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Abstract

This paper develops a model that endogenizes both directed technologies and demography.

Potential innovators decide which technologies to develop after considering available factors

of production, and individuals decide the quality and quantity of their children after con-

sidering available technologies. This interaction allows us to evaluate potentially divergent

development paths. We find that exogenous unskilled-labor biased technological growth

can induce higher fertility and lower education, inhibiting overall growth in per person in-

come. However, if technical progress is locally endogenous, increases in the overall workforce

caused by unskilled intensive technological progress can make R&D more profitable; this

can actually induce more income growth can the alternative, skill-intensive path.
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1 Introduction

The last half century has seen great divergence in living standards among the countries of the

developing world; while rich nations have maintained fairly consistent rates of growth (2 or 3%

per annum), poorer nations have traversed widely different growth paths (between -1 and 7%).

This paper suggests a possible source of this divergence by producing a model emphasizing the

interdependence between directed technical change and demography. In this model, potential

innovators decide which technologies to develop after considering available factors of produc-

tion, and individuals decide the quality and quantity of their children after considering available

technologies. This interaction allows us to analyze the macroeconomic effects of “unbalanced

growth,” where a country develops either labor-intensive techniques and expands the pool of

unskilled labor, or skill-intensive techniques and expands the pool of human capital. Which path

will lead to greater prosperity is the primary focus of this paper.

The model emphasizes how economic growth can often be an unbalanced process, where

choices are made between alternative modes of production. A farm can be maintained either with

uneducated farmers wielding hand tools, or with farmers skilled in using agronomic instruments

and automated machinery. A factory can be structured as an assembly line run mainly with

unskilled workers supervised by a few skilled ones, or as a computer-controlled facility mainly

run by skilled workers with a few unskilled janitors.1 A road can be built using lots of manual

labor physically laying down stone and brick by hand, or construction workers trained in using

bulldozers and steamrollers. These examples highlight not only that technologies can be directed

towards particular factors, but also that each country can take its own unique development path,

producing similar things in very different ways.

This paper boils down all these considerations into a simple question - would greater aggregate

wealth be generated with skilled-labor biased technological growth (the “skill-intensive path”)

or unskilled-labor biased technological growth (the “unskilled-intensive path”)? The answer for

each country, of course, is that it depends. It depends on how productive skilled and unskilled

labor already are. It depends on how abundant skilled and unskilled labor are. And it depends

on how technological changes can affect future supplies of skilled and unskilled labor.

By exploring the simultaneity between technological changes directed towards particular fac-

tors and the factors themselves, we can explore some of these issues. This approach constitutes

a notable departure from the existing literature on technologies that augment specific factors or

sectors.2 These works often highlight the “inappropriateness” of growth in technologies that can

be implemented by only a small portion of the economy. For example, Basu and Weil (1998) and

Acemoglu and Zilibotti (2001) illustrate how technologies designed for capital-intensive (physical

1This example comes from Caselli and Coleman (2006)
2Katz and Murphy 1992; Acemoglu 1998; Kiley 1999; Acemoglu and Zilibotti 2001; Xu 2001; Acemoglu 2002,

to name but a few papers.
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or human) societies that diffuse to developing regions are used ineffectually there, if at all. And

Mokyr (1999) explains that the British Industrial Revolution initially produced only minor im-

provements in living standards because technical progress occurred in just a few small industries.

These papers suggest that technologies catered for the abundant factors of production are more

appropriate for the economy and will provide robust future growth. Thus poorer, labor abundant

countries should develop labor-intensive technologies to make their large uneducated workforce

more productive.

But these works typically do not take into account that these factors can evolve, and will

adjust to changing economic circumstances.3 If factors do change in these models, they typically

do so exogenously. But this partial equilibrium approach may mislead us, particulary when it

comes to long-run growth. Allowing for the co-evolution of factors and technologies can alter

our perspective of the “appropriate” technological path - that is, the path that generates more

macroeconomic growth. Two new considerations emerge with this approach. The first is that if

unbalanced growth also promotes growth in the more productive factor, overall growth will be

higher than the alternative path. The other consideration is that different technological paths can

produce different rates of population growth. All else equal, the path with the lower population

growth rate will produce more income per person.4

With simulations of the model, we discover a number of things. First, by raising the returns to

education, exogenous skill-biased technological growth can induce higher education and (through

quality-quantity tradeoffs in child-rearing) lower fertility; this provides an additional boost to per

person income. This case highlights that, contrary to the lessons of the appropriate technology

literature, the overall size of the factor or sector may not be the most important consideration;

even though unskilled labor is plentiful, making them more productive can produce dynamically

harmful effects like fertility increases and education decreases.

However, if technical progress is locally endogenous, the increase in the overall workforce

caused by unskilled intensive technological progress can make R&D more profitable by raising

the scale of the market for innovators; this can actually induce more income growth can the

alternative, skill-intensive path. Thus we see that the source of technological growth may be

important in answering our titular question - skill-biased technologies can indeed be appropriate

for development if they exogenously flow from other economies like manna, even if skilled labor

is in relative short supply. On the other hand, unskill-biased technologies can be appropriate for

development if they are home-grown, even if they produce some ostensibly negative side effects

like population growth and a de-skilled workforce.

3Papers that do consider interactions between technology and human capital include Stokey 1988, Chari and
Hopenhayn 1991, Grossman and Helpmann 1991, Young 1993, Redding 1996, Galor and Weil 2000, and Galor
and Moav 2000. None however assess the appropriate path to development for an economy in the context of such
simultaneity.

4Galor and Mountford (2006) stress this point in explaining divergent growth paths in history.
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This paper heavily borrows from Acemoglu’s important work on directed technological change

(Acemoglu 1998, 2002). But this work departs from that literature in two fundamental ways.

