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Abstract 

 
 
Using high frequency data for the price dynamics of equities we measure the impact that market 
microstructure noise has on estimates of the: (i) volatility of returns; and (ii) variance-covariance 
matrix of n assets. We propose a Kalman-filter-based methodology that allows us to deconstruct 
price series into the true efficient price and the microstructure noise. This approach allows us to 
employ volatility estimators that achieve very low Root Mean Squared Errors (RMSEs) 
compared to other estimators that have been proposed to deal with market microstructure noise 
at high frequencies. Furthermore, this price series decomposition allows us to estimate the 
variance covariance matrix of n assets in a more efficient way than the methods so far proposed 
in the literature. We illustrate our results by calculating how microstructure noise affects portfolio 
decisions and calculations of the equity beta in a CAPM setting. 
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1. Introduction

Volatility of asset returns is one of the most important variables in finance. It is an important

“building block” in many areas including portfolio and risk management, investment appraisal and

derivatives pricing. In general, measuring volatility is not a straightforward task because it is not

directly observable from the data. Focusing on financially traded assets, the answer to the question

of how to estimate volatility, or quantities that use volatility as an input, will inevitably depend on

modeling assumptions and compromises that will have an effect on both its estimate and estimator.

For example, some of the difficulties that arise when measuring volatility stem from assumptions

such as the model driving the asset price dynamics or practical issues such as the frequency or

amount of data that should be employed in the estimation.

Model assumptions for asset price dynamics and the choice of data employed in the estimation of

volatility are generally not independent modeling decisions. Until now, the literature has developed

a large number and diverse range of volatility models that are applied in different contexts and

to various financial applications. However, most of these models have been developed and tested

by employing data sets that make use of a very small subset of the complete sample of available

trades. In fact, the common approach has been to employ low frequency data, say one data point

per trading day, when there could be thousands of intra-day observations.

Relying only on daily observations results in the discarding of a significant amount of information

which in some asset classes, such as equity, can account for more than 99% of the available data.

On the other hand, it is not clear whether employing as much data as possible will unequivocally

improve the accuracy of the volatility estimates. The answer to the question of whether more data

is preferred to less depends not only on quantity, but also on quality.

The highest resolution of stock price data is tick-by-tick data. It could be either a record

of every trade or every trade and quote (including bid and ask). For a long time, the market

microstructure literature has highlighted the difficulties arising from such high frequency data (see

for instance Black (1986)). One of the key problems is a ‘quality’ issue since tick-by-tick data

contains microstructure noise. In other words, tick-by-tick prices consist of the true or efficient

price plus noise. Therefore, the approach of using all observations may lead to entirely different,

and possibly misleading, results to those obtained if the high frequency data were to only contain

the true price, i.e. no microstructure noise. Zhang et al. (2005) look into the question of how often

it is optimal to sample a continuous-time diffusion process in the presence of microstructure noise.
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One of the objectives of their work is to look at the delicate balance between quality and quantity

of the data. They show, under a set of assumptions governing the dynamics of share prices, that

estimating the volatility of the true price process uses neither all available data nor a limited subset

of trades such as the daily observations previously described.

In this paper we aim to provide estimators for the variance and covariance matrices of stock

returns. The main obstacle we face is to identify estimators that are not tainted by market mi-

crostructure noise. To this end, we propose a Kalman filter-based approach where we not only

obtain efficient volatility estimators, but also generate efficient covariances between several assets

and high frequency returns that are not affected by the microstructure noise. The Kalman-based

volatility estimator we propose is a best estimator in the Cramér-Rao criterion sense, with a RMSE

as small as that of the Maximum Likelihood Estimator proposed by Aı̈t-Sahalia et al. (2005). More-

over, our proposed estimator is better, according to the RMSE metric, than the non-parametric

estimators that the current literature has proposed to deal with the presence of market microstruc-

ture noise. The Kalman filter approach also offers us the ability to generate de-noised series for

each asset price, and by applying common estimators of covariance to the filtered series we can

build a best unbiased estimator of the covariation matrix.1

We illustrate the significance of our results with two examples. First, we show that the efficient

frontier and the optimal weights of a portfolio differ significantly when high frequency data, rather

than daily data, are used. More precisely, we show that an efficient frontier will vary in location

and shape according to whether it is calculated using daily data, high frequency data with mi-

crostructure noise, or high frequency data without microstructure noise. Therefore, for a given risk

target, a portfolio manager would have three different portfolio mixes to choose from depending on

the data set employed, when in theory only one of these choices is correct. For example, an efficient

frontier calculated with high frequency data, with microstructure noise, exhibits greater levels of

risk, per level of return, than those exhibited by a frontier calculated using daily observations or

a frontier calculated using high frequency data where the microstructure noise has been filtered

out. Moreover, we find that the filtered high frequency efficient frontier also differs from the daily

one. Finally, our results also show that measurements of log-returns will be different depending

on the frequency and quality of the data used. As an example, we calculate the log-returns of the

Dow Jones Industrial Average (DJIA) index constituents and find that for the majority of stocks,
1There are other recent studies that also employ state-space models to extract the true efficient price from prices

with microstructure noise, see for instance Menkveld et al. (2007), or to model the dynamics of the volatility skew
Bedendo and Hodges (2009).
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daily log-returns are lower than high-frequency (filtered and unfiltered) log-returns. We find that

the difference in returns is not negligible; on average daily log returns are around 2.5% lower than

log-returns calculated with a high frequency data base where the microstructure noise has been

filtered out.

In the second example, we compute the equity beta in the Capital Asset Pricing Model (CAPM).

We show that assets’ systematic and unsystematic risk are different when we take into account the

additional information provided by high frequency data. We calculate equity betas for the DJIA

constituents over the period January 2005 to December 2006. On average the equity betas are

approximately the same whether we use daily or filtered high frequency data. However, when we

look at every individual stock the differences in the equity beta estimates are frequently significant.

For example, the equity beta for Eastman Kodak using daily data is 1.071, but when filtered high

frequency is employed the equity beta becomes 0.61.

The rest of the paper is organized as follows. Section 2 describes the framework for stock

dynamics which we use in our volatility and covariation analysis. It also summarizes the existing

literature on estimating the volatility of assets and highlights the difficulties that arise due to the

existence of market microstructure noise. Section 3 proposes a Kalman filter-based approach to:

estimate the volatility of log-returns; construct the de-noised true path of the assets; and finally,

estimate the variance-covariance matrix (VCM) between multiple assets. Section 4 considers how

to consistently estimate the total covariation between a large number of financial assets. Section 5

discusses how decision making in portfolio theory and measurements of cost of capital components,

such as the equity beta in the CAPM framework, are affected by the frequency of the data set

employed in the calculations. Section 6 concludes.

2. Background

Engle (2000) mentions that “one measure of progress in empirical econometrics is the frequency

of data use”. Initially one would expect that the consistency of estimators is improved by the

resolution of data employed, that is, the higher the frequency the better the consistency. This

is one of the main reasons why the current literature has focused on the use of financial data at

higher frequencies, for instance tick-by-tick data. The study of volatility of stock returns in a high

frequency setting is perhaps the most active exponent of this line of research. Below, we summarize

the existing methods currently proposed in the literature to measure realized volatility based on
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high frequency data for a diffusion model, which is the framework we will use in this paper.

Following Zhang et al. (2005), we assume that the log-price of a security follows a semimartingale

process defined in (Ω,F ,P) given by

dXt = µ(Xt; θ)dt︸ ︷︷ ︸
drift component

+ σdWt︸ ︷︷ ︸
diffusion component

, (1)

where Xt = lnSt and St is the price of the security, X0 = 0, µ(Xt; θ) is the drift function with θ

a drift parameter, σ > 0 is the diffusion coefficient and Wt is a standard Brownian motion under

the probability measure P. For our analysis, we assume that the object of interest σ is constant

through each day and estimate it using high frequency data where it is possible to sample at

different resolutions; the highest possible being tick-by-tick data. In our study the resolution is

such that time-intervals between observations are short enough to make the drift component in (1)

negligible. This is because the drift component µ(Xt; θ)dt is of order dt, while the order of the

diffusive component σdWt is dt1/2. Therefore, as dt → 0 the drift term is much smaller than the

diffusion. Hence we can assume that

Xt = σWt, t ∈ [0, T ]. (2)

Furthermore, we assume that the observations are equally spaced, so the time interval between

them is constant and equal to ∆. The observations are recorded at times ti = i∆ with tN = N∆ = T

for i = 0, . . . , N .

The assumption that data are equally spaced is arguably not optimal if we consider actual

tick-by-tick data. Generally, with financial data the time intervals between consecutive trades

is not deterministic or constant. This fact has lead the literature to propose models such as the

Autoregressive Conditional Duration (ACD) model,2 introduced by Engle and Russell (1998), which

uses the concept of GARCH models to capture the durations between trades. Several extensions

of this ACD model have also been proposed in the literature. These include, the logarithmic-

ACD model proposed by Bauwens and Giot (2000), which prohibits negative durations without

the additional assumptions in the ACD model; the Exponential-ACD model of Dufour and Engle

(2000); and the Threshold-ACD model of Zhang et al. (2001).
2The volatility research uses such models in the Ultra-High-Frequency GARCH model proposed by Engle (2000),

a model that incorporates the time interval parameter into the volatility process given by a GARCH representation.
The Ultra-High-Frequency GARCH model gives us volatility estimates at very small frequencies.
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The variance of (2) can be obtained by

RV
(all)
X = [X,X](all)T :=

N∑
i=1

(Xti −Xti−1)2. (3)

RV
(all)
X is known as the realized variance of the log-price process and is equal to the sum of the

squared log-returns Xt. The notation (all) means that we use all observations in the sample. This is

the most efficient way to compute the σ2 of the process given in equation (2). Therefore, RV (all)
X is

the unbiased and consistent estimator of the variance that drives the stochastic differential equation

for the log-price Xt.

However, as mentioned above the problem we must address is that at higher frequencies the

existence of microstructure error causes difficulties when estimating the true variance of the efficient

price Xt. In fact, the efficient price Xt is no longer observable due to the microstructure error,

see Andersen et al. (2004) and Andersen et al. (2006). By microstructure error we mean: the

bid-ask bounces; differences in trade sizes; and other sources that lead to price changes related to

asymmetric information held by traders, etc.

