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1 Introduction

Macroeconometric and �nancial econometric research often feature binary
random variables. We will designate such a random variable as St; and as-
sume that it takes the values of unity and zero. Such binary random variables
arise in a number of ways, although they di¤er in their origin. Because of
this it is useful to distinguish between binary random variables that are pri-
mary and those that are secondary or constructed. In the �rst set one would
include most of those that arise in micro-econometrics. If a time series is in-
volved there will generally be a panel of data on whether an individual makes
a particular decision. In these cases the binary variable is often thought of
as deriving from an underlying continuous latent variable (as in the Probit
model). Also in this set would be cases where a continuous random variable
- on which there are realizations - depends upon a latent binary random vari-
able. The clearest example of the latter would be Markov Switching (MS)
models - Hamilton (1989). In contrast to those cases, this paper is concerned
with secondary binary random variables which are constructed from the real-
izations of a continuous random variable (or variables) yt. This case does not
seem to have been studied much, a notable exception being Kedem (1980).
However, as we will try to illustrate, quite a few interesting econometric
issues arise when such variables are used in empirical work.
Are there many examples of constructed binary time series? There seem

to be quite a few, among which we can mention the following.

1. Cycles in economic activity. Here a series yt is chosen to represent
economic activity and a cycle in it involves expansions, St = 1; and
contractions, St = 0: In the event that the series yt represents the
level of economic activity then it is the business cycle that is be-
ing isolated. If a permanent component is taken away from yt we
are investigating the growth cycle. In the case of the NBER�s dat-
ing of the business cycle the variable used for yt is the equivalent
of the log of GDP - see The NBER�s Recession Dating Procedure at
http://www.nber.org/cycles/recessions.html..

2. Bull and bear markets. The underlying variable here will be some asset
price e.g. the Dow-Jones or the S&P500 and similar sets of rules as
in dating business cycles can be used to perform the segmentation of
history into periods of bull and bear markets.
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3. Financial crises. Here a unity indicates that a crisis is occurring while
a zero indicates that this is not a crisis period -see Eichengreen et al
(1985) and Kaminsky and Reinhart (1999) and Bordo et al (2001). The
latter state (p 55) that �We construct the familiar index of exchange
market pressure (calculated as a weighted average of exchange rate
change, short-term interest rate change, and reserve change...). A crisis
is said to occur when this index exceeds a critical threshold�.

4. IPO markets are often classi�ed as hot (St = 1) and cold (St = 0)
depending upon the volume of new o¤ers - see Ibbotson et al. (1994).

5. Commodity and real estate markets are often classi�ed as booms and
slumps depending upon movements in the underlying prices.

One could continue on in this vein but as the examples above indicate,
there are many situations in which binary random variables are constructed
from some observed continuous random variable. The prevalence of them
raises the issue of why this is such a popular strategy. We might put forward
a number of reasons:

1. The St may be chosen to emphasize some feature in yt that is not
immediately obvious e.g. in U.S. business cycles expansions are not
smooth but generally feature a period of very fast growth - see Sichel
(1994) and Harding and Pagan (2002). This has also been observed in
bull markets- see Pagan and Sussonov (2003).

2. Meaningful to decision makers. Because of the well documented phe-
nomenon of loss aversion it is probably not surprising that decision
makers are very sensitive to whether there has been a decline (turning
point) in series such as GDP and the S&P. Reactions to such an event
from the electorate or clients are often very strong and this has led to
great interest in being able to predict these events and to examine their
causes. This motivates why one might wish to determine the DGP of
the St given a known DGP for yt:

3. Often the St are objects of interest. An example would be if one wanted
to ask whether cycles are synchronized across sectors or countries. Be-
cause business cycle dating agencies like the NBER utilize many series
in determining the month that a turning point occurred, it is more
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convenient to examine the coherence of the two cycles, as measured by
their representative St; then to try to �nd correlations with the under-
lying series that they might have been derived from, since the latter
may not even be known to an outside observer.

4. Sometimes there may be large short lived movements in �yt that can
a¤ect statistics based upon �yt but which have little e¤ect upon the
constructed St e.g. the stock market crash of October 1987 and the
decline in output during the Great Depression: In this instance one
might wish to obtain a more robust measure of some feature using the
St rather than the �yt.

5. There are also many situations in which binary variables are used
as inputs into a measure of �t. By far the most common examples
are those assessing predictive success. Thus Pesaran and Timmerman
(1992) have a sign test of predictive accuracy which has been used
to compare output gap estimates by Camba-Mendez and Rodriguez-
Palenzuela (2003).

In the next section we will discuss ways of constructing the St from the yt:
We will distinguish two classes of methods for doing this that are referred to
as turning point and termination rules and give some illustrations of these in
the contexts distinguished above. The nature of these rules turns out to be
very important in the determination of the DGP of St; and the latter always
needs to be carefully derived from that of yt; since it is unlikely that the
DGPs of yt and St will be the same. In particular, it is rare for a constructed
St to be i:d:; as is typically assumed in micro-econometrics. As should be
expected the DGP of St will be determined by the interaction of the dating
rule and the DGP for yt: Section 3 provides some illustrations of this, using a
combination of theoretical analysis and an examination of some of the actual
St which are used in work connected with business cycles, stock market cycles
and �nancial crises. A failure to make an allowance for the fact that St is
not i:d: is therefore a potential problem with many existing studies using
these variables. Section 4 then uses the principles established in section 3 to
look at the econometric issues that arise when the St are used in regression
models.
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2 Constructing the States

The variable St is found by segmenting a period of time t = 1; :::; T into a
history of binary outcomes using information on some underlying continuous
random variable. This segmentation requires a rule and, depending on what
one is studying, this could be classi�ed as either a turning point or a termi-
nation rule. A turning point rule performs the segmentation based upon the
location of local maxima and minima in the series yt: A termination rule is
one which prescribes an event which would cause a change in the value of the
state St. In turn termination rules could either be non-parametric or derive
from a parametric model of yt:
To give some examples suppose we consider the St that de�ne a cycle.

