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1 Introduction

How fast, how long, and to what extent does a change in housing prices in one region spread to other

regions? The diffusion of housing prices, where a shock in one region spreads to neighboring regions

over multiple time periods, should be a question of interest to both economists and policy makers.

The spread of housing prices across space can be identified with a spatial autoregressive model,

where spatial “autocorrelation” between regions is modeled directly as an explanatory variable

explaining regional housing prices. While spatial correlation is found to be a significant factor

explaining regional housing prices in a number of studies (see Basu and Thibodeau (1998), and

Holly, Pesaran and Yamagata (2007)), the “autoregressive” aspect of the model is confined to the

cross-section for a given period of time. What is less understood from the spatial autoregressive

model is how spatial correlation transmits a shock from one region to other regions over time, as

one might measure the transmission of shocks in a time series model.

In spatial models, however, the regional dimension makes it difficult to extend the analysis to

measure spatial diffusion across both space and time. In time series applications, for example,

impulse response functions, which capture the magnitude and duration of a variable in response

to a shock, can be calculated from a system such as a vector autoregression (VAR). However,

Fratantoni and Schuh (2003) demonstrate the difficulty in specifying a VAR that includes a regional

dimension. They are able to include information determined within regions into the VAR, but

even then a number of restrictions are necessary to estimate the VAR, and the spatial correlation

emphasized in the spatial housing literature is not incorporated. Alternatively, Pollakowski and

Ray (1997) estimate the spatial correlation of housing prices by including lagged price changes

of adjacent regions in a VAR of housing prices (see Clapp and Tirtiroglu (1994) for a similar

application); however, they do so without specifying a spatial model, or providing impulse response

functions of the relationships.

In this paper, I use a recent time series technique to calculate impulse response functions from

a spatial autoregressive model of regional housing prices. This provides a perspective that is

1



difficult to obtain from standard time series techniques alone (such as with a VAR), or solely from

typical spatial regression analysis. To estimate the spatial impulse response functions, I apply the

linear projection method of Jordà (2005) to a spatial autoregressive model that is estimated with

a dynamic panel of average county housing prices from 31 California counties, monthly from 1995

to 2002. Jordà’s (2005) local projection method allows for the consistent estimation of impulse

response functions from a single-equation using least squares (details of this approach are discussed

in Section 2).

Applying the linear projection method to the spatial model provides a measure of the diffusion

of a shock to regional housing prices, showing how the shock is transmitted through the spatial

correlation over time. The approach also provides a measure of the response of regional housing

prices to other shocks, controlling explicitly for spatial correlation. The key empirical result of

this paper is that a shock to average county housing prices has a positive and lasting effect on a

neighboring region’s housing price for up two and half years after a shock before dying out. This

conclusion proves robust across various samples. Both the results of this paper, and the method

of analysis, should be of interest if one is concerned with measuring the implication of a change in

regional housing prices on other economic variables across regions, or if one wishes to control for

spatial correlation in order to isolate other relationships in the data.

The analysis with the spatial model in this paper comes in two steps. The first step is to

estimate the spatial model for the dynamic panel, to serve as the basis for the linear projections.

The spatial autoregressive model is an “off-the-shelf” specification from the spatial literature with

the exception that I estimate the model for a dynamic panel. This means in addition to the

endogenous spatial regressor, the lag of the dependent variable may also be endogenous (if one is

estimating with the first difference estimator, in particular). While techniques for estimating a

spatial autoregressive model for a cross-section or with panel data are well-established, there are

very few examples of estimating a spatial model with a dynamic panel.1 As Badinger, Muller

1For cross-section and panel data one can refer to Kelejian and Robinson (1993), Kelejian and Prucha (2002) and
Kapoor, Kelejian and Prucha (2007) for the properties of both two-stage least squares and generalized method of
moments (GMM) estimators (see also Lee (2003)). Maximum likelihood estimation is also a popular approach (see

2



and Tondl (2004) note, the spatial literature does not, as of yet, provide a GMM estimator for the

dynamic panel-spatial model (as one can find for a non-spatial dynamic panel, à la Arellano and

Bond (1991) and Arellano and Bover (1995)). However, as noted by Anselin (2001), instrumental

variables estimation in spatial models easily accommodates additional endogenous variables, given

available instruments. Hence, in addition to the spatial instruments recommended by the spatial

literature (the exogenous regressors transformed as functions of the spatial weighting matrix), I

add the time lags of the independent regressors to the instrument set, as commonly found for non-

spatial dynamic panels. This provides a simple example of how to extend the spatial estimation

to a dynamic panel. I discuss the details of this approach in Section 2.

Section 2 also provides a brief explanation of the linear projection method, which is the second

step in the spatial analysis. The linear projections are estimated directly from the dynamic-panel

spatial model (and a structural interpretation of the impulse response functions can be achieved

with instrumental variables). Hence, once the dynamic-panel spatial model is defined, I discuss

how to generate the impulse response functions from the single-equation specification. Notably,

Jordà’s (2005) method can be applied not only to spatial autoregressive models estimated for a

dynamic panel, but to non-spatial dynamic panel models as well. Finally, section 3 discusses the

estimation with the housing data, reports the results for the dynamic panel-spatial model, and then

reports the spatial impulse response functions calculated from the model. Section 4 concludes.