The log-price in the presence of microstructure noise may be modeled by

Yt = Xt + εt, (4)

and using (3), its realized variance is calculated as

RV
(all)
Y = [Y, Y ](all)T = [X,X](all)T + 2[X, ε](all)T + [ε, ε](all)T . (5)

Here, Yt is the observed log-price, equal to the true efficient log-price Xt plus an error term εt that

captures all types of the microstructure error described above. This representation is consistent

with microstructure models such as Easley and O’Hara (1992), where the arrival of information

and the timing of trades affect the true price.

The object of interest here is RV (all)
X , which differs from the result obtained using the observed

values of the log-price Yt, due to the existence of market microstructure noise. If we assume that

the εts in equation (4) are i.i.d. noise, with mean zero, variance σ2
ε , independent of Wt, and so

orthogonal to the efficient price Xt (εt⊥Xt), 3 Zhang et al. (2005) show that the realized variance
3In section 3.2 below we discuss the case where the noise term εt could be correlated to the true price Xt.
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obtained from Yt is dominated by the variance of the noise term, as follows

E
(
RV

(all)
Y |Xt

)
= RV

(all)
X + 2NE(ε2), (6)

Var
(
RV

(all)
Y |Xt

)
= 4NE

(
ε4
)

+Op(1). (7)

From equations (6) and (7) we can see that there is a tradeoff between quantity and quality

of data. Equation (6) shows that the higher the sampling frequency N , the larger the bias of the

estimator of the realized variance of the efficient log-price will be. And from (7) we see that the

same holds true for the variance of our estimator which becomes more problematic as the sampling

frequency increases especially at high frequencies.

2.1. Literature Review: non-parametric high frequency volatility estimation

In practice, using the whole data set at higher frequencies is not a common alternative for estimating

the realized variance of asset log-returns. The preferred approach has been to sample at relatively

low frequencies in order to reduce the bias introduced by the noise. Typically, daily realized

variance is measured by sampling on an infrequent basis, for instance at 5-minute or at daily

intervals. Assuming that the noisy signal is of the form (4), and that there are observations every

second, the estimator we obtain for the volatility component is not as biased as the one that uses

all the observations; however it is clear that it might not be the most efficient estimator. It is

reasonable to expect that arbitrarily discarding data is not optimal.

By sampling at five-minute intervals the realized variance of the noisy price signal becomes:

RV
(5min)
Y = [Y, Y ](5min)

T =
N5min=78∑

i=1

(Yti − Yti−1)2. (8)

In general, the estimator of volatility with infrequent or sparse data, i.e. when not all data are

used, is given by

RV
(sparse)
Y = [X,X](sparse)T + 2[X, ε](sparse)T + [ε, ε](sparse)T , (9)

with

E
(
RV

(sparse)
Y |Xt

)
= RV

(sparse)
X + 2N(sparse)E

(
ε2
)
. (10)
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It is clear that the bias in equation (10) is smaller than in the case where all observations are

used in the estimation, RV (all)
T , because N(sparse) is much smaller than N . For instance, for one

day N(sparse) = 78 while N = 23, 400 when there is an observation every second. Moreover, the

variance of the sparse estimator is given by:

Var
(
RV

(sparse)
Y |Xt

)
= 4N(sparse)E(ε4) +

2T 2σ4

N(sparse)
. (11)

Equations (10) and (11) show the effect that the sampling frequency has on the properties of

the volatility estimator. On the one hand, (10) demonstrates that sampling at low frequencies

decreases the bias of the estimator. On the other hand, (11) indicates that the variance of the

estimator is either increasing or decreasing in N(sparse). This could explain why empirical studies

have found that the proxy for the daily variance, based on daily observations, is more volatile than

the estimator resulting from RV(sparse) at higher frequencies (see Andersen and Bollerslev (1998)).

Zhang et al. (2005) propose the use of the optimal sampling frequency

n∗sparse =
(

T 2

4E(ε2)2
σ4

)1/3

(12)

an outcome resulting from minimizing the mean squared error of the sparse estimator. This result

appears in Bandi and Russell (2008) where they also provide an estimate of the second moment of

the noise term, given by

Ê(ε2) =
1

2N
RV

(all)
Y . (13)

Yet a more efficient estimator of the realized variance, than the one given by sampling at the

optimal frequency n∗sparse in equation (12), is obtained by subsampling the series over different

grids, computing the realized variance at each grid, and then averaging the realized variances of

the grids to derive the final estimator, given by

RV
(avg)
Y =

1
K

K∑
k=1

RV G
(k)

Y , (14)

where RV G
(k)

Y is the realized variance for each grid and K is the total number of grids. This

estimator is still biased but the bias is smaller than that of the sparse estimator, see Zhang et al.

(2005).
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Finally, the so-called first best estimator, in the non-parametric setting, of the log-price process

variance is defined by Zhang et al. (2005) as

TSRVY = RV
(avg)
Y − N̄

N
RV

(all)
Y , (15)

which is the biased, corrected estimator of our object of interest [X,X]T , with N̄ = N−K+1
K and

where TSRV stands for Two-Scale realized volatility estimator.

The application of the TSRV has been tested in empirical studies using both Monte Carlo sim-

ulations and financial data. Extensive research can be found in Aı̈t-Sahalia and Mancini (2006)

where they compare the TSRV and RV
(sparse)
Y for forecasting integrated variance. The method-

ology they use to compare the two estimators is based on the concept of encompassing regression.

That is, one regresses the true volatility on two factors, where the second factor is derived from a

subset of the information set of the first. We expect the second factor to have a small effect on the

total explanatory power of the model. This is the case with the two estimators used in Aı̈t-Sahalia

and Mancini (2006). The RV (sparse)
Y is taken from a subset of the information set of the TSRV

and they show that it does not add any explanatory power to the volatility forecast. Therefore,

TSRV is the most efficient estimator in the non-parametric framework.4

2.2. Literature Review: parametric approach

In order to explore the similarities between the results of the parametric and non-parametric ap-

proaches, as well as to compare them with the results of our proposed approach, we now review

the parametric approach proposed by Aı̈t-Sahalia et al. (2005). This approach is based on the

classical maximum-likelihood estimation method and provides us with fully efficient estimators in

the Cramér-Rao sense.

Let us start with the case where no microstructure noise is present. Following the process of

equation (2) we can define the process of the log-returns as

ri = σ(Wti −Wti−1). (16)

By the definition of the Brownian motion we know that the log-returns are i.i.d. N(0, σ2∆) with
4Other volatility estimators proposed by the literature are briefly mentioned in the Appendix.
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∆ = ti − ti−1. An efficient estimator for σ2 could be obtained by maximizing the log-likelihood

l(σ2) = −N
2

ln(2πσ2∆)− r′r

2σ2∆
, (17)

where r = (r1, . . . , rN )′. The maximizer of l(σ2) is unbiased for σ2 with variance equal to

Var(σ̂2) =
2σ4∆
T

.

This result justifies why using all available data, without microstructure noise, is preferable; the

variance of the estimator decreases as the time-step ∆ shrinks. Using daily observations to estimate

the volatility parameter will result in a very volatile estimator compared to the one that incorporates

the information contained in the high frequency data. Therefore, in the absence of microstructure

noise, the use of an estimator based on subsets of the available data will most certainly lead us to

inaccurate conclusions.

When microstructure noise is present the framework does not change significantly. We assume

that the log-price is given by equation (4) and that the noise term is normally distributed, εti ∼

N(0, σ2
ε). In this case, the log-returns follow a moving average process of order one, MA(1), since

log-returns are given by

ri = σ(Wti −Wti−1) + εti − εti−1

= ζi + ηζi−1, (18)

where the ζi’s are i.i.d. N(0, γ2). Empirical evidence indicates that it is not always the case that

stock returns exhibit the MA(1) structure in the dynamics of returns, something that requires

alterations in the likelihood function.5 Here we assume that the stock returns follow an MA(1)

structure.

Using the relations

γ2(1 + η2) = σ2∆ + 2σ2
ε , (19)

γ2η = −σ2
ε , (20)

5Cases where the MA(1) structure is not present requires a different specification of the microstructure noise term
allowing for covariation between the noise εt and the asset price Xt, or the autocorrelation of the microstructure
noise (relation between εt and its past values). Section 3.2 below describes how the Kalman filtering is applied in the
case where the microstructure noise is correlated with the price process.
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we can estimate σ2, as well as the variance of the microstructure error, by estimating γ2 and η.

Since the log-returns follow an MA(1) the log-likelihood function is given by

l(η, γ2) = − ln det(V )/2−N/2 ln(2πγ2)− 1
2γ2

r′V −1r, (21)

where γ2V is the covariance matrix of the returns and

V =


1 + η2 η 0 . . . 0

η 1 + η2 η . . . 0
...

...
...

. . . η

0 · · · 0 η 1 + η2

 .

An interesting feature that should be mentioned is that wrongly specifying the distribution of

the noise term will not alter the asymptotic properties of σ̂2. The σ̂2 is fully efficient and we can

also obtain an estimate for σ̂2
ε which can be of interest and can lead us to further lines of research.

3. Efficient volatility estimators: filtering microstructure noise

Our aim here is to present an estimation of the realized variance of a diffusion process based on

an unobserved components model. We will compare our results with the parametric and non-

parametric estimators discussed above. The idea is motivated by the linear filtering problem where

we have a Brownian motion plus other noise. Consider the case

dXt = σdWt,

Yt = Xt + εt (22)

where Xt is the unobserved true log-price, Yt is the observed noisy price, σ is constant and Wt

is a standard Brownian motion, independent of the Gaussian stochastic process εt. To filter out

the microstructure noise from the observed high frequency data Yt, we employ the discrete time

1-dimensional Kalman-Bucy filter and denote the de-noised series by X̃t, see Øksendal (2007) and

Durbin and Koopman (2001).

Therefore, instead of working with the observable series Yt, our approach is to work with X̃t

which we take as a proxy for the true efficient log-price Xt. Our method yields four interesting
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results. First, it allows us to obtain consistent estimators for both σ2 and the variance of εt. Second,

it allows us to generate the state series, i.e. the true efficient log-price. Third, the extraction of

the efficient log-price will allow us to better estimate the covariance matrix of several assets in a

more efficient way than the method employed in the literature to date. Finally, we also obtain an

estimate of the high frequency return which is not affected by the microstructure noise.

