This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: The Economic Analysis of Substance Use and Abuse: An Integration of Econometrics and Behavioral Economic Research

Volume Author/Editor: Frank J. Chaloupka, Michael Grossman, Warren K. Bickel and Henry Saffer, editors

Volume Publisher: University of Chicago Press

Volume ISBN: 0-262-10047-2

Volume URL: http://www.nber.org/books/chal99-1

Conference Date: March 27-28, 1997

Publication Date: January 1999

Chapter Title: Are Alcoholics in Bad Jobs?

Chapter Author: Donald S. Kenkel, Ping Wang

Chapter URL: http://www.nber.org/chapters/c11162

Chapter pages in book: (p. 251 - 278)

9 Are Alcoholics in Bad Jobs?

Donald S. Kenkel and Ping Wang

9.1 Introduction

The abuse or excessive consumption of alcohol can have a variety of adverse consequences. The health and safety consequences are perhaps the most dramatic, but alcohol abuse also has important implications for labor market productivity. As much as 10 percent of the U.S. labor force meets criteria for a current diagnosis of alcohol abuse or dependence (Stinson, Debakey, and Steffens 1992). The most recent comprehensive study of the economic cost of alcohol abuse estimates the lost earnings of workers suffering from alcohol problems at \$36.6 billion in 1990 (Rice 1993). However, when methodological problems are addressed, there is uncertainty as to the size or even the existence of alcohol's direct effect on wages (Cook 1991; Kenkel and Ribar 1994). The accumulating empirical evidence suggests that some of the most important productivity effects of alcohol abuse are through indirect channels (Mullahy and Sindelar 1994); for example, there is good evidence that drinking reduces individuals' investment in schooling (Cook and Moore 1993). Nevertheless, the relationship between alcohol abuse and postschooling human capital investment remains largely unexplored.

After completing schooling, young workers face critical labor market choices. Young workers "job shop" as they search for productive and durable employment relationships (Topel 1991). They must find their first job, and then typically will change jobs several times before settling into more stable employment. When searching, the young workers compare jobs that pay different wages, provide different levels of fringe benefits, and offer different potentials for wage growth and advancement. Furthermore, the search involves choices about occupation, industry of employment, and firm size. These job choices

Donald S. Kenkel is associate professor in the Department of Policy Analysis and Management, Cornell University. Ping Wang is professor in the Department of Economics, Vanderbilt University.

made by young adults have long-ranging consequences for future jobs and lifetime earnings.

Many young adults also drink alcohol to excess. Based on national survey data, the percentage of people aged 18–29 meeting criteria for current alcohol dependence is over 80 percent higher than that of those aged 30–44, and quadruple that of those aged 45–64 (Grant et al. 1991). The survey data are corroborated by the fact that young drivers are overrepresented in drunk driving statistics; for example, in 1994 the 14 percent of U.S. drivers aged 16–24 accounted for 28 percent of drinking driver deaths (Campbell et al. 1996).

In this paper, we provide some evidence on whether the drinking choices of young adults have long-range consequences for future jobs and lifetime earnings. In doing so, we extend previous research on the productivity effects of alcohol to include nonwage job attributes as part of total employee compensation. The goal of this research is to establish benchmark empirical patterns describing relationships between alcoholism and job choice.

We examine data on young adult men from the 1989 wave of the National Longitudinal Survey of Youth (NLSY) to document the empirical relationships between alcoholism and a comprehensive array of job attributes not considered in previous work. As discussed in section 9.2, studies find that alcoholism (or some other measure of problem drinking) has important effects on labor market productivity, as measured by income or wages. As we argue in section 9.3, however, if the nonwage attributes of the jobs of alcoholics also vary, wage losses are an unreliable measure of productivity losses. We elaborate based on a formal theory the economic significance of the underlying differences. The empirical results in section 9.4 show that alcoholics are less likely to receive a variety of fringe benefits, are more likely to be injured on the job, and work for smaller firms. Section 9.5 extends the conventional methodology of estimating productivity losses due to alcoholism to include nonwage job attributes. The illustrative results suggest that the total loss of alcoholism is at least 20 percent larger than the wage loss.

In section 9.6 we extend our analysis to explore some relationships between alcoholism and occupational choice. Without controlling for their occupational status, alcoholics are estimated to earn 9.8 percent less than their nonalcoholic peers, but alcoholism appears to have a much different impact on earnings for blue-collar than for white-collar workers. We find that alcoholics are less likely to be in a white-collar occupation, but conditional upon being in a white-collar occupation, their earnings are similar to their nonalcoholic peers. While alcoholics are more likely to be in a blue-collar occupation, conditional upon being in such an occupation they are estimated to earn 15 percent less than their nonalcoholic peers.

In section 9.7 we explore the extent to which alcoholics earn less because they bring less human capital to the job. Controlling for human capital variables including schooling, marital status, job tenure, occupation, firm size, and training attendance, the wage loss associated with alcoholism is reduced from

9.8 percent to 4.6 percent. Our results suggest that in addition to a direct effect of alcoholism on wages, alcoholism has important indirect effects through these human capital variables. For the sample of young adults considered here, it also suggests that the consequences of alcoholism are likely to persist and grow over time. By investing in less human capital as young adults, alcoholics tend to place themselves on much different career and lifetime earnings tracks. Finally, in section 9.8 we apply similar analysis to investigate, in addition to alcoholism, relationships between smoking status and occupational choice. We find that while drinking status has stronger adverse impacts on paid sick leave, paid vacation, and retirement plans compared to smoking, the latter is somewhat more influential in dental and life insurance as well as parental leave.

In a companion paper (Kenkel and Wang 1996), we develop a generalized rational addiction model in which occupation and postschooling human capital accumulation are endogenously determined along with alcohol consumption patterns. A growing number of empirical studies of cigarette, alcohol, and drug consumption are based on the rational addiction model proposed by Becker and Murphy (1988). To date, empirical tests of the model focus on estimating demand for an addictive good as a function of the addictive stock, emphasizing consistent estimates of price elasticities (Chaloupka 1991; Keeler et al. 1993; Becker, Grossman, and Murphy 1994; Moore and Cook 1994; Waters and Sloan 1995; Grossman and Chaloupka 1998; Grossman, Chaloupka, and Sirtalan 1998). As a logical extension of the Becker-Murphy model, we argue that a rational addict will anticipate the labor market consequences of alcoholism and make job choices accordingly. Extending the model of rational addiction to incorporate occupational choice will thus provide new leverage for empirical tests of this controversial theory. The results presented in this paper do not provide definitive tests but, as discussed in the concluding section 9.8, shed some light on the usefulness of our approach.

A comment on terminology is in order at this point. We find it convenient to use the terms alcoholic and alcoholism because they are succinct and familiar to general audiences. In the empirical work below we use the more precise term alcohol dependent, where alcohol dependence is defined based on the American Psychiatric Association (1987) criteria listed in the appendix. For some of the analyses we also use a measure of heavy drinking, defined as the number of times in the past month with six or more drinks on one occasion. As might be expected, someone who meets diagnostic criteria for alcohol dependence is likely to do a good amount of heavy drinking measured in this way. The average alcohol-dependent male reported 5.3 days of heavy drinking in the past month, compared to 1.16 days for nondependents (Kenkel and Ribar 1994). However, it is important to recognize that different measures capture somewhat different drinking behaviors that may have different labor market consequences. In an extremely useful illustrative exercise, Sindelar (1993) estimates the effects of alcohol consumption on income using 10 alternative measures of alcohol use. The estimated coefficients on the alcohol measures vary not only in magnitude but in sign. A crucial step is to use measures, as we do here, that allow empirical distinctions between consumption at levels that are likely to cause problems from more moderate or responsible drinking.