2 The Dynamic Spatial Model

The spatial autoregressive model is defined by including as a regressor the spatially “lagged” version

of the dependent variable. The spatial regressor captures the direct effect of the spatial interaction

in determining the dependent variable. Like autocorrelation in time series, spatial correlation can

be thought of as an omitted variables problem. If this is the case, adding a regressor that captures

Elhorst (2003) and Anselin (1988, 2001)).
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the spatial correlation between regions forms the spatial autoregressive model.2 One should note

that the “autoregressive” term in the spatial model, the reference to spatial “autocorrelation,” and

the practice of calling the spatial regressor the “spatial lag” in the literature is meant to be evocative

of autocorrelation in time series estimation–except the dependent variable is correlated across

space. To avoid possible confusion in this paper, which is concerned with both time and space, I

refer simply to spatial correlation when referring to the correlation between regions. Moreover, for

the remainder of the discussion, the dynamic panel-spatial model refers to the spatial autoregressive

model with a dynamic panel, and I call the “spatial lag” regressor simply the spatial regressor.3

The dynamic panel-spatial model is written in stacked form as,

Yt = ρWYt + αYt−1 + βXt + δ + ut . (1)

where Y = (Y1t, ..., YNt) is the NT × 1 vector of the dependent variable, Yt−1 is the lag of the

dependent variable, X is a NT × r matrix of exogenous regressors, δ = (δ1, ..., δN ) is a vector of

time-fixed effects, and ut = (u1t, ..., uNt) is the error term. W is the N×N spatial weighting matrix

and ρ is the parameter for the spatial regressor. The spatial matrix W is defined by contiguity,

where the border relationships between region i and its neighbors are weighted equally, with the

weights across each row summing to one. The weighting of the contiguity matrix in this fashion,

which is common in the spatial literature, is done for simplicity but also proves convenient in the

estimation of spatial models (see Anselin and Bera (1998) for complete discussion).

In this paper, I follow the simple weighting scheme and then construct a higher order version

of the normalized contiguity matrix.4 This type of spatial matrix is particularly appropriate

2This is distinct from the “spatial error model” which specifies the spatial correlation as a feature of the errors.
The spatial correlation is considered a nuisance that needs to be accounted for (but is not necessarily present in
the errors simply due to an omitted variable). See Anselin and Bera (1998), Anselin (2001), and Lesage (1999) for
detailed discussion of the spatial models.

3 I thank an anonymous referee for noting the need to clarify the use of “autoregressive” and “autocorrelation” in
the spatial model relative to how it is typically expressed in time series analysis.

4Note that the assumption of equal weights is perhaps a simplistic way to capture many spatial relationships.
Alternative weighting schemes, or defining the matrix in terms of distance instead of simple contiguity, may be useful
for many applications. However, the simple contiguity matrix is arguably the most widely used scheme (see Anselin
and Bera (1998)). To be as consistent with the spatial literature as possible, I estimate with the simple weighting

4



for capturing a diffusion process across space where the change in housing prices in region i, for

example, spreads from its closest neighbor to that neighbor’s neighbor, and so on (see Lesage (1999)

for an example, and Anselin and Smirnov (1994) for technical discussion). The application of the

model to housing data is discussed in Section 3. In the remainder of this section I discuss the

practical issues in estimating the dynamic panel-spatial model; in Section 2.1 I discuss Jordà’s

(2005) linear projection method.

2.0.1 Estimating Spatial Models with Panel Data

Since WYt is correlated with the error term the standard fixed-effects estimator used in non-

spatial panel estimation will be inconsistent. For short panels (where T is fixed and N −→

∞) the coefficients on the fixed effects (δ) cannot be estimated consistently (i.e., one faces the

incidental parameters problem, as discussed by Anselin (2001)). Fortunately, however, this problem

does not affect the consistency of the estimator for the model’s remaining parameters (the β, for

example). As noted by Elhorst (2003), one can still estimate the spatial model with fixed effects

if the coefficients on the fixed effects are not of direct concern. Even when N −→ ∞, the large

sample properties of the fixed-effects estimator hold in the spatial panel context (see Elhorst (2003)

and references therein). Moreover, the incidental parameters problem diminishes as T −→∞.

For the case when T is fixed and N −→∞, one can either estimate using maximum likelihood

or instrumental variables. For the former, estimating a concentrated log-likelihood function is

necessary to yield consistent estimates (see Anselin (2001) and Kelejian and Prucha(1999)). For

the latter, the spatial model can also be estimated using two-stage least squares (TSLS) or the

generalized method of moments (GMM) with the “spatial lags” of the additional regressors (denoted

WX t) used as instruments for WYt (see Kelejian and Robinson (1993) and Varga (2000) for

examples). For cross-sectional data, Kelejian and Robinson (1993) provide consistent TSLS and

GMM estimators for the spatial autoregressive model.5 If more regressors are endogenous (than just

matrix. I leave alternative weighting schemes to future applications.
5Kelejian and Robinson (1993) establish the properties of the estimator for a broader spatial model, known as the

Durbin model, of which the spatial autoregressive model is a special case. They provide an example of estimating
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the spatial term WYt), as is the case when first differencing is used to control for fixed effects (that

is, the time t− 1 lag of the now-differenced dependent variable is a regressor), one can incorporate

this into the instrumental variables model assuming appropriate instruments are available (see

Anselin (2001) and Anselin and Bera (1998)).