If we assume that we observe transactions at discrete times ti, for i = 1 . . . , N where N is the

total number of log-price observations, we can write the log-price process Yt in discrete time as

Yti = Xti + εti ,

where, over a time step ∆ = ti − ti−1,

εti ∼ N(0, σ2
ε), (23)

and since Xt is driven by Brownian motion it can be represented, in discrete time, by the random

walk

Xti+1 = Xti + ηti , with ηti ∼ N(0, σ2
η). (24)

Our objective is to consistently estimate σ2
η, which will give us the estimator for the variance of

the true efficient price σ2 and which is equal to σ2
η/∆.

Next, we use the filtering method by updating our information every time a new observation Yti

is brought into the information set Iti−1 = {Yt1 , . . . , Yti−1}. We assume that the distribution of Xti ,

conditional on Iti−1 , is given by N(X̄ti , Pti) where X̄ti = E(Xti−1 |Iti−1) and Pti+1 = Var(Xti+1 |Iti).

Given X̄ti and Pti , our aim is to calculate the next periods’ values, X̄ti+1 and Pti+1 , when Yti is

observed. This can be easily done by using the usual regression theory as follows. First note that

X̄ti+1 = E(Xti+1 |Iti) = E(Xti + ηti |Iti) = E(Xti |Iti) since E(ηti |Iti) = 0, (25)

and

Pti+1 = Var(Xti+1 |Iti) = Var(Xti + ηti |Iti) = Var(Xti |Iti) + σ2
η. (26)

Now define uti = Yti − X̄ti and Var(uti) = Fti . Using the law of iterated expectations and

the fact that E(uti |Iti−1) = 0 we see that the unconditional expectation of uti is equal to zero and
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independent from Yti . We also have that6

E(Xti |Iti) = E(Xti |Iti−1 , uti) = E(Xti |Iti−1) + Cov(Xti , uti)Var(uti)
−1uti . (27)

It is easy to show that the covariance between uti and the efficient log-price Xti is equal to

Cov(Xti , uti) = E(Var(Xti |Iti−1)) = Pti and Var(uti) = Fti = Var(Xti |Iti−1)+ Var(εti) = Pti +σ2
ε .

Therefore, equation (27) can be rewritten as

E(Xti |Iti) = X̄ti +Ktiuti , (28)

where Kti = Pti/Fti . Combining equations (25) and (28) we get the recursive relation

X̄ti+1 = X̄ti +Ktiuti ,

which constitutes our Kalman filter together with the following equations:

uti = Yti − X̄ti , Kti = Pti/Fti ,

Pti+1 = Pti(1−Kti) + σ2
η, Fti = Pti + σ2

ε .
(29)

We can estimate the parameters σ2
ε and σ2

η in two ways. The first approach is based on the

maximization of the likelihood function which is equal to the joint density of our observations

{Yt1 , . . . , YtN }. The loglikelihood function is given by

l(θ) = − (N/2) ln(2π)− 1/2
N∑
t=1

(
lnFti +

u2
ti

Fti

)
(30)

where θ = (σ2
η, σ

2
ε)
′ is the unknown parameter vector. Usually, it is more convenient to maximize

with respect to the log values of σ2
ε and σ2

η. Therefore, maximizing over φε = lnσ2
ε and φη = lnσ2

η,

the estimator for the variance of the process in the stochastic differential equation (1) is given by

σ̂2 = exp(φ̂2
η)/∆ (31)

where φ̂2
η is the MLE of φ2

η.

Alternatively, the second approach, and the one we use here, estimates the vector θ = (σ2
η, σ

2
ε)
′

6Using Lemma 1 in Section B of the Appendix.
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using the Expectation-Maximization (EM) algorithm proposed by Dempster et al. (1977).7 Since

the EM algorithm converges to a local maximum, instead of a global one, the choice of initial values

in the algorithm is important. In the simulations section below, we use the EM algorithm and use

as initial values: σ2 resulting from the TSRV ; and σ2
ε resulting from (13). More details about the

algorithm can be found in Harvey (1990).

With the estimates σ̂2
ε and σ̂2

η and the state series of the log-price given by the Kalman recursive

equations (29) we can obtain the de-noised series of observed log-price process, which we denote X̃t.

This is an important step in our procedure since we can estimate the variance σ2 of the true price

process Xt by calculating [X̃, X̃](all)T . This allows us to obtain an estimator of the true variance

which is numerically close to the σ̂2 (given in (31)), as they have the same RMSE value. Moreover,

it is very useful to base calculations on X̃t when we face the high dimensionality problem which

results from estimating the VCM of several assets. For instance, the de-noised series X̃t can be

used to derive efficient estimates of the VCM of asset returns in a straightforward way that will be

described below.

The estimators for both microstructure error and efficient price series variances are fully efficient

in the Cramér-Rao sense criterion because they result from the maximum likelihood estimation

given by equation (30). Hence, this property makes our proposed approach ideal for empirical high

frequency analysis. It provides a great deal of flexibility in efficiently estimating the VCM between

assets, when we face high-dimensionality problems, and in calculating the de-noised high-frequency

returns.

To summarize, there are three points where our approach can enhance the financial high fre-

quency analysis. First, we can estimate the variance of the microstructure noise. Second, we can

estimate the variance of the efficient series Xt. (Note that these two estimators are as efficient as

those proposed in Aı̈t-Sahalia et al. (2005)). Third, we can generate the state series X̃t, which is

a proxy of the real price process Xt. This third point is the one that connects the findings of the

univariate with the multivariate case. It allows us to generate efficient estimates of the VCM when

a large number of assets is present. The estimates we obtain play a fundamental role when we look

at applications such as risk and portfolio management and, in addition to calculating VCMs, we

also achieve de-noised high frequency returns.
7The EM algorithm has been used in the literature to estimate unknown parameters in unobserved components

models, such as the one described by equation (23) (for instance, see Watson and Engle (1983)).

14



3.1. Simulation results

At this point we use equation (4) to simulate noisy price paths so that we can assess the properties of

the estimators of the volatility of Xt, when microstructure noise is present. We draw comparisons

from two perspectives. First we compare six volatility estimators, including our Kalman-based

estimator, by looking at the RMSE for each one. The estimators we compare are: [I] RV (all)
T , [II]

RV
(sparse)
T , [III] RV (avg)

T , [IV] TSRV , [V] MLE and [VI] Kalman. By comparing the RMSEs of all

estimators we provide evidence that, in terms of efficiency, the Kalman-based estimator we propose

is better than the non-parametric estimators ([I] to [IV]) and is close to the MLE estimator.

The second method of comparison allows us to consider the validity of calculating estimates of

volatility of log-returns using the de-noised price series X̃t. As it was argued above, the classical and

straightforward estimators of volatility fail because microstructure noise, at the high frequency level,

swamps the true volatility estimates. The classical estimators, for instance RV (all)
T , are designed to

obtain efficient and unbiased estimates, but are not designed to cope with microstructure noise. Our

Kalman methodology however, not only delivers an estimate of the volatility of the true efficient

log-returns when the data contain microstructure noise, but also enables us to generate a proxy for

the true efficient log-price series. Hence, using X̃t as the log-price series we propose to estimate the

volatility of the true log-returns by calculating [X̃, X̃](all)T . Secondly, by looking at its RMSE, we

can gauge how efficient this estimator is relative to estimators [I] to [VI]. We label this approach

as the ‘Filtered estimator’.

Before examining the comparison of high-frequency estimators it is important to stress that,

in terms of efficiency, estimators based on daily data could perform worse than the high frequency

estimators [I] to [VI]. Figure 1 helps us to illustrate this point and further justifies the analysis that

follows. It presents the difference between the MLE fully efficient estimator, denoted by σ̂MLE ,

and the volatility estimator based on daily observations, denoted by σ̂daily. The latter is calculated

by employing (3) and using daily closing prices, for British Petroleum (BP) over 2003. The σ̂daily is

much more volatile than σ̂MLE . And this is consistent with the results presented by Andersen and

Bollerslev (1998), where the realized volatility based on intra-daily data is less volatile than the

volatility based on closing prices. In the same figure we see that σ̂daily could give us estimates over

a range [0%, 75%] for the level of volatility expressed on a yearly basis while σ̂MLE has a maximum

value of 35.46% which seems more plausible for the period under examination. We repeat the

exercise for MSFT (not depicted in the figure) and find that the results for σ̂daily are worse over
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the same period. In some cases, the volatility estimate is more than 70% while the σ̂MLE varies

from 10% to 40%. Crucial to these findings is that for daily observations we only take into account

the 252 observations for each working day in 2003, as opposed to the total population of 623, 759

observations available for the whole year, i.e. estimates based on daily data employ less than 0.05%

of the total information.

We now focus on the comparison of the six high frequency volatility estimators using Monte

Carlo simulations to produce price paths using equation (4). We do this to examine in more detail

which high frequency estimator is the most efficient for empirical research. In the simulations, each

day has 23, 400 observations, equivalent to the total number of seconds in one trading day, and we

assume that σ2
ε = 1×10−6, σ2 = 0.09, ∆ = 1/23, 400 and the starting value of the asset is S0 = 30,

so X0 = lnS0 = 3.4012. We implement this procedure 1, 000 times and vary the value for σ2
ε to

verify the robustness of the results. The different values of σ2
ε do not alter the main findings which

we describe below.

The results of our first comparison of the different estimators are summarized in Figure 2 where

we can see that the Kalman-based approach exhibits the lowest RMSE of the six estimators. From

Figure 2 it is clear that the RV (all)
T applied to the noisy signal Yt yields the worst estimator of the

true σ2 (its value, on average, is equal to 0.1370). This estimator has the largest RMSE; a result in

agreement with Zhang et al. (2005). Therefore, naively using all observations at high frequencies is

undesirable if the objective is to obtain consistent estimators of volatility. The microstructure noise,

which is present and relevant at these frequencies, leads us to an estimator with an excessively high

RMSE.

The sparse sampling estimator [II], where we sample every 5 minutes, is again very misleading

relative to the true variance. Recall that this estimator does not take the whole data set into

account and this is why the estimate of the true value of the variance of the log-returns is very

poor.

The next estimator we employ is the RV (avg)
T , where we recall that it uses all available observa-

tions. Figure 2 denotes the RMSE of this estimator by RVgrid. We can observe that this estimator

has a smaller RMSE than the previous two, but we know from the theoretical analysis in Section

2 that we can do better by using the TSRV estimator as shown in Figure 2 .