9.2 Productivity Losses from Alcoholism

Most studies of the effect of alcohol abuse in the labor market have been conducted within the static human capital framework using cross-sectional data. Since critical reviews of these studies exist elsewhere (Cook 1991; Mullahy 1993), it is only necessary to highlight here some of the main results and shortcomings. These studies estimate models in which current earnings or income are specified to be a function of exogenous current drinking. They generally conclude that problem drinking causes earnings losses in the range from 10 to over 20 percent (Harwood et al. 1984; Rice et al. 1990). In contrast, moderate drinking appears to be associated with higher earnings (Berger and Leigh 1988; Cook 1991; French and Zarkin 1995). In a recent study, Zarkin et al. (1998) find that male drinkers earn about 7 percent more than nondrinkers, but somewhat surprisingly, they do not find evidence that this earnings differential disappears or becomes negative for heavier drinkers.

Several other aspects of the productivity effects of alcoholism have been explored. First, there is good evidence that the effects of alcohol abuse on schooling are significant. As in an earlier study by Benham and Benham (1982), Mullahy and Sindelar (1989) conclude that alcoholism is associated with lower schooling attainment. Using data from the NLSY, Cook and Moore (1993) find that frequently drunk youths are less likely to matriculate and graduate college than those not frequently drunk. Second, the relationship between alcohol abuse and earnings appears to change over the life cycle, where large negative impacts of alcohol abuse are evident only after age 40 or so. Mullahy and Sindelar (1993) speculate that nonalcoholic young adults' wages are initially depressed because they stay in school longer and begin their career jobs later than their alcoholic peers. A related explanation is that alcoholics and nonalcoholics start at similar wages, but nonalcoholics' earnings profiles are steeper because of higher returns to tenure. Of course, cross-sectional evidence, where different individuals of different ages are compared at a point in time, can be misleading on the pattern of wages over the life cycle for a given individual.

A methodological shortcoming of many of the studies just cited is that they implicitly treat alcohol abuse as a disease randomly striking a portion of the population. There are several reasons that the corresponding econometric as-

^{1.} The findings are somewhat controversial. Heien and Pittman (1993) were unable to replicate the results of Harwood et al., even though both used the same data from the 1979 National Alcohol Survey.

sumption that alcohol abuse is exogenous in an earnings function may be violated. First, many personal and family background factors associated with the development of alcohol problems plausibly have direct effects on productivity and earnings (Zucker and Gomberg 1986). An ordinary least squares (OLS) regression of earnings on alcohol abuse that omits these personal attributes yields a biased estimate that overstates the negative effect of drinking. Second, there may be reciprocal causality between drinking and earnings. Simultaneity, where through the budget constraint income is a determinant of alcohol consumption, means that OLS results are biased away from finding any negative effect of drinking on earnings. This source of bias may help explain estimates of a positive relationship between drinking and earnings. Kenkel and Ribar (1994) conduct an in-depth empirical analysis using the NLSY data that uses family- and individual-fixed-effects models to control for heterogeneity, and instrumental variables (IV) models to address simultaneity. The complex pattern of results suggests that alcohol problems have a direct negative impact on earnings and marital status. Using the 1988 National Health Interview Survey, Mullahy and Sindelar (1996) also find important differences between OLS and IV estimates of the effects of problem drinking on employment status.

9.3 Measuring Productivity Losses When Nonwage Job Attributes Vary

As the brief review above indicates, estimating the impact of alcoholism on earnings has proven to be a difficult methodological challenge. This paper focuses on a methodological shortcoming that has received little attention to date: Wage differences are unreliable estimates of the productivity losses from alcoholism if there are important differences in the nonwage attributes of the jobs of problem drinkers.²

To see the possible biases, it is useful to consider a simple model of job choice depicted graphically in figure 9.1. The indifference curves drawn are based on the assumption that the worker has homothetic preferences over after-tax wage earnings (W) and the level of a fringe benefit (F) (or other nonwage job attribute). The assumption of homothetic preferences implies that the worker chooses to receive the same proportions of fringe benefits and wages at any level of total compensation.³ The worker's opportunity set is described by the negatively sloped schedule W(F) showing possible combinations of wages and fringes employers can offer, given the worker's level of productivity. This assumes that the worker's productivity level is observed by the firm and the labor market functions so that the worker's productivity is reflected in

^{2.} This shortcoming is explicitly noted by Mullahy and Sindelar (1989) and Mullahy (1993), but they were unable to address it due to data limitations.

^{3.} Graphically, the assumption of homothetic preferences means that along a ray from the origin all indifference curves have the same slope.

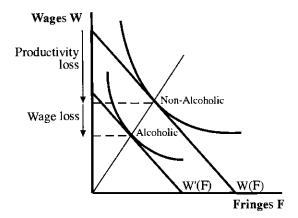


Fig. 9.1 Productivity versus wage losses with homothetic preferences

wages. For the sake of simplicity, it will be further assumed that W(F) is linear and its slope is -1.4 The worker's optimizing job choice is given by the tangency of an indifference curve and the W(F) schedule.

Figure 9.1 shows the case where the measured earnings loss underestimates the productivity loss associated with problem drinking. A drinking problem means that the worker faces a lower schedule W'(F) of available combinations of wages and fringes reflecting his lower productivity. For the case shown in figure 9.1, in response to his lower productivity, the worker's optimizing choice involves lower wages and lower fringes; this is like the income effect in standard consumer-demand theory. The observed wage loss thus underestimates the true productivity loss, which is given by the vertical distance between the W(F) and W'(F) schedules. More specifically, for the case when the slope of W(F) is equal to -1, it can easily be seen from figure 9.1 that the productivity loss is exactly the sum of the wage and fringe losses. In practice, the favorable tax treatment of fringes over wages means that the slope of W(F) is less in absolute value than -1. In this case, the productivity loss is greater than the wage loss but less than the sum of the wage and fringe losses.

Mullahy (1993) emphasizes that the observed wage loss may overestimate the productivity loss. This possibility is illustrated in figure 9.2, where the alcoholic is assumed to have stronger preferences for the fringe benefit than does a nonalcoholic. For example, the alcoholic might be more willing to accept

^{4.} In the presence of a favorable tax treatment of fringe benefits, the slope of W(F) would be less in absolute value than -1, and could vary across workers who face different marginal tax rates.

^{5.} Notice that the vertical distance between W(F) and W'(F) is also the compensating variation in income for the labor market consequences of alcoholism. That is, with that amount of extra income added to his earned income, an alcoholic worker reaches the same indifference curve or level of satisfaction as does a nonalcoholic worker with only his earned income.

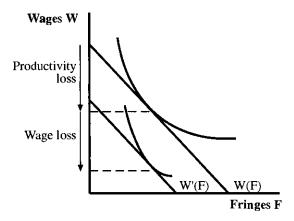


Fig. 9.2 Productivity versus wage losses with nonhomothetic preferences I

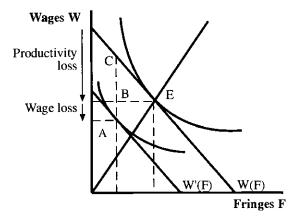


Fig. 9.3 Productivity versus wage losses with nonhomothetic preferences II

lower wages in return for more generous health insurance, flexible hours, and sick leave. In this case, part of the observed difference in the wages earned by alcoholics and nonalcoholics is actually the compensating differential for the higher level of fringe benefits. Put differently, even if there were no productivity loss from alcoholism, alcoholics would choose to earn less but receive more generous fringes.

