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Abstract 

 

When individuals take part in decision experiments, their answers are typically subject 

to some degree of noise / error / imprecision. There are different ways of modelling this 

stochastic element in the data, and the interpretation of the data can be altered radically, 

depending on the assumptions made about the stochastic specification. This paper 

presents the results of an experiment which gathered data of a kind that has until now 

been in short supply. These data strongly suggest that the 'usual' (Fechnerian) 

assumptions about errors are inappropriate for individual decision experiments. 

Moreover, they provide striking evidence that core preferences display systematic 

departures from transitivity which cannot be attributed to any 'error' story. 
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 Introduction 

Most theories of decision making under risk are expressed in deterministic form, 

as if an individual’s preferences are precise, stable and consistent with some ‘core’ of 

axioms or well-defined components (such as a utility function and/or a probability 

weighting function). Interpreted literally, the implication is that if a particular individual 

is asked to reveal his preference by choosing between two alternatives, G and H, he will 

(except in the very special case of indifference) always make the same choice every 

time the two are offered under the same conditions.  

However, this is in sharp contrast with extensive experimental evidence going 

back more than 50 years which suggests that, when asked to choose between pairs of 

lotteries on two or more occasions within a short period of time, many individuals do 

not always choose the same alternative. Indeed, it is not uncommon to find 15%-30% 

‘switching rates’ in experimental repeated binary choice data (see, for example, 

Mosteller and Nogee, 1951; Luce (1962); Starmer and Sugden, 1989; Camerer, 1989; 

Hey and Orme, 1994; Ballinger and Wilcox, 1997; Loomes and Sugden, 1998). 

This raises two questions. How should we understand and model the observed 

variability in the data? And what are the implications for the way(s) in which we might 

specify and test different ‘core’ theories?  

Most researchers in this area respond to these questions using some variant of a 

‘Fechner’ model. Fechner models assume that each individual gives a subjective value 

(SV) to an object, but that her perception of this value is subject to some degree of 

‘noise’. That is, if we ask the jth individual to value some object G a number of times 

on separated occasions, she will give a set of responses distributed around some central 

tendency. Thus on any particular occasion, the value of G perceived and reported by 

that individual can be denoted by SVGj + εGj where SVGj represents the ‘core’ subjective 

value of G to that individual – this being determined by whatever theory best accounts 

for the way that individual combines payoffs and probabilities – while εGj signifies 

some independent random deviation from the core value on that particular occasion.  

Applying this approach to the situation where the individual is asked to choose 

between two lotteries, G and H, the model entails the choice being made according to 

which lottery is perceived to have the higher value at the moment when the choice is 

made. On those occasions when SVGj + εGj is greater than SVHj + εHj, G is chosen; but, 

depending on the difference between SVGj and SVHj and on the values that εGj and εHj 
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 happen to take, there may be occasions when SVGj + εGj is less than SVHj + εHj, in which 

case H is chosen. Thus choice becomes probabilistic, with the probability of G being 

chosen over H, Pr(G H), given by: 

 

Pr(G H) = Pr( SVGj + εGj > SVHj + εHj )    (1) 

 

For many economists and econometricians, such a formulation is in line with the 

tradition of taking deterministic core functional forms and simply adding some ‘error’ 

term which has well-established, analytically tractable properties. Not surprisingly, 

then, Fechner models have featured in some form or other in many of the econometric 

analyses of experimental binary choice data. For example, Hey and Orme (1994) 

examined the performance of a number of alternative core theories on the assumption 

that ε is symmetrical around zero and has constant variance. Buschena and Zilberman 

(2000) allowed the variance of ε to be correlated with some measure of the complexity 

of the lotteries being evaluated. And Blavatskyy (2007) considered the implications of 

truncating the distribution of ε in particular ways. If the broad Fechner framework is 

regarded as the appropriate way of modelling the stochastic component in risky 

decisions, all of these variants – and others, perhaps – are potentially admissible: the 

best way of specifying the distribution of ε is then principally a matter of empirical 

investigation1. 

However, the Fechner approach is not the only way in which a stochastic 

component can be incorporated into decision modelling. Becker, DeGroot and 

Marschak (1963) proposed an alternative random preference (RP) approach. Rather 

than supposing that each person is characterised by just one core preference function, 

RP allows that individuals’ perceptions, moods, attitudes and judgments may fluctuate 

to some extent from one moment to another. So on one occasion an individual may tend 

to feel more optimistic, impulsive, risk seeking, etc., while on a different occasion he 

might focus more on the downside, exhibiting greater caution and risk aversion. Thus it 

is as if an individual’s judgmental apparatus comprises of some continuum of states of 

mind, with each state of mind represented by a (slightly) different preference function. 

For example, someone who is essentially a von Neumann-Morgenstern expected utility 

                                                 
1 Different assumptions about the distribution of ε can have very different implications: see Loomes 
(2005) or Bardsley et al (2009, Chapter 7) for examples and discussion. 
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 (EU) maximiser may, within each state of mind, always weight the utilities of different 

payoffs by their respective probabilities; but different states of mind may be 

characterised by different utility functions, sometimes more concave, sometimes less 

concave or even on occasions convex, reflecting a degree of variability in risk attitude 

from one occasion to another. Thus a particular individual’s preferences might be 

modelled as a distribution over some set of functions, one for each state of mind, with 

any one of these having some probability of being the current state of mind at the time a 

particular judgment is made.  