Finally, the result we highlight is that the Kalman filter approach also has a small RMSE, which

is very close to the RMSE of the MLE estimator. The Kalman estimator is fully efficient in the
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maximum likelihood estimation method sense and it can be used to find best estimators for the

variance of the efficient log-price, given the existence of microstructure noise.

The results of our second method of comparison are shown in Figure 3. Here we see more clearly

the difference between the RMSE of the TSRV , which is the 1st best non-parametric estimator

in Zhang et al. (2005), and the RMSEs of the MLE and Kalman based estimators. The TSRV

exhibits greater RMSE than that of the MLE and Kalman. Furthermore, the figure also shows

the RMSE of the Filtered estimator [X̃, X̃](all)T which is as small as that of the MLE estimator (its

mean value over the total number of simulations is equal to 0.0902). This is an important result

because it is a strong indicator that X̃t is actually a good proxy for the real log-price.

3.2. Extension

Before going into the high-dimensional volatility estimation problem we briefly analyze the case

where the microstructure noise is correlated with the price process and discuss the assumption of

constant volatility throughout the trading day.

There are both empirical evidence and theoretical models, see for instance Glosten (1987) and

Hansen and Lunde (2006), where the microstructure process εt could be correlated with Xt. The

Kalman approach provides ample flexibility in this setting and it has to be modified to estimate the

extra parameter responsible for the correlation between the two processes. In this case the filtering

equation is modified in the following way. First assume that

E(ηtεs) =


Gt, t = s

0, t 6= s.

(32)

Now the variance of the uti , Fti in equation (29), has an extra component coming from the

correlation of the price and microstructure noise. This gives the following relation:

Var(uti) = Fti = Var(Xti |Iti−1) + Var(εti) + 2Cov(Xti , ε) = Pti + σ2
ε + 2Gti . (33)

And, since

Cov(Xti , uti) = Cov(Xti , Xti + εti − X̄ti) = Pti +Gti (34)
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we can write

Kti =
Pti +Gti

Fti
. (35)

Therefore the equation for Pti+1 , also known as Riccati equation, becomes

Pti+1 = Pti −
(Pti +Gti)

2

Fti
+ σ2

η. (36)

The unknown parameters σ2
η, σ

2
ε and Gti can be estimated by the maximum likelihood approach

described above, see equation (30). The likelihood function (30) is now given by modified updating

equations described in this subsection (equations (33)-(36)). An alternative method to estimate

the parameters is to modify the system in such a way that the new one will have uncorrelated

disturbances. For further details we refer to Harvey (1990) and Chan et al. (1984).

We note that as in Aı̈t-Sahalia et al. (2005) we also assume that volatility is constant throughout

the day; an assumption supported by the findings in Oomen (2006). However, it is a well known

fact that volatility exhibits an intra-day pattern: higher during the opening and closing hours (≈

9.30 - 11.00am and ≈ 15.00 - 16.00pm respectively) and lower during the rest of the trading day.

In principle it is possible to incorporate this volatility U-pattern in a state-space setup by allowing,

for example, for a smooth trend in volatility (see Harvey (1990) for more details). However, unless

one puts restrictions on such a specification the volatility will be stochastic, and this does not fit

into our overall framework. Alternatively, one might think of specifying volatility as a nonlinear

deterministic function of time capable of producing this U-shape. An idea on how this could be

implemented could be found in Wood et al. (1985).

4. Estimating the variance-covariance matrix of multiple assets in

the presence of microstructure noise

The univariate volatility estimators can be extended to the case of multiple assets. Of course, for a

portfolio or a risk manager the object that plays an important role is not just the volatility of one

asset, but the VCM of the assets in the portfolio. In the case of several assets, the above results

in a univariate set-up can be used to obtain the diagonal elements of the VCM by using one of

the above estimators. Since we examine the case where the volatility is constant through the day,

but can change from day to day, the best way of estimating the diagonal elements of the VCM,
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which we denote by Σt, is by using the MLE or the Filtered estimator, that is, to work with the

de-noised log-price series X̃t. Furthermore, we also have to estimate the off-diagonal elements of

Σt, not a straightforward task given to the large number of those elements.

The market is now given by an F (n)
t -adapted (n+ 1)-dimensional Itô process

X(t) = (X0(t), X1(t), . . . , Xn(t)) with 0 ≤ t ≤ T,

where X0(t) is the log-risk-free asset,

dXj(t) = µjdt+
n∑
k=1

σjkdWk(t), for j = 1, . . . , n, (37)

and Wk(t) is an n-dimensional standard Brownian motion.

The aim is to estimate the VCM given by

Σt = Var(Xj(t)) = E(Xj(t)Xj(t)′) =


σ2

1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σ2
n

 , when µj = 0,∀j. (38)

A crucial problem when using financial data is the so-called non-synchronized data problem.

This is the difference between the frequency of transactions for different assets. It is clear that a

very liquid asset, for instance Microsoft (MSFT), has, on average, observations every 2 seconds,

while BP, or other less liquid assets, have fewer observations throughout the trading day. Moreover,

these observations may occur at completely different times. In our analysis we are using minutely

observations, taking the last observation of each minute for each asset.

One of the assumptions in our analysis is that volatility is constant on a daily basis. This

assumption allows us to use the more efficient estimator, MLE or Kalman, instead of the TSRV

non-parametric estimator. The stochastic volatility case can be explored by using the TSRV

estimator but the complexity increases for the off-diagonal elements of the Σt defined in (38) due

to multiple grids that appear for each element of the two assets.

In the case where microstructure noise is not present, the efficient estimators for the diagonal
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elements of Σt are given by

σ2
j = RV

(all)
Xj

=
N∑
i=1

(Xj(ti)−Xj(ti−1))2, 1 ≤ j ≤ n,

and for the off-diagonal covariances of the assets j1 and j2

σj1j2 =
N∑
i=1

(Xj1(ti)−Xj1(ti−1))(Xj2(ti)−Xj2(ti−1)), for j1 6= j2, (39)

see Hayashi and Yoshida (2005) and Zhang (2006).

But again, for higher frequencies, the microstructure noise also affects the estimators for the

covariances of assets. This can be seen in the following equation, which gives the covariance between

two assets in the presence of microstructure noise.

σj1j2 =
N∑
i=1

(Yj1(ti)− Yj1(ti−1))(Yj2(ti)− Yj2(ti−1))

=
N∑
i=1

(Xj1(ti)−Xj1(ti−1))(Xj2(ti)−Xj2(ti−1))

+
N∑
i=1

(Xj1(ti)−Xj1(ti−1))(εj2(ti)− εj2(ti−1))

+
N∑
i=1

(Xj2(ti)−Xj2(ti−1))(εj1(ti)− εj1(ti−1))

+
N∑
i=1

(εj1(ti)− εj1(ti−1))(εj2(ti)− εj2(ti−1)).

(40)

We are interested in estimating the first term in equation (40). However, the remaining terms

in (40) make the covariance estimator biased-inefficient. In the literature, we can find estimates of

the whole matrix using the TSRV for the diagonal elements and co-variation using data from an

infrequent time interval of 5 minutes. These estimates are not the best, as shown in the simulations

section above. Here we use the proposed method of Kalman filtering to derive efficient estimates,

with very small RMSEs, for both the diagonal, and the off diagonal elements of the VCM.

Using the same arguments as in the univariate case, a covariation estimate based on sparse

sampling would not be the most efficient one because we arbitrarily discard information from both
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assets to estimate their covariation. Therefore, we propose to use a framework where we choose

the most efficient estimators in order to obtain the efficient VCM in the presence of noise. Our

assertion is that we can do better than the non-parametric estimators (see for instance Wang et al.

(2007)), in terms of efficiency, by using the Kalman-based estimator and the state series X̃j(t), as

defined and computed for the univariate case in Section 3.

The framework we propose is a two-step procedure. First, we apply the Kalman filter to the

n assets to generate the filtered X̃j(t) series (j = 1, . . . , n). The second step applies standard

estimators to X̃j(t).

In this way we calculate the off-diagonal elements of Σt using

σj1,j2 =
N∑
i=1

(X̃j1(ti)− X̃j1(ti−1))(X̃j2(ti)− X̃j2(ti−1)), (41)

which delivers the efficient realized co-volatility between assets j1 and j2 in the presence of mi-

crostructure error. Furthermore, the diagonal elements of the VCM can be efficiently estimated by

applying either the MLE or the Filtered estimator. This estimate of Σt is the most efficient we

can obtain and it is more efficient than the estimators proposed in the literature.

Once we have obtained an efficient estimation of the VCM, i.e. a measure of Σ̂t not affected by

the microstructure noise, we use it to study the effect that microstructure noise has on quantities

and parameters used in finance, such as portfolio theory and calculations of the cost of equity in

the CAPM.

Instead of the two-step approach we propose here for the estimation of the VCM, one could also

perform the filtering and estimation in one step, see Menkveld et al. (2007). We use the simpler

two-step approach because of the dimensionality of the problem (we deal with a VCM for 28 assets)

and because in our framework we have assumed that: the microstructure noise is not correlated

with the price innovations, it is not autoregressive, and microstructure noise is not correlated across

different stocks.

5. Empirical results: portfolio efficient frontier and equity beta

In this section we compare how the estimate of parameters used in portfolio theory and in the

CAPM can differ depending on the resolution of data employed in the estimation. In particular,
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we show how the location and shape of the efficient frontier of a portfolio of assets is affected by

the use of low and high frequency data (with and without microstructure noise). Furthermore, we

calculate equity betas for a number of firms and see how the frequency and quality of the data

impinges on the results.

5.1. Efficient frontier

To calculate the efficient frontier for a portfolio of n assets, we need the n×n VCM and the returns

of the assets. Depending on the data we employ, there are many ways of calculating the VCM and

the returns used in the applications below. Some of the choices are: filtered and unfiltered high

frequency and low frequency data. To differentiate the four cases that arise from the data used to

calculate the VCMs, we denote them by:

• Σ̂t,daily the VCM resulting from the traditional approach, where daily observations are em-

ployed.