Figure 9.3 shows an alternative case, where the alcoholic has weaker preferences for the nonwage job attribute than does a nonalcoholic. This case can be motivated in several ways. First, Becker, Grossman, and Murphy (1991) argue that people with relatively high rates of time preference are more likely to become addicts. If the typical alcoholic has an exogenously higher rate of time preference than the typical nonalcoholic, he will discount more heavily pensions and other benefits that accrue in the future. By the same token, the alco-

holic will be less willing to give up current wages for future wage growth, and so could be expected to sort into jobs with relatively flat age-earnings profiles. Alternatively, in a rational addiction framework, Kenkel and Wang (1996) build a model where alcohol consumption endogenously raises the time discount rate, with the alcoholic becoming more impatient given an increased probability of alcohol-related death.⁶ Since the discount rate depends on the consumer's choice variable, our model follows in the spirit of the existing endogenous or recursive preference literature (Epstein 1987; Becker, Boyd, and Sung 1989; Obstfeld 1990; Becker and Mulligan 1997; Palivos, Wang, and Zhang 1997). This model also implies that the rational alcoholic will place a lower value on fringe benefits like pensions and will sort into jobs with relatively flat age-earnings profiles.

In the case shown in figure 9.3 the observed earnings losses again underestimate the true productivity loss. The preference effect reinforces the income effect shown in figure 9.1. It is notable that as long as the slope of W(F) is -1, the true productivity loss can still be measured by the sum of the wage and fringe losses. This can easily be seen from figure 9.3, in which alcoholism moves the optimal point from E to A. The productivity loss is given by CA, which equals the wage loss of BA plus the distance CB. The fringe benefit loss is given by the distance BE. Since the slope of W(F) is -1, BE is equal to CB, thus verifying the assertion that the productivity loss equals the sum of the wage loss and the fringe loss.

Finally, figure 9.4 shows the case where alcoholics face a different trade-off between wages and fringes than do nonalcoholics: The schedule W(F) has a steeper slope than the schedule W(F), as well as a different intercept. For example, providing health insurance to alcoholics may be more costly to employers, changing the rate at which wages can be traded for fringes. In one large Fortune 500 firm, insurance claims related to substance abuse accounted for about 20 percent of the medical expenditures of workers aged 18–34 (McClellan and Wise 1995). Similarly, the cost of providing a safe working environment may be a function of the worker's alcoholism. In addition, the cost of net investments in a worker's human capital increases if alcoholism increases human capital depreciation (Kenkel and Wang 1996).

In figure 9.4 the increase in the relative price of fringe benefits causes the alcoholic to substitute toward wage compensation. This once again creates a bias such that observed earnings losses underestimate the true productivity loss of alcoholism. Moreover, when the slope of W(F) is -1, we can show that the productivity loss from alcoholism exceeds the sum of the wage and fringe

^{6.} Scientific evidence on mortality risks suggests that this endogenous time-discounting effect would be even more relevant for smoking behavior.

^{7.} This raises interesting and difficult questions about the effects of asymmetric information, where the employer does not perfectly observe an employee's alcoholism. The conditions required to reach a market equilibrium that avoids adverse selection problems remain unexplored in the literature.

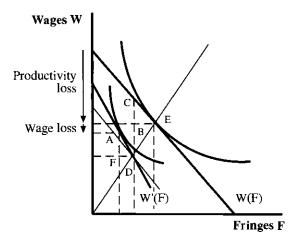


Fig. 9.4 Productivity versus wage losses with nonhomothetic preferences and wage-fringe trade-off

losses. In figure 9.4, alcoholism moves the optimal point from E to A. The productivity loss from alcoholism is measured by CD = CB + BD.8 The corresponding wage and fringe losses are BD - AF and BE + DF, respectively. Since the slope of W(F) is -1, CB is equal to BE. Also, the slope of W'(F) is steeper than the -45-degree line, implying that AF is greater than DF. Thus, we can show that CD = CB + BD = (BE + AF) + (BD - AF) > (BE + DF) + (BD - AF); that is, the productivity loss due to alcohol abuse is larger than the sum of wage and fringe losses.

According to the formal dynamic general-equilibrium model of rational addiction and occupational choice by Kenkel and Wang (1996), it is possible a priori to categorize job characteristics as "alcoholic preferred," "nonalcoholic preferred" or "neutral." Of the fringe benefits considered in the empirical work below, compared to their nonalcoholic peers, alcoholics are expected to have stronger preferences for health insurance, paid sick leave, and a flexible work schedule. Nonalcoholics are expected to have stronger preferences for life insurance, retirement plans, profit sharing, and employer-provided training and educational opportunities. There seems to be no strong reason, however, to expect alcoholics and nonalcoholics to have systematically different preferences for the other fringe benefits measured (dental insurance, paid vacation, maternity/paternity leave, employee discounts, child care, meals, and parking).

^{8.} The distance CD represents the productivity loss from alcoholism in that it is the compensating variation in income for the labor market consequences of alcoholism. The case shown in figure 9.4 differs from earlier cases because there are two components to the loss. First, even if all compensation were paid in the form of wages, the alcoholic worker would receive less. Second, the alcoholic worker that receives any fringe benefits suffers an additional loss because he or she has to give up more in wages to get the fringe benefits.

In summary, by documenting the relationships between alcoholism and a variety of fringe benefits, the results will provide evidence on the empirical importance of the four cases reviewed corresponding to figures 9.1–9.4. Based on Kenkel and Wang (1996), we argue that the alcohol consumption stock not only has an addiction effect on preferences, but is allowed to result in a higher subjective discount rate. In contrast to the existing literature, we argue further that job selection and human capital investment should also be influenced by addictive behavior because a worker's drinking status is, in essence, part of the job requirements, and because alcohol consumption can increase the speed of human capital depreciation.

Finally, we emphasize that our empirical examination of the possible effects of alcoholism on an array of labor market outcomes is only a first step toward our long-term goal. In our model, a worker who selects a higher-value job that requires more strictly nondrinking behavior also faces a higher human capital maintenance cost, thus providing bidirectional feedback between occupational choice and addictive behavior (Kenkel and Wang 1996). In order to account for the possible endogeneity of addictive behavior in the context of labor market decisions, one must carefully study not only the alcohol demand schedule and the underlying preferences but also the relevant incentive and regulatory structures. Due to its consequent complexity, the far more demanding empirical task of identifying a structural model along these lines by incorporating the endogenous use and abuse of alcohol has not yet been undertaken in the present study.

9.4 Comparing the Jobs of Alcoholics and Nonalcoholics

The primary data to be used in this analysis comes from the 1989 wave of the NLSY. The NLSY contains detailed economic and demographic information for 12,686 individuals who were 14 to 21 years old in 1979. Retention is roughly 90 percent. For this study we focus on men. For reasons that are not fully understood, the labor market consequences of alcoholism appear to be much different for women (Mullahy and Sindelar 1991; Kenkel and Ribar 1994). As a result, extending the analysis to women would greatly complicate the analysis and discussion, although it is an important avenue for future work. After restricting the sample to men who were employed in 1989, and eliminating observations with missing values, the sample sizes analyzed are around 3,700 respondents.

The NLSY has become a standard data source for empirical labor economics, and contains a rich array of labor market outcomes, including measures of fringe benefits and other job attributes. In several years the survey also addresses alcohol consumption. Based on responses to a set of questions asked in 1989, we constructed a measure of alcohol dependence that corresponds to the American Psychiatric Association's (1987) Diagnostic and Statistical Manual of Mental Disorders III (DSM-III) definitions. About 20 percent of the

Variable Definition	Mean	Standard Deviation
Alcohol measures		
Alcohol dependency = 1 if meets DSM-IIIR		
criteria for alcohol dependence; 0 otherwise	0.196	0.397
Heavy drinking = Number of days in past month		
had 6 or more drinks (1989)	1.859	2.803
Background measures		
Year of birth	60.605	2.216
Nonintact family at age 14	0.313	0.463
Household member received magazines		
when respondent aged 14	0.550	0.498
Household member had library card when		
respondent aged 14	0.667	0.471
Mother's education	9.952	4.225
Father's education	9.272	5.298
Number of siblings	3.858	2.634
Black	0.247	0.431
Hispanic	0.145	0.352
Attended religious services regularly at age 14	0.509	0.500
Armed Forces Qualification Test score	39.663	29.682

sample of young adult men meet the criteria for alcohol dependence; this is roughly comparable to national prevalence estimates for young adult men (Grant et al. 1991). Table 9.1 presents the definitions, means, and standard deviations of the explanatory variables used in the analysis.

