This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Transport and the State of Trade in Britain

Volume Author/Editor: Thor Hultgren, assisted by William I. Greenwald
Volume Publisher: NBER

Volume ISBN: 0-87014-442-1

Publication Date: 1953

Chapter Title: Use and Stocks of Equipment
Chapter Author: Thor Hultgren, William I. Greenwald
Chapter URL: http://www.nber.org/chapters/c9315
Chapter pages in book: (p. 38-50)

3. Use and Stocks of Equipment

More intensive use in prosperity

It has often been supposed that whei the quantity of goods or services sold by a business cuterprise increases. the managers of the cuterprise ordinarily must inerease their stock of equipment to cope with the growth of sales. In the railway industry, it might be supposed, an expainsion of ton-miles requires an increase in the aggregate capacity of goods wagons (raikway freight cars), an expansion of travel requires an increase in the capacity of carriages (railway passenger cars), and an expansion of total traffic cannot be handled without an increase in motive power. The supply of rolling stock, it is implied, will be adjusted to the level of traffic.

There are, of course, grounds for questioning whether these consequences must always or eren usually occur. The suppiy of equipment at the beginning of a traffic expansion might be large enough to take care of the growth of traffic. It might be possible to use the initial equipment more efficiently. Feen if railway managers feel that additional rolling stock is needed they may not be able to get it, for it takes time to build cars and locomotives, and they may not arrive from the construction shops until the boom is over. On the downswing, railway managers will certainly not reduce the stock of equipment in proportion to the fall in traffic. Perhaps they will junk some archaic or badly worn vehicles, but they will keep the rest, anticipating a returu of prosperity. unless they think the decline in traffic is quasi-permanent and not merely crelical.

In fact the changes in the supply of rolling stock have usually been much smaller than those in traffic, and have often been in the opposite direction. The size of the freight car stock ("wagon park") shows little positive relation to cycles in ton-miles. We have continuous figures on railroad-owned wagons only. although privately-owned rail wagons.
(mostly for coal) played an important part in freight movement; thes were almost as numerons as those belonging to the railoads (Table 18:
tafle 18
Privately-Owned and Railway-Owned Goods Wagons (Freight Cars)

PRIVATE:		Rallwas ${ }^{\text {b }}$	
Aug. 1, 1918	$628,3 \cdot 11$	1)ec. 31, 1919	730,416
Aus 1, 1928	$6.8,215$	Dec. 31, 1928	706,081
July 28, 19, ${ }^{\text {, }}$	637:670	Dec. 31, 1937	$650,83 \cdot 1$

* Dates are those of special censuses.
${ }^{\circ}$ Dates are most nearly comparable ones available. Figures include brake vans.
It does not seen likely, however, that the percentage changes in either stock during any phase of traffic was much greater than that in the other. At any rate, the railroad stock, although it grew in each expansion before World War I, never increased by as large a percentage as traffic; afte: the war it actually shrank (Table 19). Toni-miles per wagon in stock must have increased in every expansion. The number of wagons diminished in only two contractions, and then by a lesser percentage than traffic. The amount of traffic handled in a typical wagon during the course of a month must have diminished in every contraction.

TABLE 19
Freight Traffic and Number of Railway-Owned Wagons
Per Cent Change beiween Peak and Trough Years in Freight Traffic 1873-1908, 1921-1938

E.MPANSIONS			crntractons		
Percent change				Percent chancr	
Dates	Traffr ${ }^{*}$	Wagonst	Dates	Traffic	
			1873-7.7	-1.3	6.1
187.4.77	12.5	8.6	187\%.78	$\underline{-2.5}$	1.6
1879.83	28.9	15.0	188:3-86	--4.4	10.9
1886.91	21.9	15.7	1891-93	-5.5	7.5
1893-1900	4.1 .9	18.3	$1900-0 \mathrm{i}$	-2.1	1.9
1901.07	24.0	5.5	1907.08	-1.7	1.0
1921-24	43.4	-5.1	192.4-26	-20.3	0.6
1996-27	34.2	-0.2	199-28	-5.9	-1.0
1928-29	6.3	-1.2	1999.32	-20.8	-40
1932-37	23.1	-2.6	1937.33	--9.3	2.1

* Tons conveyed, 1873-1908: net ton-miles 1921-38.
${ }^{\circ}$ Number of wagons for each yar was computed by averaging numbers at beginming and end of that year. Percentage change was romputed from these averages.

