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7 Dynamic Considerations

7.1 Dynamic Sequencing of Static Equilibria

Thus far we have discussed the economic model and data with which
we can calculate a static general equilibrium for 1973. However, we think
that tax policy evaluations based on single-period, static equilibria can be
misleading. In particular, meaningful welfare calculations can be based
on neither H—the utility of present consumption in 1973—nor U—the
overall utility measure that includes expected consumption in later years.

First, consider a welfare measure based on H and consider a tax change
that increases the net return to saving. If consumers respond to increasing
saving incentives, then the utility H from current consumption will fall.
Only over time will the additional savings provide enough capital deepen-
ing to allow for higher future consumption. Thus a policy that looks
harmful in the short run can provide substantial welfare gains in the long
run.

Second, consider a welfare measure, based on U, from 1973. This
utility function includes expected future consumption for each household
group. The expectations are myopic in that our consumers assume that
the current price of capital will remain unchanged in the future.1 Thus a
tax change that raises the net rate of return also raises expectations about
the amount of future consumption that can be obtained from a given
amount of current saving. Actual capital deepening will bring the net
return down; thus expected future consumption overstates actual future
consumption. Expected utility, U, therefore overstates the utility from
actual consumption.

1. In fact, the price of capital can change substantially over time, as we shall see when we
consider some large policy changes in chapters 8 and 9.
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141 Dynamic Considerations

The myopic expectations turn out to be correct if the economy is on a
balanced growth plan. They are incorrect in any transition to a higher or
lower capital/labor ratio, and they become more accurate as the econ-
omy settles down to a new steady-state path. Consequently, it is ap-
propriate to look explicitly at the future path of the economy. In so doing
we base our welfare measures on current consumption H from each year
in a sequence of static equilibria. Preferences based on U and expected
future consumption are used only insofar as they generate actual con-
sumption and savings for any particular year.

The first equilibrium in every sequence is for the 1973 benchmark year.
The later equilibria in a sequence can represent any later years. It would
be possible to calculate one equilibrium for every year. However, com-
putational expenses increase with the number of equilibria to be calcu-
lated. We usually calculate equilibria that are five or ten years apart, and
we usually calculate enough equilibria to look fifty years beyond 1973.
For example, we frequently calculate a sequence of equilibria represent-
ing the years 1973,1983,1993,2003,2013, and 2023.2 Later in this chapter
we discuss the sensitivity of our results to such choices.

The equilibria in any sequence are connected to each other through
capital accumulation. Each single-period equilibrium calculation begins
with an initial capital service endowment. Saving in the current period
will augment the capital service endowment available in the next period.
As we move through our sequence, the capital stock grows because of
saving. When the capital endowment grows at the same rate as the
effective labor force, the economy is on a balanced growth path.

In fact, we assume that, in a base-case sequence, the economy is on a
steady-state, balanced growth path. This assumption is crucially impor-
tant. Just as the assumption that the economy is in equilibrium in 1973 is
central to the development of the static version of the model, so the
assumption of a balanced growth path is central to the development of the
dynamic version.

To be more precise, the definition of a steady-state growth path is a
situation where tax policy is unchanging and

2. When we make our dynamic welfare calculations (as discussed below in section 7.2),
we need to have the values of certain variables for every year, even though we do not usually
make an equilibrium calculation for every year. In order to calculate the values of these
variables for the intermediate years, we assume that the path between equilibria is charac-
terized by smooth exponential growth. For example, assume that we have calculated the
value of the H function (defined in chapter 3) for 1973 and 1983. If we assume that the
growth rate between the two years is constant, then it must be that//1983 = //1973(1 + GR)W

where GR is the growth rate. We can then solve for GR as

GR =
10

- 1 .
Hi...

Then, for the intermediate years, we calculate H as HX913 + t = //1973(1 + GR)'.
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(7.1)

where

E K
— = — = n.
E K

E = labor endowment,
E = increase in labor endowment,
K = capital endowment,
K = increase in capital endowment, and
n - growth rate of effective units of labor.