Table 9.2 reports estimates of the effect of alcohol dependence on the probability the respondent reports receiving various fringe benefits.9 The estimates are from 14 separate probit models that control for various individual, family, and cultural background variables. These additional independent variables, listed in table 9.1, include year of birth, ethnicity, mother's and father's education, number of siblings, and the respondent's score on the Armed Forces Qualifying Test (AFQT), a standardized intelligence test. An additional set of variables measured when the respondent was age 14 indicate nonintact family, religious attendance, magazine subscriptions, and ownership of a library card. The probit coefficients have been transformed to show the effect on the probability of a discrete change of the alcohol dependence dummy variable from zero to one; the proportion of the sample receiving each fringe benefit is also reported for a point of reference. Alcohol dependence is associated with a 5-10 percentage point reduction in the probability of receiving most major fringe benefits, including health insurance, paid sick leave, paid vacations, and retirement plans.

Table 9.3 reports estimates of the effect of alcohol dependence on several

^{9.} Every fringe benefit included in the NLSY questionnaire is included in the analysis.

Table 9.2 Alcohol Dependence Status and Fringe Benefits

Fringe Benefit	Sample Proportion	Effect of Alcohol Dependence on Probability
Health insurance	0.764	-0.064***
		(0.018)
Life insurance	0.643	-0.055***
		(0.021)
Paid sick leave	0.575	-0.105***
		(0.022)
Dental insurance	0.509	-0.046**
		(0.022)
Paid vacation	0.774	-0.059***
		(0.018)
Parental leave	0.485	-0.047**
		(0.023)
Retirement plan	0.534	-0.090***
		(0.022)
Employee discounts	0.453	0.006
		(0.022)
Flexible work schedule	0.437	0.018
		(0.022)
Profit sharing	0.288	-0.012
		(0.020)
Training/education	0.423	-0.037*
opportunities		(0.022)
Child care	0.042	0.001
		(0.008)
Paid/subsidized meals	0.160	0.001
		(0.016)
Parking	0.540	-0.007
_		(0.021)

Note: Probit models based on 1989 data from the NLSY for men. Probit coefficient has been transformed to show the effect on the probability of a discrete change of the alcohol dependency dummy variable from zero to one. Standard errors are in parentheses. Models are estimated with additional explanatory variables, including year of birth, ethnicity, nonintact family/religious attendance/magazines/library card at age 14, mother's and father's education, siblings, and AFQT score.

other job characteristics and labor market outcomes. The results remain consistent with the idea that alcoholics are in bad jobs and suffer worse labor market outcomes. Alcohol-dependent workers are less likely to be in a white-collar occupation and more likely to be injured on the job. The 3.3 percentage point increase in the on-the-job injury rate associated with alcohol dependence is a very substantial increase (37.5 percent) compared to the sample average injury rate of 8.8 percent. There is also a substantial difference in the size of the

^{*}Significant at the 10 percent level.

^{**}Significant at the 5 percent level.

^{***}Significant at the 1 percent level.

Table 9.3 Alcohol Dependence Status and Job Characteristics

	Sample Proportion (or mean of continuous variable)	Effect of Alcohol Dependence on Probability (or OLS coefficient for continuous variable)
Job characteristic		
White-collar occupation	0.159	-0.025*
•		(0.013)
Like job very much	0.328	0.029
		(0.018)
Injury/illness occurred at job	0.088	0.033***
		(0.011)
In (number of employees at job)	0.392	-0.235***
		(0.090)
Shift work	0.151	-0.013
		(0.014)
Employment status		
Unemployed	0.061	0.019**
		(0.009)
Out of labor force	0.065	0.002
		(0.007)
Employed full time, if employed	0.931	-0.025**
		(0.010)
Compensation		
Piece rate	0.035	0.008
		(0.007)
Commission	0.069	0.005
		(0.010)
Tips	0.027	0.016***
		(0.006)
Bonus	0.137	0.029**
		(0.014)

Note: See notes to table 9.2.

firms where alcohol-dependent workers find employment. Compared to their nonalcoholic peers, alcohol dependents work at firms that employ 23.5 percent fewer workers (as measured by the number of employees at the same worksite). In terms of employment status, alcohol-dependent workers are more likely to be unemployed and, if employed, are less likely to be in a full-time job. When employed, they are also more likely to be in jobs where compensation is partly in the form of tips and bonuses rather than straight wages or salaries.

For the models reported in tables 9.2 and 9.3, alcohol dependence is assumed to be an exogenous explanatory variable. For the reasons discussed in section 9.2, the econometric exogeneity assumption can be questioned on several grounds. A particular concern in the present context is reverse causality, where workers are more likely to become alcohol dependent because they are in a bad job that offers poor fringe benefits and other working conditions.

Table 9.4 Heavy Drinkin	ng and Fringe Benefits	
Fringe Benefit	Effect of Current (1989) Heavy Drinking on Probability	Effect of Past (1984) Heavy Drinking on Probability
Health insurance	-0.008***	-0.006**
	(0.002)	(0.002)
Life insurance	-0.012***	-0.007***
	(0.003)	(0.003)
Paid sick leave	-0.018***	-0.007***
	(0.003)	(0.003)
Dental insurance	-0.009***	-0.002
	(0.003)	(0.003)
Paid vacation	-0.009***	-0.007***
	(0.002)	(0.002)
Parental leave	-0.009***	-0.009***
	(0.003)	(0.003)
Retirement plan	-0.010***	-0.007**
-	(0.003)	(0.003)
Employee discounts	0.001	-0.001
•	(0.003)	(0.003)
Flexible work schedule	0.005	-0.0002
	(0.003)	(0.003)
Profit sharing	-0.001	-0.002
_	(0.003)	(0.003)
Training/education opportunities	-0.006**	-0.006**
- 	(0.003)	(0.003)
Child care	-0.001	-0.001
	(0.001)	(0.001)
Paid/subsidized meals	0.005**	0.004*

Note: See notes to table 9.2.

Parking

Several pieces of preliminary evidence suggest that reverse causality may not be an important phenomenon. The first piece of evidence is in table 9.3, where alcohol dependence is estimated to have a *positive* but statistically insignificant effect on the probability the worker reports liking his job "very much." If reverse causality were operative, presumably alcohol-dependent workers would be less satisfied with their jobs.

(0.002)

-0.005

(0.003)

(0.002)

-0.004 (0.003)

Additional evidence on the importance of reverse causality is contained in table 9.4, which compares the effect of current (1989) heavy drinking and past (1984) heavy drinking on the probability of receiving fringe benefits in 1989.

^{10.} A more structural approach is to develop a simultaneous model of alcohol and labor market decisions. This model would suggest exclusion restrictions to motivate an instrumental variables approach.

The reasoning is that poor working conditions in 1989 cannot cause heavy drinking in 1984, so the estimated effect of past heavy drinking is not contaminated by reverse causality. The simple correlation between past and current heavy drinking is only about 0.35, indicating that many workers' drinking habits were quite different in the two time periods. However, the estimated effects of past heavy drinking on the current probability of receiving the fringe benefits are often nearly as large as the estimated effects of current heavy drinking. This is suggestive evidence that heavy drinking in 1984 had consequences for future job outcomes, consistent with the causal relationship asserted in this empirical study.