Perhaps the simplest de�nition is what might be termed the calculus rule.
This says that a peak in a series occurs at time t if �yt > 0 and �yt+1 < 0:
The reason for the name is the result in calculus that identi�es a maximum
with a change in sign of the �rst derivative from being positive to negative.
A trough (or local minimum) can be found using the outcomes �yt < 0 and
�yt+1 > 0: The states St are simply de�ned in this case as St = 1(�yt > 0):
This rule has been popular when yt is yearly data, see Cashin and McDer-
mott(2002 ) and Neftci (1984).
When data occurs at (say) the quarterly or monthly frequency one needs

to recognize that common usage of a word like �recession�would identify
it with a sustained decline in the level of economic activity i.e. something
that lasts for several periods. If one applied the calculus rule there would be
too many turning points since the growth rate might regularly switch sign
between one period and the next. Visualizing a peak in a series leads one to
the idea that a local peak in yt occurs at time t if yt exceeds values ys for
t�k < s < t and t+k > s > t; where k delineates some symmetric window in
time around t: One can de�ne a trough in a similar way. By making k large
enough we also capture the idea that the level of activity has declined (or
increased) in a sustained way. Of course we need to limit the window in time
over which this test is applied when performing the test. It is this simple idea
that is the basis of the NBER business cycle dating procedures summarized
in the Bry and Boschan (1971) dating algorithm. In that program, designed
for the analysis of monthly data, k = 5: However, because much analysis is
conducted with quarterly data, the analogue would seem to be k = 2. We
will refer to this latter rule as the BBQ rule.
The calculus rule can also be formulated as a termination rule by express-
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ing it as

St = 1(�yt > 0) (1)

where I(A) is the indicator function having value one if the event A is true.
There is no dependence here on St�1: A termination rule that does have such
dependence is the �two quarters rule� that often appears in the �nancial
press and which can be summarized as

St = 1 if (�yt+1 > 0;�yt+2 > 0jSt�1 = 0):
St = 0 if 1(�yt+1 < 0;�yt+2 < 0jSt�1 = 1) (2)

St = St�1 otherwise

All of the rules above are non-parametric in the sense that they simply
look for patterns in the data without making any assumptions about the
DGP of yt: Parametric (model-based) termination rules proceed by working
with a parametric model of �yt: Perhaps the best known of these arises by
assuming that �yt is a function of a latent binary variable �t that follows
a Markov chain and to then construct a series of binary states using the
MS rule �t = 1[Pr(�t = 1jFt) � :5]; where Ft is a set containing either the
past history of the observed random variable �yt or perhaps the complete
sample of observations - see Hamilton (1989). Of course one could use other
parametric models of �yt to produce �t e.g. a SETAR model. In all these
cases a classi�cation into binary outcomes is produced which is based on
whether movements in some function of the �yt (and its lags) exceeds a
threshold, and the magnitude of the movements involves the parameters of
the model.
Each type of rule generates binary random variables but they will not

be the same. For this reason we will use the symbol St to designate those
that come from either a turning point or non-parametric termination rule and
reserve �t for those that come from a parametric termination rule. Applied to
the same data series yt the states �t and the states St are conceptually distinct
but, in practice, they are often quite close. Thus the �t states estimated in
Hamilton (1989) with his MS-based termination rule were close to the St
coming from using the NBER type rules. Harding and Pagan (2003a) looked
at the way in which they di¤ered by using some approximations for getting
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the �t from the history of �yt. From that analysis it was clear that the
MS rule used a broader information set then the NBER-type turning point
rule (in the sense that the latter uses f�yt�jgj�2 whereas the former uses
f�yt�jgj�T ; with downweighting as j rises): Notice that the latent states in
the MS model �t are not the same as the �t and so Pr(�t = 1) 6= Pr(�t =
1) � failure to recognize this is a common error in many studies that use
parametric dating rules.1 We will focus upon St type measures in this paper
but everything said about these holds for the �t type measures. The states St
are then how one summarizes information on the cycle in yt and it is possible
to use these to investigate questions such as synchronization of business cycles
across countries, regions and sectors.
Pagan and Sussonov (2003) provide a set of rules for locating turning

points in the equivalent of the S&P500, while Lunde and Timmermann(2004)
use a non-parametric termination rule. There have been quite a few adap-
tations of this approach e.g. to study booms and slumps in commodity
markets - Cashin, McDermott and Scott (2002). There is also a literature
which uses parametric termination rules e.g. the MS model in Maheu and
McCurdy(2000).
Non-parametric termination rules to construct the indicators of �nancial

crises most often involve a consideration of the size of the movements in a
combination of a number of series. Thus Eichengreen et al. (1995) de�ne a
crisis as occurring whether a weighted average of changes in exchange rates,
reserves and interest rates exceeds some threshold value. Parametric termi-
nation rules have also been applied, mainly based on an MS model e.g. Abiad
(2003).
Another important feature of constructed states is that extra censoring

rules concerning the minimum or maximum time that can be spent in a
particular state are often applied. Thus in the case of the business cycle
dating by the NBER, recessions and expansions must be �ve months long
and a complete cycle must last for 15 months. In quarterly terms these are
best interpreted as requiring two quarters as minimum phase lengths and 5
quarters for a complete cycle. We will illustrate how these impact upon the
DGP for St later using the quarterly versions.

