Chart 28 F showing similar data for 1918, makes it plain that, even were the slopes of the fitted straight lines for the two years identical, the data curves would still be so different as to make the similarity of slope of the fitted lines of almost no significance. ${ }^{1}$

In considering slopes, let us examine further both the data and the fitted lines for these two years 1915 and 1918. Tables 28I and 28J give some numerical illustrations of the differences between the distributions for the two years. Table 28I gives the number of returns in each income interval each year and the percentages that the 1918 figures are of the 1915 figures.

TABLE 28I
COMPARISON OF UNITED STATES INCOME-TAX RETURNS FOR 1915 AND 1918

Income class	Number of returns		Ratio of 1918 to 1915
	1915	1918	
\$ 4,000 - \$ 5,000.	58,949	322,241	5.4664
5,000- 10,000.	120,402	319,356	2.6524
10,000- 15,000.	34,102	69,992	2.0524
15,000- 20,000.	16,475	30,227	1.8347
20,000- $25,000$.	9,707	16,350	1.6844
25,000- 30,000.	6,196	10,206	1.6472
30,000- $40,000$.	7,005	11,887	1.6969
40,000- 50,000.	4,100	6,449 9996	1.5729 1.4599
50,000-100,000	6,847 1793	9,996 2,358	1.4599 1.3151
100,000-150,000	1,793	2,358	1.1961
150,000-200,000.	724	866 .$\quad 401$	1.1938
$200,000-250,000$. $25000-300000$	386 216	$\begin{array}{r}\text { - } 401 \\ \hline 247\end{array}$	1.0389
$250,000-300,000$ $300,000-400,000$	254	260	1.0236
400,000- 500,000	122	127	1.0000
500,000-1,000,000	209	178	. 8517
1,000,000 and over.	120	67	. 5583

[^5]The change as we pass from the $\$ 4,000-\$ 5,000$ interval, where the 1918 figures are nearly five-and-a-half times the 1915 figures, to the intervals above $\$ 500,000$, where the 1918 figures are actually less than the 1915 figures, illustrates the great and fundamental difference between the slopes of the two distributions. However, such a comparison of unadjusted ${ }^{1}$ Compare also the deviations from the fitted lines as given in Tables 28C and 28F.
money intervals, while it throws into relief the differences in slope of the two distributions, is by no means as enlightening for purposes of exhibiting their other essential dissimilarities as a comparison of the two sets of data after they have been adjusted for changes in average (per capita) income and changes in population. Table 28J gives some comparisons between the data for the two years and between the fitted lines for the two years on such an adjusted basis. Two intervals, one in the relatively low income range and the other in the high income range, are used to illustrate the essentially different character of the distributions for the two years.

TABLE 28J

COMPARISONS OF INITED STATES INCOME-TAX RETUINS FOR TIIE YEARS 1915 a 191F ADJUSTED FOR CHANGES IN AVERAGE (PER CAIITA) INCOME AND CIIANGES in POPCLATION

ACTCAL INCOME-TAN DATA

Income intervals	Number of returns		Fraction of populatiou		$\begin{gathered} \text { Ratio of } \\ \text { Column (4) } \\ \text { to Column (3) } \end{gathered}$
	(1)	(2)			
	191.	1918	1915	1915	
Between 12 and 13 times average income	21.190	31.197	. 00021099	(0)2090	
Between 1.200 and 1.300 times average incodse	43.85	20.37	.000000436i6	0000019	1.4193
Over 12 times average income	248.600	271.452	.00247536	.0026056il	$\underbrace{.4488}_{1.0526}$
	Ammunt	dollars	Per cent of	al incone	
Orer 12 times average iscome	$\begin{gathered} 1915 \\ 84.283 .010 .735 \end{gathered}$	$\begin{gathered} 1918 \\ 35.312 .832 .516 \end{gathered}$	$\begin{gathered} 1915 \\ 11.9 \% \end{gathered}$	$\begin{array}{r} 1918 \\ 3.7 \% \end{array}$	7311

LEAST-SQUARES STRAIGHT LINES

Income intervals	Number of returns		Fraction of population		Ratio of Column (4) to Column (3)
	(1)	(2)			
	1915	1918	1915	1918	
Bet ween 12 and 13 tumes average incume	32.886	41.730	. 000332745	. 00040050	1.2233
Bet ween 1.200 aud 1,300 times average income	47.63	17.10	. 00000004743	.0000001641	. 3460

STHAIGHT LINES FITTED TO GIVE THE SAME TOTAL NUMBFR OF METURNS AND THE SAME TOTAL INCOME AS THE INCOME-TAS DATA

Income intervals	Number of returns		Fraction of pmpulation		Ratio ofColumn (4)to Column (3)
	(1)	(2)			
Between 12 and 13 times average income	1915	1918	1915	1918	
	24.510	42.460	.00024405	. 00040756	
Bet ween 1.200 and 1.300 times average income				.00040306	1.6700
	54.73	14.15	.000000-450	.0000001358	. 2492

NOTES TO TABLE 29J
Average Income" Intervals

Equations of Fitted Straight Lines on a Cumulative Double Log Basis

	Least-squares linea	Lines giving correct total number of returas and total income
1914.	$y=11.153322-1.559236 \mathrm{x}$	$y=10.557242-1.420936 \times$
1915.	$y=10.643299-1.419579 \mathrm{x}$	$y=10.202382-1.32 \pm 598 \times$
1917	$y=10.839435-1.424638 x$	$y=10.212702-1.298088 \times$
1918.	$y=11.410606-1.539996 \mathrm{x}$	$y=11.170980-1.486817 \pm$
1919.	$y=12.320963-1.734802 \mathrm{x}$	$\begin{aligned} & y=12.202452-1.738497 x \\ & y=12.036155-1.667258 x \end{aligned}$

Table 28J needs little discussion. In the section treating actual incometax data we notice that while the adjusted number of returns in the lower income interval ${ }^{1}$ increased 41.93 per cent from 1915 to 1918 , the adjusted number of returns in the upper income interval ${ }^{2}$ decreased 55.22 per cent. Moreover, while the adjusted total number of returns above the " 12 -times-average-income" point increased 5.26 per cent, the adjusted amount of income reported in these returns decreased 26.89 per cent.

Such figures suggest a rather radical change in the distribution of income during this short three-year period. Similar conclusions may be drawn from the figures for the two pairs of fitted lines, though we must of course remember that these lines describe only very inadequately the actual data. The lines so fitted as to give each year the same total number of returns and total amount of income as the data for that year yield sensational results. While the adjusted number of returns in the lower income-interval increased 67 per cent, the adjusted number of returns in the upper income-interval decreased 75.08 per cent.