In a choice between two lotteries, G and H, there may be some functions in the 

set which would favour G over H and others which would favour H over G. The 

probability that an individual chooses G can thus be modelled as the probability of 

drawing at random from the set a preference function which evaluates G more highly 

than H.  

To illustrate how fundamentally the RP approach can differ from the Fechner 

approach, consider the case where the individual is, at core, an EU maximiser and 

where he is presented with a choice between H, which offers a 50-50 chance of 20€ or 

0, and G, which offers a 50-50 chance of 20€ or 5c – that is, G first-order stochastically 

dominates H, although the difference in their expected values is relatively small. 

Under the RP approach, the individual’s state of mind – that is, the particular 

vN-M utility function he applies to the choice – may vary from moment to moment; but 

every one of these functions respects first-order stochastic dominance (FOSD), so that 

whatever his state of mind at the moment of choice, he always prefers G to H: hence  

Pr(G H) = 1. 

Under the Fechner approach, SVGj is greater than SVHj. But the difference is 

small, and may be dwarfed by the variances of εGj and εHj, with the result that on a 

substantial minority of occasions, εHj may exceed εGj to a degree which more than 

offsets the difference between SVGj and SVHj. On these occasions, SVGj + εGj < SVHj + 

εHj and the dominated lottery H is chosen. In such cases, then, the Fechner model entails 

a substantial probability (less than 0.5, but conceivably not much less) of observing a 

violation of FOSD. 

 In this respect, such evidence as there is comes much closer to RP than to 

Fechner. For example, Loomes and Sugden (1998) asked 92 respondents to make 45 

binary choices, with each choice presented twice. In 40 of these pairs, neither lottery 
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 dominated the other, and out of 3,680 (92 x 40) instances, there were 676 cases (18.4%) 

where the choice on the second occasion was different from that on the first. In the other 

5 pairs, one lottery dominated the other, usually by offering a 0.05 higher chance of the 

best payoff and a 0.05 lower chance of the worst payoff. In these pairs, out of a total of 

920 observations (92 respondents each making 5 choices on two occasions), dominance 

was violated in just 13 cases – a rate of less than 1.5%. Under the Fechner approach, 

there is no reason to expect the rate to be so much lower in cases involving dominance: 

indeed, since the differences in expected values were mostly smaller in the pairs 

involving dominance, the rate might, if anything, have been expected to be higher in 

those pairs. Such a low rate can be more readily reconciled with RP (which entails a 0% 

rate) supplemented by the occasional lapse of attention or ‘trembling hand’ kind of 

error2.  

Of course, it might be argued that if the only shortcoming of the Fechner 

approach were its overprediction of violations of FOSD, that could be finessed by 

assuming (as Kahneman and Tversky’s (1979) Prospect Theory does) some prior 

editing phase which identifies and eliminates any transparently dominated options.  

 However, we wished to investigate the robustness and appropriateness of the 

Fechner and RP approaches in other scenarios which did not involve dominance but 

which required trade-offs between the countervailing attractions of different 

alternatives. To that end, we conducted an experiment that would allow us to explore 

other possible differences between those two approaches.    

In the next section we set out the key features of the experimental design and the 

main issues we sought to examine. In section 3, we report the results. These results raise 

serious doubts about the appropriateness of Fechner models in this area and suggest that 

RP may provide a more suitable framework for modelling stochastic decision processes. 

The final section discusses the potentially far-reaching and radical implications of our 

findings. 

 

2. Basic Principles of the Design and the Issues to be Investigated 

At the centre of the experimental design were six lotteries, as listed in Table 1. 

In that table, each lottery is shown in the form: higher payoff, probability of higher 

                                                 
2 Loomes, Moffatt and Sugden (2002) argue that some allowance for such ‘trembles’ may be a useful 
adjunct to both Fechner and RP models, but they suggest that the prevalence of such ‘pure’ errors is low. 



 
 

 
 

 
http://www.upo.es/econ 

 payoff; lower payoff, probability of lower payoff. In all cases, the payoffs were in 

Euros. 

Table 1 

Label Description EV Label Description 

A 84, 0.25; 0, 0.75 21.00 D 60, 0.25; 8, 0.75 

B 36, 0.55; 0, 0.45 19.80 E 36, 0.40; 9, 0.60 

C 22, 0.8; 0, 0.2 17.60 F 20, 0.8; 8, 0.2 

 

These six lotteries constitute three triples, {A, B, C} and {D, E, F}. Within each 

triple, safer lotteries offer lower expected values (EVs). D, E and F respectively offer 

the same EVs as A, B and C, but each involves a smaller spread than its {A, B, C} 

counterpart. For all six lotteries, the individuals in our sample were asked to undertake 

three types of task, as follows: 

BC. Nine different binary choices (BC) were constructed and each choice was 

presented to every respondent on six different occasions (separated from one another by 

being interspersed with the other types of task described below). Those choices were: 

{A, B}, {B, C}, {A, C}, {D, E}, {E, F}, {D, F}, {A, D}, {B, E} and {C, F}.  