1Indeed, it is often asserted that the duration of time spent in the state �t (or St) can be
determined from the transition probabilities associated with �t: It is easy to see that this is
incorrect since the former will depend on all the parameters of the MS process, including
the mean values of �yt in each of the regimes, whereas the transition probabilities for �t
do not depend on the mean values.
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3 The DGP of The Binary States

As mentioned in the introduction the DGP of constructed binary states is
not one that the investigator is free to prescribe. It is determined by the
interaction of the DGP of the variable they are constructed from and the type
of rule used for mapping the observable variable into the binary states. As we
will note the DGP is generally a high-order Markov process. Nevertheless,
it is useful for understanding the DGP to think of approximating the higher
order process with a �rst order one. This is not an unfamiliar process. A
high order autoregression in a continuous random variable can always be
approximated by a �rst order AR and, if one wished (say) to measure the
degree of persistence in the process, this approximation often gives a very
good indication of that quantity. We follow this approximation strategy in
the next sub-section.

3.1 Serial Correlation in the States

If the states evolve as a �rst-order Markov process then Hamilton (1994 p684)
shows that the following identity holds:

St = p01 + (1� p01 � p10)St�1 + �t; (3)

where �t is discrete and conditionally heteroskedastic since it depends upon
St�1 and

pjk = Pr(St+1 = kjSt = j) (4)

The determinants of pjk will depend upon the nature of the DGP for yt and
the type of rule employed to construct St: To illustrate this we suppose that

�yt = �+ �et (5)

where et is i:i:d(0; �2): Now if the calculus rule is employed i.e. St = 1(�yt >
0);

p10 = Pr(St+1 = 0jSt = 1)
= Pr(�yt+1 < 0j�yt > 0)
= Pr(�yt+1 < 0) =  

due to independence of �yt: In the same way p01 = 1�  and, from (3),

St = 1�  + (0� St�1) + �t; (6)
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showing that there is no serial correlation in the states St:
Now, what happens if one relaxes the assumption that yt follows a ran-

dom walk with drift? Using the calculus rule, combined with �yt being a
mean-zero stationary Gaussian process, Kedem(1980, p34) sets out the re-
lation between the autocorrelations of the �yt and S(t) processes. Letting
��y(k) = corr (�yt;�yt�k) ; and �S(k) = corr (St; St�k) ; he determines
that

�S(k) =
2

�
arcsin

�
��y(k)

�
: (7)

Thus, given an estimate of ��y(k); we can immediately �nd an estimate of

�S(k) and vice versa, making it clear that an AR process for �yt will result
in a much more complex DGP for St than an AR(1).
So the autocovariances in St depend upon whether there is serial correla-

tion in �yt: But, even if there is no serial correlation in �yt; the dating rule
itself can induce it into St: The analysis will be done assuming that yt follows
(5) and the �two quarters rule� for dating phase shifts. The complications
in working with this rule come from the fact that the conditioning event
St�1 = 1 will place some restrictions upon the signs of past sample paths for
f�ytg that are associated with an expansion terminating sequence de�ning
the move from St�1 = 1 to St = 0. For example the sequence

f�yt+1;�yt;�yt�1;�yt�2; ::::::g = f�;�;�:;+; ::::g (8)

would be incompatible with St�1 = 1; since the negative growth at t � 1
would match with the negative growth at t; and so the expansion would have
been terminated at t� 1: The appendix shows that

p10 =
 2

(1 +  )
; p01 =

(1�  )2

2�  
(9)

p11 =
1 +  �  2

(1 +  )
; p00 =

1 +  �  2

2�  
: (10)

Hence, using (3), we will have

St =
(1�  )2

2�  
+ [1� (1�  )2

2�  
�  2

(1 +  )
]St�1 + �t (11)

To get some feel for the magnitude of the coe¢ cients in this relation as-
sume that �yt is N(�; �2); so that  = �(��

�
); where �(u) is the cumulative
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standard normal distribution function. Using sample estimates of � and �2

for US GDP over the period 1959/1-1997/2 (the same sample as used in the
application by Estrella and Mishkin (1998)) gives  = :21: Inserting this into
(11) produces

St = :35 + :62St�1 + �t; (12)

showing that there is substantial serial correlation in the states. Fitting an
AR(1) to the quarterly �NBER business cycle states�(found from their web
page) over the same period yields

St = :29 + :67St�1 + �t; (13)

which shows that the predictions about the nature of the business cycle states
identi�ed by the NBER, and those using the �two quarters rule�are quite
good.
These results also continue to hold for the St found from the monthly

S&P500 using the turning point de�nitions in Pagan and Sussonov (2003).
The regression over 1854/6-1997/12 gives

St = :07 + :89St�1 + �t (14)

(8:1) (80:5)