Moreover, for the dynamic panel model with the spatial regressor, Anselin (2001) notes that the

conditions for consistent estimation will be the same as in the cross-sectional case.6 In other words,

for fixed T , and N −→ ∞, instrumental variables can be applied to the dynamic panel model in

first differences. The only added complication is that, in addition to theWX t used as instruments

used for WYt, the instrument set may need to be expanded for the endogenous lagged dependent

variable. To do so, one can use the same strategy as a non-spatial dynamic panel model where,

for the model in first differences, one can use the period t − 2 lag of the level of the dependent

variable or the period t − 2 (and more) lag of the dependent variable.7 Lastly, given the spatial

and dynamic dimensions of the model, one can also expand the instrument set beyond WXt to

include WYt−1 or more spatial lags in the time dimension. WYt−1 will be uncorrelated with the

error term (see Anselin’s (2001) discussion of the “pure space-recursive” model).

Finally, note that the emphasis on instrumental variables in this paper, and in particular TSLS,

is due in part to the lack of a direct GMM estimator for the spatial dynamic-panel model. One

reason for the lack of the dynamic panel-spatial estimator may be that most attention in the

spatial literature is paid to the spatial error model as opposed to the spatial dynamic-panel model.

Kelejian and Prucha (2002)and Kapoor, Kelejian and Prucha (2007) explore the properties of GMM

estimators for the spatial error model in both cross-sectional and panel applications (see also Lee

(2003)). However, while Arellano and Bond (1991) and Arellano and Bover (1995) emphasize using

GMM over TSLS for dynamic panel estimation, for the spatial dynamic-panel model, Badinger,

Muller and Tondl (2004) note that applying GMM to a spatial dynamic panel involves challenging

for the spatial autoregressive model with TSLS, which provides a template for the estimation in this paper.
6Anselin (2001) refers to the dynamic panel model under consideration in this paper as a “time-space simultaneous”

model (see page 317).
7See Arellano (2003) or Hsiao (2003) for discussion of dynamic panel models.
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complex moments conditions. Given the lack of a GMM estimator, they instead “filter out” the

spatial correlation before estimating with dynamic panel techniques.

In this sense they control for the spatial autocorrelation in order to focus on other aspects of their

regression analysis. However, in this paper, the objective is to focus on the spatial autocorrelation

while controlling for the additional factors predicting housing prices discussed above. Hence, this

paper offers an alternative method to Badinger, Muller and Tondl (2004) by using instrumental

variables to estimate the spatial dynamic-panel model (relying on the properties of the spatial panel

model with endogenous variables already established in the spatial literature). This approach

proves convenient for the application of the spatial model in this paper, which is to use the model

to calculate impulse response functions based on linear projections.

2.1 Description of the Spatial Impulse Response Functions

In this section I explain how to estimate impulse response functions with a single-equation model like

equation (1). This is based on Jordà’s (2005) linear projection method, which allows one to estimate

the dynamics of regional housing prices controlling for spatial correlation across regions. This

proves useful since incorporating spatial correlation into a VAR, for example, in order to estimate

housing market dynamics is difficult.8 To omit the spatial correlation, however, may lead to

incorrect inference. For example, Fratantoni and Schuh (2003) demonstrate the complications that

arise from incorporating both regional and national factors into a VAR meant to measure housing

market dynamics. They show that impulse response functions calculated from a system that omits

important information specific to regions provide incorrect estimates of the response of housing

prices to interest rates, in particular. The authors redress this shortcoming by augmenting the VAR

methodology with disaggregated regional housing market data into what they call a heterogeneous-

agent VAR. Nevertheless, they necessarily are forced to place a number or restrictions on the

8 Impulse response functions are widely used in macroeconomic research as they provide empirical descriptions
of economic relationships that are useful for understanding the effects of economic policy or simply to confirm or
disconfirm theoretical expectations (see Jordà (2005) for discussion and the references therein). In studies of monetary
policy, for example, impulse response functions are regularly calculated from VARs (see Stock and Watson (2001) for
a survey of VARs, and McCarthy and Peach (2002) for a VAR-based study of housing prices).
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system to generate the impulse response functions, underscoring the difficulty in working with

what amounts to a large system of equations (see Fratantoni and Schuh (2003), pages 569-572, for

details).

While Fratantoni and Schuh (2003) focus on relationships within regions, Pollakowski and Ray

(1997) estimate the spatial correlation of housing prices across regions by including lagged price

changes of adjacent regions in a VAR of housing prices. However, they focus on the significance

of the VAR coefficients as opposed to capturing the dynamics with impulse response functions.

Moreover, perhaps due to the same challenges faced by Fratantoni and Schuh (2003), the VAR is

not specified in terms of the dynamic spatial model of the form discussed above.