Finally, it has been suggested that changes in the characteristics of the tax-income-distribution in the United States from 1915 to 1918 may be accounted for as the results of the increase in the surtax rates with 1917. We do not believe any large part of these changes can be so accounted for. Notwithstanding the fact that the country entered the European war during the interval, the difference between the 1915 distribution and the 1918 distribution in the United States, extreme as it is, cannot be said to be unreasonably or unbelievably great. Even the changes in the slope of the least-squares line are not phenomenal. Pareto's Prussian figures contain fluctuations in slope from - 1.60 to - 1.89 while the slope of the least-squares straight line fitted to his Basle data is only -1.25 . The

[^6]slopes of the least-squares straight lines fitted to the Ainerican data are -1.42 for 1915 and -1.69 for 1918.
3. If the upper income ranges (or "tails") of income distributions were, when charted on a double log scale, closely similar in shape, would that fact justify the assumption that the lower income ranges were likewise closely similar?
Before attempting to answer the above question, let us summarize the case we have just made against believing the "tails" significantly similar. We can then discuss how much importance such sinilarity would have did it exist.

We have found upon examination that the approximation to straight lines of the tails of income distributions plotted on double log scales is specious; that the slopes of the fitted straight lines differ sufficiently to produce extreme variations in the relative number of income recipients in the upper as compared with the lower income ranges of the tails; that the upper and lower income ranges of the actual data for different tinies or places tell a similar story of extreme variation; and that the irregularities in shape of the tails of the actual data, entirely aside from any question of approximating or not approximating straight lines of constant slope, vary greatly from year to year and from country to country, ranging all the way from the irregularities of such distributions as the Oldenburg data, through the American data for 1914, 1915 and 1916 to such an entircly different set of irregularities as those seen in the American data for $1918{ }^{1}$.

At this stage of the discussion the reader may ask whether a general appearance of approximating straight lines on a double \log scale, poor as the actual fit may be found to be under analysis, has not some meaning, some significance. The answer to this question nust be that, if we were not dealing with a frequency distribution but with a correlation table showing a relationship between two eariables, an approximation of the regression lines to linearity when charted on a double log scale night casily be the clue to a first approximation to a rational law; but that, on the other hand, approximate linearity in the tail of a frequency distribution charted on a double \log scale signifies relatively little because it is such a common charateristic of frequency distributions of many and varied types.

The straight line on a double log scale or, in other words, the equation $y=b x^{m}$, when used to express a relationship between two variables, is, to quote a well-known text on engineering mathematics, "one of the most useful classes of curves in engineering." ${ }^{2}$ In deciding what type of equation to use in fitting curves by the method of least squares to data cor-

[^7]cerning two variables the texts usually mention $y=b x^{m}$ as "a quite common case." ${ }^{1}$ A recent author writes, "simple curves which approximate a large number of empirical data are the parabolic and hyperbolic curves. The equation of such a curve is $y=a x^{b}\left[y=b x^{m}\right]$, parabolic for b positive and hyperbolic for b negative." ${ }^{2}$ A widely used text on elementary mathematics speaks of the equation $y=b x^{m}$ as one of "the three fundamental functions" in practical mathematics. ${ }^{3}$ The market for "logarithmic paper" shows what a large number of two-variable relationships may be approximated by this equation. Moreover this equation is often a close first approximation to a rational law. Witness "Boyle's Law." Indeed, sufficient use has not been made of this curve in economic discussions of two-variable problems.

The primary reason why approximation to linearity on a double log scale has no such significance in the case of the tail of a frequency distribution as it often has in the case of a two-variable problem is because of the very fact that we are considering the tail of the distribution, in other words, a mere fraction of the data. While frequency distributions which can be described throughout their length by a curve of the type $y=b x^{m}$ are extremely rare, a large percentage of all frequency distributions have tails approximating straight lines on a double log scale. ${ }^{4}$ It is astonishing how many homogeneous frequency distributions of all kinds may be described with a fair degree of adequacy by means of hyperbolas ${ }^{5}$ fitted to the data on a double log scale. Along with this characteristic goes, of course, the possibility of fitting to the tails of such distributions straight lines approximately parallel to the asymptotes of the fitted hyperbola. However we have by no means adequately described an hyperbola when we have stated the fact that one of its asymptotes is (of course) a straight line and that its slope is such and such. Had we even similar information concerning the other asymptote also, we should know little about the hyperbola or the frequency distribution which it would describe on a double log scale. The hyperbola might coincide with its asymptotes and hence have an angle at the mode or it might have a very much rounded "top." Such a variation in the shape of the top of the hyperbola ${ }^{6}$ would generally correspond to a very great variation in the scatter or "inequality" of the distribution as well as many other characteristics.

[^8]

Rough similarity in the tails of two distributions on a double log scale by no means proves even rough similarity in the re:nainder of the distributions. Charts $28 \mathrm{M}, \mathbf{2 8 N}, 280$ and 28 P illustrate bot ${ }^{\text {t }}$ cumulatively

and non-cumulatively on a double log scale two wages distributions whose extreme tails appear roughly to approximate straight lines of about equal slope. ${ }^{1}$ Charts 28 M and 28 N are from data concerning wages per hour of 72,291 male employees in the slaughtering and meat-packing industry in 1917; ${ }^{2}$ Charts 280 and 28P are from data concerning wages per hour of 180,096 male employees in 32 manufacturing industries in the United States in $1900 .^{3}$ A mere glance at the two non-cumulative distributions will bring home the fact that while they show considerable similarity in the upper income range tails; they are quite dissinilar in the remainder

[^9]
of the curves. Moreover, in spite of this similarity of tails, the slaughtering and meat-packing distribution has a coefficient of variation of 30.5 while the manufacturing distribution has a coefficient of 47.7. In other words, the relative scatter or "inequality of distribution" is more than one-and-ahalf times as great in the manufacturing data as it is in the slaughtering and meat-packing data. Furthermore, no diseussion and explanation of greater essential heterogeneity in the one distribution than in the other will offset the fact that the tails are similar but the distributions are different. There seems indeed to be almost no correlation between the slope of the upper-range tail and the degree of scatter in wages distributions. Some distributions showing extremely great scatter have very steep tails, some have not. ${ }^{1}$ The frequency curve for the distribution of income in Australia in 1915 is radically different from either the curve for the United States in 1910 constructed by Mr. W. I. King or the curve for the United States in 1918 constructed by the National Bureau of Economic Researci.