So it is very likely that there will be serial correlation in the states St:
This is important since it means that secondary (constructed) states cannot
be treated as if they were primary states. In particular, it will not be correct
to assume that they are realizations from an i:d: process, as is done in the
micro-econometrics literature and in the derivation of many tests based on
these states. Examples of the latter in the time series literature would be
the market timing test of Pesaran and Timmermann (1992) and its close
relative, Pearson�s test of independence in a contingency table (see Artis et
al (1997)). t ratios underlying these tests are e¤ectively constructed under
the i:i:d: assumption. In Pesaran and Timmermann�s context this may be
a valid assumption, since the yt are forecast errors and the St = 1(yt > 0):
But others have applied it to yt that are possibly serially correlated e.g.
in Camba-Mendez and Rodriguez-Palenzuela (2003) the yt are the revision
errors in output gaps and there is no reason to think that these would be
serially uncorrelated. In all instances an adjustment needs to be made for the
serial correlation in the St: As seen in Harding and Pagan(2006), the requisite
adjustment to t-statistics of the Artis el al (1997) test of synchronization of
cycles can be very large indeed.
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3.2 E¤ects of Censoring Rules on the DGP of the States

Rules that involve restrictions on the duration of time spent in a phase, such
as the minimum two-quarter restriction for recessions and expansions used
by the �two quarters�and BBQ rules, also place strong restrictions on the
nature of the DGP for St: To examine this in more detail, let �yt � � be
a mean-zero covariance stationary process. Then, under most dating rules,
the St are generated as nonlinear functions of �yt and �yt+1; and thus St is
covariance stationary.
Now let us look at the case where the calculus rule is adopted but some

censoring of binary variables is employed to impose phase-length restrictions.
We have already mentioned that in these circumstances, and without phase
restrictions, Kedem has shown that one can represent St as a K 0th order
Markov process, where K may need to be in�nite. A �rst order Markov
process can always be written as

St = �0 + �1St�1 + "t (15)

while a second order one has the form

St = �0 + �1St�1 + �2St�2 +  1St�1St�2 + "t: (16)

Higher order processes consist of the linear form plus all the interaction terms.
Notice that terms like Skt�1 are just St�1 so that we only need to consider
interaction terms using k = 1:
Using Kedem�s result, the binary process St can be represented as

St = �0 + �1St�1 + �2St�2 + f(St�1; St�2; ~St�3) + "t; (17)

where ~St = fSt�ig1i=0 and the notation f(�) means the sum of all interaction
terms of St�1 and St�2 with ~St�3 e.g. St�1St�2St�3; as well as elementary and
interaction terms formed from the elements of ~St�3 alone e.g. St�3; St�3St�4:
Then

E(Stj ~St�1) = �0 + �1St�1 + �2St�2 + f(St�1; St�2; ~St�3) (18)

Now the restriction that a phase must last two quarters implies that Pr(St =
1jSt�1 = 0; St�2 = 1; ~St�3) = 0. Since the probability equals E(StjSt�1 =
0; St�2 = 1; ~St�3) we see that

�0 + �2 + f(0; 1; ~St�3) = 0 (19)
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and this can only occur for arbitrary ~St�3 if f(0; 1; ~St�3) = 0: Hence St
must be second order Markov with �0 = ��2. Since it is also the case that
Pr(St = 0jSt�1 = 1; St�2 = 0; ~St�3) = 0 we �nd that �0 + �1 = 1: Thus
the presence of censoring has in�uenced both the order of the Markov Chain
that is the DGP of the states and has also imposed restrictions upon the
coe¢ cients of the linear (in parameters) representation that the chain can
be given. To check this prediction out we �tted a second order Markov
Chain to the business cycle states found by applying the BBQ rule ( with
minimum phase restriction of two periods imposed) to US quarterly GDP
over 1947/1-2002/2. The resulting parameter estimates clearly satisfy the
predicted relations between the coe¢ cients (all coe¢ cients were highly sig-
ni�cant):

St = :45 + :55St�1 � :45St�2 + :40St�1St�2 + �t: (20)

If we had dropped the interactive term then the regression would be

St = :38 + :78St�1 � :22St�2 + �t; (21)

with heteroskedastic robust t ratios for the AR parameters of 13:2 and 3:8
respectively.
The same type of e¤ects can be seen in other series, even when there is

no explicit censoring, but rather is due to the fact that a minimum duration
to phases might occur within the sample. For example �tting a second order
Markov process to the data for �nancial crises in the United Kingdom over
1883 to 1998 from Bordo et al (2001) we get

St = :07 + :05St�1 + :05St�2 + :49St�1St�2 (22)

The St�1 and St�2 terms are not signi�cant but the interaction term is, and
after dropping the insigni�cant terms we get

St = :08 + :59St�1St�2; (23)

with the t ratio on the interaction term being 3.54. Thus the type of serial
correlation in the states can be quite complex.