9.5 Estimating the Productivity Loss Due to Alcoholism

It is notable that alcohol dependents are estimated to be less likely to receive a variety of fringe benefits. In particular, they are estimated to be 6.4 percent less likely to receive health insurance benefits and 10.5 percent less likely to receive paid sick leave, even though on a priori grounds these benefits were categorized as alcoholic preferred. Interpreted in the simple model developed in section 9.3, it appears that any effect due to alcoholics' stronger preferences for certain fringe benefits is outweighed by some combination of the income effect of their lower productivity and the substitution effect of the higher cost of providing fringe benefits to alcoholics. That is, the estimated net effects of alcohol dependence on fringes seem to lend support to the cases elaborated in figures 9.1, 9.3, or 9.4. In these cases, there is an important implication: Observed wage losses underestimate the productivity loss of alcoholism. By incorporating other employee compensation, the sum of wage losses and fringe benefit losses provides either an approximation or a lower bound to the true loss.

Calculating the true productivity loss due to alcoholism is simple in the special case described by figure 9.1, where alcoholics and nonalcoholics have identical, homothetic preferences between wages and fringe benefits. ¹² The assumption of homothetic preferences implies that workers always take the same proportion of total compensation as fringe benefits. Hence, a 1 percent decline in productivity causes wages to fall by 1 percent and causes fringe benefits to fall by 1 percent. The wage loss understates the total productivity loss by the same proportion as wage compensation understates total compensation. In 1989, for the nation as a whole, the value of fringe benefits (excluding legally

^{11.} This reasoning is not strictly consistent with rational addiction, because in that model, the future can cause the present. For example, Becker, Grossman, and Murphy (1994) estimate that current eigarette consumption is a function of future eigarette prices. If poor working conditions in 1989 are anticipated, the rational addict will increase consumption in earlier periods. The intertemporal linkages suggested by the rational addiction model make sorting out causality extremely challenging. We thank Michael Grossman for this insight.

^{12.} We thank Michael Grossman for the argument developed in this paragraph.

Table 0.5

Table 9.5	Costs of Fringe Benefits		
	Fringe Benefit	1989 Cost per Employee (\$)	
	Health insurance	2,665	
	Life insurance	158	
	Paid sick leave	398	
	Dental insurance	188	
	Paid vacation	1,728	
	Parental leave	1	
	Retirement plan	1,320	
	Employee discounts	58	
	Flexible work schedule	n.a.	
	Profit sharing	242	
	Training/education opportunities	63	
	Child care	3	
	Paid/subsidized meals	25	
	Parking	n.a.	

Source: U.S. Chamber of Commerce (1990), table 8.

required payments) made up about 29 percent of total payroll (U.S. Chamber of Commerce 1990). This suggests that the wage loss will understate the productivity loss due to alcoholism by about 29 percent.

The above calculation of the relationship between the wage loss and the total productivity loss due to alcoholism rests on the strong assumptions behind figure 9.1. A more data-driven approach is to combine the results in table 9.2 of the relationship between alcoholism and fringe benefits with data on employers' costs of fringe benefits. Table 9.5 lists employers' 1989 fringe benefits costs per employee, from the U.S. Chamber of Commerce (1990). Based on the results from table 9.2, the expected fringe benefit cost of a typical alcoholic worker is estimated to be \$450, or almost 7 percent lower than the expected fringe benefit cost of a nonalcoholic worker. For the case shown in figure 9.3, the total productivity loss of alcoholism is estimated as the sum of the wage loss and the value of the fringe benefits lost. Below we report estimates that alcohol dependence is associated with a 9.8 percent reduction in earnings, implying that the average wage loss per alcoholic is \$1,929. The total productivity loss is thus estimated at \$2,378, and lost earnings understate the total productivity loss by about 20 percent. The results could be viewed as evidence against the assumptions behind figure 9.1 (homothetic preferences), because alcoholism is not associated with equal percentage reductions in earnings and fringe benefits (a 9.8 percent reduction in earnings but only a 7 percent reduction in the value of fringe benefits). However, the percentage reductions are reasonably close in magnitude. The data-driven approach and the approach that assumes homotheticity also yield similar conclusions, that lost earnings understate the productivity loss by 20 to 29 percent.

Previous research on the productivity effects of alcoholism have used a num-

ber of outcome measures, including personal income, household income, and wages, but these studies have failed to include fringe benefits (Mullahy 1993). Our analysis and empirical results suggest that these studies using the conventional methodology may have understated the total productivity loss by 20 percent or more.¹³ Should the substitution effect described in figure 9.4 become a dominant force, our estimate above would still underestimate the true productivity loss. Moreover, due to a possible consequence of alcoholism for increased probability of death, health-related quits, and layoffs, the above static measure of productivity loss has a further downward bias.

Of course, our estimate is developed by extending the conventional methodology for estimating productivity losses to include the value of fringe benefits. Consequently, it shares the shortcomings noted of that methodology in determining whether the negative relationship between alcoholism and fringe benefits is causal. It should also be noted that neither the conventional methodology nor the calculations above distinguish between internal costs to the alcoholic and external costs the alcoholic imposes on others (Manning et al. 1991).

9.6 Alcoholism and Occupational Choice

Choice of occupation is a good example of a decision typically made in young adulthood but with potentially life-long consequences. A systematic relationship between alcoholism and occupational choice is accordingly of great concern. Based on Kenkel and Wang (1996), we argue that job selection and addictive behavior should be jointly determined by a rational optimizing worker. Specifically, we can sort jobs according to their characteristics in terms of their requirements or expectations about workers' drinking characteristics: the lowest-value job represents the least concern about drinking status and is thus more suitable for problem drinkers, whereas the highest-value job represents the most concern about workers' drinking status and is more suitable for nonalcoholics. Alcohol consumption can also increase the speed of human capital depreciation. When the size of this detrimental effect of alcohol on human capital is assumed to be job specific (i.e., for a job more suitable for problem drinkers, human capital depreciation is less sensitive to alcohol addictions), selecting a job with a high value of a characteristic will increase productivity and hence the rate of return on human capital, but it is at the expense of higher human capital maintenance cost (as reflected by the alcohol-specific responses to human capital depreciation). This tension will provide an endogenous determination of occupational choice, depending on the preference side of the addictive behavior.

Occupational requirements concerning workers' drinking habits are not di-

^{13.} Rice et al. (1990) assume alcoholism reduces employer contributions for social insurance, private pensions, and welfare funds by the same percentage as it reduces wages. The study does not contain direct evidence on this, but as shown above, this is consistent with an implicit assumption that workers' preferences over wages and fringe benefits are homothetic.

Occupational Status	Alcohol Nondependent	Alcohol Dependent
White-collar occupation	37.5	30.9
Professional and technical	13.9	10.1
Managers and administrators	11.4	10.5
Sales workers	4.3	3.2
Clerical workers	7.9	7.1
Blue-collar occupation	48.1	57.9
Craftspeople	19.2	25.0
Operatives	19.1	20.1
Nonfarm laborers	9.9	12.8
Service workers	12.0	9.6
Farmers/farm workers	2.2	1.5

Table 9.6 Occupation by Alcohol Dependence Status

Source: 1989 data from the NLSY for men.

rectly observable. To begin to explore general occupational differences, table 9.6 presents simple tabulations from the NLSY comparing the proportions of alcohol nondependents and dependents in different occupational categories. About 37.5 percent of nondependents are in white-collar occupations, compared to only 30.9 percent of dependents. In contrast, only 48.1 percent of nondependents are in blue-collar occupations, compared to 57.9 percent of dependents. There is also a somewhat smaller difference showing that alcohol dependents are less likely to be in service occupations.