Railway coaches were more intensively used in years of large than in ears of small travel. During expansions in travel for which we have data. the number of cars and their seating capacity ather diminished. or increased by a smaller percentage than the number of pasengers: in contractions, the fall in the number of travelers was alsiave greater than the decline. if any, in the number of cars and seats; indeed the railroads actually increased the seating capacity a little in three such phases (Table 20).
iABIE 20
Passenger Journeys, Number of Passenger Vehicles, and Number of Seats* Per Cent Change between Peak and Trough Years in Journeys, 1920-1938

EXPANSIONS				contractions			
Pircent change					Per cent change		
Dates	Jour-	$\text { hicles }{ }^{\text {c }}$	Scats	Data	Tour-		
	ne: ${ }^{\text {b }}$				$n e \because s^{\mathbf{b}}$	hitelesc	Seats ${ }^{\text {a }}$
				1920.22	-20.0	-1.0)	i.
1922-23	1.3	-1.2	-0.1	$192 \div 20$	-13.0	-0.5	3.7
1926-29 ${ }^{4}$	10.6	i. 1	2.5	1929-32	-8.7	-4.2	-1.4
				1929-32	-10.0	-5.0	-1.9
19.2-37	13.5	-6.4	-3.7	1937-40	-25.3	-1.2	0.3
${ }^{2}$ Includes Londen anderground railwass, 1920-32; excludes them?, 1929-38. ${ }^{6}$ Includes joumers of zeason ticket holders.							
${ }^{\text {c }}$ Number for each year computed by averaging number at beginning and end of that year. Percentage change computed from these averages.							
${ }^{\text {a }}$ Journeys,	luding	ondon u	rgroun	did not con	act iil		

We can't make direct comparisons between traffic and the number of locomotives; on the one hand, lacking data on passenger miles. we can't set up a composite measure of freight and passenger movement. and on the other, statistics on the stock of engines are not subdivided in accordance with the service to which engines were assigned. But the total number of stean locomotives declined almost continuonsly from 1920 to 1938 (Chart 18). Performance per locomotive must have increased when aggregate traffic was growing. The fall, if any, in the stock of engines during a contraction of travel or of ton-miles was alwars gradual. Between November 1929, a peak, and the second quarter of 1933, a trough in ton-miles, the number in stock declined from 23,497 (average for October, November, and December) to 21,454 (average for the quarter), a fall of 9 per cent. A similar com-
putation for the somewhat different dates of the passenger contraction likewise yields a fall of 9 per cent. In all other contractinas of freight or passenger traffic the mumber of locomotives dechinedi 1 per cent or less.

Whenever traffic expanded, then, the railroads were able to handle more and more of it per car or locomotive on hand. Whenever it contracted, they got less and less remmerative work ont of a typical mint of equipment. Rising traffic was accompanied by more intensive, and falling traffic by less intensive use. This can happen in either, or both, of two ways. The amount of work performed by an average car or locomotive churing each hour of use may be higher in prosperity, because of heavier loading or faster movement; or velicles may be kept in nee during a greater percentage of the time, and spend fewer hours standing idle.

Heavier carloads and trainloads; but slower movement in freight service

In the movement of goods, the average weight loaded into a car increased and diminished with aggregate ton-miles (Chart 12). ${ }^{1}$ These variations may reflect changes in the average weights to which the various kinds of traffic are loaded, or changes in the relative importance of heavily and lightly loaded species, or both. Data on loads are available for the three major subdivisions of ton-miles. They suggest that, in at least two instances, changes in composition must account for the fluctuation in the overall figure. In 1923-26, except at the very end, the average load of each component rose (general merchandise not conspicnonsly, but it did not decline either), yet the all-commodity average fell. In 1927-28, one component fell, then rose, one increased throughont, the third was steady, yet the average for all three declined continuously. In all other phases, however, clanges in at least one of the components contributed to the characteristic change in the overall figure. Except at the coal strike tronghs, the amplitude of the changes was rather small. ${ }^{2}$

From 1927 onward, marshalling yard staffs and others responsible for the make-up of trains were able to switch more and more loaded