3.3 Testing the Order of a Markov Chain

If we assume that St is generated by a k0th order Markov Chain it can be
given the linear form

St = Xk
t �k + �t (24)
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where the Xk
t are generated from a recursion as follows

X0
t = 1

Xj
t =

�
Xj�1
t Xj�1

t St�j
�
:

Thus we would have

X1
t =

�
1 St�1

�
X2
t =

�
1 St�1 St�2 St�1St�2

�
X3
t =

�
1 St�1 St�2 St�1St�2 St�3 St�1St�3 St�2St�3 St�1St�2St�3

�
Now the number of parameters in a Markov chain grows as 2k: Consequently,
high order processes would be hard to estimate unless there are large numbers
of observations. It is also the case that, with relatively small sample sizes,
the matrix Xk

t can be singular, since the summation of some of the terms
may be identical. Thus, in testing the order of the business cycle states
using the NBER states in Estrella and Mishkin�s application one cannot es-
timate a third order Markov chain as St�1St�2St�3 and St�1St�3 are perfectly
correlated and St�1St�2 can be perfectly predicted by St�1St�2; 1; St�2 and
St�2St�3:
Now in the event that a minimum phase is imposed upon the states the

Markov chain becomes a restricted one in the sense that the parameters in
the linear (in variables) relation obey linear restrictions. We have already
seen an example of that in (20). The restrictions matrix has the form,

Rk� = rk (25)

and can be built up via recursion as follows. Starting with the restrictions
on a second order system of

R2 =

�
1 1 0 0
1 0 1 0

�
; r2 =

�
1
0

�
; (26)

those on higher order processes are generated via the following recursion:

Rj =

�
Rj�1 0
Rj�1 Rj�1

�
; rj =

�
rj�1
rj�1

�
(27)

Since there are 2k parameters in the unrestricted kth order Markov chain
there will be 2k�1 parameters in the restricted version and thus the latter
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may be possible to estimate when the former is not. By multiplying Rj and
rj by the matrix Tj de�ned by

Tj =

�
I 0
�I I

�
; (28)

we obtain a simpler expression for the restrictions of the form:

R�j�j = r�j ; (29)

where

R�j =
Rj�1 0
0 Rj�1

; r�j =

�
rj�1
0

�
: (30)

When estimating the model with restrictions imposed it is useful to re-
write the model as

�j = Cj�j + dj; (31)

where RjCj = 0 and Rjdj = rj: Then Cj can be obtained recursively as,

Cj =

�
Cj�1 0
0 Cj�1

�
: (32)

Since TjRjdj = Tjrj it follows that�
Rj�1 0
0 Rj�1

� �
dj�1
d�

�
=

�
rj�1
0

�
(33)

This must imply that d� = 0 and so dj can be generated recursively as

dj =

�
dj�1
0

�
: (34)

Thus, C2, d2 and the recursion relations (32) and (34) are all that are required
to construct the restriction matrices.
For later use we wish to determine the order of the Markov chain in the

business cycle states used by Estrella and Mishkin. We initially started with
a fourth order Markov chain as the general model, but found that one could
not estimate this model, even with the phase length restrictions imposed.
Thus the maximum order of the chain needed to be reduced to three, in
which case it has the form
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St = �1 + �2St�1 + �3St�2 + �4St�1St�2 + �5St�3

+�6St�1St�3 + �7St�2St�3 + �8St�1St�2St�3: (35)

This model was estimated after imposing the two quarter minimum phase
restrictions i.e.

�1 + �2 = 1

�1 + �3 = 0

�1 + �2 + �5 + �6 = 1

�1 + �3 + �5 + �7 = 0:

Imposing these restrictions on the third order Markov process the residual
sum of squares was 9.228. We then estimated a restricted second order
process and, as it had virtually the same sum of squares, it was easy to
accept a second order restricted process. Proceeding to the next order in the
sequence it was easy to reject the hypothesis of a �rst order process since
the sum of squares from a regression of St on a constant and St�1 was 9.99.
One question that might arise however is whether the dependence in the
process for St might be somewhere between a second and third order Markov
chain. We therefore asked if the second order process might be augmented by
the variables St�3 and St�2St�3: The heteroskedasticity adjusted Wald test
for this is 6.26, with a p value of .044. Given the fact that this is only an
asymptotic test it seems reasonable to conclude that a second order process
is a reasonable approximation for this data set.

4 Using the States as Regressors and Regres-
sands

So far we have demonstrated how the DGP of the constructed states needs
to be treated quite carefully. In particular, because they are constructed
variables, they cannot be treated in the same way as they would be in micro-
econometric work, where information is directly available (say) on whether
a person is unemployed or not. The states have also often been used in
regressions, either as regressors or as the dependent variable, and we therefore
need to look at the implications of the results established in the previous
sections for these uses.
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4.1 Constructed Binary Variables as Regressors

There is an emerging tendency to utilize St as regressors. In these applica-
tions they are included in a regression such as

yt = a+ bxt + cSt + dxtSt + et; (36)

where the e¤ect of xt upon yt may change according to the value of St.
Thus one might have either yt as output and xt an interest rate or yt might
be in�ation and xt an output gap. Such possibilities are often mentioned.
In particular there have been tests for the asymmetric e¤ects of monetary
policy e.g. Cover (1992) but in the past these tests have been done through a
de�nition like St =1(wt > 0); where wt might be et or �yt: Clearly such tests
do not e¤ectively address whether the impact of monetary policy is di¤erent
in di¤erent phases of the cycle, since the resulting St do not delineate the
business cycle phases.
To illustrate the complications that are caused by using St as a regressor

we assume it has been generated with the BBQ rule. Then we know that

St = 1(�2yt > 0;�yt > 0;�2yt+2 < 0;�yt+1 < 0): (37)

It is therefore clear that we cannot use St as a regressor, since it is a function
of et+2; et+1 and et: It would however be possible to use St�3 as an instrument
for St:

Another type of equation in which these regressors have appeared is in
VARs e.g. as in Dueker (2005). Thus a typical equation in the VAR might
involve output growth and be of the form

�yt = a+ b�yt�1 + cSt�1 + et (38)

Using St found from the quarterly turning points provided on the NBER
web page and �yt as US GDP growth, we �nd that the estimate of c is .008
from a regression on (38), with a t ratio of 3.6 . But, if we recognize that
St�1 will be correlated with the error term and use St�3 as an instrument,
the corresponding values are -.012 and -1.0. So one would be misled by
the regression if one did not take account of the nature of St: Indeed, if St
is to measure a turning point at time t; it is inevitable that information at
points in time past t will be used in its construction.2 Di¢ culties arise if the

2This is one argument why we might want to work with an estimate of the �t associated
with parametric dating rules, as there we can control the conditioning information.
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St are just provided with little in the way of a precise account of how they
are constructed but, as the example above shows, one needs to treat these
variables with great caution.

4.2 Constructed Binary Variables as Regressands

Often St are the variables to be explained or predicted and it is desired to
test if the regressors have an in�uence upon St: A simple case of this is testing
for synchronization of cycles where xt is another cyclical indicator. It is clear
that, if one runs a regression of St upon xt; and tests the null hypothesis
that the coe¢ cient of xt is zero in such a regression, then one must take
account of the fact that, under the null hypothesis, St has extensive serial
correlation and heteroskedasticity and test statistics must be made robust to
those features. The necessary adjustments were shown to be large in Harding
and Pagan (2006).
Now motivated by the micro-econometric literature it is often felt de-

sirable to test if Pr(St = 1) is a function of some determinants xt: In one
approach it is �rst postulated that Pr(St = 1) = F (�x0t�); where F (�) is a
c.d.f. and then a likelihood is established under the assumption that St are
i:d: An alternative is to assume that there is some latent variable process y�t
that is a linear function of a single index x0t� with the format

y�t = x0t� + u�t ; (39)

where u�t are i:i:d: Then a density for u
�
t is prescribed and St = 1(y�t > 0)

is taken to be the rule for generating the St: The F (�) of the �rst approach
is then just the distribution function corresponding to the density function
for u�t : Examples of these methodologies are Estrella and Mishkin (1998),
Birchenall et al (1999) and Chen et al (2000).
We can see that there are two problems with these approaches. One is

that the St are not i:d: and so one cannot write a likelihood as

TY
t=1;S1=1

F (�x0t�)
TY

t=1;S1=0

(1� F (�x0t�)): (40)

Nevertheless, it is this form that has been used in the literature to date. Chen
et al and Birchenall et al. are explicit about the fact that St is a constructed
variable in time series but then ignore the method of construction when
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specifying and estimating the models that seek to explain St: If the St were
�rst order Markov the likelihood could be formed as the product of transition
probabilities distinguishing the various state shifts that can occur. In theory
one might do this for higher order processes, but it would become increasingly
complex. Moreover, as we have emphasized before, it seems likely that, in
many cases, we would not know the exact order of the Markov process. An
alternative is to work with the latent variable model. If the dating rule is
known it may be possible to �nd the likelihood using computer simulation
methods. We have worked through a simple case in the Appendix where
we found that the transition probabilities at time t would depend on the
complete past history of xt. But, in general it will be very di¢ cult to derive
a likelihood for St conditional upon xt; simply because we often know little
precisely about the DGP for yt and the precise dating rules that are used:
Some feasible method of accounting for the nature of St in determining

relations with xt is needed, even if it is approximate and not fully e¢ cient.
We will assume that the states are St and the question to be answered is
whether transition probabilities vary with some regressor xt: Thus we have

Pr(Stj ~St�1; x2) = h( ~St�1; xt); (41)

where ~St is some conditioning set whose nature depends upon the order of
the Markov chain.
Now we know that, for any �nite order Markov chain, if g(xt) = 0 then

we can write
Pr(Stj ~St�1) = E(Stj ~St�1) = ~S 0t�1�: (42)

Thus, for the second order case,

~S 0t�1� = St�1�1 + St�2�2 + St�1St�2�3: (43)

This suggests that we consider a separable version of h(�); allowing the tran-
sition probability to be written as

Pr(Stj ~St�1; xt) = ~S 0t�1� + g(xt): (44)

This has the regression format

St = ~S 0t�1� + g(xt) + ut; (45)

where E(utj ~St; xt) = 0: We then wish to estimate g(xt): To do this we can
use the semi-parametric method of Robinson (1988). This proceeds by taking
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the expectation of St given xt;

E(Stjxt) = E( ~St�1jxt)0� + g(xt) (46)

and then forming

St � E(Stjxt) = [ ~St�1 � E( ~St�1jxt)]0� + ut: (47)