First, the literature relies almost exclusively on analyzing balanced growth paths, while here we

look solely on the unbalanced case (where technological growth occurs only in one sector of the

economy), implicitly assuming that countries often face a choice in its overall growth direction.

Second, as already mentioned, the literature also almost always treats factors of production as

exogenously determined,5 whereas here they are endogenous in the model.

The rest of the paper is organized as follows. Section 2 motivates the paper by looking at

some cross-country data. Section 3 presents the model in steps, first presenting a model of

semi-endogenous biased technological growth, and then merging this with a simple theory of

demography. This model then motivates our simulation experiments in section 4. Section 5

provides some concluding remarks.

2 Some Data

2.1 A Cross-Section of Factor-Specific Technologies

We begin by taking account of estimated factor-specific productivities of a cross-section of

countries. Consider the following production function for country i:

Y = [(Al,iLi)
σ + (Ah,iHi)

σ]
1/σ

(1)

Here we specify production as one with a constant elasticity of substitution between skilled

and unskilled labor aggregates (this elasticity being 1/(1− σ). Al,i is the efficiency of unskilled

labor in country i and AH,i is the efficiency of skilled labor in country i.6

If factors of production are paid their marginal products, the “skill-premium” can be written

as:

wh,i
wl,i

=

(
AH,i
AL,i

)σ (
Hi

Li

)σ−1

(2)

Caselli and Coleman (2006) note that one can study cross-country productivity differences

using equations (1) and (2), for these represent two equations with two unknowns. That is,

5Acemoglu 1998 relegates the possibility of endogenously determined human capital in the appendix to his
paper, while he does not discuss the possibility either in Acemoglu 2002 or in the chapter on directed technical
change in his recent growth textbook (Acemoglu 2008).

6This functional form resembles the production function used in section 3, where we endogenize technological
growth; efficiency coefficients will proxy for the breadth and depth of factor-complementary machines.
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given data on Yi, Li, Hi, and
whi
wli

, we can back out each country’s implied pair of technological

coefficients and compare them.7

Key to this exercise is our parameter choice for σ ≤ 1. Careful empirical labor studies such

as Autor et al (1998) and Ciccone and Peri (2005) have found that the elasticity of factoral

substitution between more and less skilled workers most likely lies between 1 and 2.5 (consistent

with a value of σ between 0 and 0.6). Both for this exercise and the simulations in section 4, we

choose a benchmark value of σ = 0.5 for a proxy elasticity parameter most applicable for a wide

range of countries and for a wide variety of skilled and unskilled labor categories.8

Figure 1 depicts the relationships between relative technical skill-bias (Ah/Al), relative skill-

endowments (H/L), and income per capita across a broad array of countries. Immediately

clear is the positive associations between technical skill-bias and skill endowment, and between

technical skill-bias and income levels. These positive relationships hold whether we consider a

skilled worker as someone with primary schooling, or someone with secondary schooling, or even

someone with a college education. This was precisely one of the main points behind Caselli and

Coleman’s study. Not only do wealthy nations enjoy large pools of human capital, but they also

employ this capital far more effectively than poorer nations.

But from these static pictures it is not clear which technological path would produce more

output for any particular country over time. On the one hand, a country with a relative abun-

dance of unskilled labor should greatly benefit by making them more productive. On the other

hand, unskilled labor’s level of productivity may already be fairly low; unskilled-bias technical

change that induces a rise in L and a fall in H would then lower the relatively-more productive

factor and raise the relatively-less productive factor.

We begin exploring these issues by allowing the factors of production to respond to biased

technological changes, first in a comparative static experiment in section 2.2, and then in a fully

specified general equilibrium model in section 3.

2.2 Unbalanced Growth - A Comparative Static Experiment

Here we consider changes in output, Y , that can occur when we have the factors of production

respond to exogenous unbalanced technological growth. First, let us totally differentiate the

production function given by (1):

7The data is also from Caselli and Coleman (2006). Y is average GDP per capita for 1985-1990, taken from the
Penn World Tables. Labor levels are constructed using the implied Mincerian coefficients from Bils and Klenow
(2000). Wages for skilled and unskilled are constructed using Mincerian coefficients and the duration in years of
the various schooling levels. See their paper for more details.

8Ciconne and Peri (2005) themselves estimate σ to be 0.5 when considering U.S. high school dropouts as
unskilled labor and high school graduates as skilled labor (although their preferred measure is 0.33).
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Figure 1: Relative Technologies versus Relative Factors and Output (σ = 0.5)
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H = secondary school or more completed 
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H = college or more completed 
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dY =

(
∂Y

∂Al

)
dAl +

(
∂Y

∂Ah

)
dAh +

(
∂Y

∂L

)
dL+

(
∂Y

∂H

)
dH (3)

Both types of technologies and both types of factors have the potential to change. Let us

assume that when technologies are biased towards factor L, it induces L to rise and H to fall

(higher unskilled-intensive productivity makes some people become unskilled laborers instead of

skilled ones). On the other hand, technological growth that is biased towards H induces L to

fall and H to rise (higher skilled-intensive productivity makes some erstwhile unskilled laborers

become skilled ones). That is, dAl > 0 ⇒ −dH = dL > 0. And dAh > 0 ⇒ −dL = dH > 0.9

Let us consider two possibilities. The first is where dAl = 1 and dAh = 0. This is the case of

unskilled-bias technological change (where the total change in output can be written as dyunsk).

The second case is where dAh = 1 and dAl = 0. This is the case of skilled-bias technological

change (where the total change in output can be written as dysk).