Moreover, we separate the growth of effective labor units into compo-
nents that reflect population growth and Harrod-neutral technical change
(increase in productivity of existing labor). Thus,

(7.2) rc = (l + / z ) ( l + g ) - l ,

where

g = growth rate of natural units of labor,
h = growth rate of output per worker hour.

On the steady-state path, all relative prices remain constant. Tax policy
changes will alter the steady-state path and set the economy on a transi-
tion path (which may be rather lengthy). Eventually the economy
approaches a new steady state. Figure 7.1 illustrates the transition for a
tax policy change which results in increased saving. Without the change,
consumption per capita is growing at a constant rate. With the change,
consumption is at first lower than it would have been. Consumption will
then rise at a faster rate, however, as a result of the greater amount of
capital accumulation. The level of consumption under the new regime

Log C,

time of the switch

steady state path with
additional savings incentives

transition
path

initial steady
state path

TIME

Fig. 7.1 The transition for a tax policy change that stimulates savings.
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eventually surpasses the level under the old set of taxes, and consumption
approaches a new balanced growth path asymptotically. By calculating a
sequence of equilibria, we are able to study the transition in detail.

We choose the parameters for the dynamic version of our model in the
following way. First, we observe the amount of saving and the size of the
capital stock in the benchmark year. This gives us the rate of growth of
capital. We then assume that the effective labor force grows at the same
rate.

Using the notation in chapter 3, the expression n = KIK in equation
(7.1) can be rewritten as

Si
(7.3) n =

G 4 P ( 1 - / T )

where S is total savings, 7 is the factor of conversion from stock to flow
units, and CAP is capital income net of corporate and property taxes.3

The multiplication by (1 - / T ) is necessary because we define units of
capital as being net of personal factor taxes.

If we plug the appropriate values from the consistent 1973 data set into
equation (7.3), we can calculate n, the steady-state growth rate:

(7.4) „ = <105441-7><-°4> = 0.028770.
(189672.9)(1 - (.816058)(.278288))

The endowment of effective labor must also grow at this rate. For
simplicity we assume that the growth of effective labor is divided evenly
between population growth and increased productivity. We therefore
assume that g = h in equation (7.2), and we solve the equation:

(7.5) g = h = Vl.02877 - 1 = 0.014283.

The importance of the division of n between g and h will become clearer
later in this chapter, when we describe our dynamic welfare calculations.
In particular, we are able to consider the effect of tax changes on a
population that is the same size as the initial population. If we were to
include the utility of additional individuals in later years, our welfare
measure would be weighted in favor of future periods.

When all endowments and incomes increase at the rate n, and when
demand functions are homogeneous of degree one in income, the govern-
ment's tax receipts also grow proportionately. Transfer income will grow
at the same rate because consumers are each given a share of government
revenue in the benchmark. The only problem is presented by progressive
personal income taxes. This problem is solved by scaling the (5 ;) inter-
cept of each linear tax schedule by the steady-state growth rate n. With a
larger negative intercept and larger incomes subject to the same marginal

3. We choose 7 = .04. We will discuss this choice later in this chapter.
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tax rate, each consumer will experience a constant average rate of tax as
income grows through time. The personal income tax remains progres-
sive, however, in the sense that high-income consumers still have higher
average and marginal tax rates than low-income consumers.

7.2 The Comparison of Dynamic Sequences

In this section we describe our procedures for the evaluation of alterna-
tive sequences of equilibria.

A well-known concept in static welfare analysis is the compensating
variation, defined as the amount of additional income at new prices that
would be necessary in order to allow the consumer to reach his old level of
utility. The equivalent variation is defined as the amount of additional
income at old prices that would enable the consumer to reach the new
utility level.