Table 9.7 presents mean and median earnings by occupation and alcohol dependence status. Among those workers in white-collar occupations, alcohol dependents appear to earn nearly as much as nondependents. There are virtually no differences in median earnings between the two groups, while mean earnings are somewhat higher for nondependent workers. In contrast, in terms of either median or mean earnings, alcohol-dependent workers in blue-collar occupations earn less than nondependent workers. Alcohol-dependent service workers earn somewhat less than nondependents. There appears to be a large difference in the earnings of nondependent and alcohol-dependent farm workers, but this should be interpreted cautiously due to the small cell sizes.

Table 9.8 presents estimated earnings functions, to explore some of the patterns detected in table 9.8 in a multivariate context. As a benchmark, across all occupations, alcohol-dependent workers are estimated to earn 9.8 percent less than their nondependent peers. Additional regression results confirm that most of the earnings loss associated with alcoholism appears to be concentrated in the blue-collar occupations. Conditional upon being in a white-collar occupation, the estimated effect of alcohol dependence is statistically insignificant, although the point estimate is that dependence reduces earnings by 5 percent. In contrast, conditional upon being in a blue-collar occupation, alcohol dependence is estimated to reduce earnings by 15.4 percent (which is statistically significant at the 1 percent level).

Earnings by Occupation and Alcohol Dependence Status (Men)	
Table 9.7	

	Median Earnings (\$)	nings (\$)	Mean Earnings (\$)	ings (\$)	
Occupational Status	Nondependent	Dependent	Nondependent	Dependent	
White-collar occupation $(n = 1,619)$	25,000	25,000	28,398	27,252	
Professional and technical $(n = 584)$	29,000	29,300	31,186	31,325	
Managers and administrators $(n = 505)$	26,000	25,000	30,087	29,505	
Sales workers $(n = 181)$	25,750	27,000	30,412	25,467	
Clerical workers $(n = 349)$	18,950	18,500	20,056	18,994	
Blue-collar occupation $(n = 2.202)$	18,000	15,000	18,941	16,807	
Craftspeople $(n = 898)$	20,400	16,500	21,224	18,378	
Operatives $(n = 853)$	18,000	15,000	18,758	16,718	
Nonfarm laborers $(n = 451)$	12,000	14,000	14,763	13,805	
Service workers $(n = 513)$	15,000	13,000	16,032	15,433	
Farmers/farm workers $(n = 94)$	10,000	5,000	13,012	6,257	

Source: 1989 data from the NLSY for men.

2.0	inings by Steaparion		
	All Occupations	White Collar	Blue Collar
Alcohol dependent	-0.098** (0.035)	-0.050 (0.049)	-0.154*** (0.044)

Table 9.8 Regression Estimates of the Effect of Alcohol Dependence on Earnings by Occupation

Note: OLS regressions with ln (earnings) as the dependent variable. Standard errors are in parentheses. Models are estimated with additional explanatory variables, including year of birth, ethnicity, nonintact family/religious attendance/magazines/library card at age 14, mother's and father's education, siblings, and AFQT score.

9.7 Alcoholism and Human Capital

In this section we estimate alternative specifications of earnings functions to explore the extent to which alcoholics earn less because they bring less human capital to the job due to their lower incentive to undertake postschooling learning and their higher human capital maintenance cost (as reflected by the endogenous human capital depreciation).

The first specification in table 9.9 estimates the effect of alcohol dependence on earnings without controlling for human capital investment.¹⁴ This model reproduces the benchmark model presented in the last section (table 9.8), and indicates that the total effect of alcohol dependence on earnings is a 9.8 percent loss.

The second specification in table 9.9 is an earnings function that includes schooling, marital status, job tenure, occupation, firm size, and training attendance. Each of these human capital variables has a statistically and economically significant effect on earnings. For example, each additional year of schooling raises earnings by 5.4 percent, marriage raises earnings by 24.4 percent, and training attendance raises earnings by 15.1 percent. White-collar workers earn 31.7 percent more and blue-collar workers earn 22.5 percent more than workers in the omitted occupational categories (service and farm workers).

Once aspects of human capital are controlled for, the estimated earnings loss associated with alcohol dependence falls to 4.6 percent. Therefore, of the total earnings loss of 9.8 percent only 4.6 percent is the direct effect of alcoholism, while the remaining 5.2 percent is the indirect effect of alcoholism through

^{**}Significant at the 5 percent level.

^{***}Significant at the 1 percent level.

^{14.} By including the AFQT score, the model does control for ability differences. While ability is an aspect of human capital, it is not an investment choice variable of the individual. For a study of schooling on alcohol consumption via health knowledge, see Kenkel (1991). For characterizing endogenous human capital accumulation in a dynamic general equilibrium framework, see Bond, Wang, and Yip (1996).

	(1)	(2)
Alcohol dependent	-0.098**	-0.046*
_	(0.035)	(0.030)
Schooling		0.054***
_		(0.007)
Tenure		0.003***
		(0.0003)
Married		0.244***
		(0.025)
White-collar occupation		0.317***
-		(0.040)
Blue-collar occupation		0.225***
		(0.036)
ln (number of employees at job)		0.055***
		(0.005)
Attended training		0.151***
		(0.033)

Note: See notes to table 9.8.

measured human capital variables. Of course, there may be additional unmeasured aspects of human capital that are also systematically related to alcoholism. Viewed this way, a 4.6 percent earnings loss is an upper-bound estimate of the direct effect of alcoholism.

The pattern of results in table 9.9 means that alcohol dependence is systematically related to the set of human capital variables added in the second specification. Table 9.10 presents direct evidence on these relationships. Alcohol dependence is associated with about one-third of a year less schooling and a 13.7 percent lower probability of being married. Alcohol dependence is also estimated (somewhat imprecisely) to reduce tenure on the job by 2.4 months (compared to a median job tenure of 24 months in this sample of young adults). Consistent with the patterns in table 9.5, alcohol dependence is estimated to decrease the probability of being in a white-collar occupation by 4.7 percent and to increase the probability of being in a blue-collar occupation by 9.1 percent. Alcohol dependence is estimated to have a negative effect on the probability of attending training, but the effect is small and statistically insignificant.

9.8 Job Choice and Smoking Status

Alcoholism is an interesting addiction to study in a labor market context because there are clear channels through which alcohol abuse can directly reduce worker productivity. Cigarette smoking is an alternative common addiction where the direct productivity effects are probably much less impor-

	Sample Proportion (or mean of continuous variable)	Effect of Alcohol Dependence on Probability (or OLS coefficient for continuous variable)
Schooling	12.469	-0.355***
· ·		(0.067)
Tenure	34.560	-2.433*
		(1.495)
Married	0.670	-0.137***
		(0.019)

0.348

0.512

0.392

0.160

-0.047**

(0.020) 0.019***

(0.021)

0.055 (0.005) -0.014

(0.014)

Table 9.10 Alcohol Dependence and Human Capital

Note: See notes to tables 9.2 and 9.8.

In (number of employees at job)

White-collar occupation

Blue-collar occupation

Attended training

tant.¹⁵ However, smoking is still expected to be associated with the individual rate of time preference, both because high discounters are more likely to become addicted to cigarettes and because smoking reduces life expectancy, thus endogenously increasing the discount rate. This section reports preliminary results on the relationships between alcoholism, smoking status, and job characteristics. Viewing smoking status as a proxy for time preference, the results shed light on the relative importance of the productivity and human capital depreciation effects of alcoholism compared to the role of individual preferences between present and future consumption.