ME. For each lottery, each respondent was asked on six different (dispersed) 

occasions to state the sure sum of money that would make them indifferent between that 

sum and the lottery in question. These were the ‘money equivalent’ (ME) questions. 

PE. Every lottery was worth less than 120€, so for each lottery, each respondent 

was asked on six different (dispersed) occasions to state the probability p of receiving 

120€ and the 1-p chance of receiving 0 that would make them indifferent between 

playing the lottery in question and playing that ‘probability equivalent’ (PE) lottery.  

The data from these tasks allow us to examine two respects in which the Fechner 

and RP approaches are liable to differ substantially. These relate to: 1) the relationship 

between the distributions of MEs and PEs; and 2) the relationship between equivalences 

and binary choices. In the next two subsections we expand upon each of these in turn. 

 

2.1: The relationship between the distributions of MEs and PEs 

 We start with the Fechner approach. Within that framework, standard deviations 

for the various lotteries should follow the same pattern for MEs and PEs. 

To see why, consider first MEs. For each individual, any sure amount of money 

M can be regarded as a degenerate lottery with its own distribution of ε. Without being 
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 specific about how the variance of ε behaves for such degenerate lotteries3, we can 

expect that for sufficiently low values of M, the overlap between an individual’s SVM + 

εM and his SVG + εG is negligible, so that he would judge G to be better than those sure 

sums with a probability so close to 1 that he would be extremely unlikely to identify any 

of those sums as money equivalents for the lottery G. But as M is progressively 

increased over some intermediate range where SVM + εM and SVG + εG overlap, it 

becomes increasingly likely that M will be judged at least as good as G. Eventually M 

can be expected to become sufficiently high for these be no consequential overlap at the 

other end of the SVG + εG distribution, so that the individual would be extremely 

unlikely to judge G to be as good as these high values.  

If the εGs and εMs are distributed symmetrically around zero means, the 

probability of M being judged at least as good as G reaches 50% at the point where SVM 

= SVG. Thus, so long as the preference functions are not highly nonlinear over the 

relevant range, it might be a reasonable approximation to suppose that the distribution 

of MEs is roughly symmetrical around a mean/median value located where SVM = SVG, 

with the variance of this distribution reflecting the joint distribution of εM and εG. If 

nonlinearities result in substantial asymmetries in the distribution of MEs – something 

we can examine – there might be an argument for taking the median as the better 

measure of central tendency4. 

Second, if different lotteries are associated with markedly different distributions 

of ε, we might expect to see this reflected in the distributions of their MEs. For 

example, suppose that the variance of εH is greater than the variance of εG. Under 

Fechnerian assumptions, for every M the joint distribution of εM and εH will have 

greater variance than the joint distribution of εM and εG, so that we might expect the 

variance of MEs for H to be greater than the variance of MEs for G. So if this were the 

appropriate error model, it might allow us to gain insights into the features of lotteries 

that are associated with different variances of ε.  

Now consider the PEs. Let us denote the ‘yardstick’ lottery (offering 120€ with 

probability p and 0 with probability 1-p) by Y. The distributions of the εY’s associated 

                                                 
3 One possibility, consistent with much psychophysical work, is that the variance increases somewhat as 
the magnitude of M increases. Another possibility, advocated by Blavatskyy (2007) – although without 
any cited empirical foundation – is that the variance for any sure sum is zero. 
4 Under EUT, for example, it could be that u(.) is markedly concave so that a symmetrical distribution of 
perceived expected utilities may map to a distribution of MEs with a longer right tail: in which case, the 
median ME will correspond more closely with the midpoint of the distribution of perceived EUs.   
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 with the values of p that span the relevant range may be different from the distributions 

of the εM’s over the corresponding range. So the PEs for G might be distributed rather 

differently than the MEs for G, reflecting the possibility that the joint distributions of εG 

and εY could be rather different from the corresponding joint distributions of εG and εM.  

Nevertheless, we should still expect to observe PEs exhibiting the same 

regularities as just outlined for the MEs: whatever similarities or differences in the 

standard deviations of the ME distributions are observed between G and H, we should 

expect (broadly) the same similarities or differences to be manifested in the standard 

deviations of the PE distributions for those same lotteries. For example, if the standard 

deviation of an individual’s MEs were to decline progressively from A to B to C, we 

should, under the Fechner model, suppose this to reflect a tendency for the variance of 

εC to be less than the variance of εB which, in turn, is less than the variance of εA. But if 

that is the case, the joint distributions of εY with each of the lottery error terms should 

vary correspondingly, so that we should also expect some progressive decline in the 

standard deviations of that individual’s PEs as we move from A to B to C.  

How does this compare with the implication of RP? Under RP, it is quite 

straightforward to model equivalence judgments. Suppose an individual is asked on a 

particular occasion to state a sure payoff M such that he is indifferent between the 

certainty of that payoff and playing out lottery G. RP models this as if one of that 

individual’s preference functions is picked at random from his set of such functions and 

the individual then states the M corresponding with that function. Different functions 

are liable to entail different values of M, so that the distribution of those functions 

generates a distribution of MEGs for that individual.  