As an alternative approach to understand the dynamics in a spatial model, I apply Jordà’s (2005)

method of calculating impulse response functions from one-step ahead forecasts by linear projection.

Jordà’s (2005) linear projection method is convenient for a number of reasons. The local projection

method allows for the estimation of impulse response functions from a single equation without

specifying a complete system of equations; the impulse response functions are more robust to

misspecification than responses calculated from VARs; the impulse response coefficients from the

local projections are consistently estimated for each horizon using simple regression methods such

as ordinary least squares; and, as a result, basic inference can be done using the standard errors

calculated from the single-equation linear regression.9

2.1.1 The Local Linear Projections

Jordà (2005) shows that impulse response functions can be estimated by projecting the endogenous

variables in a system onto their lags for each horizon, h. I refer the reader to Jordà (2005) for a

complete explanation of the linear projection method as well as Jordà (2007) and Jordà and Kozicki

(2007) for additional explanation. Very briefly, however, I motivate the linear projection method

9The reason that the consequences of misspecification in a VAR are greater is that, as Jordà (2005) explains,
impulse response functions from VARs are calculated for distant horizons, yet VARs are optimally designed for
one-period ahead forecasting. Hence, errors in the forecast from misspecification are compounded as the horizon
increases. Note, too, that Jordà’s method also allows for easy estimation of non-linear impulse response functions.
See Jordà (2005).
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with equation (12) from Jordà and Kozicki (2007) (here numbered as equation 2). Consider a n×1

vector of a time series yt expressed in the form,

yt+h = Ah
1yt +Ah

2yt−1 + ...+ εt+h +B1εt+h−1 + ...+Bh−1εt+1 (2)

which is derived from the Wold decomposition of yt.10 The infinite expression can be truncated

for lag length k, and written as,

yt+h = Ah
1yt +Ah

2yt−1 + ...+Ah
kyt−k+1 + vk,t+h (3)

vk,t+h =
∞X

j=k+1

Ah
jyt−j + εt+h +

h−1X
j=1

Bjεt+h−j ,

where Ah
1 = Bh for h ≥ 1, and Ah

j = Bh−1Aj + Ah−1
j+1 for h ≥ 1, A0j+1 = 0, B0 = In, and

j ≥ 1. Jordà and Kozicki (2007) show that Ah
1 is a consistent estimate of the impulse response

coefficient Bh. For a system of equations the linear projections can be estimated jointly, however,

joint estimation is not required for consistent estimation. Conveniently, as discussed in Jordà

(2005), the coefficient estimates for an impulse response function for the jth variable in the vector

of endogenous variables, yt, can be estimated consistently from a regression of yjt on the lags in the

system. Moreover, the standard errors generated from the univariate regression at each h are the

typical standard errors calculated with ordinary regression techniques (and as such, can be adjusted

to account for heteroskedasticity and autocorrelation). With respect to equation (1), for example,

if x1t is an exogenous regressor in Xt, then the the impulse response of Yt+h to x1t is calculated

from the coefficient estimate on x1t from h regressions. The standard errors calculated for each

coefficient estimate at each horizon provide for the inference on the impulse response function.11

10This brief explantion is based on Jordà and Kozicki’s (2007), pages 10 through 13. See equations (10) through
(13) in their text.
11Oscar Jordà makes his Gauss code available for the linear projections on his website at the University of California,

Davis. Matlab code for the single equation panel estimation used in this paper is available from this author. This
code is modified from Stata code generously made available to the author by Florence Bouvet at California State,
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2.1.2 Structural Assumptions for the Linear Projections

One can also impose restrictions in estimating the linear projections for a structural interpretation

of the effects of a shock. For example, with a system of equations the linear projections can

be jointly estimated, and the researcher can impose short run restrictions on the contemporaneous

correlations among the endogenous variables just as one would do in a structural VAR. An example

from the VAR literature is the common assumption that the interest rate does not respond to

the other variables in the model in time t (and the interest rate is ordered last in the system

for the application of the common Cholesky decomposition; see Jordà (2007) for details on both

the short run and long restrictions in the linear projection method). Lacking the fully specified

system, however, one can still impose structural restrictions on the single-equation model either

by assumption or through the use of instrumental variables. For the former, the researcher may

impose zero restrictions on the time t variables. If one would prefer less-subjective restrictions,

however, instrumental variables can be used to account for endogenous variables.12

For examples of both procedures, in the next section, I estimate the dynamic panel-spatial

model, instrumenting for the endogenous variables in the initial period, and with OLS where I

assume (with explanation) zero restrictions on the potential endogenous variables. This initial

estimation serves as the basis for estimating the linear projections. I discuss these details further

in the next section. Note that while in this paper I apply Jorda’s (2005) method to the dynamic

spatial panel model where T > N , given the discussion in Section 2 (and the discussion of IV

estimation), one can also estimate structural impulse response functions from a dynamic panel

model where T < N , (though T obviously should be large enough to generate a forecast horizon of

interest to the researcher).13

Sonoma.
12By imposing zero restrictions on the contemporaneous variables, either through the Cholesky decomposition, or

explicitly in the single equation case, the researcher is asserting a priori assumptions on the nature of the time t
relationships. This practice is not without criticism, however, so some justification should be used to motivate the
structural assumptions. See Hoover and Jordà (2001) for a discussion on structural VARs.
13Florence Bouvet at California State, Sonoma, in an unpublished application estimated linear projections from

a non-spatial dynamic panel for a study of the European Union, though the T proved insufficient for meaningful
economic interpretation. The author is indebted to her for useful discussion on Jordà’s (2005) method.
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3 Results for the Spatial Impulse Response Functions

To estimate equation (1), I use monthly data on 31 California counties from 1995 through 2002.