[^10]

Yet all three curves have tails on a double \log scale quite as similar as is common with income-tax returns. ${ }^{1}$

From this discussion we may draw the corollary that it is futile to attempt to measure changes in the inequality of distribution of income throughout its range by any function of the mere tail of the income frequency distribution. It seems unnecessary therefore to discuss Pareto's suggestions on this subject.
4. Is it probable that the distribution of income is similar enough from year to year in the same country to make the formulation of any" useful general "law" possible?

[^11]Before answering this question we must decide what we should mean by the word similar. If income distributions for two years in the same country were such that cach distribution included the same individuals and each individual's income was twice as large in the second year as it had been in the first year, it would seem reasonable to speak of the distributions as strictly similar. If in a third year (because of a doubling of population due to some hypothetical immigration) the number of persons receiving each specified income size was exactly twice what it was in the second year, it would still seem reasonable to speak of the distributions as strictly similar. Tested by any statistical criterion of dispersion which takes account of relative size (such as the coefficient of variation), the dispersion is precisely the same in each of the three years. Moreover the three distributions mentioned above ${ }^{1}$ must necessarily have identically the same shape on a double log scale, and furthermore any two distributions which have identically the same shape on a double \log scale ${ }^{2}$ must necessarily have the same relative dispersion as measured by such indices as the coefficient of variation, interquartile range divided by median, etc. Approximation to identity of shape on a double log scale seems then a useful concept of "similarity." It is the concept innplicit in Pareto's work. ${ }^{3}$

Now we have already found considerable evidence that income distributions are not, to a significant degree, similar in shape on a double log scale. The income-tax tails of income distributions for different times and places neither approximate straight lines of constant slope nor approximate one another; they are of distinctly different shapes. Moreover, such tails do not show in respect of their numbers of income recipients and

[^12]total amounts of income any uniformity of relation to the total number of income recipients and totol amount of income in the country, even after adjustments have been made for variations in population and average income. ${ }^{1}$ Consiterations sueh as these, reënforce the conclusion which we arrived at from an examination of wage distributions, namely; that there is little necessary relation between the slape of the tail and the shape of the body of a frequency distribution, and have led us to suspect that, even if the tails of income distributions were practically identical in shape, it would be extremely dangerous to conclude therefore that the lower income ranges of the curves were in any way similar.

A most inportant matter remains to be diselused. What right have we to assume that the heterogeneity necessarily inherent in all incone distribution data is not such as inevitably to preclude not only uniformity of shape of the frequency curve from year to year and country to country but also the very possibility of rational mathematical description of any kind unless based upon parts rather than the whole? What evidence have we as to the extent and nature of heterogeneity in income distribution data?

In the first place we must remember that lower range incomes are predominantly from wages and salaries, while upper range incomes are predominautly from rent, interest, dividends and profits. ${ }^{2}$ While 74.67 per cent of the total income reported in the linited States in the $\$ 1,000-\$ 2,000$ income interval in 1918 was triceable to wages and saluries, only 33.10 per cent of the income in the $\$ 10,000-\$ 20,000$ interval was from those sources, and only 15.92 per cent of the income in the $\$ 100,000-\$ 150,000$ interval and 3.27 per cent of the income in the over- $\$ 500,000$ intervals. On the other hand, while only 1.93 per cent of the total income reported in the $\$ 1,000-\$ 2.000$ interval in 1918 was traceable to dividends, 23.73 per cent was so traceable in the $\$ 10.000-\$ 20.000$ interval, 43.18 per cent in the $\$ 100,000-\$ 150.000$ interval, and 59.44 per cent in the over- $\$ 500,000$ intervals. ${ }^{3}$ The difference in constitution of the ineome at the upper and

[^13]lower ends of the distribution is sufficient to justify the statement that most of the individuals going to make up the lower income range of the frequency curve are wage earners, while the individuals going to make up the upper income range are capitalists and entrepreneurs. ${ }^{1}$ What do we know about the shapes of these component distributions? Is the fundamental difference in their relative positions on the income scale their ouly dissimilarity?

In any particular year the upper income tail of the frequency distribution of income among capitalists and entrepreneurs seems not greatly different from the extreme upper income tail of the frequency distribution of income among all classes. This is what we might expect. Not ouly is the percentage of the total income in the extreme upper income ranges reported as coming from wages and salaries small but much of this socalled wages and salaries income inust be merely teclinical. For exanple, it is often highly "convenient" to pay "salary" rather than dividends. Furthernore, in so far as the tail of the curve of distribution of income among capitalists and entrepreneurs is not identical with the tail of the general curve, it will show a smaller rather than a larger slope, because the percentage of the number of persons in each income interval who are capitalists and entrepreneurs increases as we pass from lower to higher incomes. ${ }^{2}$ Now the slopes of the straight lines fitted to the extreme tails of non-cumulative income distributions on a double log scale fluctuate within a range of about 2.4 to 3.0 .

The upper range tails of wages distributions tell an entirely different story. Aside from surface irregularities often quite evidently traceable to concentration on certain round numbers, the majority of wages distributions have tails which, on a double log scale, are roughly linear. ${ }^{3}$ However the slopes of straight lines fitted to these tails are much greater than the slopes of corresponding straight lines fitted to income distribution tails. ${ }^{4}$ While the slopes of income distribution tails range from about 2.4
${ }^{1}$ Many individuals in the middle inconie ranges must necessarily be difficult to elassify. This does not mean that the conecpt of heterogencity is inapplicable. There are countries in which the population is a mixture of Spanish, American Indian. and Negro blood. Now such a population must, for many statistical purposes. be considered extremely hetcrogeneous even though the percentage of the populatiou which is of any pure blood le quite negligible.
i In 1917, the only year in which returns are classified according to "principal source of income" (wages and salaries, income from business, income from investment) the difference in slope, in the incone range $\$ 100,000$ to $\$ 2,000,000$. between the distribution for all relurns and the distribution for those returns which did not report wages and salaries as their principal source of income was less than 05 . The slope in this range of the line fitted to all returns was about 2.64; the business and investment line was about 2.59 and the wages line about 3.21. In 1916, the only ycar in which returns are classified accordiug to occupations, the distribution of income among copitalists shows a slope of only 2.05 while public service employees (civi) show a slope of 2.70 and skilled and unshilled laborers a slope of 2.74 .
${ }^{3}$ Attention has already been drawn to the fact that this is a characteristic of many frequency distributions of various kinds.
A further diffcrepre between the upper range income distribution among capitalists and entrepreneurs and the upper range of the distribution among all persons seems to be, from the 1916 occupation distributions, that the distribution among all persons shows less of a roll, i. e., is straighter.
to 3.0 , the slopes of wages distributions tails commonly range between 4.0 and 6.0. They seldom run below about 4.5; they sometimes run as high as 10.0 and 11.0.