When there is unskilled-biased technological change, the total change in income per capita

can be written as

dYunsk =

[(AlL)σ + (AhH)σ]
1−σ
σ ·

(
(AlL)σ−1 (L · dAl + Al · dL) + (AhH)σ−1 (Ah · (−dH))

)
(4)

where dYunsk is the total change in income per capita with unskilled intensive growth. Note that

here dAh = 0 and the change to H is negative. On the other hand, when there is skilled-biased

technological change, the total change in income per capita can be written as

dYsk =

[(AlL)σ + (AhH)σ]
1−σ
σ ·

(
(AlL)σ−1 (Al · (−dL)) + (AhH)σ−1 (Ah · dAh + (AhdH))

)
(5)

where dysk is the total change in income per capita with skilled intensive growth. Note that here

dAl = 0 and the change to L is negative.

Does skilled labor-biased technological growth produce more output than unskilled labor-

biased technological growth? If labor is strictly fixed, the answer is no. With Caselli and Coleman

(2006)’s categorization and calculations of L and H, L > H even for wealthy nations. Since

factors are grossly substitutable, technologies used by the more abundant factor will generate

the greater aggregate gain.

9Note that only when σ > 0 can we consider Al unskilled biased and Ah skilled biased. This is a reasonable
assumption given previous estimates of σ. See Acemoglu 2002 for a fuller discussion.
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However, the more responsive are factors to biased technological changes, the greater are the

relative output gains from skill-biased technological change. This follows simply from the fact

that H is inherently the more productive factor. This comes both from its relative scarcity (so

its marginal productivity tends to be higher even if technologies are symmetrical) and from the

higher productivity coefficient on H compared to the one for L. So if labor tends to readily switch

from one type to the other with unbalanced technical progress, skill-intensive growth tends to

produce more output.

Combining both observations, we see that each country has a threshold level of factoral re-

sponsiveness, whereby dYsk = dYunsk. Figure 2 plots dYsk− dYunsk against the degree of factoral

response for two illustrative countries, Argentina and Great Britain. If we consider H to be those

with at least some secondary schooling, we can see that a one-unit change in Ah would require

a 0.64 unit shift from L to H to produce more output than a similar change in Al in Argentina,

while it would require only a 0.35 unit shift from L to H in Britain.

Thus we see that because countries have their own unique pairs of factor supplies and produc-

tivities, they will have different factoral response threshold levels. Figure 3 plots each country’s

threshold level of factor responsiveness (where dYsk = dYunsk) against its GDP per capita. We

can see that the poorer the nation is on average, the greater will factors need to respond to

technological changes for skill-intensive growth to be the superior path to development. Because

poorer nations tend to have greater relative quantities of unskilled labor, and also tend to have

relatively less productive skilled labor, factors need to respond with greater magnitude in order

for skill-intensive technical growth to produce relatively more output.

However, as we compare the top and bottom scatterplots we can see that the more narrow is

our definition of H, the smaller is the threshold factor responsiveness. This is simply because

increases from the relatively more scarce factor produces greater benefits, for the marginal pro-

ductivities of the more scarce factor tends to be larger. This in effect flips Acemoglu’s discussion

of so-called “market-size effects” on its head: if factors are allowed to respond to technological

change, such change that augments the less abundant factor may produce more output in the

longer run.

Thus we need to better understand how elastically these factors of production respond to

directed technical change. On top of this, if we believe there exists a quality-quantity tradeoff

in child-rearing (Becker and Lewis 1973; Becker and Barro 1988),10 educational changes will

generate fertility changes, forming another channel that affects per capita income. And finally,

factor changes may themselves lead to subsequent changes in biased technologies. So we should

move beyond this comparative static analysis to a model that endogenizes both factors and

technologies in a general equilibrium framework. That is, by actually endogenizing the micro-

10This is also stressed by Galor and Mountford (2006, 2008). In these papers population changes come from
trade specialization patters. Technological changes however can affect demographic patterns in very similar ways.

8



Figure 2: Skilled versus Unskilled Technological Growth When Factors Respond - Comparing

Two Countries
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Figure 3: How Much Must Factors Respond To Make Skilled-Biased Technological Growth “Bet-

ter?” - Cross Country Comparison
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economic incentives for researchers and families, we can simulate values for dAl, dAh, dL and

dH for a hypothetical economy over time.

3 The Model

3.1 Production

Consider a discrete-time economy. We use the production function given by (1) but now we

explicitly specify factor-specific technologies. Specifically production is specified as the following.

Y = [(AlL)σ + (AhH)σ]
1/σ

(6)

Al ≡
∫ Ml

0

(
xl(j)

L

)α
dj Ah ≡

∫ Mh

0

(
xh(k)

H

)α
dk (7)

Here both types of labor (unskilled L, and skilled H) work with intermediate “machines”

to produce a homogenous final output. A machine is designed for use either by skilled labor

or unskilled labor, but not both. Machines (of type j) which complement unskilled labor are

denoted by xl(j), while machines (of type k) which complement skilled labor are denoted by

xh(k).

The parameter σ indicates the degree of substitutability between the skilled and unskilled-

intensive “sectors” in aggregate production. When σ = 1, the production function is linear;

when it is 0, the production function is Cobb-Douglas; when it is −∞, the production function

is Leontieff. As mentioned in section 2.1, estimates of this elasticity clearly place σ above zero;

thus we will assume that these sectors are grossly substitutable.

Echoing the assumptions of Kiley(1999) and Acemoglu (2002), technological advance is as-

sumed to come in two varieties. In the “unskilled labor sector,” technical advance comes about

from an expansion in the number of intermediate machines specialized for unskilled labor (that is,

an increase in Ml). Similarly, in the “skilled labor sector,” technical advance means an expansion

in the number of intermediate machines specialized for skilled labor (an increase in Mh).