• Σ̂t,filtered, and refer to it as the “Filtered-Kalman”, the VCM resulting from working with

de-noised price series X̃j(t),

• Σ̂t,HF , and refer to it as the “unfiltered high frequency”,

• Finally, Σ̂t,5min, and refer to it as the “high frequency 5-min midquotes”, the VCM resulting

from using high frequency midquotes at a 5-min frequency.

Similarly, the calculation of returns can also be done by either using daily closing prices or employing

the high frequency data set.

We present two examples. The first one calculates the efficient frontiers and optimal portfolio

decisions with two assets and focuses on the difference in results arising from using Σ̂t,daily, Σ̂t,filtered

and returns calculated on daily and filtered high frequency basis. The second example uses the

constituents of the DJIA and compares efficient frontiers and optimal portfolio decisions as in the

first example, but includes the cases arising from using unfiltered or noisy high frequency data, i.e.

employ Σ̂t,HF in the calculations, and the 5-min midquote data.

Example 1: Portfolio management with 2 assets

In this example we look at MSFT and Intel Corporation (INTC) over the period March 1 to June

30 2007. Our data set consists of tick-by-tick and daily closing prices for both assets. The former
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data set is obtained from NYSE Trades and Quotes (TAQ) and the latter from the Centre for

Research in Security Prices (CRSP) database.

A practical problem we face when using the high frequency data is that, although very seldom,

there are one minute intervals throughout the day where there are no trades. In these cases we do

not have 390 observations per asset per day, that is an observation for every minute from 9.30am

to 4.00pm. To overcome this difficulty we prepare the data by filling the missing observations with

the price of the preceding observed trade. For example, if over the period 9:35am to 9:36am there

was no trade, we assume that there was a trade and take the price of the trade used for the slot

9:33am to 9:34am.8 MSFT and INTC are very liquid assets so the number of missing values is very

small relative to the total number of observations.9

To understand the effect of the high frequency data on the VCM and returns, we first show two

efficient frontiers, one based on Σ̂t,filtered, which uses data every minute, that is 33, 150 observations

for each asset, and the other one Σ̂t,daily, and in both cases the returns vector was calculated using

daily observations. We then repeat the exercise with the same two VCMs, but use the returns

vector resulting from employing the filtered high frequency data set.

Following the formulas for the realized variance and the covariation of two assets, we have

Σ̂t,daily =

 0.029255 0.014126

0.014126 0.045429

 , (42)

while the estimator of the covariance matrix, based on filtered high frequency data, is equal to

Σ̂t,filtered =

 0.033651 0.012790

0.012790 0.046540

 . (43)

It is worth highlighting the difference in the diagonal elements of the VCMs. Not only do

the diagonal elements of the matrix differ, but also the off-diagonal elements of the two matrices

are different. This is a crucial result that will have an effect on the trade-off between return and

risk. We know that the estimator based on daily data is not efficient because we discard a great

amount of information, whereas Σ̂t,filtered is more efficient and will give us a better view of the true

8When there is more than one trade within a minute, as is usually the case in liquid stocks, we take as observation
the last trade before the end of that minute.

9When we look at a portfolio whose constituents are those of the DJIA index, the number of missing values is
greater for less liquid assets, but still small enough so that the results are not affected. In fact the case where most
data was missing only accounted for 350 of the total sample of 33,150.
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covariation between assets. Recall that the covariation is calculated according to equation (41),

where we have filtered out the microstructure noise and we have used data at higher frequencies in

order to get better estimators for all the elements of the VCM.

Figure 4 depicts the efficient frontiers resulting from daily and filtered high frequency data

together with returns calculated from daily observations. It is clear that the efficient frontier

generated from the filtered high frequency data differs from that based on daily data, a direct effect

of the estimates of the covariance matrix, and crucially, as a result of the disparity in the covariance

between MSFT and INTC. This has an impact on the decisions that a portfolio manager should

take. We see that returns are overestimated for the same level of risk. For instance, with a 17%

risk, we face 42% return based on daily data, while the filtered high frequency data yields a return

under 41%.

If we take into account the returns that we get from the filtered high frequency data, i.e.

rt = X̃t − X̃t−1 , the filtered high frequency efficient frontier takes the form shown in Figure 5.

Compared to Figure 4, we have an upward parallel movement of the efficient frontier based on data

at higher frequencies. This is because when filtered high frequency data is employed to calculate

returns we get: rMSFT = 16.67% and rINTC = 58.67%, whereas, on the other hand, the return

based on daily data yields rMSFT = 14.39% and rINTC = 57.64%.

Now we give an example of how these differences in returns per level of risk, arising from the

granularity of the data, will affect the decisions and strategies taken by the management of a

financial institution. Suppose that the management aims at a minimum 30% return by investing

in a portfolio of two assets: MSFT and INTC. Therefore the optimization problem reduces to

minimizing the portfolio’s risk, keeping the return fixed, by changing the weights of the two assets

in the portfolio.

Formally, the manager solves the following optimization problem:

min σ2
p = w′Σw w.r.t. w

subject to rp = w′ri ≥ 30%, for i = 1, 2,
(44)

where rp is the return of the portfolio, calculated with either daily or filtered high frequency data

according to the case we examine, σp is the portfolio risk and w′ = (w1, w2) are the portfolio weights

of the two assets. We assume that short selling is not permitted, that is w ≥ 0.

We exemplify the difference in results depicted in Figure 5 by looking at four portfolios with

24



different return-risk targets, see Table 1. For instance, Portfolio I shows that a 30% return target can

be achieved by bearing 15.66% (resp. 15.64%) volatility when daily (resp. filtered high frequency)

data are used. Similarly, if the return target is 50% as in Portfolio IV, the volatility borne by

the investor employing daily data is 18.92% as opposed to 18.56% when filtered high frequency is

employed. Note that in all cases the portfolio risk when 5-minute midquote data are used is higher

than the Filtered-Kalman. This result is in line with the Monte Carlo findings above, where it

is shown that the estimates from the sparse sampling approach are biased by the microstructure

noise.

Furthermore, when using a high frequency analysis, in portfolio IV we see that by investing

20.65% in MSFT and 79.35% in INTC produces a return of 50.00% return with volatility 18.56%.

The computations of the efficient frontier for daily data have shown that the same weights produce

the same risk but the return is equal to 48.7% which is lower than the high frequency return. The

importance of this result is clear because using daily analysis in a large portfolio of a fund would

lead to a loss of 1.3% return by investing in assets in a non-optimal way. The combination of

the above weights leads the manager to take a smaller ‘true risk’ (the high frequency variance of

18.92%) than the one she had computed 19.15%.

Example 2: Portfolio management with DJIA stocks

The 2 × 2 case described above is interesting, but one must ask three further questions. First,

can the message be extended to larger portfolios? Second, what happens to the efficient frontier

when a relatively large number of assets are included? Third, what is the impact of employing

high frequency data but without filtering the microstructure noise? From equation (40) we see that

the impact of the microstructure noise in the 2×2 asset case is present and cannot be neglected;

an undesirable effect also present in the general n× n case. Hence, to illustrate the impact of the

microstructure noise in higher dimensional portfolios we solve the same portfolio program as above,

but with the DJIA constituents as the investment opportunity set.10 The dataset examined here

refers to the same time period as the one used above, i.e. March 1 to June 30 2007.

Table 2 shows the stocks used in our example. The table presents the volatility and the return

for each stock based on daily data and on filtered, unfiltered and 5-min midquote data. We use 28

out of the total 30 constituents of the DJIA because there are two stocks for which our data base
10Note that for simplicity we have not introduced a risk-free asset here.
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does not have a clean record.

From Table 2 it is clear that there are differences both in returns and in the volatilities for all

assets. The differences between the filtered high frequency data and daily data (as well as noisy

high frequency data) are considerable. For example, for Alcoa we see that the difference in the

estimates of mean returns and risk can be of up to 300 basis points for the returns and of up to

600 basis points for the risk estimates. These differences are not as pronounced when we compare

the results using the filtered high frequency data with those of the 5-min midquotes. For example,

the difference in the risk estimate of Alcoa using the filtered high frequency data and the 5-min

midquotes is of around 16 basis points. Although this difference may seem small compared to the

difference obtained when daily or noisy high frequency data are employed, below we calculate the

investment efficient frontier using the constituents of the DJIA and show that the relatively small

difference in basis points that we find on a per asset basis in Table 2 (for the filtered and 5-min

midquotes) becomes of economic significance when filtered high frequency data or 5-min midquotes

are employed in the calculations of the efficient frontier.

Proceeding as in the 2 × 2 case we calculate the 28 × 28 VCM. Tables 5 to 8 in the appendix

show that the filtered high frequency correlations are different from those obtained when daily

data are used. This difference in the elements of the correlation matrices has an effect on the

efficient frontiers.Figure 6 depicts four efficient frontiers that were calculated using Σ̂t,daily with

daily returns; Σ̂t,filtered with filtered high frequency returns; Σ̂t,HF with unfiltered high frequency

returns; and Σ̂t,5min with 5-min midquotes. It is interesting to point out that the difference in the

efficient frontier, between the daily and filtered high frequency frontiers, is similar to that obtained

in the 2 × 2 case. The unfiltered high frequency efficient frontier gives, for a given return target,

portfolios with much higher volatility levels than the other two frontiers. For instance, aiming at a

30% return the efficient frontier based on daily data has a risk of around 8.5%, with filtered high

frequency data we get a volatility almost equal to 9.4%, and with noisy high frequency observations

the volatility is much higher, close to 10.7%.

Further study of Figure 6 shows that the daily and filtered high frequency efficient frontiers cross

each other at close to the 10% risk mark. For lower levels of risk, daily data underestimate the

risks borne by an investor targeting returns below 4.5%. On the other hand, for risk levels greater

than 10% we see that the portfolio return based on daily data underestimates the returns that

can be obtained by certain combinations of the underlying asset. To examine this point further,

we compare these two efficient frontiers in Figure 7 by plotting the difference in returns for the
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same level of risk. To obtain this difference we fit the two efficient frontiers to ratios of polynomial

functions so that we can generate return values for same levels of volatility.11 The figure clearly

shows that for risk levels above 10% the returns obtained using the filtered high frequency analysis

are higher than those based on daily data. The portfolio manager therefore underestimates the

return of her portfolio for a great range of volatility levels, something that, in addition to the results

in Table 1 regarding the optimal portfolio weights, shows the importance of high frequency analysis

in determining decision making and in particular the use of filtered high frequency data.