 Exactly the same reasoning applies to PE. For each preference function in the set 

that characterises that individual, there will be some probability of the yardstick payoff 

which will make the individual indifferent between G and Y. Denoting that probability 

by pG, the probability distribution over the set of preference functions maps to some 

distribution of pGs. This applies to any core theory which entails the existence of PEs 

(and MEs) for any and all lotteries: the likelihood that a particular PE is stated is simply 

the likelihood that, at the moment when the decision is made, an individual is in a state 

of mind corresponding to a preference function that entails a mapping between the 

lottery and that PE; and likewise for MEs. 
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 However, in order to go further and generate some testable hypotheses that can 

be contrasted with those emanating from the Fechner framework, we need to place 

some restriction on the distribution of any individual’s preference functions. A fairly 

permissive restriction in keeping with conventional wisdom would be to suppose that 

each individual’s core theory respects transitivity and that all of the preference functions 

in his set can be ordered according to some measure of risk attitude.  

Under these assumptions, suppose that the decision maker is asked to undertake 

choice and equivalence tasks involving two binary lotteries, G and H, where both the 

variance and expected value of G is greater than for H. For some preference functions at 

the risk-seeking/risk-neutral/less risk-averse end of the distribution, the higher EV of G 

is sufficient for G  H, whereas some functions at the more risk-averse end of the 

spectrum entail H  G. Let the proportion of functions that entail G  H be denoted by 

α: then α is the probability of observing G  H on any occasion when the individual is 

asked to make a BC, while we can expect to observe H  G with probability 1−α.  

Now suppose we draw a representative sample of an individual’s MEs for each 

lottery5. Were we to happen to draw the function where G ~ H, it would give the same 

ME for G as for H: call this value M*. All less risk-averse functions would give MEs 

for both lotteries that are above M*, but for each of those functions, G  H, so that the 

MEG would be higher than the corresponding MEH. On the other hand, for all functions 

involving greater risk aversion than the one where G ~ H, the MEs would all be less 

than M*; and for each of those functions, MEG < MEH. Under these conditions, a 

representative sample of that individual’s MEs would exhibit a greater standard 

deviation for MEG than for MEH. 

If α > 0.5, the median function would entail G  H, and we should expect the 

median MEG to be greater than the median MEH (and if the underlying distribution were 

not very far from symmetrical and if the sample sizes were adequate, we might also 

expect the means to reflect the same inequality). If α < 0.5, the median function would 

entail H  G so that the opposite inequality would hold between medians (and probably 

means). But of course, the earlier conclusion about the direction of inequality of the 

standard deviations of the MEs would be unaffected. 

                                                 
5 Notice that the assumption being made here is that the same probability distribution over an individual’s 
utility functions applies to any type of task. This is not the only assumption that might be made, but it is 
the working assumption we shall operate with at present. In footnote 12 we shall briefly discuss a 
different possibility.  
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 What about the PEs? Consider again the function where G ~ H. This entails 

some probability p* such that PEG = PEH. For all functions involving less risk aversion, 

the probability of the yardstick payoff would be lower than p* for both lotteries; but 

since G  H for each such function, the corresponding PEG would be higher than its 

PEH counterpart. In other words, for the subsample of functions from the less risk-

averse portion of the distribution, the PEHs would tend to take even lower values than 

the PEGs. On the other hand, for any function from the more risk averse part of the 

distribution, the probabilities of the yardstick payoffs would be greater than p*; and 

since these functions entail H  G, the PEHs would here tend to take even higher values 

than the PEGs. Taking the distribution as a whole, then, we could expect the standard 

deviation of a sample of an individual’s PEHs to be greater than the standard deviation 

of a comparable sample of that individual’s PEGs. 

This relationship between the standard deviations for the PEs is in the opposite 

direction to our expectation for the MEs and provides a sharp contrast with the 

implications of Fechner models, which suppose that the variances of εG and εH are 

primarily determined by the characteristics of the lotteries and that any differences 

between them will tend to manifest themselves in much the same way via MEs as via 

PEs. This is a contrast our experimental data will allow us to examine. 

 

2.2: The relationship between equivalences and binary choices.  

Within the terms of the Fechner framework, the degrees of overlap between any 

two sets of ME (alternatively, PE) responses should broadly correlate with the 

frequencies of choice in the repeated BC tasks. 

If the relationship between the SVG + εG distribution and the SVH + εH 

distribution is such that (say) G is chosen over H significantly more than 50% of the 

time, we should, at the very least, expect the median (and probably the mean) ME for G 

to be higher than the median (mean) ME for H. We should expect the same with PE. 

However, we may be able to go further than simply expecting the median/mean 

MEs and PEs to be ordered in the same way as each other and in line with the majority 

of choices between any two lotteries. If the distributions of MEs and PEs can be thought 

of as proxies for the SV + ε distributions, the relationships between those distributions 

for any two lotteries might allow us to proxy choice probabilities. For example, if the 

distribution of MEGs and MEHs were such that there is a 60% chance that an MEG 
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 drawn at random from its distribution would be greater than an MEH drawn at random 

from its distribution, one might expect this to be indicative of SVG + εG being greater 

than SVH + εH about 60% of the time, so that under Fechnerian assumptions G would be 

chosen in roughly 60% of choice repetitions. Similarly, we should expect the choice 

proportions to be broadly in line with the probability that a randomly-drawn PEG will be 

greater than an independently sampled PEH. Because of the involvement of the εM’s and 

εY’s, this correspondence may not be exact; but under Fechner assumptions, one would 

expect to find the probabilities inferred from equivalences and those observed in 

repeated choice being not too greatly out of alignment6. 