[^0]
ClASI

Average Wagon Load (Net Ton-miles per Loaded Wagon Mile) Jantary 1920-First Quarier 1939

cars into an average train as aggregate traffic swelled; when the latter diminishes the average loaded length became shorter (Chart 13). In earlier phases the sequence of thange was less regular. At the coal strike troughs, trains were lengthened enormously. Perhaps railway managers, confronted with a shortage of loromotive fuel, made unusual efforts, by lengthening trains, to get a maximum of work out of each engine. ${ }^{3}$ Except near the trough, the change in 1920-21 and 1921-24 was normal by the standard of later cycles. The mild rise in the last half of 1921-24 did not persist; during most of the 1924-26 contraction the curve is flat, although it does not fall. The 1926-27 period violated the rule throughout; but coal production did not recover its normal level until near the end of this brief expansion (Chart 2).

Partly because of the changes in the average wagon-load and partly because of those in wagons per train, the average trainload became heavier in expansions and lighter in contractions of traffic (Chart 14). We can pair a cycle in ton-miles per train mile with cach cycle in aggregate ton-miles. (At the 1921 and 1926 troughs the change in loaded length tended to counteract the effect on the average trainload of the change in tons per car, but the latter was more powerful.)

If the average speed of trains were constant, the cyclical variation in the trainioad would mean that ton-miles per hour of train movement would increase in expansion and decrease in contraction. The labor of train crews would become more productive in the former and less productive in the latter. But in fact the movement of trains was, on the whole, accelerated in contraction and retarded in expansion, although the change was very irregular in 1924-26 and 1928-29 (Chart 15). Apparently greater density of traffic resulted in increased congestion and delay, and shrinkage of traffic pernitted more frecdom of movement. The changes in speed tended to counteract the effect of the changes in trainload on the work that could be acconplished in an hour. Indeed, there was no consistent relation between ton-miles per train-hour and aggregate volume (Chart 16).

Since there are no data on passenger-miles or passenger car-miles, we cannot compute passenger-miles per car-mile, car-miles per trainmile, or passenger-mites per train-mile. We can infer a good deal, however, about what happened to the last-mentioned ratio. Its mumerator,

[^1]
CHART 13

Loaded Wagon Mile's per Freight Train Mile, January 1920-First Quarter 1939

CHAR1 14

Average Train Load (Net Ton-miles per Freight Train Mile)

january 1920-First Quarter 1939

stedes regicts are coniractions in ten-mutes

CHARI 15
Freight Train Miles per Freight Train Hour January 1920-First Quarter 1939

Chart 16
Net Ton-miles per Freight Train Hour
January 1920-First Quarter 1939

 miles per jounes ant the number of jomens. It is not likely thea the average longth of joumey incrased in contrations of travel. wheh rought coincided with contarations in business. (On the comtary as prosperity wancel it is likely that people coomomized amd took shoter joumess. Pasenger-miles probably diminished by a seater prematage than the mumber of tips. Iram-miles, on the other hamd, diminished very litale or actually increased (Chant 17). With pasonger-miles falling and tatim-mides vitually constant or rising, pessenger-miles per
 load fell.

In the firse fwo exp:nasions we must distinguish between the berief mitial period of roovery fromi the strikes and the res of the expension. If we take the first there months after the strike effects hatd

 ground bides contareted dating most of the thate that mal jomacys were expanding ((hart 9). In the combined totals that we are here obliged to cxaminc (since tram-miles camot he segregetted) there was no rise from one group of monthe to the next except at the very end (Table 2l. Lines 6 to 10). From the lag7 quasi-tought to the 1930
 by a greate pereotage than tram-miles (lines 16 and 18). Sane the
 ger-miles probably incerased nore that the momber of trips and hatere more than tamin-miles. We conclude that pasenger train lotals nor-
 Pateons of the railroads would inderd be considerably incomenienead if tram service in contractions was reduced in proportion to tamic.

Matters wont atherwise at the time of the strikes. In ! ! 2 I . shortages

 wokers participated in the ember stages of the gencral strike. tame
 $11(1) 14)$.

The sped of passenger trame was not aflected very muth by ceres in trawd ((hant 17). Agan conditions were abmomal at the strike tromghs. Prohably. in an afort to serve both local and though trallic
with a limited momber of trains, the raitroads geatly cutailed nonstop express service. Whatever the reasoms, trains were shower than usual, and the miles-per-hour ratio shows a met rise in the expansions, a at fatl in the contiations. But the change onctarred principally in the immediate vicinity of the strikes, and the ratio would hardly have fluctuated in this way had there been no shortage of fuel for engines.