Figure 8 shows the efficient frontiers calculated when the filtered HF and the 5-min midquotes

returns are employed. We see that for levels of portfolio risk below 16% the frontier calculated with

filtered data is to the left of the frontier based on 5-min midquotes. This result is in agreement with

the Monte Carlo analysis shown above where the estimates of the volatility based on the Kalman

filter are more efficient than those based on the sparse sampling approach (every 5-minutes) when

dealing with microstructure noise. The difference in the level of risk (for a given level of return)

between the two frontiers is attributed to the bias of the microstructure noise that has not been

sufficiently filtered out by the sparse sampling approach. Furthermore, Figure 9 shows the difference

in returns for the same level of risk when filtered high frequency data and 5-min midquotes are

employed; we observe that the difference is also of economic significance.

5.2. Equity beta

Now we focus on the computation of equity betas based on both daily and high frequency observa-

tions. We look at DJIA stocks over the period 03 January 2005 to 29 December 2006. We implement

the CAPM framework for 24 stocks for which we have a clean record over this period. We compare

the equity betas based on daily observations, which are extensively used by the literature, with the

equity betas we obtained from the filtered and unfiltered high frequency analysis.

Data are obtained from both CRSP and TAQ databases, as well as Fama and French Research

Portfolios and Factors database. In order to compute the equity beta, we perform the following

regression for all stocks

ri,t = rrf,t + βi(rMkt,t − rrf,t) + ei,t (45)

where ri,t is the return for each stock i, rrf,t the risk-free rate given by the One-Month Treasury Bill

rate, rMkt,t the return on the market portfolio and ei,t an error term. The equity beta could also

11See appendix for details.
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be computed as βi = Cov(ri, rMkt)/Var(rMkt). We implement equation (45) in order to examine

not only the differences in betas, but also the possible incongruities in the explanatory power of

the regressions given by the R2.

It is common in empirical research to estimate simultaneous equations by the Seemingly Un-

related Regressions model (SUR) in order to allow possible correlation between the errors. The

CAPM can be modeled as a SUR model with identical regressors (i.e. the difference between

the return of the market portfolio and the risk-free rate is the common regressor). In this case,

we know that the generalized least squares of the SUR model is equivalent to the ordinary least

squares. Therefore, we would obtain the same results by implementing a SUR model for every

single regression. More details about this result can be found in Greene (2008).

We sample the tick-by-tick data at every minute and perform the analysis described above

to filter the noisy data and extract the efficient log-price X̃t for each stock. The returns for the

filtered high frequency analysis are calculated by rt = X̃t − X̃t−1, while the return for the noisy

high frequency data is equal to r∗t = Yt − Yt−1. The same approach is applied to the DJIA index

tick-by-tick data to calculate the market return rMkt. We implement the CAPM regressions using

the DJIA index as the market portfolio. The total number of daily observations we have is 503,

while for the high frequency (every minute) data set we have 196, 170 for each stock. Therefore,

daily observations account for less than 0.3%, i.e. 503/196, 170 of the minute-by-minute data set.

Table 3 presents the results. It is clear that equity betas show significant differences depending

on whether we use the filtered high, unfiltered high, or low frequency information sets. We can

observe that high frequency equity betas could either be higher or lower than those resulting from

the daily analysis. For instance, HPQ’s beta is higher in the filtered high frequency analysis (1.044)

than the daily measure (0.870), while for EK we have a smaller equity beta (0.618) with higher

frequencies than the daily beta (1.071).

We also see crucial differences in the explanatory power of the regressions. Some stocks exhibit

a smaller R2 in the filtered high frequency analysis than the measure we obtain when daily data

are used. One interpretation is that there is more diversifiable risk for this asset than the daily

data suggests. On the other hand, there are assets where the filtered high frequency analysis

indicates that the asset carries more systematic risk than a low frequency study would suggest, see

for instance HPQ. But on average, the R2 is lower for the filtered high frequency data case.

Finally, from Table 3 we observe that for all stocks the unfiltered high frequency equity betas
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are greater than the filtered high frequency betas. Moreover, apart from three cases (JNJ, KO

and XOM), the unfiltered high-frequency R2s are lower than those of the filtered high frequency

analysis which, as expected, could be taken as an indication that the filtered data is less noisy than

the unfiltered one.

6. Conclusions

The present paper focuses on the high frequency volatility and covariation analysis of financial

assets in the presence of market microstructure noise. In our study we assume that the true

efficient log-price follows an arithmetic Brownian motion and that the noisy log-price is the true

log-price plus noise. We review several realized variance estimators that have been proposed in

the literature and, based on the Kalman filter methodology, we establish a framework that allows

us to: obtain efficient estimators for the variance of the price process; calculate the variance of

the microstructure noise; and generate the filtered series of the log-price process. Our estimator is

compared to others in the literature and we use Monte Carlo simulations to show that it achieves

very low RMSE relative to the other benchmarks, some of which have been designed to handle the

presence of microstructure noise at high frequency levels.

The fact that our approach allows us to generate the true efficient price series, or in other words,

that we are able to filter out the microstructure noise from the high frequency data, is important

in a univariate set up, but perhaps more important in a multivariate setting. Working with filtered

high frequency price series allows us to employ best estimators when calculating, for example,

variance-covariance matrices between several financial assets. Therefore, a direct consequence of

being able to work with data without microstructure noise makes our proposed variance-covariance

estimators more efficient than several estimators proposed in the literature.

The estimation of the covariation between assets is a crucial element in both theoretical and

empirical research in finance. Most applications, for instance portfolio and risk management, rely

on being able to accurately measure the volatility and covariation of assets. Regarding portfolio

management applications, we present two examples to show how the quality and quantity of data

used to estimate the different components of portfolio analysis have an important effect on the

overall result. We look at a small portfolio of two very liquid traded assets (MSFT and INTC) and

a large portfolio that includes stocks of the DJIA index. We compute and compare the efficient

frontiers we obtain from daily, noisy high frequency and filtered high frequency data. Evidence
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shows that there are crucial differences between the efficient frontiers. These differences lead to

different portfolio management decisions in terms of the risk-reward tradeoff or the portfolio weights

required to achieve a certain risk-reward target.

Moreover, we examine the CAPM equity beta estimates that we calculate from the three data

sets: daily, filtered high frequency and noisy high frequency data. Again, there is evidence that the

filtered high frequency estimates differ significantly from the daily estimates. The beta estimates

we obtain from the high frequency data are robust to the bid-ask bounce and other sources of

microstructure noise, as we have filtered the data. Moreover, the R2 values in the CAPM regressions

for filtered high frequency data are smaller than those obtained using daily observations.
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Appendix

A. Volatility estimators

Here we briefly mention some alternative estimators that have been proposed in the literature

to account for finite small samples, autocorrelation in the noise term and discontinuities of the

log-price process.

A further adjustment of the TSRV has been introduced by Zhang et al. (2005) in order to

achieve unbiasedness in finite samples, formally described as

TSRV
(adj)
Y =

(
1− N̄

N

)−1

TSRV. (46)

Hansen and Lunde (2004) propose an unbiased estimator that takes into account the possible

autocorrelation, say of order q in its general case, of the microstructure noise. The realized variance

is given by

RV
(AC(q))
Y =

N∑
i=1

r2(i) + 2
q∑

k=1

N

N − k

N−k∑
i=1

r(i)r(i+ k) (47)

where r(i) is the log-return.

The case where jumps are incorporated in the price path is examined by Barndorff-Nielsen and

Shephard (2004), who proposed the bi-power realized variation and multi-power variation. Other

approaches have been the Threshold realized variance of Mancini and Renò (2006) and the wavelet

realized volatility of Fan and Wang (2007).

Interesting studies where the price process is a pure jump process are those of Oomen (2005)

and Oomen (2006). In both approaches the price process follows a compound Poisson process.

Microstructure noise is incorporated in the process as the proposed variance estimator uses obser-

vations at the highest frequency level, at transaction level. Properties of volatility estimators under

alternative sampling schemes are also provided.

The existence of discontinuities in the price process is clearly of interest. Aı̈t-Sahalia and Jacod

(2006) propose a statistic which can be used to test for the existence of jumps in high frequency data.

The empirical results that they demonstrate prove the existence of jumps in the price processes,

emphasizing the importance of taking jumps into account when estimating realized variances. In

this paper we do not incorporate jumps in our log-price path, something that could be a point for
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further research.

B. Lemma 1

The following lemma has been used to find the expression for the conditional expectation of the

efficient log-price Xt in Section 3.

E(x|y, z) = E(x|y) + ΣxzΣ−1
zz z, (48)

Var(x|y, z) = Var(x|y)− ΣxzΣ−1
zz Σ

′
xz. (49)

C. Difference in returns for the same level of risk: Figure 7

Once we calculated the efficient frontiers, one using filtered high frequency observations and the

other daily data, we are interested in quantifying the difference between the return per level of

risk. The approach we follow here is to fit both efficient frontiers to equations where we can then

generate the returns for a series of risk levels. The function we fit is the ratio of two polynomials.

Regarding the efficient frontiers based on daily data and filtered high frequency data we use a

rational model with a quadratic numerator and a 5th degree polynomial in the denominator:

f(x) =
p1x

2 + p2x+ p3

x5 + q1x4 + q2x3 + q3x2 + q4x+ q5

The power of the fit for this model using daily data is 99.86% and the RMSE is 0.005. The results

for the coefficients of the model are presented in Table 4.

In the case of filtered high frequency data the R2 is 99.87% and the RMSE is 0.005. Figure 7

depicts the difference between these two fitted frontiers.

D. Correlation matrix for DJIA-Daily observations

E. Correlation matrix for DJIA-High Frequency observations
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Figure 1. Difference between a volatility estimator based on daily observations and one based on
high frequency data. A wide range of values of σ̂daily seem implausible, for instance, we get volatility
estimates from 0% or up to 75%. The MLE estimator based on minute-by-minute observations,
on the other hand, has a less volatile path over the year.