Table 9.11 presents estimates of the effects of alcohol dependence and smoking status on the probability of receiving the same fringe benefits considered in table 9.2. Smoking status is measured on a lifetime basis, from survey responses indicating having ever smoked more than 100 cigarettes. ¹⁶ Controlling for lifetime smoking status, alcohol dependence continues to be associated with lower probabilities of receiving major fringe benefits. However, compared

^{15.} This is particularly the case in a sample of young adults, where the long-term health effects—including lung cancer, chronic obstructive pulmonary disease, and heart disease—will not yet be manifested. While this is also true for the chronic effects of heavy drinking, such drinking also has acute effects such as hangovers and lost sleep, not to mention the productivity effects of on-the-job drinking. Levine, Gustafson, and Velenchik (1997) estimate that smoking reduces wages by roughly 3 to 8 percent, but suggest that this may mainly reflect higher health insurance costs for workers who smoke.

^{16.} Questions on smoking are included in the 1984 and 1992 waves of the NLSY. We use responses from the 1992 wave to measure lifetime smoking as of 1989; respondents who started smoking after 1989 are given a value of zero.

Table 9.11 Alcohol Dependence Status, Smoking Status, and Fringe Benefits

Fringe Benefit	Effect of Alcohol Dependence on Probability	Effect of Smoking Status on Probability
Health insurance	-0.035*	-0.051***
	(0.020)	(0.016)
Life insurance	-0.031	-0.064***
	(0.024)	(0.018)
Paid sick leave	-0.080***	-0.064***
	(0.025)	(0.019)
Dental insurance	-0.029	-0.069***
	(0.025)	(0.019)
Paid vacation	-0.046**	-0.027*
	(0.020)	(0.016)
Parental leave	-0.027	-0.087***
	(0.026)	(0.021)
Retirement plan	-0.074***	-0.044**
	(0.025)	(0.019)
Employee discounts	0.033	-0.006
	(0.025)	(0.019)
Flexible work schedule	0.031	-0.039**
	(0.025)	(0.019)
Profit sharing	-0.022	-0.004
	(0.023)	(0.018)
Training/education opportunities	-0.016	-0.078***
	(0.025)	(0.019)
Child care	-0.001	-0.004
	(0.010)	(0.007)
Paid/subsidized meals	0.006	-0.012
	(0.018)	(0.014)
Parking	0.007	-0.038
-	(0.024)	(0.019)

Note: See notes to tables 9.2.

to the results in table 9.2, controlling for smoking status results in smaller (in absolute value) estimated effects of alcohol dependence; some estimates also lose statistical significance. Lifetime smoking status itself is associated with statistically significantly lower probabilities of receiving major fringe benefits. Moreover, our results indicate that while drinking status has a stronger adverse impact on the fringes of paid sick leave, paid vacation, and retirement plans compared to smoking, the latter is somewhat more influential in dental and life insurance as well as parental leave. One interpretation of these patterns is that job choices, and consequently fringe benefit choices, reflect both variation in individual rates of time preference and the productivity effects of alcohol abuse.

9.9 Concluding Comments

Our analysis of data from the NLSY suggests that young men who meet criteria for alcohol dependence are indeed in bad jobs. Their jobs are less likely to offer major fringe benefits, are more dangerous, and are at smaller firms. Their jobs also pay less, in part because alcoholics bring less human capital to the job than do their nonalcoholic peers. Of course, these patterns are open to several interpretations. Particularly because of the important role human capital variables play, some of the benchmark patterns are consistent with the job choices of rational addicts who anticipate the labor market consequences of alcoholism. Many of the results, especially the results in section 9.8 that show that smokers are in bad jobs, suggest that differences in individual rates of time preference may have important labor market consequences. This is again consistent with the job choices of rational addicts, but it is also consistent with other models of addictive behavior. Sharper tests of the labor market implications of the rational addiction model await future work.

Studies of alcohol abuse in the labor market, including ours, have not attempted to distinguish separate supply-side and demand-side effects. Previous empirical studies investigate whether, in equilibrium, workers who abuse alcohol are paid less; our analysis extends the approach to consider a much wider array of job attributes. The effects of alcoholism are often assumed to be primarily supply-side phenomena, reflecting individuals' labor supply decisions. This is more plausible for some of the indirect effects of alcohol abuse, such as lower schooling attainment, and less plausible for other effects, such as the increased unemployment of alcohol abusers. The observed patterns reported above might be at least partly demand-side phenomena. If employer screening is effective, alcohol abusers will be unemployed or placed in less demanding, low-wage jobs where drinking has fewer safety and productivity consequences. In a general model of employer search, Barron, Bishop, and Dunkelberg (1985) suggest that employers will increase search efforts when filling positions that require more training. They estimate that higher levels of training provided in the first month are associated with more extensive and intensive employer search. They also estimate that the level of on-the-job training is associated with the number of applicants screened and the average screening time per applicant. To the extent employers' search efforts weed out problem drinkers, an occupational sorting will result where problem drinkers end up in jobs that require little training. This provides an alternative explanation for the labor market consequences explored here, with obvious implications for our model of consumer/worker behavior.

As noted earlier, this present research, based on the examination of the 1989 wave of the NLSY data for men, serves only as a first step toward understanding the interplays between alcohol addictive behavior and labor market outcomes. Future work along these lines may also consider using other waves, including women to investigate gender differences (Mullahy and Sindelar 1991),

comparing our findings with those experimental outcomes by behavioral economists, undertaking careful cross-cultural comparisons, and, of particular interest, examining the alcohol consequences of quit and layoff probabilities.¹⁷

Appendix

Psychiatric Criteria for Alcohol Dependency

The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, third edition, revised (DSM-IIIR) defines criteria for the diagnosis of alcohol abuse and dependence. A diagnosis of alcohol dependence requires that an individual meet at least three of the nine criteria listed below, with some symptoms of the disturbance having persisted for at least one month or having occurred repeatedly over a longer period of time.

- 1. Substance often taken in larger amounts or over a longer period than the person intended
- Persistent desire or one or more unsuccessful efforts to cut down or control use
- 3. A great deal of time spent in activities to get alcohol, drinking, or recovering from its effects
- 4. Frequent intoxication or withdrawal symptoms when expected to fulfill major role obligations at work, school, or home or when substance use is physically hazardous
- 5. Important social, occupation, or recreational activities given up or reduced because of use
- 6. Continued use despite knowledge of having a persistent or recurrent social, psychological, or physical problem that is caused or exacerbated by use
 - 7. Marked tolerance
 - 8. Characteristic withdrawal symptoms
 - 9. Substance often taken to relieve or avoid withdrawal symptoms

References

Abraham, Katharine, and Henry S. Farber. 1987. Job duration, seniority, and earnings. American Economic Review 77 (3): 278–97.

American Psychiatric Association. 1987. Diagnostic and statistical manual of mental

^{17.} For analysis on job spell and search duration in the context of labor market, see Abraham and Farber (1987) and Laing, Palivos, and Wang (1995). The relationships with alcoholism, however, remain open to be explored.