Final goods output produced by different firms is identical, and can be used for consumption,

for the production of different intermediate machines, and for research and development to

expand the varieties of skill-augmenting and unskilled-augmenting machines. For each time

period (suppressing time subscripts) these firms endeavor to maximize:

max
{L,H,xl(j),xh(k)}

Y − wlL− whH −
∫ Ml

0

p(j)xl(j)dj −
∫ Mh

0

p(k)xh(k)dk (8)

where p(j) is the price of machine xl(j) and p(k) is the price of machine xh(k).
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Endogenous growth theory suggests that research is generally profit motivated. However,

modeling purposive research and development effort becomes difficult when prices and factors

change over time, as they certainly do when growth is unbalanced. Endogenous growth theory

typically assumes that the gains from innovation flow to the innovator throughout her lifetime,

and this flow will depend on the price of the product being produced and the factors required

for production at each moment in time.11 If prices and factors are constantly changing (as they

may in an economy where factors evolve endogenously), a calculation of the expected discounted

profits from an invention may be impossibly complicated.

To avoid this complication but still gain from the insights of endogenous growth theory, we

assume that the gains from innovation last one time period only. More specifically, we assume

that intermediate machines are produced either in monopolistic or competitive environments.

An inventor of a new machine at time t enjoys monopoly profits for machine production only

at t. After this patent rights expire, and subsequent production of this brand of machine is

performed by many competitive manufacturers. Whether a machine is produced monopolistically

or competitively will be conveyed in its rental price, denoted either as p(j) for a unskilled-labor

using machine j or p(k) for a skilled-labor using machine k, and explained in the next sub-section.

Also for simplicity, we assume that all machines depreciate completely after use, and that the

marginal cost of production is simply unity in terms of the final good.

Given technology levels Ml and Mh and labor types L and H, an equilibrium can be charac-

terized as machine demands for xl(j)’s and xh(k)’s that maximize final-good producers’ profits

(from equation 8), machine prices p(j) and p(k) that maximize machine producers’ profits, and

factor prices wl and wh that clear the labor market.

The first-order conditions for final-good producers yield intermediate-machine demands:

xl(j) = [(AlL)σ + (AhH)σ]
1−σ

(1−α)σ A
1−σ
α−1

l

(
p(j)

α

) 1
α−1

L
σ−α
1−α

xh(k) = [(AlL)σ + (AhH)σ]
1−σ

(1−α)σ A
1−σ
α−1

h

(
p(k)

α

) 1
α−1

H
σ−α
1−α (9)

Note that greater levels of employment of a factor raise the demand for intermediate goods

augmenting that factor so long as σ > α, an idea consistent with Acemoglu’s so-called “market-

size” effect. We will assume throughout the analysis that this condition is met.

The other first-order conditions for final-good producers illustrate that workers receive their

marginal products:

11For example, the seminal Romer (1990) model describes the discounted present value of a new invention as
a positive function of L− LR, where L is the total workforce and LR are the number of researchers. Calculating
this value function is fairly straight-forward if labor supplies of production workers and researchers are constant.
If they are not, however, calculating the true benefits to the inventor may be difficult.
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wl = [(AlL)σ + (AhH)σ]
1−σ
σ Aσl L

σ−1 (10)

wh = [(AlL)σ + (AhH)σ]
1−σ
σ AσhH

σ−1 (11)

3.2 Research

In this section we describe the growth paths of Ml and Mh. Researchers expend resources

to develop new types of machines, and these resource costs can change over time. We make

this modeling choice to stress that unbalanced growth can occur when research costs differ

between different sectors. We will assume that these costs will depend both on the number of

machine types already extant (indexed by Ml and Mh), and on some factor-specific policy variable

(denoted by zl and zh, and discussed below). Specifically, the up-front cost of developing the

blueprint of a new machine, c, is given simply by

c

(
Ml

zl

)
=
Ml

zl

for an unskilled labor augmenting machine, and

c

(
Mh

zh

)
=
Mh

zh

for a skilled labor augmenting machine. These functional forms illustrate that the costs of

invention are negligible when there is little machine variety. As factor-specific technologies grow,

however, costs can become increasingly prohibitive.12

Given these costs of technological advance, innovating firms must receive some profits from

the development of a new technology in order to make research worth the expense. As mentioned

above, we assume that developers of new machines receive monopoly rights to the production

and sale of their machines for only one period. As a result, we must make a distinction between

old machines (those invented before t) and new machines (those invented at t).

Assuming unitary marginal costs of machine production, the revenue generated from new

machines of both types are given by the ‘value’ functions:

Vl = (p(j)− 1)xl(j)

Vh = (p(k)− 1)xh(k)

12This approach of varying the cost of research echoes the leader-follower model illustrated in Barro and Xala-
i-Martin 2003), where costs depend on the distance from the frontier of general knowledge.
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Because demand is isoelastic, the price which maximizes monopolists’ profits equals 1/α for

both skill- and unskilled-augmenting machines, so that demand for new intermediate machines

(those invented at t) are:

xl,new(j) = xl,new = α
2

1−α [(AlL)σ + (AhH)σ]
1−σ

(1−α)σ A
1−σ
α−1

l L
σ−α
1−α

xh,new(j) = xh,new = α
2

1−α [(AlL)σ + (AhH)σ]
1−σ

(1−α)σ A
1−σ
α−1

h H
σ−α
1−α (12)

On the other hand, because older machines are competitively produced, their prices equal

unitary marginal costs, so that demand for old intermediate machines (those invented before t)

are simply:

xl,old(j) = xl,old = α
1

1−α [(AlL)σ + (AhH)σ]
1−σ

(1−α)σ A
1−σ
α−1

l L
σ−α
1−α

xh,old(j) = xh,old = α
1

1−α [(AlL)σ + (AhH)σ]
1−σ

(1−α)σ A
1−σ
α−1

h H
σ−α
1−α (13)

Thus factor-specific TFPs given by equation (6) can be re-written as an aggregation of two

kinds of machines, illustrating the cumulation of all past and current innovation. If Mz,old,

Mz,new, and Mz are, respectively, the number of existing old, new and total machine-types used

by factor z, we can write factor productivity as:

Al ≡
∫ Ml

0

(
xl(j)

L

)α
dj =

[∫ Ml,old

0

xl,old (j)α dj +

∫ Ml

Ml,old

xl,new (j)α dj

]
(1/L)α =

Ml,old x
α
l,old +Ml,new x

α
l,new

Lα
(14)

Ah ≡
∫ Mh

0

(
xh(k)

H

)α
dk =

[∫ Mh,old

0

xh,old (k)α dk +

∫ Mh

Mh,old

xh,new (k)α dk

]
(1/H)α =

Mh,old x
α
h,old +Mh,new x

α
h,new

Hα
(15)

Substituting the monopoly price into our value functions yield:

Vl =

[
1− α
α

]
xl,new

Vh =

[
1− α
α

]
xh,new
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where xl,new and xh,new are given by (12). Finally, an individual is free to research, guaranteeing

that:

Vl (L,H,Al, Ah) ≤ c

(
Ml,old +Ml,new

zl

)
(16)

Vh (L,H,Al, Ah) ≤ c

(
Mh,old +Mh,new

zh

)
(17)

If resource costs of research were actually less than discounted profits, entry into research would

occur, driving technology levels, and hence costs, up. We assume this happens quick enough

so that valuations never exceed costs in any time period. Further, since applied research is

irreversible (a society cannot forget how to make something once it is learned), the variety of

machines remains unchanged when the inequalities in (16) or (17) do not bind with equality.

The levels of our policy variables zl and zh in the economy are key determinants of the

costs of developing new “production processes;” higher levels of zu lower the costs of developing

intermediate machines which complement factor u. Conceivably these variables are functions of

many possible factors, such as government policies, or technological diffusion from other countries.

For now let us assume that these variables simply grow at an exogenously steady rate:

g =
zl,t+1 − zl,t

zl,t
=
zh,t+1 − zh,t

zh,t

where g > 0 is the growth factor. Thus we see that (16) and (17) can also illustrate barriers to

technology adoption - if zl and/or zh are too small, factor-specific technological growth cannot

happen.

The steady-state can be characterized as one where the share of labor devoted to each sector

(skilled and unskilled) remains fixed, while output, the policy variables zl and zh, the varieties of

skilled and unskilled machines, and wages all grow at the same rate, g. This will occur so long

as equations (16) and (17) hold with strict equality. But as these inequalities imply there may

be a considerable period of time when growth is unbalanced ; this would occur if only one of the

equations held with equality. What kind of unbalanced growth is likely to unfold will depend

on a number of things, including the available supply of different factors (a relatively large L

for example raises Vl and thus increases the chance that growth will be unskill-biased) and the

relative “skewness” of the policy variables (a relatively large zl for example lowers cl and likewise

increases the chance for unskill-biased growth).

No doubt unbalanced growth will be slower than balanced steady-state growth, but it seems

logical that growth in the bigger sector will produce faster growth than growth in the smaller

sector.13 This indeed is the essence of the appropriate technology story - typically it involves a

13If ∆a
a = g and ∆b

b = 0, ∆(a+b)
a+b = ∆a

a+b , which is smaller than, but converges to, g. The smaller is b relative to
a, the closer will this growth be to g.
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story of factor abundance. By its logic, a country awash with throngs of unskilled labor would do

well to develop and adopt technologies readily employable by them. The tragedy stressed in this

tale often involves the nature of the “technology frontier” - because cutting-edge technologies

produced by wealthy nations tend to be skill-intensive, developing nations often inherit a lot

of skill-intensive technologies (Acemoglu and Zilibotti 2001). In our simple model this may be

reflected by a large (zh/zl); the consequence of this is that poor countries end up developing

technologies for which they are structurally ill-suited, resulting in anemic macro growth.14

At the same time, there is recognition among development economists of the importance of skill

accumulation in economic growth. The centrality of human capital in economic development is

so established that most economists now treat education and modernity as going hand in hand.15

From this perspective, a country’s relative abundance in unskilled labor scarcely matters; the

skill-intensive path is the only viable path to sustainable progress.

This paper suggests that forces that change the factors of production themselves are an impor-

tant part of our answer to the question of which is the more appropriate growth path. Specifically,

changes in the relative rewards to factors due to technological developments surely will alter the

incentives to become educated or to remain an unskilled laborer. From the model we can write

the “skill premium,” the skilled wage relative to the unskilled wage, as

wh
wl

=

(
α

α
1−αMh,old + α

2α
1−αMh,new

α
α

1−αMl,old + α
2α

1−αMl,new

)σ−σα
1−σα

·
(
H

L

) σ−1
1−σα

(18)

In the absence of any demographic response, skill-bias technological growth will raise the skill

premium (by raising Mh,new), while unskill-bias technological growth will lower it (by raising

Ml,new). But surely if unskill-intensive growth lowers the relative returns to skill, this will induce

some people to remain unskilled. Conversely, increases in the returns to skills should induce

individuals to increase human capital, and thus lower fertility rates through the quality-quantity

tradeoff. Indeed, from the last section we suggest that the more responsive these factors are

to changes in their relative returns, the more likely will skill-biased technological growth yield

greater income per capita growth. These considerations compel us to merge this growth model

with a simple theory of demography. The next sections do precisely that.

14The development literature is filled with anecdotal evidence of this technology-skill mismatch, highlighted in
Todaro and Smith’s seminal text. “Gleaming new factories with the most modern and sophisticated machinery
and equipment are a common feature of urban industries while idle workers congregate outside the factory gates.”
(pp. 256 in Todaro and Smith 2006).

15By one recent paper’s account, “Anything that harms the accumulation of human capital harms our economic
well-being” (Remler and Pema 2009). For a brief history of the study of human capital see Ehrlich and Murphy
2007.
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3.3 Endogenous Demography

To capture the symbiotic relationship between technologies and factors, we introduce house-

holds into the model in an over-lapping generations framework, where individuals have two stages

of life: young and old. Only old people are allowed to make any decisions regarding demography.