We can derive the static compensating and equivalent variations for the
H utility function (the CES composite of current consumption and lei-
sure). The H function might be called an evaluation function, distin-
guishing it from the overall utility function, U, which we use to determine
saving behavior. The H function is the appropriate one to use in our
dynamic welfare evaluations. Since savings are used to buy future con-
sumption, we would be double counting if we included savings in our
evaluation of utility in the current period.

The first step in deriving compensating and equivalent variations is to
solve for the expenditure function that corresponds to H. The budget
constraint was provided in equation (3.8), which we reproduce here:

(7.6) I = PHH + PSS.

In equation (7.6), / is expanded income, as denned in equation (3.39).
When we subtract PSS (the amount spent on saving), we have the income
left over for current consumption and leisure. Let us call this IH. Substi-
tution implies

(7.7) IH = H-PH.

The evaluation function H is a combination of goods and leisure, similar
to a utility function. For present purposes, however, it is also useful to
think of H as a composite commodity, a physical combination or aggrega-
tion of goods and leisure. Each unit of H costs PH, provided in equation
(3.27) as a composite of prices for goods and leisure. The expenditure
function is H • PH, a function of the required utility level and prices.4

4. This equation does not hold exactly for the first of our twelve consumer groups,
because we use a negative minimum purchase requirement to account for their negative
savings.
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Assume we have old values H°, IH, and PH and new values Hn, IH, and
PH. The compensating variation for any single period is defined as the
additional income required to obtain old utility levels at new prices:

(7.8) CV = H°PH-HnPH = (H°-Hn)PH.

It is customary to reverse the sign of this welfare measure, such that the
CV is positive for a welfare gain.

In similar fashion, we write the equivalent variation as

(7.9) EV=(Hn-H°)PH.

These measures can be applied to any consumer in any period, since we
calculate each consumer's income and utility in each time period under
each tax regime. A problem arises, however, in trying to sum a stream of
compensating or equivalent variations, because these are measured in
prices of different years from different sequences. Fortunately, the
benchmark sequence is on a steady-state path, so its prices remain stable
with no tax change. Thus a natural choice is to measure welfare gains in
benchmark prices, equal to actual 1973 prices. For the /th period, then,
the constant dollar difference between revise-case consumption and
benchmark consumption is {Hf - Hf)PH. If we use PV to denote a
present value operator to be described below, then the present value of
this stream of welfare gains is

(7.10) PVWG = PV [(H?-H°)PH] = PH • [PV{H?) - PV{H°)},

since P^is a constant. Also, since (//f - Hf)PHis just the EV for period i
in unchanged prices, this measure might be interpreted as the present
value of equivalent variations. This is the measure used to report all
welfare gains in results below.

Because this measure is so important for our welfare evaluations, let us
further describe and justify the choice in several ways. First, suppose that
we want the present value of a CV measure that is comparable to the EV
measure above. Since we need to add together the compensating varia-
tions for different periods, and since these are measured in all different
prices PHi, we could convert them to constant prices PH through the use
of a price index PHi IPH. Then the present value of these "real" CVs (with
sign reversal) is:

(7.11) pv\(H?-Hf)PHi

which reduces to PVWG from (7.10). The point is that compensating and
equivalent variations are defined so as to express welfare changes in
different prices, so the conversion to common prices eliminates any
useful distinction between the two concepts. The welfare change (Hf -
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Hf) could be multiplied by a price such as Pfj or any price level from the
revise-case sequence. Thus we merely use Pfj.

Second, since PVWG is in base-period prices, the welfare gains from
one tax proposal can be compared directly to the welfare gains from a
different tax proposal. That is, since PVWG reduces to the present value
of equivalent variations from each period, we have an argument analo-
gous to that of John Kay (1980). The EV is preferred to the CV for
comparing alternative replacement policies, since the CV are each mea-
sured in the new prices of each different replacement equilibrium.