A distribution of wages per hour for 26,183 male employees in iron and steel nills in the United States in 1900^{1} shows a tail with a slope of about 3.35. However, the total of which this is a part, the distribution of wages per hour among 180,096 male employees in 32 manufacturing industries in 1900, shows a tail-slope of about 4.8. The estimated distribution of weekly eamings of $5,470,321$ wage earners in the United States in 1905^{2} shows a tail-slope of about 5.0. The distribution of carnings per hour among 318,946 male employees in 29 different industries in the United States in 1919^{3} shows a tail-slope of about 5.86. The distribution of wages per month annong $1,939,399$ railroad employees in the United States in 1917^{4} shows a tail-slope of about 6.25 . The distribution of wages per hour among 43,343 male employees in the foundries and metal working industry of the United States in 1900^{5} shows a tail-slope of about 7.8. The distribution of earnings in a week among 9,633 male employees in the woodworking industry-agricultural implements-in the United States in 1900^{6} shows a tail-slope of over 11.0. At the other extreme was the case of the wages-per-hour distribution among 20,183 male employees in American iron and steel mills in 1900 with a slope of 3.35 . Both 11.0 and 3.35 are exceptional, but the a vailable data make it clear that wages distributions of either earnings or rates have tail-slopes which are always much greater than the maximum tail-slope of income distributions.

The illustrations in the preceding paragraph are illustrations of the tailslopes of uages distributions among wage carners. However all the evidence points to frequency distributions of income among wage earners having tail-slopes only very slightly less steep than the tail-slopes of wages distributions. We have almost no usible data concerning the relation between individual wage distributions and incone distributions for the same individuals, but we have a few samples showing the relation between family eamings distributions and family income distributions. ${ }^{7}$ Moreover, we can without great risk base certain extremely general conclusions

[^14]concerning individual wage-arners' income distributions on these family data. The upper tails of the family-wage distributions are the tails of the wage distributions for the individuals who are the heads of the families. This is apparent from an analysis of the samples. Now income from rents and investinents belongs almost totally to heads of families. Such income is however so small in amount that it cannot alter appreciably the slope of the tail. ${ }^{1}$ While income from other sources than rents and investments (lodgers, garden and poultry, gifts and miscellaneous) may not be so confidently placed to the credit of the head of the family, this item changes its percentage relation to the total income so slowly as to be negligible in its effect upon the tail-slope of the distribution. ${ }^{2}$ Notwithstanding the danger of reasoning too assuredly about individuals from these picked family distributions, we seem justified in believing that the tail-slopes of income distributions among individual wage earners are not very different from the tail-slopes of wage distributions among the same individuals. ${ }^{3}$

The upper tail-slopes of income distributions among typical wage earners
${ }^{1}$ For example. in the report on the incomes of 12,096 white families published in the Monthly Labor Review for December, 1919, we find the income from rents and investments less than one per cent of the total family income for each of the income intervals.

Percentage income from
Income group rents and investments is of total income

Under 8900	.079
$8900-\$ 1.200$.176
$1.200-1.500$.410
$1.500-1.800$.551
$1.800-2.100$.606
$2,100-2.500$.998
2.500 and over	.778

2 As a somewhat extreme example. the Bureau of Labor investigation mentioned in the preceding note shows the following relations between total family earnings and total family income (including income from rents and investments, lodgers, garden and poultry, gifts and miscellaneous).

	Pcrcentage that total Income group earnings are of total income
Under $\$ 900$	96.2
$\$ 900-\$ 1.200$	96.5
$1.200-1.500$	96.3
$1,500-1,800$	96.0
$1,800-2.100$	96.3
$2.100-2.500$	95.1
2,500 and over	96.2

*Further corroboratory evidence. of some slight importance. that the tail-slopes of wage distributions among wage earners are not very different from the tail-slopes of income distributions among wage earners is yielded by the fact that the tail-slopes of income distributions annong fanilies (which are virtually identical with the tail-slopes of both income and wage distributions among the heads of these families) have roughly the same range as the tail-slopes of wage distributions among individuals. The British investigation into the incomes of 7.616 workingmen's familics in the United States in 1909 shows a tail-slope of about 3.5. (Report of the British Board of Trade on Cost of Living in American Towns. 1911. [Cd. $5609]$, p. XLIV.) The Bureau of Labors 4.0 . Mr. Arthur T. Emerye of 12,096 white fam-
ilies in 1919 abely careful investigation into the incomes of 2.000 Chicago households in 1918 shows a tail-slope of about 4.4. At the other extreme we find that the Bureau of Labor's investigation into the income of 11,156 families in 1903 (Eightcenth Annual Report of the Commissioner of Labor. 1903, p. 558) shows a tail-slope of about 10.0. and that Mr. R. C. Chapin's investigation into the income of 391 workingmen's families in New York City (Standard of Living Among W'orkingmen's Families in New York City, p. 44) also shows a slope of about 10.0. The tails of these last two cases are very irregular so that the slope itself is not determinable with much precision.
may then be assumed to have much greater slopes than the upper tailslopes of income distributions among capitalists and entrepreneurs. It does not seem possible to make any very definite statement concerning the body and lower tail of the capitalist and entrepreneurial distributioneven in so far as thant term is a significant one. ${ }^{1}$ All the evidence suggests that the mode of what we have termed the capitalist-entrepreneurial distribution is consistently higher than the wage-aarners' mode. ${ }^{2}$ Its lower incone tail undoubtedly reaches out into the negative income range, which the tail of the wage-eamers' distribution may, both a priori and from evidence, be assumed not to do. It seems a not irrational conclusion then to speak of the capitalist-entrepreneurial distribution as having a lesser tailslope than the wage-earners' distribution on the lower income side as well as on the upper income side, ${ }^{3}$ and as a corollary almost certainly a much greater dispersion both actual and relative than the wage-earners' distribution.