Specifically, the representative household is run by an adult who maximizes her utility by de-

ciding two things: how many children to have (denoted by n) and the fraction of these children

who will receive an education (denoted by e).

An individual born at time t works either as an unskilled laborer (earning the unskilled wage

wl), or as a skilled laborer (earning the skilled wage wh). The individual becomes old at t + 1.

At this point she decides how many children to have herself, and the fraction of these children

that will get an education and work as skilled workers.

Specifically, individuals wish to maximize both their own income and the income of their

young.16 Let utility for the household planner be described by the function

U = wj (1− c(n, e)) + ln [wl(1− e)n+ when]

where c(·) is the function denoting child-rearing costs, and wj is the wage of the parent (who

could be either a skilled worker or an unskilled worker, depending on what her parent chose for

her last time period, so j = l, h). Fraction (1 − e) of young work as unskilled workers, while

fraction e of young work as skilled workers. This quasi-linear utility form17 simply conveys that

adults face diminishing returns to enjoyment in their children’s income, but not in their own.

The first-order condition for the number of children is:

1

n
= wjcn (19)

where cn is the derivative of the cost function with respect to fertility. The left-hand side

illustrates the marginal benefit of an additional child (which falls with the total number of

children), while the right-hand side denotes the marginal cost (the income foregone to raise an

additional child).

The first order condition for education is:

wh
wl(1− e) + whe

=
wl

wl(1− e) + whe
+ wjce (20)

where ce is the derivative of the cost function with respect to fertility. Again, the left-hand side

is the marginal benefit and the right-hand side the marginal cost. At the optimum, the gains

16This echoes Moav (2005), who models parents that decide both the number of children and the level of human
capital of each child in order to simply maximize their potential income.

17Such quasi-linear utility functions to model demography have been used by, among other works, Kremer and
Chen (2002) and Weisdorf (2007).
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received from the added skilled income offsets the foregone unskilled- and adult-income requisite

for giving more children an education.

Note that the results of this simple optimization problem is consistent with the negative

correlations between income and fertility and between education and fertility that are observed

in developing countries (Kremer and Chen 2002). For example, rising skilled wages induces

households to increase education; the rise in child-rearing costs this produces however will also

incentivise households to lower fertility.

Completing the model requires us to relate fertility and education rates to aggregate levels of

unskilled labor and skilled labor. At time t, labor-types are given by:

L = Nt(1− et−1) +Ntnt(1− et) (21)

H = Ntet−1 +Ntntet (22)

where N is simply the adult population. Note that each type of labor is comprised of both young

and old workers. Finally, population growth is given by

Nt = nt−1Nt−1 (23)

Combining this model of demography with our model of biased technologies is straightforward.

Through the simultaneous solving of (10), (11), (14), (15), (16), (17), (19), (20), (21), and (22),

a unique set of variables wl, wh, Al, Ah, Ml, Mh, n, e, L, and H can be determined for every

time period.18 We can perhaps synopsize our findings by initially focusing only on the economy’s

choice of e and Mh. If an adult expects researchers to develop new skill-biased technologies (and

so to increase wh), she will want to endow her children with more human capital. Similarly, if

researchers anticipate a larger pool of human capital, they may wish to invent and build new

skill-intensive machines, raising Mh,new and thus Mh overall. Consequently we can plot the two

“reaction functions” of each group as two upward-sloping curves; the development of new skill-

using machines and the accumulation of skills are strategic complements. From the intersection

of these reaction curves we find the unique simultaneous solution of the level of education and

the new skill-biased technical coefficient. This is done in Figure 4. We can similarly plot two

upward-sloping curves to determine an economy’s choice of n and Ml.

To summarize, potential researchers look to the skill composition of the workforce (something

influenced by households) to determine the direction and scope of technical change. Households

look to wages (something influenced by researchers) to determine the levels of skilled and unskilled

workers. Together they jointly determine the overall composition of the economy.

18This 10-by-10 system is reiterated with more detail in the Appendix.
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Figure 4: “Reaction Curves”
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• The steeper line represents the fraction of educated young a parent would choose for a given 
technological parameter Mh.  The flatter curve represents the skill-biased technical coefficient 
that would result from a given fraction of educated young.   
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4 ”Appropriate” Growth Paths for a Developing Country

- Some Simulations19

With a model that endogenizes both technologies and factors, we may better assess the appro-

priateness of alternative development paths. Let us consider a hypothetical developing country

endowed with a fairly sizeable amount of unskilled labor and a modest amount of skilled la-

bor. We can then test the effects of unbalanced growth by allowing either only unskilled-labor

technology or skilled-labor technology to rise, run the “horse-race,” and compare the two paths.

Each simulation is run for ten time periods.

4.1 Case 1 - Simulation with Exogenous Unbalanced Growth20

Our first horse-race is where we simply have either Al or Ah grow exogenously, and compare the

two paths. In other words, we ignore our discussion about endogenous technical growth in section

3.2 for the moment, and assume that unbalanced growth happens simply as some exogenous

process, such as through technological diffusion from other countries (see the appendix for the

system of equations being solved each time period). Specifically, each technological parameter

grows 5% each period.

Figure 5 illustrates the results of these simulations. Red dotted lines are where only Al grows;

blue solid lines are where only Ah grows. Growth in both cases lowers fertility, since it raises the

opportunity costs to raise children. However, it is clear that skilled-biased growth lowers fertility

more dramatically, since it induces families to provide more of their offspring with education;

this raises the costs of children even further. Unskilled-biased growth on the other hand puts

downward pressure on skill premia, exerting upward pressure on fertility and downward pressure

on education.