Third, suppose that our model contained a lifetime utility function of
the form U(H0, . . . , HT), where consumers could substitute consump-
tion among the various periods in a CES function for U with a composite
price PJJ. Then there would exist a comprehensive expenditure function
of the form U • Pv and a comprehensive CV or EV of the form (Un -
U°)Puor (Un - U°)Pu- Additional discounting in this case would not be
necessary. Either the CV or EV would be a valid measure of the number
of additional dollars in one set of lifetime prices that would be required to
attain a different total lifetime utility. We do not have a lifetime utility
function, however. Our welfare measure provides enough additional
dollars in one set of prices to allow the consumer to reach a particular
pattern of Ho, . . . , HT, more than enough to reach the same lifetime
utility if there were substitution among the Ht. Our welfare measure for
each consumer may be biased for this reason.

Finally, since the PVWG are dollar measures of welfare change, they
can be summed across consumer groups to provide an estimate of the
total welfare effect (efficiency gain or loss) of any policy change.5 Because
the utility from government expenditures is held constant, as described in
section 3.5, these measures represent all welfare changes for U.S. con-
sumers. The gains and losses of foreigners are excluded. Therefore, the
PVWG measures represent changes in domestic welfare levels, rather
than worldwide levels. We should recognize that a tax change could have
terms of trade effects, such that worldwide welfare increased while U.S.
consumer PVWG measures were all negative.

7.3 Present Value Calculations

Now let us discuss the details of the calculations of present values in
equation (7.10). We have a problem in evaluating the welfare gains of a
growing economy because an overly high weight might be placed on
outcomes occurring in the distant future. For example, if the economy is

5. We take the unweighted sum of the PVWG for the various consumers, so we might be
said to be using a Benthamite social welfare function. It would be possible to employ a
concave social welfare function by weighting poorer consumers more highly, but we have
not done so.
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growing at 3 percent per year (due to labor force growth), and we are
discounting our social welfare measure at 4 percent, then a 2 percent
improvement in consumption seventy-five years hence is weighted at half
the importance of an immediate 2 percent improvement. We believe this
does not sufficiently discount the distant future because of the spurious
effect of population growth. The approach we have taken is to consider
the impact of the tax policy change on a population the size of the original
1973 population. That is, we do not consider population growth per se as
a reason to assign additional weight to the outcomes of future years.
Rather, we determine the effect of our plan on a per capita basis and then
multiply by our initial population size.

In base- and revise-case calculations we compute a value of H for each
year for each consumer. If we consider a sequence of equilibria extending
fifty years past our benchmark (i.e., from 1973 to 2023), the present value
of the stream of H values for those five decades is given by:

(7-12) PV= 2 „ , H< . x,,

where g is the population growth rate and p is the consumer's rate of time
preference. We discount by g because we want our calculations to con-
sider only the initial-sized population.

Equation (7.12) is fine for the first fifty years. However, it neglects the
utility accruing more than fifty years after the tax change. Before we can
use equation (7.12), we must add a termination term. In general, we will
have a series of equilibrium calculations that extend T years past the
starting year, 1973. Over the course of the T years in a revise-case
calculation, the economy asymptotically approaches a new steady state.
However, it will not actually reach the new steady state. In the case of a
policy designed to increase saving, the economy will still be experiencing
a small amount of capital deepening, even after many years. In order to
calculate the termination term, we assume that the capital in the economy
has reached the steady state in period T. In the case of a capital-deepening
policy, we thus assume a slight decrease in saving and increase in H from
the amount that we actually calculated for period T.

The actual saving in period T might be called ST, but we get the
steady-state level of saving for period T, S', by rearranging equation (7.3)
to obtain

Actual consumption expenditure in period T is IHT, but steady-state
expenditure for period Tis then calculated as I'H = IT - PSS'. From these
values we need to calculate the H' that would result from expenditure I'H.
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Log H t

Fig. 7.2
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Transition path, including years
beyond T which are not
calculated explicitly

Steady state in
bose-cose

TIME

The approximation involved in calculations of the termination
term.

t i
time of the
change in
policy

T
beginning of
termination
calculations

Since His homogeneous of degree one in expenditure IH, we can multiply
actual H by the ratio 1'HIIHT

 t o obtain steady state H' as:6

(7.14)
IT-PS

In the case of a capital-deepening policy, I'HIIHT exceeds unity, so we
increase HT. We then assume that H grows at the steady-state rate from
period T to infinity. These assumptions are illustrated in figure 7.2.