36



RV_all RV_5min RV_grid TSRV MLE Kalman
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
RMSE of different estimators

Estimators

R
M

S
E

Figure 2. RMSEs of the estimators (non-parametric, parametric and the proposed Kalman) for
1, 000 simulations, with σ2

ε = 1×10−6, σ2 = 0.09, ∆ = 1/23, 400 and the starting value of the asset
is S0 = 30.
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Figure 3. This figure shows that the RMSE of MLE estimator and that of the Kalman filter
almost coincide. TSRV , on the other hand, has a greater RMSE than the other two estimators.
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Figure 4. Efficient frontiers based on different estimators of the VCM of MSFT and INTC that
use daily and filtered high frequency data. For both frontiers the returns are calculated using daily
observations.
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Figure 5. Efficient frontiers based on different estimators of the VCM of MSFT and INTC that
use daily and filtered high frequency data. For the ‘daily’ frontier returns are calculated using daily
data. For the ‘filtered high frequency frontier’ returns are calculated using filtered high frequency
data.
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Table 1: Optimization Results
Case Return Risk Weights

MSFT INTC
Portfolio I Daily data 30.00% 15.66% 63.90% 36.09%

5-min Midquote data 30.53% 15.65% 66.92% 33.08%

Filtered High Frequency data 30.55% 15.64% 66.94% 33.06%

Portfolio II Daily data 35.00% 15.96% 52.35% 47.65%

5-min Midquote data 35.00% 15.89% 54.35% 45.65%

Filtered High Frequency data 35.00% 15.80% 56.35% 43.65%

Portfolio III Daily data 40.00% 16.63% 40.79% 59.21%

5-min Midquote data 40.00% 16.52% 43.42% 56.58%

Filtered High Frequency data 40.00% 16.38% 44.45% 55.55%

Portfolio IV Daily data 50.00% 18.92% 17.66% 82.34%

5-min Midquote data 50.00% 18.69% 20.22% 79.78%

Filtered High Frequency data 50.00% 18.56% 20.65% 79.35%
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Table 2: Return-Volatility for Daily and High Frequency (HF) data
Asset Daily Filtered HF Noisy HF 5-min HF

Return Risk Return Risk Return Risk Return Risk
AA Alcoa Inc 59.40% 27.53% 63.33% 30.45% 63.33% 36.43% 63.33% 30.59%

AXP American Express 23.61% 18.25% 25.17% 19.35% 25.14% 21.25% 24.93% 19.27%
BA Boeing Company 27.11% 15.20% 30.92% 17.34% 30.98% 19.27% 30.92% 17.34%
C Citigroup 1.23% 18.31% 7.62% 18.99% 7.68% 23.51% 7.92% 18.99%

CAT Caterpillar Inc 60.97% 17.70% 60.01% 21.71% 60.10% 24.30% 59.68% 21.72%
DD Du Pont De Nemours -0.18% 17.52% 1.75% 20.40% 1.99% 24.01% 1.75% 20.72%
DIS Walt Disney -2.19% 14.83% 3.41% 16.64% 3.59% 20.34% 3.41% 16.34%
EK Eastman Kodak 43.67% 29.05% 49.10% 32.25% 49.22% 41.45% 49.01% 33.41%
GE General Electric 26.87% 13.56% 29.29% 15.22% 29.29% 39.09% 29.53% 15.26%
GM General Motors 54.32% 32.34% 56.12% 29.50% 55.98% 32.48% 56.12% 30.00%
HD Home Depot Inc -0.76% 17.58% 1.33% 22.19% 1.42% 24.76% 1.13% 22.52%

HON Honeywell 59.27% 19.22% 64.04% 20.50% 64.31% 25.77% 64.25% 20.56%
HPQ Helett-Packard 40.93% 14.57% 43.37% 18.18% 43.46% 21.73% 43.41% 18.25%
IBM Int. Business Machines 39.49% 16.80% 47.14% 16.72% 47.17% 20.18% 46.87% 16.67%

INTC Intel Corp 57.64% 21.31% 58.67% 21.70% 59.06% 25.08% 59.18% 21.28%
IP International Paper 26.24% 17.89% 26.65% 19.11% 26.65% 25.40% 26.42% 19.36%

JNJ Johnson & Johnson -4.01% 11.62% -3.35% 14.79% -3.50% 26.72% -3.56% 14.77%
JPM J. P. Morgan -4.61% 18.68% -3.47% 18.82% -3.53% 21.31% -3.35% 18.80%
KO Coca-Cola 35.19% 12.09% 35.34% 14.11% 35.22% 28.72% 35.16% 14.07%

MCD McDonalds 42.19% 15.59% 45.71% 19.12% 45.84% 21.83% 45.66% 19.28%
MO Minesota Mng Mfg -55.31% 45.88% -51.14% 49.26% -51.38% 50.81% -51.08% 49.19%

MRK Merck 37.22% 21.20% 36.73% 22.30% 37.03% 28.00% 36.61% 22.67%
MSFT Microsoft 14.39% 17.20% 16.66% 18.45% 17.08% 20.86% 16.78% 18.29%

PG Procter & Gamble -11.97% 11.40% -10.11% 14.11% -9.90% 15.68% -10.05% 13.91%
T AT & T Corp 36.79% 18.29% 40.62% 19.46% 40.47% 23.21% 39.96% 19.66%

UTX United Technologies 25.64% 12.66% 27.78% 15.79% 27.96% 17.96% 28.08% 15.92%
WMT Wal-Mart Stores 1.38% 16.40% 1.87% 17.27% 1.99% 19.33% 1.87% 17.35%
XOM Exxon Mobil 50.05% 18.42% 49.69% 18.26% 49.72% 20.89% 49.69% 18.09%

Average value 24.45 % 26.94% 27.01% 26.91%
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Figure 6. Efficient frontiers based on the different estimators of the VCM using 28 constituents
of the DJIA.
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Figure 7. Difference in the returns of the two efficient frontiers based on daily and filtered high
frequency data of Figure 6.
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Figure 9. Difference in the returns, per level of risk, of the two efficient frontiers based on 5 min
midquotes and filtered high frequency data of Figure 8.
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Table 3: Equity betas for daily and high frequency(HF) data-DJIA index (market portfolio)
Asset Daily Data Filtered HF Data Noisy HF Data

Beta coefficient R2 Beta coefficient R2 Beta coefficient R2

AA 1.093 21.40% 1.191 14.47% 1.242 12.81%
AXP 0.941 26.93% 0.782 16.14% 0.828 15.24%
BA 1.077 24.87% 1.054 21.79% 1.122 0.87%
DD 0.953 30.15% 0.978 20.84% 1.048 17.77%
DIS 0.850 22.43% 0.762 12.88% 0.847 11.31%
EK 1.071 14.21% 0.618 3.90% 0.646 3.61%
GE 0.780 37.10% 0.747 23.79% 0.803 18.73%
GM 1.197 8.44% 1.029 5.84% 1.066 5.39%
HD 1.107 31.88% 1.022 18.22% 1.079 16.06%

HON 1.050 31.29% 1.134 21.59% 1.218 19.09%
HPQ 0.870 11.21% 1.044 12.60% 1.107 12.22%
IBM 0.839 28.53% 0.958 26.11% 1.019 25.84%

INTC 1.231 27.57% 1.191 18.09% 1.289 1.93%
IP 1.066 27.21% 0.838 10.15% 0.856 9.95%

JNJ 0.529 17.89% 0.603 15.90% 0.665 16.08%
JPM 0.948 39.77% 0.893 24.19% 0.937 6.30%
KO 0.630 32.10% 0.411 5.33% 0.751 16.43%

MCD 1.016 25.29% 0.902 15.33% 0.956 10.36%
MO 0.696 16.79% 0.772 14.99% 0.807 13.71%

MRK 0.799 12.19% 0.816 10.19% 0.874 9.69%
MSFT 0.773 19.54% 0.796 14.65% 0.888 12.79

PG 0.665 24.07% .768 18.86% 0.825 18.39%
WMT 0.799 25.95% 0.783 15.96% 0.828 13.57%
XOM 0.987 22.72% 0.940 14.65% 0.977 15.87%

Average value 0.915 24.15% 0.876 15.79% 0.945 12.67%
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Table 4: Fitting results
Coefficient value

DAILY FIT
p1 307.100
p2 -36.870
p3 0.993
q1 206.200
q2 48.770
q3 346.100
q4 -21.130
q5 -0.257

R2 0.9986
RMSE 0.005

HIGH FREQUENCY FIT
p1 187.700
p2 -3.713
p3 -1.067
q1 173.500
q2 48.940
q3 186.900
q4 14.390
q5 -2.345

R2 0.9987
RMSE 0.005
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Table 5: Correlation coefficients (Daily Data)

AA AXP BA C CAT
1.0000 0.3532 0.4141 0.3322 0.2228 AA

1.0000 0.4765 0.7100 0.5151 AXP
1.0000 0.4848 0.4482 BA

1.0000 0.4148 C
1.0000 CAT

DD DIS EK GE GM
0.4403 0.3974 0.2613 0.3421 0.1842 AA
0.6007 0.5590 0.3685 0.4731 0.2627 AXP
0.3317 0.2531 0.1801 0.2796 0.1418 BA
0.5502 0.5487 0.3566 0.5303 0.2917 C
0.3531 0.4142 0.2302 0.4085 0.2479 CAT
1.0000 0.5322 0.2012 0.4289 0.3076 DD

1.0000 0.3238 0.4909 0.3123 DIS
1.0000 0.2632 0.1529 EK

1.0000 0.2676 GE
1.0000 GM

HD HON HPQ IBM INTC
0.0609 0.1808 0.2500 0.2461 0.2686 AA
0.4088 0.5713 0.4120 0.3768 0.5111 AXP
0.1763 0.3699 0.2762 0.1904 0.2815 BA
0.3759 0.3875 0.4081 0.4492 0.5533 C
0.2717 0.6038 0.4193 0.3054 0.3030 CAT
0.4657 0.4346 0.3411 0.4405 0.4333 DD
0.3373 0.3792 0.5872 0.3926 0.3943 DIS
0.3321 0.3511 0.1440 0.3390 0.3271 EK
0.2577 0.3352 0.3066 0.3662 0.2840 GE
0.2092 0.2090 0.1975 0.1915 0.4237 GM
1.0000 0.3186 0.1572 0.3696 0.3745 HD