We can see how these demographic shifts affect the factors of production. Initial fertility rates

above one induce increases in both labor types; once fertility falls below one, both labor types

begin to fall. However, we can see that changes in H are more muted than changes in L. Why

is this? Basically, the quality-quantity tradeoff affects H in opposing ways (lower fertility lowers

H, while higher education raises H). This same tradeoff however reinforces changes in L (higher

fertility raises L, and lower education also raises L). Unbalanced growth thus is likely to change

the unskilled work force more dramatically than the skilled work force.

19Note that for the lessons of the simulations to hold, we require only that 0 < α < σ < 1. This simply means
that factors of production must be substitutable “enough.” Specifically we assume that α = 0.33 and σ = 0.5.
We also specify the simple cost function c(n, e) = n2 + (1 + ne)2 to ensure that costs rise in both n and e.

20For this case initial values of Al and Ah are set to 3 and N is normalized to 1. With n set to 1.1 to represent
a growing population, e = 0.4, and this gives us initial factor endowments of L = 1.3 and H = 0.7, and initial
wages of wl = 5.2 and wh = 7.05.

20



Figure 5: Simulation of Economy with Exogenous Unbalanced Growth
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• Exogenous skill-biased technical growth augments a smaller workforce and so generates 
relatively less output growth at first; the lower fertility and higher education that this 
growth provokes however generates relatively more output later on. 
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It is also clear that unbalanced growth creates changes in relative factors. We can see that H/L

falls with unskilled-bias growth, and rises with skilled-bias growth. Recall from our discussion

in section 2.2 that the latter means there is relative growth in the more productive factor (H

is more productive even though we start with Al = Ah because it is scarcer than L), and this

should be a boost to overall income. On top of this, the overall population grows faster with

unskilled-bias growth than with skilled-bias growth.

The final two graphs compare simulated per capita GDPs (y = Y/N) for the two paths. While

there is only a small difference between the two, we can see that skill-biased growth slightly under-

performs early on, and outperforms later on. Consistent with our earlier discussions, skill-biased

technologies are not “appropriate” in the sense that they augment a relatively smaller workforce,

so unskilled-biased technical growth generates relatively more overall growth at first. However, if

factors themselves react to technological changes, we see that growth in unskilled labor generates

greater growth in the entire population, with no beneficial feedback through market-size effects

for researchers (since technologies grow exogenously in this case). A skill-intensive technological

path can produce more income per person over time than the alternative path.

4.2 Case 2 - Simulation with Endogenous Unbalanced Growth Start-

ing with Ml ≈ Mh
21

In this case we use the full system of equations that jointly solve for technological levels

and for demographic variables. Technologies in this case are “semi-endogenous,” in that we have

research costs exogenously fall in order to observe the endogenous technological and demographic

responses (see the appendix for the full system of equations). Specifically, for unskilled-intensive

growth, we set zl such that Vl = cl at the start of the simulation. Then we simply have zl grow

5% each period, inducing research that produces new varieties of unskilled labor-using machines.

For skill-intensive growth we do the same to zh, Vh and ch.

Figure 6 illustrates the results of these two simulations. Immediately we see that here un-

skilled -labor intensive growth produces more per capita output than skill-intensive growth. This

reversal from the findings of Case 1 may be surprising at first, because like Case 1 unskilled-

intensive growth lowers H/L, and we have said that H tends to be the more productive factor.

And it bucks conventional wisdom, which suggests that decreases in education can be destructive

for the overall macro economy.

In this case, however, the upward pressure on fertility that results from unskilled-bias techno-

logical growth allows unskilled labor to expand. This contributes to even more unskilled-biased

technological progress in two ways. First, it induces final-good producers to demand and use

more existing unskilled-using machines, making unskilled labor more productive (equation 9).

21For this case initial levels of machines are set to Ml = 0.3 and Mh = 0.35. This gives us initial values of Al

and Ah of 0.3, L = 1.2, H = 0.8, wl = 0.54 and wh = 0.75.
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Figure 6: Simulation of Economy with Semi-endogenous Unbalanced Growth (Mh ≈Ml)
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• Semi-endogenous skill-biased technical growth produces a slightly faster drop in fertility 
than unskilled-biased technical growth.  This actually generates less per capita income 
over time because the productivity slowdown caused by falling population is more severe 
in this case. 
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Second, it induces more research to produce new brands of unskilled-using machines (equation

16). With skill-biased technological growth, the quality-quantity tradeoff in child rearing affect

H in opposing ways; as a result H does not rise as much, and so cannot generate beneficial

market-size effects to the same extent.

One lesson here is that fertility declines, while inevitable in the process of economic devel-

opment, can hurt subsequent growth when technologies are endogenous. Scale matters in this

case, since researchers require a large group of workers to purchase and use their new machines

in order to recoup their fixed costs. Because unskilled-labor biased growth puts upward pressure

on fertility, it limits such negative effects to market size. This case suggests that the high fertility

rates we observe for poorer nations may actually contribute to future economic prosperity, not

hinder it as the prior case suggests.

4.3 Case 3 - Simulation with Endogenous Unbalanced Growth Start-

ing with Ml < Mh

While the above case implies that unskilled-intensive growth produces more per capita income

in the long-run than the alternative, we should acknowledge that this case is based on the extreme

assumption that Ah = Al at the start. But we could very well have the case where Ah > Al. This

is especially true if we have a fairly broad definition of H. For example, when H is considered

those with primary education or more, skilled-labor productivity tends to be larger for unskilled-

labor productivity for most countries (see Table 1). As mentioned in section 2.1, wealthier

nations also tend to have higher relative productivity levels for skilled workers.

Our final case explores this possibility by endowing skilled-labor with many more machine

varieties than unskilled labor at the start of the simulations, thus making skilled labor inherently

more productive.22 Figure 7 illustrates this case.