I report results from estimating with both OLS and TSLS. Equation (1) is reproduced here for

convenience (in stacked form),

Yt = ρWYt + αYt−1 + βXt + δ + ut (4)

where, Y = (Y1t, ..., YNt) is the average monthly single-family home sales price for each county,

X includes county i’s unemployment rate, county i’s population, and new home construction in

county i. Z includes the real national mortgage rate, the index for industrial production for the

United States, and dummy variables to control for seasonal effects. As mentioned in Section 2, the

spatial matrix W is a higher order weighting matrix constructed to capture the diffusion between

not just a county’s contiguous neighbors, but with its neighbors’ neighbors as well.

Given the long panel, I control for the fixed effects, δ = (δ1, ..., δN), explicitly with the county

dummy variables. Note that while the consistency of the fixed effects (or the least squares dummy

variable) estimator in a long panel does not necessarily necessitate the use of instrumental variables,

the TSLS results are offered as a demonstration of the broader applicability of estimating structural

impulse response functions from a dynamic panel regression model. The instruments are discussed

shortly.

The choice of variables in equation (4) is motivated by previous spatial research on housing

prices. The spatial correlation between housing markets is identified in a number of studies (see

Holly, Pesaran and Yamagata (2007), Basu and Thibodeau (1998), Tirtiroglu (1992), Clapp and

Tirtiroglu (1994) and Case (1991)). Spatial correlation may occur due to shared market features by

contiguous neighborhoods or more general regions (see Basu and Thibodeau (1998) for a detailed

review). Or, the relative growth of the housing market in a region’s closest neighbor may imply

a positive-feedback effect, where the quickly rising prices in one region affects the attitudes and

behavior of market participants in surrounding regions (see Pollakowski and Ray (1997) for more
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on the feedback hypothesis).

Hence, in equation (4), the spatial regressor captures directly the spatial correlation between

regional housing prices, and the county unemployment rate, the construction of new homes and

population are meant to control for price determinants within each region (see Krainer (2005),

Case and Shiller (2003), and Krainer and Wei (2004), Hwang and Quigley (2006), and Glaeser,

Gyourko and Saks (2005) for discussion of demand and supply-side determinants). The national

mortgage rate and industrial production are meant to control for factors common to each region

that may affect housing prices and, finally, the time lag of prices captures the known persistence of

housing prices. Pollakowski and Ray (1997), for example, show the significance of a lagged prices

in explaining current housing prices.

3.1 Data

The data are from multiple sources. The monthly average single-family home sales price for

each county is generated by the California Association of Realtors. The data are deflated using

the Consumer Price Index for the West Region, available from the Bureau of Economic Analysis

(BEA). The monthly civilian unemployment rates for each county are made available by the

Employment Development Department of California. Construction, defined as the number of new

units of single-family housing built per month, is provided by the California Construction Industry

Research Board. The county population numbers are compiled by the California Department of

Finance (note that this is annual data, so the variation for this regressor comes primarily from the

regional dimension).14 Overall, the 31 counties encompass the population centers and surrounding

areas, such as San Francisco and surrounding counties, the central coast and inland central area,

down to southern California. The sample excludes counties in the northern most part of the

state (essentially everything north of Yolo country), and counties comprising the eastern border of

14The county data were all obtained through the Rand Corporation in California. The original data set only
includes the 31 counties, out of 58 counties in the state.
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state.15

For the national data, the real mortgage rate for 30-year conventional mortgages is obtained

from the Board of Governors of the Federal Reserve System, H.15 data release. The real mortgage

rate is constructed using the inflation rate calculated from the CPI for the West Region. The

index of industrial production is obtained from the Board of Governors G.17 data release.

To check the robustness of the model across different time and space, I estimate equation (1)

over four samples, delineated by both the constraints of the data set and by geographical interest.16

Given variation in how far back the data extend for each county, the first two samples tested are

as follows:

• Sample 1 contains all 31 counties in the sample from April 1998 through December 2002.

• Sample 2 contains 30 counties from July 1995 through December 2002 (San Luis Obispo drops

out from Sample 1).

With geography specifically in mind, two additional samples are defined as Northern and South-

ern California. These samples are,

• The Northern California sample contains 23 counties from July 1995 through December 2002.

• The Southern California samples contains 8 counties from April 1998 through December 2002.

3.2 Identification

For consistent estimation with a short panel, it would be necessary to control for endogeneity.