The conditional expectations in (47) can be estimated quite accurately
by non-parametric methods as there is only a scalar as the conditioning
element. Once these have been found the regression of St�E(Stjxt) against
[ ~St�1 � E( ~St�1jxt)] provides an estimate of �. With this estimate g(xt) can
be extracted by non-parametrically computing E[(St � ~S 0t�1�̂)jxt]:
Notice the importance of the separability assumption. If this is incorrect

then we would need to estimate h(�) by non-parametric methods, and then
the number of conditioning elements will depend on the dimension of ~St;
which can be quite high: With a low order Markov process this may be
a feasible estimation strategy, but not if the order is above second. The
motivation for the separability assumption is that it produces a model which
nests those in the literature be setting � = 0 and making g(�) the cumulative
normal ( when a Probit model is adopted). Thus what we are doing here
would be simplest possible generalization that retains the same structure as
the Probit models in the literature but allows for dependence in the St: We
could obviously compare the estimated g(�) to the cumulative normal.
As an example we consider the in�uence of the yield spread upon the

probability of moving to a recession. Estrella and Mishkin(1998) did this via
a Probit model. As the St they used has previously been shown to be second
order Markov we therefore �t the model

St = �1St�1 + �2St�1 + �3St�1St�2 + g(xt); (48)

where xt is the yield spread lagged two quarters. The intercept in this relation
is absorbed into g(xt) since we do not know the function g(�):
Fitting this model using Robinson�s method produces

St = :5St�1 � :32St�1 + :27St�1St�2 + g(xt) (49)

Figure 1 plots 1�ĝ(xt) and the Probit estimate of Pr(St = 0) against xt: It
is clear that there is a substantial di¤erence between the Probit estimates and
the non-parametric estimates of g(�) when the yield spread becomes positive,
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although for negative spreads of less than �1% the correspondence is quite
good. It might appear that there is an implication from the non-parametric
estimates there there is a high probability of being in a recession. This is not
correct since the transition probability depends also upon the values of St�1
and St�2: Thus, if E(1�St) is computed from the non-parametric relation it is
.14, which agrees with the fraction of the sample spent in recessions. Another
perspective is to be had by calculating P (St = 0jSt�1 = 1; St�2 = 1; xt) i.e.
the probability of leaving an expansion as the yield spread varies. This is done
by subtracting .5� :32 + :27 = :45 from the estimate 1� ĝ(xt). This is also
plotted in Figure 1 and it shows that the probability of leaving an expansion
is very high (> :4) when the yield spread gets smaller than �2:2%:

Figure 1: Probit and non parametric estimates of Pr(St = 0) and probability
of leaving expansion
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5 Conclusion

We have made the argument that constructed states St require careful treat-
ment if they re to be used in econometric work since they are very di¤erent
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in their nature to the binary states often modelled in micro-econometrics.
One has to allow for the fact that they are essentially Markov Chains when
engaging in a broad range of estimation and inference methods. But, to date,
the nature of the St has mostly been ignored, with the potential for quite
misleading estimates and inferences. We have suggested some methods to
deal with this fact.

6 Appendix

The determination of these transition probabilities becomes much more com-
plex with the �two quarters rule�as the conditioning event St�1 = 1 will place
some restrictions upon the past sample paths for f�ytg that are associated
with an ETS. For example the sequence

f�yt+1;�yt;�yt�1;�yt�2; ::::::g = f�;�;�:;+; ::::g (50)

would be incompatible with St�1 = 1 since the negative growth at t�1 would
match with the negative growth at t and so the expansion would have been
terminated at t� 1: It is clear that the sample paths {�yt�1;�yt�2; :::g that
are compatible with St�1 = 1 and f�yt+1 < 0;�yt < 0g must have the form
f+; :::g and in such paths we must encounter a f+;+g before we encounter
a f�;�g: If this did not happen e.g. we had for f�yt�1;�yt�2; :::gthe path
f+;�;+;�;�; :::g; then the recession would have begun at t� 5 and would
still be running when we reach t� 5
Now let us consider an enumeration of the paths that are consistent with

St�1 = 1: This is done in the matrix below where the �rst column represents
time and subsequent columns represent paths along which we are assured
that St�1 = 1: The notation used is as follows:

� �+�indicates �yt > 0;

� ���indicates �yt < 0;

� ���before a ��� indicates that any pattern for the observations can
occur along the path up to and including that point;

� ���following a �+�indicates that any pattern for the observations can
occur along the path from that point forward.
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Thus looking at the second column the �+;+� at t and t � 1 assures
us that St�1 = 1 along all paths that exhibit this pattern at t and t � 1.
Similarly, the ���at t and the �+;+�at t� 1 and t� 2 assures us that all
paths with this pattern are consistent with St�1 = 1: Similar logic can be
applied to all the subsequent paths.266666666666664

t+ 1 � � � � � � � � �
t + � + � + � � � �

t� 1 + + � + � + � � �
t� 2 � + + � + � � � �
t� 3 � + + � + � � �
t� 4 � + + � � � �
t� 5 � + + � � �
t� 6 � + � � �
... � . . .

377777777777775
(51)

To understand the derivation of these paths suppose we start with the
four possible outcomes for (�yt;�yt�1g; namely {+;+g; f�;+g; f+;�g and
f�;�g: The last would give St�1 = 0 and the �rst St�1 = 1; thus the
�rst becomes the second column of the table. The other two outcomes do
not enable us to decide what the state for St=1 is and so we proceed to
observation t � 2 and consider what happens to each of them as we add on
a � or a +: Thus f�;+;+g will give St�1 = 1 and that becomes the third
column. But f�;+;�g produces no resolution and one needs to proceed to
t � 3: Augmenting f+;�g with a + also fails to resolve the indeterminacy
while adding on a � result in St�1 = 0: Consequently that path has to be
continued on to t � 3 as well. The process continues in this way and all
columns of the matrix will eventually be enumerated by such a strategy.
To formalize the discussion it is helpful to separate the set of paths that

are consistent with St�1 = 1 into two subsets. Let Et be the set of paths
such that f�yt > 0 and St�1 = 1g and Ft be the set of paths such that
f�yt < 0 and St�1 = 1g : If we introduce the notation that