Though the above generalizations conceming differences between the wage-carners' income distribution and the capitalist-entrepreneurial income distribution seem somnd, they tell but a fraction of the story. Aside from the difficulty of classifying all income recipients in one or the other of these two classes, we are faced with the further fact that investigation suggests that our two component distributions are themsel ves exceedingly heterogeneous. ${ }^{4}$ We have already noted that wage distributions for different occupations and times are extremely dissimilar in shape and we suspect that the same applies to capitalist-entrepreneurial distributions. For example, what little data we possess suggest that the distribution of income anong farmers las little in common with other entrepreneurial distributions.
Moreover, the component distributions, into which it would seem neeessary to break up the complete income distribution before any rational description would be possible, not only have different shapes and different positions on the income scale (i. e., different modes, arithmetic averages, etc.), but the relative position with respect to one another on the income scale of these different component distributions changes from year to year. ${ }^{5}$

[^15]Table 28Q ${ }^{1}$ is interesting as showing the changes in the relative positions of the arithmetic averages of different wage distributions in 1909, 1913 and 1918.

TABLE 28Q

CHANGES IN THE RELATIVE POSITIONS OF THE AVERAGE ANNUAL EARNINGS OF EMPLOYEES ENGAGED IN VARIOUS INDUSTRIES

Industry	1909	1913	1918
All Industries.	100.0	100.0	100.0
Agriculture.	48.2	45.4	54.7
Production of Minerals	95.7	104.4	119.0
Manufacturing:			
Factories.	91.2	97.5	103.5
Hand Trades.	111.7	103.5	110.8
All Transportation	104.9	105.4	119.3
Railway, Express, Pullnan, Switching and Terninal Cos.	101.0	103.2	129.3
Street Railway, Electric Light and Power, Telegraph and Telephone Cos.	936.5	93.8	81.4
Transportation by Water...............	123.5	114.1	147.5
Banking.	123.0	128.6	133.5
Government	118.1	113.8	${ }_{97}^{83} 8$
Unclassified Industries	114.4	107.7	97.8

The data are so inadequate that the construction of a similar table for capitalist-entrepreneurial distributions is not feasible. However, there are comparatively good figures for total income of farmers and total number of farmers year by year. ${ }^{2}$ The average incomes of farners, year by year, were the following percentages of the estimated average incomes of all persons gainfully employed in the country.

	Percentages
1910	75.19
1911	69.13
1912	72.41
1913	74.88
1914	76.33
1915	80.45
1916	82.85
1917	104.51
1918	109.68
1919	103.95
1920	63.88

This is a wide range.
Exactly what effects have such internal movements of the component distributions upon the total income frequency distribution curve? This is a difficult question to answer as we have not sufficient data to break
${ }^{2}$ See Income in the United States, Vol. I, p. 112.
down the total, composite, curve into its component parts with any degree of confidence. ${ }^{1}$ However, the movements of wages in recent years would appear to give us a clue to the sort of phenomena we might expect to find if we had complete and adequate data.

The slopes of the upper income tails of wages distributions are great, 4 to 5 or more. ${ }^{2}$ Now the wage curve moved up strongly from 1917 to 1918 if we may judge by averages. The average wage of all wage earners in the United States ${ }^{3}$ increased 15.6 per cent ${ }^{4}$ from 1917 to 1918. During the same period the average income of farmers increased 19.1 per cent ${ }^{5}$ and the average income of persons other than wage earners and farmers remained nearly constant. Total amounts of income by sources in millions of dollars were:

	1917	1918	Percentage 1918 was of 1917
Total Wages a	\$27,795	\$32.575	117.20
Total Farmers' Income	8,800	10,500	119.32
All other Income...	17,265	17,291	100.15
Total Income	\$53,860	860,366	112.08

a Ineludes pensions. ette., and includers soldiers. sailors. and narines.
Stockholders in corporations saw income from that source actually decline from 1917 to $1918 .{ }^{6}$ What happened to American income-tax returns during this time?

[^16]
- CORPORATION DIVIDENDS, SCRPLLS AND EARNINGS

(In millions of dollars)

	Dividends	Surplus	Net carnings
$1917 \ldots \ldots$	3.995	3.963	7.958 $1918 \ldots \ldots \ldots$

See page 324.

TOTAL AMOUNT OF NET INCOME RETURNED BY SOURCES (RETURNS
(Millions of dollars)

Income class	Wages and salaries		All other sources ${ }^{6}$	
	1917	1918	1917	1918
Over \$2,000	\$3,648	\$8,493	\$7,543	\$7,198
2,000-4,000.	1,553	3,687	1,799	2,036
4,000-5,000	301	703	528	736
5,000-10,000.	661	849	1,167	1,296
Over 10,000.	1,133	1,254	4,049	3,130

a Wages income from returns reporting between $\$ 1,000$ and $\$ 2.000$ per annum is not available for 1917.
b "Other sources" are total net income minus wages and salaries, i. e.. total general deductions havc been assumed as deductible from other sources (gross). All things considencd, this seems proper here though it may easily be criticised. In conncction with changes in the relation between net and oross income from 1917 to 1918 see Chapter 30. pp. 401 and 402.

While reported income from all other sources than wages and salaries declined 4.6 per cent, ${ }^{1}$ reported income from wages and salaries increased 78.0 per cent. ${ }^{2}$ Moreover, the great increases in wages and salaries were in the lowest intervals. The wage curve with its steep tail-slope was moving over into the income tax ranges. ${ }^{3}$ The effect upon the total curve is very pronounced, as may be seen from Table 28R.

TABLE 28R
AMERICAN INCOME TAX RETURNS IN 1917 AND 1918
Total Number of Returns
(In thousands)

	1917	1918	Percentage 1918 was of 1917
\$2,000-\$4,000	1,214	2,107	173.56
4,000-5,000	186	322	173.12
5,000-10,000	271	319	117.71
Over 10,000..	162	160	98.77

On a double \log scale we see the curve changing its shape radically. While the 1917 curve is comparatively smooth and regular, the 1918 curve develops a distinct "bulge" in the lower ranges."