By contrast, the RP approach allows the possibility of very considerable 

disparities between the extent to which equivalences overlap and the pattern of binary 

choice. This was illustrated earlier in the case where G first-order stochastically 

dominated H, but only by a small amount, so that MEG > MEH and PEG > PEH just over 

50% of the time but G  H in direct binary choice on 100% of occasions (except, 

perhaps, for ‘trembles’). However, in response to the suggestion that FOSD is a rather 

special and unusual situation which might be dealt with by some prior editing 

procedure, it is quite easy to construct cases which do not involve FOSD but where RP 

would allow considerable disparities between the choices we observe and those we 

might infer from the overlaps of equivalences. 

For example, consider the choice between our lottery C = (22, 0.8; 0, 0.2) and 

our lottery F = (20, 0.8; 8, 0.2). Both have the same expected value of 17.60, so we 

could expect the two distributions of MEs to have a considerable degree of overlap; and 

likewise for the two distributions of PEs. But suppose (as is commonly done) that most 

individuals are predominantly risk averse, which in RP terms means that their 

preferences are characterised by sets of utility functions where the (great) majority are 

concave. Every concave function will entail F  C, so that we might expect to find F 

chosen very much more often than the overlapping of the equivalence distributions 

would suggest. A similar argument applies to the {B, E} and {A, D} pairs. Substantial 

disparities of this kind would be compatible with RP, but would be contrary to 

Fechnerian models. 

                                                 
6 If the utilities of sure sums of money are perceived with no noise/error, as assumed in Blavatskyy 
(2007), the correspondence between distributions of MEs and distributions of perceived SVs is exact; if 
the variance of ε is positive and liable to change with the magnitudes of the utilities (and perhaps with 
other characteristics of the risky lotteries), the correspondence is more approximate. 
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3. The Experiment – Implementation and Results 

 Every participant was required to attend two sessions, several days apart, during 

a three-week period in March/April 2008. Each session followed the same format. 

Having signed in and read the instructions (see Appendix 1), each participant answered 

63 questions per session, organised in three successive ‘phases’, each consisting of the 

same 21 questions, as follows: 6 MEs, one for each of the six lotteries; 6 PEs, one for 

each of the six lotteries; and 9 binary choices. All MEs and PEs were elicited using an 

iterative choice format (see Appendix 1 for details and examples of displays) in order to 

make them as procedurally similar to BCs as possible. We gave no feedback until all 

tasks had been completed, at which point we paid each respondent on the basis of 

playing out one of those decisions picked at random at the very end of the experiment. 

Standard incentive mechanisms were used (again, see Appendix 1 for details).  

A total of 274 individuals completed the full set of decisions7. In the way 

equivalences were elicited, we deliberately did not ‘force’ either ME or PE responses to 

respect stochastic dominance because we wanted to see how people behaved if 

unconstrained. In the course of the two sessions, there were 54 occasions when it was 

possible for each respondent to violate FOSD, either by stating an ME equal to or 

higher than the high payoff of the lottery being valued or equal to or less than the lower 

payoff (in the cases of D, E and F), or else by stating a PE at least as high as the 

probability of the high payoff in the {A, B, C} lotteries. The tables in the rest of this 

paper are based on the unedited responses of all 274 participants, including some 

responses that violate FOSD. However, in order to anticipate any concerns that such 

responses may be ‘driving’ the patterns in our data, we have also computed all tables 

using only the responses from individuals who never violated FOSD. These tables are 

presented in Appendix 2. They show that none of the patterns we report, nor the 

conclusions drawn from them, are materially altered when we apply even the fiercest 

exclusion criterion: indeed, if anything, the conclusions come through even more 

powerfully, since by excluding a number of outliers we reduce the standard errors used 

in various of the statistical tests and increase the corresponding significance levels. 

 

 

                                                 
7 45 others came to the first session but did not attend the second session within the time limit we 
imposed. 
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 3.1: Results relating to the relationship between the distributions of MEs and PEs 

In order to examine the relationship between the distributions of MEs and PEs 

and the contrasts between Fechner and RP outlined in subsection 2.1 above, for each 

respondent and for each lottery we computed the mean, median and standard deviation 

of the six ME responses – labelled, respectively, ‘meanME’, ‘medME’ and ‘sdevME’ – 

and the corresponding ‘meanPE’, ‘medPE’ and ‘sdevPE’ for each set of six PE 

responses. Table 2 reports the sample averages for these variables, plus the sample 

medians of the standard deviations, with those standard deviations in the middle rows 

for easier comparison between MEs and PEs. 