As example of this, for the endogenous spatial regressor I use the instruments suggested by the

spatial literature in addition to the time t − 1 lag of the spatial regressor as an instrument. For

15The 31 counties are Alameda, Conta Costa, El Dorado, Fresno, Kern, Los Angeles, Madera, Marin, Merced,
Monterey, Napa, Nevada, Orange, Placer, Riverside, Sacramento, San Benito, San Diego, San Francisco, San Joaquin,
San Luis Obispo, San Mateo, Santa Barbara, Santa Clara, Santa Cruz, Solano, Sonoma, Stanislaus, Tulare, Ventura,
and Yolo.
16Data on some counties go back to 1991, allowing for additional samples. However these samples are limited by

a lack of contiguity and were not that useful for estimation in this paper.
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county unemployment and construction, I first assume both are exogenous. There is evidence in

the housing literature suggesting that home construction, at least, is price inelastic in the short

run (see Glaeser, Gyourko and Saks (2005), for example). However, lacking stronger evidence,

I perform additional IV estimation using the time t − 1 lags of construction and unemployment

as instruments (in addition to the instruments mentioned for the spatial lag). For the remaining

variables, I assume that county population does not respond to housing prices in the current

period, and I assume that county housing prices do not effect the aggregate variables, industrial

production and the real mortgage rate, in period t. Similar assumptions are found in regional

studies by Fratantoni and Schuh (2003) and Carlino and Defina (1998, 1999).

3.3 Baseline Results for the Spatial Model

Tables 1 and 2 display results from estimating with OLS and TSLS (for brevity, the tables do

not report the results for the dummy variables). The columns labeled IV report the results

assuming only the spatial regressor is endogenous, and the columns labeled IV2 report results

assuming construction and unemployment, in addition to the spatial regressor, are endogenous.17

Also reported in each table are SAR test statistics for each model, which suggests the spatial

correlation is not a feature of the residuals.18 Also, tests for time series autocorrelation in panel

data (recommended by Wooldridge (2002)) indicate autocorrelation is not evident in any of the

samples.19 Heteroskedasticity-corrected standard errors are reported for each regression.

17Results for the Wu-Hausman F test and the Durbin-Wu-Hausman Chi-square tests of the endogeniety of both
construction and unemployment suggest the OLS estimation is consistent (or the endogeneity of the regressors does
not affect the consistency of OLS). I reject the null hypothesis on both tests for the endogeniety of the spatial
regressor, suggesting instrumental variables is needed in each sample.
18The SAR test, an LM statistic (distributed χ2(1)), checks whether the inclusion of the spatial regressor eliminates

spatial correlation in the residuals; for each sample I fail to reject the null hypothesis that the residuals are not spatially
correlated. Note that before the spatial autoregressive model is estimated, an initial step is to check the residuals of
an OLS regression omitting the spatial regressor. Using a common likelihood ratio test from the spatial literature
(distributed χ2(1)), I easily reject the null hypothesis for each sample that the residuals are not spatially correlated
(where the likelihoods of the OLS model and the spatial error model are compared). The results of the likelihood test
suggests the need for the spatial regressor, and the SAR test suggests its inclusion eliminates the spatial correlation
from the errors. See Lesage (1999) for details of the likelihood test and other test statistics used in the spatial
literature.
19See Wooldridge (2002, page 282). If the lag of the dependent variable is not included in the model, autocorrelation

is present in the residuals. The inclusion of the lag in the model eliminates the problem.
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Overall, based on the OLS results for each sample reported in Tables 1 and 2, the data support

the general findings from spatial housing studies, that conditions in and across regions (and over

time) matter for explaining housing prices. In all four samples, the spatial regressor and the

time lag of the dependent variable are statistically significant at the five percent level (except

for the mortgage rate and the unemployment rate each variable is expressed as a natural log

and multiplied by 100, so these coefficients are interpreted as percentages). County population is

statistically significant in each sample while unemployment is not significant for any of the samples.

County construction is statistically significant in all but the Southern California sample. Industrial

production is also statistically significant in each sample while the mortgage rate is significant in

only one of the four samples.

For the TSLS estimation, both the lag of the average housing price and the spatial regressor are

statistically significant at the five percent level. For the instrumented spatial regressor in both the

IV and IV2 regressions, the magnitude of the coefficient is larger relative to the OLS estimation

in each sample.20 Also, the remaining explanatory variables are for the most part less precisely

estimated and statistically insignificant. Only county construction remains statistically significant

in the IV estimation (where it is assumed exogenous), but this is not the case in the IV2 regression,

where the instrument for construction is not statistically significant.

Again the IV results are reported to demonstrate how one might proceed from a single-equation

dynamic panel model to estimating impulse response functions. If one is interested in estimating

structural relationships, as is often the case, then it becomes necessary to employ instrumental

variables to identify structural impulse response functions, just as one would need to control for

simultaneity when estimating structural impulse response functions from a VAR. The next section

reports the impulse responses from applying the linear projections to the spatial model.