The preceding discussion has been concerned with equal dollar-income

[^17]intervals. However, $\mathbf{z 2 , 0 0 0}$ income in 1918 was relatively less than $\$ 2,000$ income in 1917. The average (per capita) income of the country was $\$ 523$ in 1917 and $\$ 586$ in 1918. ${ }^{1}$ The adjustment is theoretically crude, but $\$ 2,241^{2}$ in 1918 might be considered as in one sense equivalent to $\$ 2,000$ in 1917. The results of comparisons of the two years upon this basis are given in Table 285. ${ }^{3}$

TABLE 2BS

INCOME RETURNED-BY SOURCES (Millions of dollaw) 1917					
Income class	Wages and salaries	Total net inconte	Tutal net income minus wages and salaries	Total gross income	Total !ross income minus wages and salaries
\$2,000-\$4,000.	\$1,553	\$3,352	\$1,799		
$4,000-5,000$ $5,000-10000$	${ }^{3} 301$	8829	- 528	$\$ 3,713$ 895	\$2,161
$\begin{array}{r}5,000-10,000 \\ \text { Over } \\ \hline 10,000\end{array}$	${ }_{1}^{661}$	1,828	1,167	1,951	594 1,290
Over 10,000.	1,13:3	5,182	4,049	5,518	1,290 4,384
1918					
82,241-\$4,482	33,236	85,359			
4,482-5,602.	-498	1,111	8,123	\$5,766	\$2,530
5,602-11,205.	773	1,960	1,187	1,247 2,315	749
Over 11,205..	1,1:53	4,129	1,976	2,315 4,842	1,542 $\mathbf{3} 689$

(Mnltiplied by $\frac{523}{586}$, that is reduced to " 1917 dullass")

\$2,241-84,482	\$2,888	\$4,783			
4.482-5,602	445	H,902	\$1,895	$\$ 5,146$ 1,113	\$2,258
5,602-11,205.	690	1,749	1,059	1,113	668 1.376
Over 11,205.	1,029	3,685	2,6ij	4,321	$\begin{aligned} & 1,376 \\ & \mathbf{3 , 2 9 2} \end{aligned}$

(Percentages of Total Income of Country)
1917

\$2,000-\$4,000	2.88	6.22			
4,000-5,000	. 56	1.54	3.34	6.89 1.66	+01 1
5,000-10,000.	1.23	3.39	-.16	1.66	1. 10
Over 10,00..	2.10	9.61	3.51	3.62 10.24	2.39 8.14

1918

\$2,241-84,482	5.30	8.78			
4,482-5,602	5.30	1.82	3.48	4.45	4.15
5,602-11,205	1.27	3.21	1.09	3.05	1.23
Over 11,205	1.80	6.77	1.14	3.80 7.94	2.53 6.05

${ }^{1}$ Hicome in the Cnited States, Voi. I. 1. 76.
$2 \$ 2,000 \times \frac{556}{523}$.

[^18](Table 288 concluded.)

NUMBER OF RETURNS (Thousands)				
Income class	1917	Income class	1918	Percentage 1918 was of 1917
\$2,000-\$4,000.	1,214	\$2,241-\$4,482.	1,758	144.81
4,000-5,000.	186	4,482-5,602.	220	118.28
5,000-10,000.	271	5,602-11,205.	260	95.94
Over 10,000.	162	Over 11,205.	136	83.95

It is from this table once again apparent that the wage distribution moved independently up on the income scale and that the effect of this movement was confined to the lowest income intervals. Charts $28 \mathrm{~T}, 28 \mathrm{U}, 28 \mathrm{~V}, 28 \mathrm{~W}$, $28 \mathrm{X}, 28 \mathrm{Y}, 28 \mathrm{Z}$, and 28AA which show the number of dollars income per dollar-income interval, by sources, are enlightening as illustrating in still

greater detail the changes in the constitution of the returns from year to year.

Such material and the appearance of the "bulge" on the income-tax curve in the lowest income ranges ${ }^{1}$ in the years 1918 and 1919 when wages and salaries were high and average (per capita) incomes also high ${ }^{2}$ strongly suggest that the income curve, in so far as it shows any similarity from year to year, changes its general appearance and turns up (on a double log scale) as it approaches those ranges where wages and salaries are of predominant influence. ${ }^{\text {s }}$ The great slopes of wage distributions are on this hypothesis not inconsistent with the smaller slope of the general income curve in its higher (income-tax) ranges. ${ }^{4}$

Conclusions:

(1) Pareto's Law is quite inadequate as a mathematical generalization, for the following reasons:
(a) The tails of the distributions on a double log scale are not, in a significant degree, linear;
(b) They could be inuch more nearly linear than they are without that condition being especially significant, as so many distributions of various kinds have tails roughly approaching linearity;
(c) The straight lines fitted to the tails do not show even approximately constant slopes from year to year or between country and country;
(d) The tails are not only not straight lines of constant slope but are not of the same shape from year to year or between country and country.
(2) It seems unlikely that any useful mathematical law describing the entire distribution can ever be formulated, because:
(a) Changes in the shape of the income curve from year to year seem traceable in considerable ineasure to the evident heterogeneity of the data;
(b) Because of such heterogeneity it seems useless to attempt to

[^19]describe the whole distribution by any mathematical curve designed to describe homogeneous distributions (as any simple mathematical expression must almost necessarily be designed to do);
(c) Furthermore, the existing data are not adequate to break up the income curve into its constituent elements;
(d) If the data were complete and adequate we might still remain in our present position of knowing next to nothing of the nature of any "laws" describing the elements."
(3) Pareto's conclusion that economic welfare can be increased only through increased production is based upon erroneous premises. The income curve is not constant in shape. The internal movements of its elements strongly suggest the possibility of important changes in distribution. The radically different mortality curves for Roman Egypt and modern England, ${ }^{2}$ and the decrease in infant mortality in the last fifty years illustrate well what may happen to heterogeneous distributions.
The next four chapters review the data from which any income frequency distribution for the United States must be constructed.

[^20]
[^0]: ' If the cumulative distribution (cumulating from the higher towards the Inwer incomes as Pareto does) on a double log scale could tre exactly descrilsed by the equation $y=b x^{m}$, the non-cumulative distribution could be described by the equation $Y=-m b r^{m} 1_{1}$.
 ${ }^{\text {i }}$ Strictly, minus $1 . \overline{5}$, though Pareto neglects the sign.

[^1]: The inadequacy of these more complicated equations is discussed later. Sce pp. 348, 363 and 364 .

 This is. of course, not aboolutely necessary. It depends upon our definitions of income and income recipient. If we include the negligible money receipts of young children living at home we might possibly have a mode close to zero. There are few children who do not really earn a few pennies each year. Compare Chart 31A page 416.