 

Table 2: Key Statistics for Money Equivalents and Probability Equivalents 

 
Lottery A B C D E F 

       

Average meanME 20.93 17.48 15.09 20.93 18.82 15.50 

Average medME 20.60 17.28 15.10 20.73 18.76 15.43 
       

Average sdevME 4.43 3.17 2.51 4.08 2.97 2.24 

Median sdevME 3.40 2.64 2.28 3.38 2.39 1.73 
       

Average sdevPE 3.29 5.48 7.32 6.42 6.20 7.33 

Median sdevPE 2.16 4.33 5.70 4.08 4.91 6.30 
       

Average meanPE 18.33 25.27 28.45 23.79 25.66 29.37 

Average medPE 18.05 24.88 27.94 23.24 25.23 29.05 

 
This table enables us to see whether the trends in standard deviations follow the 

same pattern for MEs as for PEs, as the Fechner framework would suggest, or whether 

they move in opposite directions, as we might expect under RP.  

For MEs, we find that as we move from A to B to C, and also as we move from 

D to E to F, standard deviations reduce to an extent that is highly significant (p < 0.001) 

in every pairwise comparison within each triple. By contrast, the standard deviations of 

PE responses show a strong tendency to change in the opposite direction: of the six 

binary comparisons of sdevPEs within the two triples, only the difference between D 

and E is in the same direction as for MEs (although insignificantly so), while the 

increase from D to F is significant at the 1% level and the other four binary differences 
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 are significant at the 0.1% level8. It is hard to see how such strong opposite trends in the 

standard deviations can be reconciled with any variant of the Fechner approach – and 

certainly not any in the existing literature of which we are aware. 

 

3.1: Results relating to the relationship between equivalences and binary choices 

In order to examine the relationship between equivalences and binary choices 

and the contrasts between Fechner and RP outlined in subsection 2.2 above, we collated 

the BC data as follows. For each respondent, we observed the number of times out of 6 

repetitions that he/she chose the riskier lottery – that is, the one with the greater spread 

(always labelled alphabetically earlier than the safer lottery) – within each pair.  

 

Table 3: Binary Choice Distributions 

 
{R, S} Frequency of Choice of  Riskier Lottery   

Pair 6 5 4 3 2 1 0 Total R:S 

{A, B} 25 19 20 31 33 41 105 525: 1119 
{B, C} 20 17 25 29 37 50 96 516: 1128 
{A, C} 36 20 16 28 31 41 102 567:1077 
{D, E} 78 42 55 30 25 24 20 1062: 582 
{E, F} 55 43 44 33 39 25 35 923: 721 
{D, F} 80 31 44 36 23 28 32 993: 651 
{A, D} 17 16 15 14 21 55 136 381: 1263 
{B, E} 9 7 10 10 16 42 180 233: 1411 
{C, F} 2 1 -- 3 4 21 243 55: 1589 

 
 

For each pair, Table 3 shows the 274 individuals categorised accordingly: that is, 

the column headed ‘6’ shows how many respondents chose the riskier lottery on all 6 

occasions; the column headed ‘5’ shows how many chose the riskier lottery on five 

occasions and chose the safer lottery just once; and so on through to those in the column 

headed ‘0’ who never chose the riskier lottery but chose the safer alternative every time 

                                                 
8 As can be seen in the corresponding table in Appendix 2, removing cases where FOSD is violated has 
the effect of reducing all standard deviations, while bringing the direction of change of the average 
sdevPE from D to E in line with the other five pairwise comparisons – although this difference remains 
insignificant. It also increases the significance level of the D to F difference from 1% to 0.1%.  
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 they faced that binary choice. The total number of times the riskier (R) and safer (S) 

lotteries were chosen is shown in the far right hand column. 

 It is immediately apparent that there is considerable variability at the individual 

level, while at the same time there are some very definite and quite intuitive trends. For 

each of the three {A, B, C} pairs, the overall majority of choices clearly favour the safer 

alternative, as shown in the far-right column. Even so, for each pair only about half of 

the respondents make the same choice consistently on all six occasions.  

Turning to the {D, E, F} pairs, the effect of raising the minimum payoffs to 8€ 

or 9€ and reducing the spreads of these lotteries relative to their {A, B, C} counterparts 

is to cause the majority of choices now to favour the higher-EV alternatives in each 

case. Here, though, there is somewhat less within-person consistency, with only about 

40% of respondents making the same choice on all six occasions.  

Finally, when the EVs are equalised, as in the last three pairs, there are very 

substantial majorities favouring the safer alternatives, most strikingly in the {C, F} 

choice. So despite the clear evidence of variability in people’s choices, there are also 

many signs of systematic tendencies underlying their behaviour. 

How do the patterns of choice compare with the overlaps between equivalences? 

We focus on the three pairs {A, D}, {B, E} and {C, F} where the alternatives within 

each pair shared the same EV and differed only in terms of their spreads. 

For each individual and for each pair of lotteries, we compared each individual’s 

six MEs for one lottery with each of her six MEs for the other lottery. We recorded the 

number of comparisons in which the ME of the riskier lottery (MER) was strictly higher 

than the ME of the safer lottery (MES), the number of occasions when MER = MES, and 

the number of times when MER < MES. Since there were 36 comparisons for each of 

274 respondents, the total number of comparisons per pair of lotteries is 9864. The 

distributions for each pair of lotteries is shown in Table 4. 
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 Table 4: Comparing MERs with MESs 

 

Lottery Pair MER > MES MER = MES MER < MES 
 

A vs D 
 

4231 (42.9%) 
 

928 (9.4%) 
 

4705 (47.7%) 
 

B vs E 
 

3149 (31.9%) 
 