20First stage F-tests confirm that the endogenous spatial regression is explained by the instruments (the null is
easily rejected at the one percent level). However, note that with the typical instruments from the spatial literature,
the Hansen J test of over-identifying restriction is rejected, suggesting these instruments may not be appropriate.
The overidentifying test of an instrument set with additional time lags of the county regressors (and excluding the
spatial “lags”) is not rejected. The IV results turned out to be nearly identical with either instrument set, so I just
report the version common to the spatial literature.
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One final note on the dynamic panel-spatial model is that I assume a very simple lag structure

for the dynamic model. One might prefer a less restrictive model with additional lags of county

construction or any of the additional regressors (as one might do when specifying a VAR). However,

including additional lags (up to four) for the county and national regressors does not change the

qualitative inference of the results reported in the next section, so we focus on equation (4). Also,

using the equation estimated with instrumental variables did not produce vastly different impulse

response functions (though in the initial periods the linear projection coefficients are larger). For

brevity, I only report the impulse response functions for each sample estimated with OLS, where the

impulse response functions are constructed by estimating equation (4) h times for the dependent

variable, yt+h.

3.4 The Spatial Impulse Response Functions

Figure 1 displays the impulse response functions for each of the samples for up to two and half

years after a one percent shock to the spatial regressor. Also reported are the plus and minus

two-standard error bands, which are constructed from the standard error for the coefficient on

the spatial regressor at each horizon. The responses of the dependent variable reveal a consistent

picture across the samples. The effect of a change in surrounding regions persists for almost a year

at approximately 0.40 percent and remains above zero for at least another year (that is, average

housing prices increase by almost half of a percent following the shock). At approximately 25

to 30 months in each of the sample, the impulse response reaches zero. The responses for the

three samples with 23 counties or more offer a very similar picture for the diffusion across counties

over the horizon. Moreover, the responses are statistically significant at the five percent level for

up to two years. The one exception is the response for the Southern California sample, which is

statistically significant at the five percent level for up to about seventeen months. However, on

balance, these responses reveal that the diffusion of a change in housing prices across regions has a

lasting effect over time.

In addition to that perspective, Figures 2 and 3 display the response of average county housing
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prices to a one percent shock to the real mortgage rate, the index of industrial production and new

construction (since the unemployment rate is statistically insignificant in each sample as shown in

Tables 1 and 2, I do not report the dependent variable’s response to that regressor). In response

to a shock to the real mortgage rate, across the samples, housing prices decline and reach a trough

between approximately one and two years after the shock, then return to zero just short of 30

months. The responses are similar expect for the Southern California sample which shows an

exaggerated decline relative to the other samples. Housing prices, however, are not responsive to a

shock to new construction. This view offers a complementary perspective to the general finding in

the housing literature that new construction is inelastic with respect to a change in housing prices.

On the other hand, regional housing prices do respond to a shock to national industrial production,

with the response above zero and statistically significant at the five percent level well up to and

past the forecast horizon displayed (though with a delayed effect in the smaller samples).

3.5 Remarks

Overall, Figures 1 through 3 provide a novel picture on the dynamics of regional housing prices

across both space and time. Figures 2 and 3 display the response of regional housing prices

that are comparable to impulse response functions that could be generated from a time series

model; for example, analogous to the VAR estimation in studies by Fratantoni and Schuh (2003)

and Pollakowski and Ray (1997). However, as noted by Fratantoni and Schuh (2003), ignoring

conditions within regional housing markets leads to misleading estimates of typical, VAR-generated

impulse response functions. Hence, unlike previous housing studies, the responses of regional

housing prices in this paper are calculated from a model that not only controls for conditions

within regions, but also controls for the spatial connection across regions. In other words, the

spatial impulse response functions provide a way to control for spatial correlation in order to better

understand the effect of shocks on housing prices over time.

Lastly, the spatial impulse functions displayed in Figure 1 provide an additional dimension from

which to understand regional dynamics. The response of county housing prices provides a picture
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of how a shock to housing prices spreads across regions over time. This view is useful if one is

interested in how the spatial correlation between regions will transmit, to what degree and for how

long, a shock to housing prices to surrounding regions.

4 Conclusion

In this paper, I apply Jordà’s (2005) linear projection technique to a singe-equation dynamic panel-

spatial model. This application provides impulse response functions of housing prices controlling

for spatial correlation across California counties, and also shows how a shock to housing prices is

transmitted through the spatial correlation over time. This provides a perspective that is difficult

to obtain from standard time series techniques (such as with a VAR), or from typical spatial

regression analysis. The results in this paper may be of interest to not only those interested in

housing markets but those interested in spatial effects more generally.