Passenger-miles per train-hour, a measure of the revenuc-prodicing work performed by a train and its crew during a mit of time, is the arithnetical product of passenger-miles per train-mile and train-mites per train-hour -- of the load and the speed. Since the foad diminished in contractions, and the speed rose but little, we must conclude that passenger-miles per train-hour fell. Since the load increased and the speed atso increased a little in expansions, homfy train performaice increased. The productivity of passenger train crews, melike that of freight train crews, goes up in expansions and down in contractions of traffic. ${ }^{*}$

Equipment used more of the time

Except at the coal strikes, the average load of freight cars did not change very much. The speed at which the cars travelled diminished in expansion and increased in contraction. Average hourty traffic performance, the prodect of the load and the speed. most have falten in expansions and risen in contractions. The increase in performance per car in stock during expansions (Table 19) must have been achieved entirely by keeping cars loaded and in trains a greater percentage of the time. Likewise the fall in traffic performance per car in stock during contractions must be attributed entirely to a dechine in the ratio of useful to total time.

The average number of passengers in a car no doubt increased and diminished with aggregate travel, and since there was little change in speed the average number of passenger-miles per hour of car movement must have increased and diminished similaty. But the larger number of train-miles at the peaks of travel suggests that a rise in the

[^2]

Level of
no of
RAII.
Journeys
Quasi-trough
Strike-depressed
Strike-depressed
Trough
Strike-depressed
Quasi-trough
Expimsion
Expansion
Expansion
Peak
Quasi-trough
Trough
Strike-depressed
Strike-depressed
Quasi-trough
Peak
Trough
Peak

hrar	${ }^{\text {1.ast }}$
month	month
Jan. 1921	Mar. 1921
April 1921	
May 1921	
June 1921	
July 1921	
Aug. 1921	Oct. 1921
Nov. 1921	Juiy 1922
Aug. 1922	Apr. 1923
May 1923	Jan. 1924
Fel) 1924	Apr. 192.4
Feb. 1926	Apr. 1920
May 1926	
Junc 1926	
July 1926	
Jan. 1927	Mar. 1927
Dec. 1929	Feb. 1930
First quarter 1933	
Second quarter 1937	

${ }^{6}$ Per cent change from preceding actual trough.

Chari 17
Passenger Train Miles and Train Speed
January 1920-First Quarter 1939

Train Miles per Train Hour

Shoted cerinds ore cemtrarlions in number el rel, Eurre;s
Lefson, widerground railmays inel:ged in $c^{\prime} l$ tane.
percentage of time that cars were in operation contributed to the higher level of travel per car in stock.

As to motive power, we have direct figures on the average number of hours a locomotive spent in traffic per month (Chart 18). Although we cannot date the cycles in composite traflic exactly, the number of hous per month clearly rose in expansions and fell in contractions.

For the major kinds of equipment, then, the problem posed by expanding traffic was met in large part by running an existing stock of

Steam locomotives in Stock and
Hours in Traffic per Steam Locomotive per Month May 1920-First Quarter 1939

cquipment for longer hours. At least this was the case in 1920-38. when a wave of traffic seldom overtopped its predecessor.

[^0]: ${ }^{1}$ In discussing average loads and other operating statistics we rely on quarterly rather than monthly data after 1931, for reasons explained in the note on sources at the end of this paper.
 $=$ The sharp exceptional declines in the all-commodity averages resulted primarily from the virtual disappearance of the heavily-loaded coal traffic.

[^1]: ${ }^{3}$ Another possible surmise is that trains composed primarily of coal traffic are normally shorier than other trains and that the especially sharp cessation of this traffic therefore increased the average length.

[^2]: "The equipment of British milways includes horses, road wagons, and motor trucks used in certing certain kim!s of freight from consienors' busincss premises to railway stations and from stations to consignes premises. Data on the averave loatd per road wayon, the average load jer truck, and the tonnge handed per working horse or truck per day, have beea published, for two months of each year, usually Felrinary and September, 1922 to 1931, for one four-week period in 1932, and for another in 1933. They do not show any appreciable crectical change.