976 (9.9%) 
 

5739 (58.2%) 
 

C vs F 
 

4081 (41.4%) 
 

1147 (11.6%) 
 

4636 (47.0%) 

 

It is immediately apparent that the BC distributions are very different from those 

implied by the overlaps of equivalences. On the basis of the ME responses, A should 

have been preferred to D at least 42.9% of the time in direct choice (that minimum 

figure being based on the rather extreme assumption that all cases where MEA = MED 

are interpreted as favouring D in direct choice). But in fact A was chosen in just over 

23% of direct BCs. Similarly, the ME data suggest that B should be preferred to E on at 

least 31.9% of occasions, whereas the actual proportion was less than half of that 

(14.2%). The {C, F} case provides an even more striking contrast: whereas MEC > MEF 

in more than 41% of comparisons, C is chosen only 55 times out of 1644 – a rate of less 

than 3.5%. These disparities are entirely in keeping with RP, but are incompatible with 

any Fechner formulation of which we are aware. 

 

3.3: Results relating to the assumption of transitivity  

 The propositions and implications set out in subsections 2.1 and 2.2 were 

derived on the basis of fairly general assumptions about core preferences that might 

apply to many non-EU models as well as to EU: in particular, that core preference 

functions are transitive and can, for any individual, be ordered according to some 

measure of risk attitude. On that basis, we considered some contrasting implications of 

Fechner and RP approaches for the distributions of ME, PE and BC responses and the 

relationships between them. And on this basis, the evidence from the experiment 

strongly and consistently appeared to favour RP rather than any form of Fechner error 

term.  

 However, the data in Tables 2 and 3 give grounds for questioning the 

assumption of transitivity. In Table 2, the mean and median MEs order the lotteries in 

the first triple A  B  C and give the ordering D  E  F in the second triple, while 
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 the mean and median PEs produce exactly the opposite orderings within each triple. 

Meanwhile, Table 3 shows aggregate patterns of binary choices that do not fit either 

with MEs or with PEs: for each pair in the {A, B, C} triple, the majority choices favour 

the safer options, which is in line with the PEs but is contrary to the MEs; while for 

every pair in the {D, E, F} triple, the majority choices favour the riskier options, which 

tallies with MEs but runs counter to PEs.  

Of course, those tables report aggregate data, whereas an examination of 

transitivity really requires individual-level analysis. In particular, as argued in Section 2, 

if individuals’ underlying preference functions can be ordered according to some 

measure of risk attitude, we should expect individuals’ median responses to provide 

insights into the nature of the functions at the centre of those distributions. If such 

functions entailed transitivity, we should expect this to be reflected at the level of the 

individual by the correspondence between median MEs, median PEs and majority 

choices. 

The relevant individual-level analysis is reported in Table 5, which categorises 

all 274 respondents according to their median ME, median PE and majority BC 

responses to each pair, with R and S referring, respectively, to the riskier and safer 

lotteries in each pairing.  

 

Table 5: Conjunctions of Median Responses 

 
Direction of Median Lottery Pairs 

ME PE PC {A, B} {B, C} {A, C} {D, E} {E, F} {D, F} 

R ≥ S R ≥ S R ≥ S 36 48 57 80 73 84 

R ≥ S R ≥ S R < S 20 46 12 12 29 13 

R > S R < S R ≥ S 46 25 38 73 87 92 

R > S R < S R < S 102 70 105 28 54 49 

R < S R > S R > S 0 4 1 11 5 6 

R < S R > S R ≤ S 0 16 1 8 5 5 

R ≤ S R ≤ S R > S 6 5 1 33 5 3 

R ≤ S R ≤ S R ≤ S 64 60 59 29 16 22 

 
So, for example, the top cell in the {A, B} column shows that 36 of the 274 

individuals had a median MEA at least as high as their median MEB and had a median 
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 PEA at least as high as their median PEB and chose A over B on at least 3 of the six 

occasions they were presented with that choice. Such behaviour displays the kind of 

consistency that a transitive core theory would entail. The 20 in the next cell down 

favoured A both in terms of MEs and PEs but chose B on at least four of the six BC 

repetitions; while the 46 in the third cell chose A on at least 3 occasions and had median 

MEA’s strictly higher than their median MEB’s, but their median PEA’s were strictly 

lower than their median PEB’s. And so on.  

By summing the numbers in the top and bottom rows, we can see how many 

individuals were weakly consistent with some transitive core preference for each pair. 

The emphasis shifts from the bottom row to the top row as we move from {A, B, C} to 

{D, E, F} but the total is fairly stable, always lying between 89 and 116 i.e. between 

32.5% and 42.5% of the sample. 

 Thus for most pairs, more than 60% of the sample violated transitivity in one 

way or another. However, the ways in which they did so do not appear to be randomly 

distributed. On the contrary, they exhibit certain systematic patterns, as follows. 