1.0000 0.3988 0.5003 0.4775 HON
1.0000 0.3170 0.2640 HPQ

1.0000 0.4409 IBM
1.0000 INTC

IP JNJ JPM KO MCD
0.5520 0.1469 0.3465 0.2350 0.1507 AA
0.4970 0.4036 0.7495 0.4487 0.4464 AXP
0.3721 0.2456 0.6075 0.3942 0.2653 BA
0.4968 0.4989 0.8257 0.5026 0.3706 C
0.3705 0.3332 0.5500 0.3736 0.2543 CAT
0.5647 0.2665 0.4895 0.3814 0.3296 DD
0.5649 0.3428 0.5191 0.4057 0.2721 DIS
0.2568 0.2495 0.2945 0.0972 0.1373 EK
0.4517 0.3051 0.4812 0.2635 0.2554 GE
0.3597 0.1508 0.2911 0.2623 0.3891 GM
0.3291 0.5043 0.3534 0.4584 0.2017 HD
0.3320 0.3423 0.4885 0.3853 0.2943 HON
0.2668 0.2530 0.4345 0.2607 0.2785 HPQ
0.3877 0.3650 0.3762 0.4976 0.2420 IBM
0.4110 0.4090 0.5780 0.4442 0.3858 INTC
1.0000 0.2507 0.5114 0.3942 0.3839 IP

1.0000 0.5153 0.5478 0.3990 JNJ
1.0000 0.5553 0.4900 JPM

1.0000 0.2731 KO
1.0000 MCD
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Table 6: Correlation coefficients (Daily Data)

MO MRK MSFT PG T
0.1020 0.2274 0.2716 0.1435 0.3284 AA
0.2494 0.5022 0.5965 0.3350 0.4004 AXP
0.1486 0.1188 0.3466 0.2406 0.3576 BA
0.2026 0.3298 0.5146 0.5456 0.4828 C
0.1755 0.2001 0.4953 0.1975 0.3064 CAT
0.1902 0.2701 0.4171 0.3245 0.3092 DD
0.1200 0.3671 0.4821 0.2469 0.4524 DIS
−0.0206 0.1797 0.2739 0.0249 0.1115 EK

0.1107 0.2500 0.5460 0.3379 0.4125 GE
0.0244 0.2981 0.1561 0.2134 0.3217 GM
0.0641 0.1447 0.3391 0.2024 0.1968 HD
0.1306 0.2788 0.5570 0.2225 0.3087 HON
0.0862 0.2665 0.4726 0.1296 0.2415 HPQ
0.0141 0.1830 0.4715 0.3340 0.1926 IBM
0.1143 0.3082 0.3845 0.2265 0.2843 INTC
0.0532 0.2532 0.2787 0.2014 0.4532 IP
0.1632 0.3091 0.3993 0.3982 0.3231 JNJ
0.1952 0.3793 0.5604 0.4434 0.4440 JPM
−0.0087 0.2878 0.4892 0.3697 0.3993 KO

0.1952 0.3102 0.3572 0.1216 0.3136 MCD
1.0000 −0.0545 0.1902 0.1146 0.0757 MO

1.0000 0.2766 0.2235 0.2962 MRK
1.0000 0.3236 0.3050 MSFT

1.0000 0.4258 PG
1.0000 T

UTX WMT XOM
0.4047 0.1950 0.4675 AA
0.5462 0.4297 0.5897 AXP
0.5231 0.2002 0.4320 BA
0.4921 0.3411 0.5642 C
0.4449 0.3359 0.5398 CAT
0.6051 0.4440 0.4055 DD
0.3909 0.4194 0.6415 DIS
0.2993 0.2430 0.3544 EK
0.3466 0.2587 0.4561 GE
0.4237 0.2625 0.3589 GM
0.4365 0.4918 0.2124 HD
0.4363 0.4516 0.5035 HON
0.3769 0.2895 0.4689 HPQ
0.3273 0.1910 0.4400 IBM
0.5716 0.2512 0.4445 INTC
0.5041 0.4807 0.5344 IP
0.3070 0.3213 0.3838 JNJ
0.5848 0.3680 0.6010 JPM
0.4276 0.4028 0.4766 KO
0.5014 0.2621 0.2588 MCD
0.1735 0.0102 0.0687 MO
0.2321 0.2600 0.4031 MRK
0.4685 0.3251 0.5475 MSFT
0.2853 0.1968 0.2756 PG
0.4305 0.3525 0.4541 T
1.0000 0.4375 0.4174 UTX

1.0000 0.4146 WMT
1.0000 XOM
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Table 7: Correlation coefficients (High frequency Data)

AA AXP BA C CAT
1.0000 0.2534 0.2549 0.2588 0.2531 AA

1.0000 0.3040 0.4031 0.3534 AXP
1.0000 0.3167 0.2878 BA

1.0000 0.3492 C
1.0000 CAT

DD DIS EK GE GM
0.2771 0.2651 0.1006 0.2481 0.1344 AA
0.3137 0.3096 0.1577 0.3270 0.2101 AXP
0.2911 0.2795 0.1009 0.2955 0.1933 BA
0.2773 0.3255 0.1428 0.3429 0.2197 C
0.2350 0.2846 0.1399 0.2977 0.2047 CAT
1.0000 0.2490 0.1253 0.2654 0.1667 DD

1.0000 0.1230 0.2943 0.1817 DIS
1.0000 0.1572 0.0643 EK

1.0000 0.1971 GE
1.0000 GM

HD HON HPQ IBM INTC
0.1859 0.2297 0.2242 0.2218 0.2312 AA
0.2532 0.3262 0.2805 0.3162 0.2865 AXP
0.2247 0.3078 0.2305 0.3111 0.2809 BA
0.2521 0.2776 0.2904 0.3273 0.3156 C
0.2473 0.4117 0.2525 0.2797 0.2845 CAT
0.1953 0.2492 0.2314 0.2770 0.2429 DD
0.2159 0.2641 0.2933 0.2703 0.2658 DIS
0.1219 0.1397 0.1046 0.1339 0.1016 EK
0.2516 0.2900 0.2726 0.2933 0.2808 GE
0.1523 0.1834 0.1459 0.2024 0.2191 GM
1.0000 0.2238 0.2111 0.2255 0.2408 HD

1.0000 0.2709 0.2864 0.2603 HON
1.0000 0.2731 0.2774 HPQ

1.0000 0.2800 IBM
1.0000 INTC

IP JNJ JPM KO MCD
0.2758 0.1377 0.2614 0.1967 0.1715 AA
0.2828 0.2414 0.4257 0.2609 0.2889 AXP
0.2624 0.2089 0.3017 0.2691 0.2263 BA
0.3035 0.2816 0.4702 0.2971 0.2469 C
0.3093 0.2346 0.3603 0.2464 0.2672 CAT
0.2809 0.1632 0.2933 0.2208 0.2173 DD
0.2814 0.2237 0.3297 0.2427 0.2057 DIS
0.0916 0.1357 0.1402 0.0985 0.1228 EK
0.3127 0.2422 0.3275 0.2724 0.2256 GE
0.1896 0.1681 0.1962 0.2097 0.1777 GM
0.2382 0.2594 0.2751 0.2198 0.1672 HD
0.3106 0.1974 0.2866 0.2376 0.2817 HON
0.2356 0.1822 0.2897 0.2082 0.1971 HPQ
0.3120 0.2589 0.2635 0.2883 0.2170 IBM
0.2901 0.2252 0.3410 0.2373 0.2191 INTC
1.0000 0.2214 0.3212 0.2718 0.2331 IP

1.0000 0.2500 0.2797 0.2029 JNJ
1.0000 0.2817 0.2785 JPM

1.0000 0.1952 KO
1.0000 MCD
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Table 8: Correlation coefficients (High Frequency Data)

MO MRK MSFT PG T
0.0495 0.1545 0.2194 0.1819 0.2368 AA
0.0726 0.2632 0.2982 0.3181 0.3346 AXP
0.0724 0.1659 0.2573 0.2243 0.2849 BA
0.0756 0.2222 0.3128 0.2902 0.3439 C
0.0797 0.2084 0.2601 0.2612 0.2876 CAT
0.0439 0.2238 0.2390 0.2141 0.2863 DD
0.1010 0.2004 0.2728 0.2643 0.2605 DIS
0.0035 0.0848 0.1269 0.1078 0.1303 EK
0.0446 0.2442 0.3210 0.2820 0.3352 GE
0.0687 0.1620 0.1921 0.1827 0.2076 GM
0.0684 0.1470 0.2520 0.2031 0.2266 HD
0.0525 0.2725 0.2549 0.2411 0.2871 HON
0.0200 0.2124 0.2817 0.2310 0.2735 HPQ
0.0389 0.2412 0.2985 0.2830 0.3017 IBM
0.0763 0.1769 0.3194 0.2489 0.3092 INTC
0.0592 0.2879 0.2563 0.2603 0.2976 IP
0.0710 0.2148 0.2219 0.2028 0.2301 JNJ
0.1021 0.2311 0.3197 0.3240 0.3643 JPM
0.0228 0.2029 0.2344 0.2520 0.2857 KO
0.2130 0.2275 0.2112 0.2100 0.2774 MCD
1.0000 −0.0121 0.0672 0.0649 0.0129 MO

1.0000 0.1857 0.1988 0.2550 MRK
1.0000 0.2607 0.3121 MSFT

1.0000 0.3012 PG
1.0000 T

UTX WMT XOM
0.2696 0.1886 0.2844 AA
0.3723 0.2762 0.3601 AXP
0.3549 0.2326 0.3004 BA
0.3777 0.2690 0.3671 C
0.4484 0.2385 0.3402 CAT
0.2879 0.2153 0.2829 DD
0.3261 0.2487 0.3068 DIS
0.1098 0.1533 0.1396 EK
0.3227 0.2810 0.3153 GE
0.1984 0.1487 0.2066 GM
0.2700 0.2414 0.2421 HD
0.3830 0.2422 0.3105 HON
0.2755 0.2081 0.3011 HPQ
0.3144 0.2655 0.3327 IBM
0.3209 0.2526 0.3036 INTC
0.3254 0.2677 0.3197 IP
0.2318 0.1912 0.2692 JNJ
0.4048 0.2873 0.3731 JPM
0.2547 0.2309 0.3014 KO
0.2719 0.2018 0.2853 MCD
0.0694 0.0400 0.0525 MO
0.2157 0.2100 0.2619 MRK
0.2853 0.2336 0.3053 MSFT
0.2922 0.2529 0.2879 PG
0.3345 0.2683 0.3619 T
1.0000 0.2656 0.3303 UTX

1.0000 0.2851 WMT
1.0000 XOM
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