In addition to the results for housing prices, the approach in this paper suggests a couple of

extensions. First, this paper relies on two-stage least squares to estimate the dynamic panel-spatial

model. This is admittedly a pragmatic approach as there is not as of yet a direct GMM estimator for

spatial models with a dynamic panel. Given the benefits that research on the properties of spatial

model estimators has already reaped (see again Kelejian and Prucha (2002), Kapoor, Kelejian and

Prucha (2007) and Lee (2003)), a worthwhile direction might be to extend such efforts to spatial

dynamic panels. The ability to calculate spatial impulse response functions with Jordà’s (2005)

linear projections from spatial dynamic panels suggests such an estimator could be used in other

applications. And second, Jordà’s (2005) linear projections need not only apply to spatial models,

but can be applied to broader dynamic panel models in a manner similar to the application in this

paper.
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Number of Counties
Time observations

n
OLS IV IV2 OLS IV IV2

Spatial Regressor 0.504 0.713 0.708 0.440 0.590 0.593
(0.047)* (0.068)* (0.069)* (0.038)* (0.055)* (0.057)*

lag housing price 0.231 0.197 0.195 0.341 0.309 0.31
(0.051)* (0.053)* (0.053)* (.046)* (.048)* (.049)*

unemployment -0.129 -0.32 -0.301 0.06 -0.08 -0.093
(0.238) (0.24) (0.316) (0.200) (0.200) (0.286)

construction -0.017 -0.015 -0.023 -0.013 -0.014 -0.01
(0.007)* (0.007)* (0.015) (0.006)* (0.006)* (0.012)

real mortgage rate -1.368 -0.58 -0.61 -0.647 -0.458 -0.457
(0.694)* (0.688) (0.676) (0.465) (0.466) (0.463)

industrial production 0.453 0.081 0.097 0.203 0.096 0.089
(0.170)* (0.172) (0.179) (0.059)* (0.062) (0.069)

population 0.569 0.226 0.243 0.305 0.123 0.117
(0.142)* (0.140) (0.141) (0.102)* (0.101) (0.103)

 adjusted R-square 0.937 0.933

SAR Test 0.025 0.042 0.061 0.0001 0.030 0.044
p-value 0.873 0.837 0.804 0.990 0.860 0.83

2700

Notes:  The results displayed are for ordinary least squares and two-stage least squares estimation. For columns 
labeled IV, the instrument set for the endogenous spatial regressor includes the spatial lags of unemployment, 
construction, county population and the spatial regressor lagged one period.  For IV2, with the endogenous spatial 
regressor, unemployment and construction, the instrument includes one period lags of unemployment and 
construction (in addition to the spatial lags).  First stage F-tests for each endogenous regressor are easily rejected at 
the five percent level (not shown).  Heteroskedasticity-corrected standard errors are shown in the parentheses.  
Tests for autocorrelation in panel data (recommended by Wooldridge (2002)) indicate autocorrelation is not evident in 
any of the samples (not shown). The null of the SAR test is that spatial correlation is not evident in the residuals.  The 
SAR is a Lagrange multiplier statistic and is distributed Χ²(1) . *Indicates the coefficient estimate is significant at the 
five percent level.  

Table 1: Estimates for the Dynamic Panel-Spatial Model

Sample 2

30
90

Sample1

31
57

1767



Number of Counties
Time observations

n
OLS IV IV2 OLS IV IV2

Spatial Regressor 0.458 0.576 0.530 0.319 0.761 0.810
(0.048)* (0.065)* (0.065)* (0.065)* (0.170)* (0.133)*

lag housing price 0.34 0.315 0.334 0.244 0.154 0.201
(0.052)* (0.055)* (0.054)* (.088)* (.0095) (.082)*

unemployment 0.012 -0.11 0.812 0.107 -0.445 -2.013
(0.213) (0.212) (0.617) (0.675) (0.581) (0.2.31)

construction -0.013 -0.013 0.037 -0.028 -0.042 0.135
(0.006)* (0.006)* (0.041) (0.022) (0.024) (0.077)

real mortgage rate -0.556 -0.375 -0.057 -1.901 -0.357 -0.311
(0.503) (0.501) (0.512) (1.349) (1.50) (1.446)

industrial production 0.187 0.089 0.156 0.53 0.012 -0.181
(0.071)* (0.077) (0.090) (0.025)* (0.274) (0.0.26)

population 0.263 0.12 0.147 1.102 0.501 -0.052
(0.118)* (0.117) (0.126) (0.264)* (0.294) (0.031)

 adjusted R-square 0.932 0.941

SAR Test 0.031 0.138 0.032 0.0840 0.0164 0.136
p-value 0.859 0.710 0.857 0.771 0.898 0.712

Table 2: Estimates for the Dynamic Panel-Spatial Model: Alternative Samples

Notes: See Table 1 comments.  

Southern California

8
57
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Northern California
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90

2070



Notes: The impulse response functions are estimated with Jordà's (2005) linear projection technique; these are calculated from a dynamic panel-spatial model estimated with OLS 
(and controlling for fixed effects with dummy variables). The solid line represents the function, while the surrounding bands are the plus or minus 2-standard error bands.    

forecast horizon (months)

Figure 1:  Impulse Response Functions of County Housing Prices to a shock to the Spatial Regressor
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Notes: See Figure 1.  The figures show the response of average county housing prices to additional regressors in the dynamic panel-spatial model.  See text for details.

30 Counties, 1995 to 2002

31 Counties, 1998 to 2002

Figure 2:  Impulse Response Functions of County Housing Prices to additional Factors
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23 Northern Counties, 1995 to 2002

8 Southern Counties, 1998 to 2002

Figure 3:  Impulse Response Functions of County Housing Prices to additional Factors: Northern and Southern California
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