We are now able to calculate the present value of a sequence of values
of H. The present value formula consists of equation (7.12) plus the
termination term:

(7.15) PV(H) = +
H'

Note that the second term on the right-hand side of equation (7.15)
(the termination term), is divided by (p — h) where p is the discount rate
and h is the growth rate of labor efficiency. When we divide by (p — h),

6. An alternative would be simply to assume that // rwas close enough to the new steady
state. Since H approaches the new steady state from below, the direct use of HT would
understate welfare gains. Instead, we assume that capital is close enough to the steady state.
Savings 5' (enough to increase that capital at rate n) is less than savings ST (enough to
continue towards the true steady state). Since 5' < ST, equation (7.14) scales up HT to
approximate the higher steady-state welfare. It thus avoids understating the gains as would
occur with the use of HT.



149 Dynamic Considerations

we are in effect taking a stream growing at the rate of h per person but
discounted at the rate p, and transforming it into a present value at time T.
This present value in period T is also discounted to the present by the
(1 4- p) r division. Furthermore, the initial population becomes a smaller
fraction of the economy through time because of population growth at
the rate g. We reduce the termination term to the initial population size
when we divide by (1 + g)T. This fixed population size still enjoys
ever-increasing absolute economic power due to the exponential growth
in labor productivity at rate h.

When we evaluate a tax policy change, we use equation (7.15) to
calculate the present value of the base-case sequence and the present
value of the revise-case sequence. This gives us PV(H°) and PV(Hn),
which we plug into equation (7.10) to get our present value of welfare
gains or losses for each consumer.

Our procedures do not guarantee that our measures of the change in
welfare will be invariant with respect to the number of years between the
first and last equilibrium. In general, the longer is our calculated se-
quence of equilibria, the closer are the final values of income, consump-
tion, and utility to the actual steady-state values. In table 7.1 we test the
sensitivity of the model to changes in the number of periods. In each of
these runs the policy change is the switch to a consumption tax. (This
policy proposal and the way in which we model it are discussed in much
greater detail in chapter 9.) All of the runs use additive replacement for
equal revenue yield, and all of the equilibria are spaced five years apart.

As seen in table 7.1, the results become fairly robust when we carry out
the calculations for fifty years or more. A fifty-year simulation of the
consumption tax provides a welfare gain of $556 billion, while a hundred-
year simulation provides $569 billion, which is not much different.

Our welfare measure also depends somewhat on the number of years
between any two equilibria in a sequence, although our assumption of
smooth, exponential growth between equilibria helps to reduce the size
of this effect (see footnote 2, this chapter). Table 7.2 shows our tests for
this type of sensitivity. Since all of these simulations cover a total of fifty
years, the $556 billion for five-year spacing matches the number from the
previous table. When equilibria are separated by only one year, the same
tax change implies a $491 billion welfare gain.7

7.4 Important Parameters for Dynamic Sequencing

Several of the parameters necessary to implement our dynamic se-
quencing procedures were presented and described in earlier chapters or
in earlier sections of this chapter. These parameters include the growth

7. See Ballard and Goulder 1982 for further discussion of these effects.
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Table 7.1 Effect of Number of Equilibrium Periods on Welfare Gain from
Adoption of a Consumption Tax (in billions of 1973 dollars)

Number of
Equilibria

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Number of
Years beyond
1973 Covered
by Those
Calculations

5
10
15
20
25
30
35
40
45
50
55
50
65
70
75
80
85
90
95

100

Welfare
Gain (Loss)