[^2]: 1 Though Pareto seems to have thoroughly undersiood this fact, his discussion is not altogether satisfactory. He states that the data for the higher incomes show a larger number of such inconies than the normal curve would indicste. This is hardly adequate. To have stated that the upper and lower ranges showed too many incomes as compared with the middle range would have been better. An easy way to realize clearly the impossibility of describing income-tax data by a normal curve is to plot a portion of the non-cumulative data on a natural x log y basis. When so charted the data present a concave shaped curve. However, if the data were describable by any part of a normal curve of error. they would show a conver appearance, or in the limiting case a atraight line, as the equation of the normal curve of error $\left(y_{x}=y_{0} e^{\frac{-x^{2}}{2 \sigma^{2}}}\right)$ becomes, on a natural $x \log y$ scale, $\log _{e} y_{x}=\log _{e} y_{0}-\frac{x^{2}}{2 \sigma^{2}}$ or a second degres parabola whose aris is perpendicular to the x axis of coordinates.

 The reader must note that the limiting straight line case mentioned above is on a natural $x \log y$ scale and not (as the Pareto straight line) on a $\log x \log y$ scale. (Note concluded page 347 .)

[^3]: 'e.g. in the case of Prussia, 1886, the first datum point is $x=$ "over 300 M " and $y=54.309$ persons.
 : Professor Wiarren M. Persons discussed the fit of the least-squares straight line to Professor Pareto's Prussian data for 1892 and 1902 in the Quarterly Journal of Economics, May, 1909, and demonstrated the badness of fit of that line to those data.
 \rightarrow The income returned for the years 1914 and 1915 was estimated from the number of returns. Income is not given in the reports for those years.

 In fitting straight lines to the data of Tables 28 B to 28 G the lowest income interval (in which married persons making a joint return are exempt) has always been omitted. To have included in our calculations these lowest intervals would have increased still further the bad-
 ness of the fit in the other intervals. ness of the fit in the other intervals.

[^4]: (From Cours d Economie Politique. vol. II. p. 307.)
 The above table may give the reader a vague idea that the fit is rather good. However. from the above table the following table may be directly derived:
 (Note concluded page 364.)

[^5]: a The $\$ 3,000-\$ 4,000$ class is not included, as in 1915 married persons in that class were exempted while in 1918 they were not.

[^6]: t Between 12 and 13 times the average income (per capita) each year.
 2 Between 1.200 and 1,300 times the ayerage income (per capita) each year.

[^7]: ${ }^{1}$ Compare Charts 28H, 28B, 28C, 28D and 28F.
 ${ }^{2}$ P. Steinmets, Engineering Mathematics, p. 216.

[^8]: ${ }^{1}$ D. P. Bartlett, Method of Least Squares, p. 33.
 ${ }^{2}$ J. Lipka, Graphical and Mechanical Computation. p. 128.
 :C. S. Slichter, Elemenlary Mathematical Analysis, preface.

 * A very large percentage of the remainder have tails approximating straight lines on a natural $x \log y$ basis.
 ${ }^{5}$ N. B. Not a straight line on the double log scale, which is a so-called hyperbola on the natural scale, but a true conic section hyperbola on the double log scale.

 Charts 28K and 28L (Earnings per Hour of 318,946 Male Employees in 1919) illustrate how excellent a fit may often be obtained by means of an hyperbola even though fitted only by selected points. A comparison of the least-cquares parabola and the selected-points hyperbola on Chart 28 K illustrates also the straight-tail effect.
 ' Compare Karl Pearson's concept of "Irurtosis."

[^9]: ${ }^{1}$ The illustration shows only "rough similarity" in the extrene tails. However. there sems no good reason for believing that even great similarity in the t:ils proves similarity in the rest of the distribution. It certainly cannot do su in the case of essentially heterogeneous distributions. such as in conne distributions.
 ${ }^{2}$ Bureau of Labor Statisties; Bulletin No. 252.
 ${ }^{3}$ Twelfth Census of the United States (1000), Special Report on Employees and Wagen,
 Davis R. Dewey.

[^10]: 1 The tails of wage distributions have in general nuch greater slopes than those of the upper (i. e., income-tax) range fí incone distributions. This is an outstanding difference between the two distributions. Pareto's conclusions with respect to the conves appearance of the curve for wages are consistent with curves showing number of dollors per income-tax interval traceable to wazes but not with actual wage distributions showing number of recipients per wage inté ral. Distributione based upon inconte from effort and distributions based upon ineome from such sources (mostly profits and income from property) as yield the higher incomes seem to have tails the one as roughly straight as the other. Indeed many: wage distributions have tails more closely approxinating straight lines than do income-tax data.

[^11]: ${ }^{1}$ As will be seen in Chapter 29). there serms reason for believing that the extreme difference between the distribution of incomes obtained by the dustralun Census and the estimate made by the National Bureau of Eonomic Resairch is due largely to difference in definition of income and income recipient. However, this does not alter the fart that we have here again two distributions with tails as similar as is usual with income-tax distributions and lower ranges about as different as it is posible to ingagine.

[^12]: 1 Or. any distributions whose cquations may be reduced to one another by substituting $k_{1} x$ for x and $k_{2 y}$ for y.
 ${ }^{2}$ The curve may be thought of as consisting of two parts, which before reduction to logarithms, would be (1) the positive income section and (2) the negative income section with positive signs.
 : While approximate identity oî shape on a natural scalc. a natural x and $\log y$ scale. or any other sinilar criterion would constitute a "'law." no such approximate identity of shape on such scales has yet been discovered and it seems difficult to advance any very cogent a priori reasons for expecting it.

 In this connection we must remember that had we the exact figures for the entire frequency curves of the distribution of income in the United States from year to year, if moreover we could imagine definitions of income and income recipient which would be philosophically satisfactory and statistically usable-and if further we managed year by year to describe our data curves adequately by generalized mathematical frequency curves of more or less complicated variety we should not netessarily have arrived at any particularly, valuable results. Any series of data may be described to any specified degree of approximation by a power series of the type $y=A+B x+C x^{2}+D x^{2}+\ldots \ldots$ but such fit is purely empirical and alsolutely meaningless except as an illustration of MacLaurin's theorem in the differential calculus. We might be able to describe each year's data rather well by one of Karl Pearson's gencralized frequeney curves. but if the essential characteristics of the curveskewness, kurtosis. etc., changed radically from year to year, description of the data by such a curve might well give no elue whatever as to any "law." Not only might the years be different but the fits might be empirical. Professor Edgeworth has well said that ${ }^{\circ}$ a close fit of a curve to given statistics is not, per se and apart from a priori reasons. a proof that the curve in question is the form proper to the matter in hand. The curve may be adapted to the phenomena merely as the empirically justified system of cycles and epicycles to the planetary movements. not like the ellipse, in favor of which there is the Newtonian demonstration. as well as the Keplerian observations." Journal of the Royal Statistical Society, vol. 59, p. 533.