� [+�]jt represents the fragment of the path along which there are j rep-
etitions of the pattern in the [+�].with the leading term in the pattern
being located at time t,
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� [++]t represents the fragment of path where the pattern "++" occurs
with the �rst " + " being at t and the second at t� 1

� [�]t represents the case where �yt < 0;

the sets Et and Ft can be enumerated as

Et =
n
[++]t ; [+�]t [++]t�2 ; [+�]

2
t [++]t�4 ; :::; [+�]

j
t [++]t�2j ; ::::

o
(52)

Ft =

�
[�]t [++]t�1 ; [�]t [+�]t�1 [++]t�3 ;

[�]t [+�]
2
t�1 [++]t�5 ; :::; [�]t [+�]

j
t�1 [++]t�2j�1 ; ::::

�
: (53)

Thus, using the notation that Pr (Et) represents the probability that the
path is drawn from the set Et, and recognizing that the paths are mutually
exclusive, we have3

Pr (Et) =
1X
j=0

Pr
�
[+�]jt [++]t�2j

�
(54)

and

Pr (Ft) =
1X
j=0

Pr
�
[�]t [+�]

j
t�1 [++]t�2j�1

�
: (55)

By de�nition

Pr (St�1 = 1) = Pr (Et) + Pr (Ft) : (56)

Interest also centres on the joint event Pr fSt = 0; St�1 = 1g ; this will
involve the set Gt+1 de�ned as

Gt+1 =

�
[��]t+1 [++]t�1 ; [��]t+1 [+�]t�1 [++]t�3 ; [��]t+1 [+�]

2
t�1 [++]t�5 ; :::

:::; [��]t+1 [+�]
j
t�1 [++]t�2j�1 ; ::::

�
(57)

3To simplify notation we have omitted the conditioning on =t+1 in equations (54), (55),
(56) and (58).
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Then, since St is a stationary process,

p10 =
Pr(St = 0; St�1 = 1)

Pr(St�1 = 1)
=

Pr (Gt+1)

Pr (Et) + Pr (Ft)
: (58)

If Pr(St = 1; St�1 = 0) is constant4 then Pr(St = 1; St�1 = 0) = Pr(St =
0; St�1 = 1) (as the number of peaks and troughs must be the same). Using
this in conjunction with Pr(St = 0) = 1� Pr(St = 1) we can directly derive
p01 from the same information as used to construct p10.5

Considering the limits of Et etc we get

Pr(E) =
1X
j=0

(1�  )2 [ (1�  )]j

=
(1�  )2

1�  (1�  )
(59)

Pr(F ) =

1X
j=0

 (1�  )2 [ (1�  )]j

=
 (1�  )2

1�  (1�  )
(60)

Pr (G) =
1X
j=0

 2 (1�  )2 [ (1�  )]j

=
 2 (1�  )2

1�  (1�  )
(61)

and so

p10 =
 2

(1 +  )
(62)

p11 =
1 +  �  2

(1 +  )
(63)

4Essentially this requires �yt to be a random walk with time invariant drift and vari-
ance.

5If Pr(St = 1; St�1 = 0) is time varying (as would be the case where �t depends on some
exogenous variable) then one also needs to enumerate the various paths where St�1 = 0:
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p01 =
(1�  )2

2�  
(64)

p00 =
1 +  �  2

2�  
(65)

Now in some of the literature we deal with it is assumed that the process
for �yt depends linearly upon some other variable xt in the following way:

�yt = a+ bxt + ut (66)

where the xt are taken to be strictly exogenous (and so can be conditioned
upon) and ut is n:i:d:(0; 1): If  t = �(�a� bxt) ; applying the enumeration
method results in

Pr (Et+1j=t+1) =
1X
j=0

Pr
�
[+�]jt+1 [++]t+1�2j

�
=

�
1�  t+1

�
(1�  t) (67)

+
1X
j=1

("
j�1Y
i=0

�
1�  t+1�i

�
 t�i

# �
1�  t�2j+1

� �
1�  t�2j

�)

and

Pr (Ft+1j=t+1) =
1X
j=0

Pr
�
[�]t+1 [+�]

j
t [++]t�2j

�
=  t+1 (1�  t)

�
1�  t�1

�
+ (68)

 t+1

1X
j=1

("
j�1Y
i=0

�
1�  t�i

�
 t�i�1

# �
1�  t�2j

� �
1�  t�2j�1

�)
:

Letting Pt = Pr (St = 1j=t+1) under the two quarters rule gives

Pt = Pr (Et+1j=t+1) + Pr (Ft+1j=t+1) (69)

It is clear from this expression that the use of the two quarters dating
rule means that Pt is a function not only of xt but also of xt+1 and the entire
past history of xt:Moreover it does not have a single index form i.e. does not
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depend upon �+ xt� alone. Only if the dating rule had been the �calculus�
one would Pr(St = 1j=t+1) = (1 �  t) be a function of xt only. Clearly the
lesson of this analysis is that one cannot just assume that Pr(St = 1) is a
function of a contemporaneous variable only; it is necessary that one know
how the St were generated in order to be able to write down the correct
likelihood.
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