$(-61)
144
272
365
431
476
507
530
545
556
563
567
570
572
572
572
572
571
570
569

Table 7.2 Effect of Number of Years between Equilibria on Welfare Gain
from Adoption of a Consumption Tax (in billions of 1973 dollars)

Number of
Equilibria

6
11
26
51

Number of Years
between
Equilibria

10
5
2
1

Welfare
Gain (Loss)

$641
556
505
491

Note: Because the first equilibrium represents the initial year, each of these sequences
covers exactly fifty years.

rates of population and technical progress, (g and h), set in equation
(7.5), and r, the real net-of-tax rate of return. While the average net-of-
tax rate of return is set to 4 percent, each consumer group has a net rate of
return that depends on its own marginal tax rate. Any group with a
marginal tax rate less than the average earns a net return higher than 4



151 Dynamic Considerations

percent, while any group with a marginal tax rate greater than the
average earns a net return of less than 4 percent.

We must now discuss two more parameters: 7, the annual rate at which
capital services are augmented as a result of additional saving, and p, the
discount rate. We assign to 7 the same value that we assign to r in the
benchmark—0.04. If each unit of capital earns a 4 percent rate of return
net of taxes in the benchmark, then an additional unit of capital acquired
through savings can be expected to earn the same return. That is, S will
contribute .04 units of capital services, each earning a dollar per period
net of taxes in the benchmark.

Now let us consider the discount rate. In order to calculate present
values for consumption sequences, we want to use the discount rate, p,
implied by the utility function evaluation of present and future consump-
tion. In general, for each consumer, this will also be equal to the real net
rate of return, r. To see this, represent the choice between present
consumption (Co) and future consumption (Cx) by the indifference-curve
diagram of figure 7.3. Suppose that the individual has 70 of income in the
present period, and faces consumption prices of P in either period. Any
income not consumed in the present period can earn the return r before
being spent in the future period, so the effective price of Cx is Pl{\ + r),
which is less than P. The individual maximizes utility subject to his
income 70 by setting the ratio of marginal utilities equal to the price ratio.
His marginal rate of substitution at the tangency is therefore (1 + r),
implying a discount rate of r in the benchmark. As a result, each consum-
er's H stream is discounted at its own rate of return to measure dollar
present values that can be added up across groups.

C,

r— Slope = (1+r)

Fig. 7.3

Jo Co
P

The choice between present and future consumption.
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7.4 Revenue Yield Equality in the Dynamic Model

In order to analyze tax policy changes intelligently, it is important to
maintain the assumption of equal revenue yield. This is true in the
dynamic case as well as in the static case. In the dynamic case, however,
we could apply more than one standard of yield equality. We invoke a
strong form of yield equality in that we require that the government
collect the same revenue in each period of the revise sequence as it
collected in the corresponding period of the base sequence. This require-
ment can cause some problems, most notably with a switch from an
income tax to a consumption tax. (See chapter 9 for more discussion of
the consumption tax.) Since the consumption tax base is less than the
income tax base for at least the first few periods of a consumption tax,
unchanged rates of tax would provide substantially reduced revenue in
those periods. Our strong form of yield equality implies that the tax rates
must be substantially higher with a consumption tax in the initial periods.
These higher tax rates exacerbate the already distorted choice between
work and leisure. As time goes on, however, the economy will grow
faster under the consumption tax, since this type of tax policy leads to
faster capital accumulation. In fact, the consumption tax base might
ultimately exceed the income tax base.

We could consider a weaker form of yield equality under which the
present value of the revenues under the two systems would be equated.
The differences in the pattern of tax collections would be made up with
deficits or surpluses. In order to do this, however, we would need to deal
explicitly with the government bond market. We have not done so,
although we should note that the treatment of financial assets in general
equilibrium models is receiving more and more attention. (For example,
see Auerbach and Kotlikoff 1983, Feltenstein 1984, or Slemrod 1983).