[^13]: ${ }^{1}$ Eistimated per cent of total income received ly highest $\mathrm{a}_{\mathrm{c}} \mathrm{c}$ of income receivers in United States:

 | 1913. | 33 |
 | :---: | :---: |
 | 1914 | 32 |
 | 1915 | 32 |
 | 1916 | 34 |
 | 1917. | :1 |
 | 1915. | 2 i |
 | 1919. | 24 |

 National Bureau of Economic Resiarch. Income in the Cnited States. vol. 1, p. 116.
 : C'empare Professor A. L. Bowley's paper wa. "The British Super-Tax and the Distribution of Ineome." Quarterly Journal of Economics. Feteruary. 1!11
 ${ }^{2}$ Sidatistics of hareme 19/S. pp. 10 and 44.
 While the reporting of dividemds wat almost curtainly less complete in the lower than in the upher income clasisw. the differemere cond not in suticient to int:alidate the general conclusion. Lawer range incomes are preduminantly wage and silary incomes; upper range incomes are not.

[^14]: ${ }^{1}$ Twelfth Census of the Linited States (1900), Special Report on Employees and Wapes, Davis R. Dewey.
 ${ }^{2}$ INW (cnsus of Manufachorere, Part IV, p. 647.
 ' Monthly Labor Rericu'. Se-pt. 1919.

 - Report of the Railroad IH aje Commission to the Dircctor General of Raiiroads, 1919, p. 96.
 - Twelfth Census of the United States (19M)), Special Report on Employees and Wapes, Davis R. Dewey.
 "Twelfth Census of the United States (1900), Special Repori on Employees and Wages, Davis R. Dewey.
 t The reader must not confuse the percentage of the income not derived from wages going to unge-farners in any particular income elass with the percentage of the income not derived fron wages going to all income recipients in any particular income class. Some of these last recipients are not wage carners at all. they receive no wages. Information concerning the second of these relations but not the first is given in the income tax reports.

[^15]: ${ }^{1}$ In the total inconce curve there is a broad twilight zone where individuals are of ten both wage or sulary carners and capitalists or even entrepreneurs.
 ${ }^{2}$ In the 1916 occupation distributions the only orrupations showing nore returns for the \$4.000-\$5.000 interval than the $83,(x) 1-4.0 N 0$ (that is the only ocrapations showing any suggestion of a nude) are of a capitalistic or entreprotururial deseription-bankers: stockbrokers: insurance brokers; other brokers: hotell proprietors and restaurateurs: manufacturers: merchants: stomkeepers; joblers: mommixion merchants. cte.: nine owners and miae opcrators: saloon keepers: sportsniru and turfmen.
 1 Of course the very word slope is an ambiguous tern to use concerning the tail of a curve which enters the second quadrant.

 - Evidence suggesting definite het crogencity in the"wage and salary" figures of the incometax returns is presented in Chapter 30.
 ${ }^{5}$ This fact is one of the simpler piores of evidence against the existence of a "law." of course. even though the income distribution were made up of heterogeneous naterial, if the

[^16]: : The processes by which the income distribution curve published in Income in the United States. Vol. 1. pp. 132-135 was arrived at wree such that to use that material here would practically anount to circular reasoning. The conclusions arrived at here were used in building up that curve.
 ${ }^{2}$ The slope of the tail of the wage and salary eurse in the 1917 incone tax returns is only about 3.21 (compare. note 2. p. 377). However we nust remember that the individuals there classified are largely of an entirely different type of "nape-earner" from those in the lower groups. In this upper, group occur the salaried entreprencurs, professional men. ctc.. and those whose "salaries", are really profits or dividends. The evidence points to a rather distinet and significant heterogencity along this division in the wage and salary distribution. See Chapter 30.
 "Excluding soldiers, sailors. and marines. and professional elasses but ineluding officials
 and "salaried

 - From 8945 prer annum in 1917 to $\$ 1.092$ prer annum in 1918.
 ${ }^{6}$ Frons $\$ 1.370$ per annum in 1917 to $\$ 1.632$ per annumi in 1918.

[^17]: ${ }^{1}$ Had "other sources" been taken gross instead of nct, that item would have shown an increase of 5.3 per cent instead of a decrease of 4.6 per cent.
 : The actual spread is still greatcr than the figures show. Income from professions, which in 1917 was classed under wages. in 1918 and 1919 was classed under business.
 a This seems to be a fact though it is not the whole story. The "intensive drive" of 1919 may easily account for some of the increase. See Chapter 30 for a discussion of the probable extent of this influence.

 - See Ireome in the U'nited States, Vol. 1, Charts 28 and 30.

[^18]: The figures for the amounts of income in the irrepular lans ineome intervale that ($\$ 2.241-\$ 4,482$. etc.) were calculaterl be straight liue interpulation one intervaisof that table plied to the even thousand dollar intervatight haw intermbation: on a double log scale ap-
 range of one income tax interval without inity it may i_{h}. assumed linear within the small

[^19]: ${ }^{1}$ See Chapter 30 for further discussion of this "bulge" in connection with an examination of how far it may be the result of irregularity in reporting.
 ${ }^{2}$ Average (per capita) incomes being high means that a definite money income (such as $\$ 2,000$) takes us relatively further down the income curve than if average incomes were low.
 'It is difficult to say just where the "bulge" might have appeared in the 1917 distribution if as great efforts had been made to obtain correet returns in that year as were made under the "intensive drive" for 1918 returns. The uages line on the 1917 number of dollars income per dollar-income interval chart (Chart 28V) shows signs of turning up somewhere between $\$ 4,000$ and $\$ 5,000$ and the business line somewhere in the $\$ 5,000-\$ 10,000$ interval. However neither movement is large nor can their positions be accurately determined on account of the sise of the reporting intervals. See also Chapter 30. p. 412.
 "The "bulge" on the income from wages and salaries eurve itself, as seen in the incometax returns for 1918 and 1919 (see Charts 28 X and 28Z), seems the result of heterogeneity in these wage and salary data themselves. This hypothesis is considered in Chapter 30 .

[^20]: ${ }^{1}$ Though all the evidence points to hope of further progress tying in the analysis of the parts rather than in any direct attack upon the unbroken heterogeneous whole.
 ${ }^{2}$ See Biometrika, Vol. I, pp. 261-264.