The per capita GDP comparison between the two paths in this case produces the mirror

image to the one in Case 1 - the skilled-intensive path produces relatively more early on, but

relatively less later on. Why? Given the productivity advantage of skilled workers here, increases

in education generate a lot of macroeconomic growth. The rapid fall in fertility that this path

generates, however, contributes to a faster productivity slowdown.

Thus, even though skilled labor is much more productive than unskilled labor, the unskilled

technological path will eventually win the horse race if we let it run long enough. With skill-

intensive growth, the quantity-quality tradeoff and the forces of demographic momentum sow

the seeds for this path’s eventual slowdown. The fall in fertility that inevitably results (as kids

get more and more expensive) anchors the growth in H so the market size effects with this path

inevitably peter away.

22Specifically, we set initial levels of Ml and Mh to 0.3 and 1, respectively. Again, after setting N to 1 and n

to 1.1, we get initial values of e = 0.53, L = 0.95, H = 1.05, wl = 0.9, and wh = 1.4.
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Figure 7: Simulation of Economy with Semi-endogenous Unbalanced Growth (Mh > Ml)
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• Semi-endogenous skill-biased technical growth generates a more rapid drop in fertility 
and rise in education, same as in the previous cases.  This generates relatively more 
output growth at first because skilled labor is so much more productive in this case; but it 
still generates less output later on due to the more rapid productivity slowdown from 
fertility declines. 
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5 Conclusion

This paper models the simultaneity of factors and technologies to evaluate different growth

paths. Unlike approaches that credit either technological progress (Christensen and Cummings

1981) or factor accumulation (Young 1995) alone for economic success, the interaction of both

can lend us new insights on which development path will breed the greatest rewards.

We see that the answer depends on the structure of the macro economy. Generally, a skill-

intensive path will generate more benefits the more productive skilled labor is. It also produces

more benefits the more responsive are factors to technological changes, provided there is no

or limited feedback from these changes on technologies. This is because the falling population

growth caused by skill-intensive growth, normally a boom to income per capita, would hurt

economic growth if technologies are locally endogenous. Thus skill-biased technological diffusion,

of the kind generated by the world-wide pervasiveness of skill-intensive technologies (Berman

and Machin 2000; Berman, Bound and Machin 1998) can generate robust growth because of its

exogenous nature; and this despite its apparent inappropriateness due to a low endowment of H.

The bottom line is that the proper path to macro prosperity depends on lots of things - here we

provide only the broadest brush-strokes delineating some major concerns. This subject however

is relevant to all developing nations. Should India focus more on labor-heavy manufacturing

or skill-heavy services? Should China’s fiscal stimulus channel resources to build infrastructure

using skill-intensive or labor-intensive techniques? Questions such as these dominate discussions

over macro economic strategy in these countries; the answers will depend on some of the issues

raised here.
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Appendix A: Simulations

If technologies are exogenously determined, the simulation pre-determines Al and Ah, and

solves the following system of equations for wl, wh, nt, et, L, and H for each time period t, given

nt−1, et−1, and Nt.

wl = [(AlL)σ + (AhH)σ]
1−σ
σ Aσl L

σ−1 (24)

wh = [(AlL)σ + (AhH)σ]
1−σ
σ AσhH

σ−1 (25)

1

nt
= 2wj

(
nt + et + nte

2
t

)
(26)

wh
wl(1− et) + whet

=
wl

wl(1− et) + whet
+ 2wj

(
nt + n2

t et
)

(27)

L = Nt(1− et−1) +Ntnt(1− et) (28)

H = Ntet−1 +Ntntet (29)

If on the other hand technologies are endogenously determined by the process discussed in

section 3.2, the following equations are solved for Ml,new, Mh,new, Al, Ah, wl, wh, nt, et, L, and

H for each time period t, given nt−1, et−1, and Nt.

(
1

1 + r

)(
1− α
α

)
α

2
1−α [(AlL)σ + (AhH)σ]

1−σ
(1−α)σ A

1−σ
α−1

l L
σ−α
1−α ≤

(
Ml,old +Ml,new

zl

)
(30)

(
1

1 + r

)(
1− α
α

)
α

2
1−α [(AlL)σ + (AhH)σ]

1−σ
(1−α)σ A

1−σ
α−1

h H
σ−α
1−α ≤

(
Mh,old +Mh,new

zh

)
(31)

Al =
[
α

α
1−αMl,old + α

2α
1−αMl,new

]
((AlL)σ + (AhH)σ)

(1−σ)α
(1−α)σ A

(σ−1)α
1−α

l L
α(σ−1)

1−α (32)
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Ah =
[
α

α
1−αMh,old + α

2α
1−αMh,new

]
((AlL)σ + (AhH)σ)

(1−σ)α
(1−α)σ A

(σ−1)α
1−α

h H
α(σ−1)

1−α (33)

wl = [(AlL)σ + (AhH)σ]
1−σ
σ Aσl L

σ−1 (34)

wh = [(AlL)σ + (AhH)σ]
1−σ
σ AσhH

σ−1 (35)

1

nt
= 2wj

(
nt + et + nte

2
t

)
(36)

wh
wl(1− et) + whet

=
wl

wl(1− et) + whet
+ 2wj

(
nt + n2

t et
)

(37)

L = Nt(1− et−1) +Ntnt(1− et) (38)

H = Ntet−1 +Ntntet (39)

(30) and (31) illustrate the benefits and costs of innovation; (32) and (33) are factor-specific

TFP levels as functions of the demand for old and new machines and factors of production; (34)

and (35) are wages; (36) and (37) are the benefits and costs of having children and educating

them; (38) and (39) describe how fertility and education choices translate into aggregate factors

of production. Note that if either of the first two equations holds with strict inequality, the

algorithm sets the value of Mnew to zero and simply solves the the rest of the system.
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