- disorders: DSM-IIIR, 3rd ed., rev. Washington, D.C.: American Psychiatric Association.
- Barron, John M., John Bishop, and William C. Dunkelberg. 1985. Employer search: The interviewing and hiring of new employees. *Review of Economics and Statistics* 67 (1): 43–52.
- Becker, Gary, Michael Grossman, and Kevin Murphy. 1991. Rational addiction and the effect of price on consumption. American Economic Review, Papers and Proceedings 81:237-41.
- ——. 1994. An empirical analysis of eigarette addiction. *American Economic Review* 84 (3): 396–418.
- Becker, Gary, and Casey Mulligan. 1997. The endogenous determination of time preference. Quarterly Journal of Economics 112 (3): 729-58.
- Becker, Gary, and Kevin Murphy. 1988. A theory of rational addiction. *Journal of Political Economy* 96 (4): 675–700.
- Becker, Robert A., John H. Boyd III, and B. Y. Sung. 1989. Recursive utility and optimal capital accumulation. I. Existence. *Journal of Economic Theory* 47:76–100.
- Benham, Lee, and A. Benham. 1982. Employment, earnings, and psychiatric diagnosis. In *Economic aspects of health*, ed. Victor Fuchs, 203–20. Chicago: University of Chicago Press.
- Berger, Mark C., and J. Paul Leigh. 1988. The effect of alcohol use on wages. *Applied Economics* 20:1343-51.
- Bond, Eric, Ping Wang, and Chong K. Yip. 1996. A general two-sector model of endogenous growth with physical and human capital: Balanced growth and transitional dynamics. *Journal of Economic Theory* 68:149–73.
- Campbell, Karen E., Frederick S. Stinson, Terry S. Zobeck, and Darryl Bertolucci. 1996. Trends in alcohol-related fatal traffic crashes, United States, 1977–94. NIAAA Surveillance Report no. 38. Bethesda, Md.: National Institute on Alcohol Abuse and Alcoholism.
- Chaloupka, Frank. 1991. Rational addictive behavior and cigarette smoking. *Journal of Political Economy* 99 (4): 722–42.
- Cook, Philip. 1991. The social costs of drinking. In *Expert meeting on negative social consequences of alcohol use*, ed. O. G. Assland, 49–74. Oslo: Norwegian Ministry of Health and Social Affairs.
- Cook, Philip, and Michael J. Moore. 1993. Drinking and schooling. *Journal of Health Economics* 12:411–29.
- Epstein, Lawrence. 1987. A simple dynamic general equilibrium model. *Journal of Economic Theory* 41:68–95.
- Farber, Henry S. 1994. The analysis of interfirm worker mobility. *Journal Labor Economics* 12 (4): 554–93.
- French, Michael, and Gary Zarkin. 1995. Is moderate alcohol use related to wages? Evidence from four worksites. *Journal of Health Economics* 14 (3): 319–44.
- Grant, Bridget F, T. C. Harford, S. P. Chou, Frederick S. Stinson, and J. Noble. 1991.
 Prevalence of DSM-III-R alcohol abuse and dependence: United States, 1988. Alcohol, Health & Research World 15:91–96.
- Grossman, Michael, and Frank J. Chaloupka. 1998. The demand for cocaine by young adults: A rational addiction approach. *Journal of Health Economics* 17 (4): 427–74.
- Grossman, Michael, Frank Chaloupka, and Ismail Sirtalan. 1998. An empirical analysis of alcohol addiction: Results from the Monitoring the Future panels. *Economic Inquiry* 36 (January): 39–48.
- Harwood, H. J., A. M. Cruze, P. L. Kristiansen, J. J. Collins, and D. C. Jones. 1984. Economic costs to society of alcohol and drug abuse and mental illness: 1980. Research Triangle Park, N.C.: Research Triangle Institute.

- Heien, Dale M., and David J. Pittman. 1993. The external costs of alcohol abuse. Journal of Studies on Alcohol 54:302-7.
- Keeler, Theodore E., Teh-wei Hu, Paul Barnett, and Willard Manning. 1993. Taxation, regulation, and addiction: A demand function for cigarettes based on time-series evidence. *Journal of Health Economics* 12 (1): 1–18.
- Kenkel, Donald S. 1991. Health behavior, health knowledge, and schooling. *Journal of Political Economy* 99 (2): 287–305.
- Kenkel, Donald S., and David Ribar. 1994. Alcohol consumption and young adults' socioeconomic status. Brookings Papers on Economic Activity: Microeconomics (June): 119-61.
- Kenkel, Donald S., and Ping Wang. 1996. Rational addiction, occupational choice, and human capital accumulation. Working paper, Department of Policy Analysis and Management, Cornell University.
- Laing, Derek, Theodore Palivos, and Ping Wang. 1995. Learning, matching and growth. Review of Economic Studies 61 (1): 115–29.
- Levine, Phillip B., Tara A. Gustafson, and Ann D. Velenchik. 1997. More bad news for smokers? The effects of cigarette smoking on wages. *Industrial and Labor Relations Review* 50 (3): 493–509.
- Manning, Willard G., Emmett B. Keeler, Joseph P. Newhouse, Elizabeth M. Sloss, and Jeffrey Wasserman. 1991. *The costs of poor health habits*. Cambridge, Mass.: Harvard University Press.
- McClellan, Mark B., and David A. Wise. 1995. Where the money goes: Medical expenditures in a large corporation. NBER Working Paper no. 5294. Cambridge, Mass.: National Bureau of Economic Research.
- Moore, Michael J., and Philip J. Cook. 1994. The demand for alcohol by youths: Empirical models of habit formation and addiction with unobserved heterogeneity. Working paper, The Fuqua School of Business, Duke University.
- Mullahy, John. 1993. Alcohol and the labor market. In *Economics and the prevention of alcohol related problems*, ed. Gregory Bloss and Michael Hilton, 141–74. Rockville, Md.: National Institute on Alcohol Abuse and Alcoholism.
- Mullahy, John, and Jody Sindelar. 1989. Life-cycle effects of alcoholism on education, earnings, and occupation. *Economic Inquiry* 26 (2): 272–82.
- -----. 1991. Gender differences in labor market effects of alcoholism. American Economic Review Papers and Proceedings 81 (2): 161-65.
- . 1993. Alcoholism, work and income. *Journal of Labor Economics* 11 (3): 494-520.
- —_____. 1994. Alcoholism and income: The role of indirect effects. *Milbank Quarterly* 72:359-75.
- ——. 1996. Employment, unemployment, and problem drinking. *Journal of Health Economics* 15:409–34.
- Obstfeld, Maurice. 1990. Intertemporal dependence, impatience, and dynamics. *Journal of Moneiary Economics* 26:45–75.
- Palivos, Theodore, Ping Wang, and Jianbo Zhang. 1997. On the existence of balanced growth equilibrium. *International Economic Review* 38 (1): 205–24.
- Rice, Dorothy P. 1993. The economic cost of alcohol abuse and dependence, 1990. *Alcohol Health and Research World* 17 (1): 10–12.
- Rice, Dorothy P., Sander Kelman, Leonard S. Miller, and Sarah Dunmeyer. 1990. The economic costs of alcohol and drug abuse and mental illness: 1985. Report submitted to the Office of Financing and Coverage Policy of the Alcohol, Drug Abuse, and Mental Health Administration, U.S. Department of Health and Human Services. San Francisco, Calif.: Institute for Health & Aging, University of California.
- Sindelar, Jody. 1993. Measurement issues in alcohol survey data. In Economics and the

- prevention of alcohol related problems, ed. Gregory Bloss and Michael Hilton, 201–28. Rockville, Md.: National Institute on Alcohol Abuse and Alcoholism.
- Stinson, Frederick, Samar DeBakey, and Rebecca Steffens. 1992. Prevalence of DSM-III-R alcohol abuse and/or dependence among selected occupations, United States 1988. Alcohol Health & Research World 16 (2): 165–72.
- Topel, Robert. 1991. Specific capital, mobility, and wages: Wages rise with job seniority. *Journal of Political Economy* 99 (1): 145–76.
- U.S. Chamber of Commerce. 1990. Employee benefits: Survey data from benefit year 1989. Washington, D.C.: Chamber of Commerce of the United States of America.
- Waters, Teresa M., and Frank Sloan. 1995. Why do people drink? Tests of the rational addiction model. *Applied Economics* 27:727–36.
- Zarkin, Gary A., Michael T. French, Thomas Mroz, and Jeremy W. Bray. 1998. Alcohol use and wages: New results from the National Household Survey on Drug Abuse. *Journal of Health Economics* 17 (1): 53–68.
- Zucker, Robert A., and Edith S. Lisansky Gomberg. 1986. Etiology of alcoholism reconsidered: The case for a biopsychosocial process. *American Psychologist* 41 (7): 783–93.