 First, we observe the analogue to the classic preference reversal phenomenon 

where people choose one option but place a higher money equivalent on the other. In 

the literature – see Seidl (2002) – there is a clear asymmetry whereby it is relatively 

common to observe people placing a higher money value on the riskier option but 

choosing the safer option in the BC task (in our terms, median MER > median MES 

together with majority S  R) but it is relatively rare to observe people valuing the 

safer option more highly while choosing the riskier option (i.e. median MES > median 

MER together with R  S). In fact, taking the pairs in the left-to-right order of the 

columns in Table 5, the ratios we observe are 122:6, 116:9, 117:2, 40:44, 83:10 and 

62:9: that is, with one exception, very strongly exhibiting the classic preference reversal 

asymmetry, especially among the {A, B, C} pairs where the safer options were more 

often chosen9.   

 Although probability equivalents have been much less often studied, Butler and 

Loomes (2007) reported the opposite asymmetry when PEs and choices were compared. 

For the pair of lotteries they investigated, they found that instances where individuals 

chose the safer option but placed a higher PE on the riskier option were outnumbered by 
                                                 
9 The corresponding table in Appendix 2, which excludes cases where a lottery is overvalued to the extent 
that the stated ME is greater than the high payoff, shows fewer reversals of both kinds: the corresponding 
ratios are 69:4, 70:6, 68:2, 24:26, 50:3 and 40:5. Thus even when all violations of FOSD are excluded, 
the asymmetry remains just as pronounced.    
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 the opposite combination of choosing the riskier option while placing a higher PE on 

the safer one. For the six pairs in Table 5, the analogous ratios using majority choices 

and median PEs are: 13:35, 54:20, 11:25, 15:87, 29:72 and 12:74; thus, with one 

exception, these ratios show the same direction of asymmetry reported in Butler and 

Loomes (2007), with those asymmetries being much more pronounced for the {D, E, F} 

pairs where the riskier options were more often chosen10. 

 Finally, the most striking and comprehensive asymmetry of all emerges from the 

conjunction of MEs and PEs. If we compare the numbers of individuals for whom 

median MER > MES but median PER < PES with those for whom median MER < MES 

but median PER > PES, we obtain the following ratios: 148:0, 95:20, 143:2, 101:19, 

141:10 and 141:1111. 

 Remembering that these data are based on medians and majority responses – that 

is, they do not depend on single and possibly aberrant responses – we cannot see any 

way within the modelling framework outlined above that these patterns can be 

reconciled with a model which assumes that the great majority of individuals’ decisions 

in such tasks reflect an essentially transitive core. 

 

4. Discussion 

The data presented in subsection 3.3 constitute powerful evidence against 

transitivity. This presents us with a Duhem-Quine problem: our basis for distinguishing 

between Fechner and RP involved the auxiliary assumption that any core theory was 

transitive (and in the case of RP, the additional assumption that preference functions 

could be ordered by risk attitude). If we have reason to doubt the assumption about the 

transitivity of core preferences, can we continue to be so confident that the Fechner 

framework is inferior to RP? 

 We think we can. Indeed, if core preferences are so often intransitive, that may 

constitute a further argument for doubting the appropriateness of applying the Fechner 

framework to experimental data about equivalences and choices between lotteries. To 

see why, consider what is involved in any core theory that allows systematic 

intransitivities. Intrinsic to such a theory is the idea that the evaluation of any lottery is 

liable to vary systematically from one context / choice set / decision task to another, so 

                                                 
10 After excluding cases where FOSD was violated, the corresponding ratios are 7:24, 38:12, 6:17, 7:64, 
20:32 and 8:36.   
11 From the Appendix 2 data, the corresponding ratios are: 91:0, 53:14, 86:1, 70:8, 74:6 and 80:6. 
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 that G may be evaluated more favourably than H against sure amounts of money while 

H may be evaluated more favourably than G in a direct choice between the two and/or 

against some yardstick lottery. In other words, the assumption underpinning the Fechner 

approach – that the perceived SV of an object to an individual is purely a matter of how 

the characteristics of that object interact with the evaluation apparatus of the individual 

– does not hold. Trying to graft some form of independent Fechner error onto core 

preferences which allow systematic intransitivities as a result of contextual interactions 

would appear to involve a fundamental conceptual mismatch.  

By contrast, the holistic processing of a decision task is entirely in keeping with 

the spirit of the RP model. The notion of a ‘state of mind’ entails both (all) alternatives 

being processed together and on the same basis on any given occasion. The effect of 

imposing transitivity is not to rule out such processing but rather to require that the 

results of evaluating two or more alternatives in conjunction with one another is 

indistinguishable from evaluating them separately and/or in conjunction with any/all 

other sets of options. Core theories which dispense with transitivity typically involve 

specifying the nature of interactions between alternatives which lead to systematic 

variations in the way the evaluation of a prospect is affected by the parameters of the 

other prospects in a particular set. Clearly, such interactions entail at least some degree 

of joint processing of the kind intrinsic to the RP approach. An RP specification of a 

non-transitive core theory is therefore very natural, and simply involves the extent of 

certain interactions varying from one occasion to another12. 

 It is not our intention to say much more here about the detailed nature of an 

intransitive core theory that might fit the data13. Rather, the main focus of the present 

paper is upon the appropriate specification of the variability in most of our participants’ 
                                                 
12 However, it has occurred to us that there is a somewhat different approach that might reconcile the data 
with an RP formulation of some transitive core theory, as follows. Suppose that an individual’s 
preferences are represented by some distribution of (say) von Neumann-Morgenstern u(.) functions, but 
that instead of sampling randomly from the same distribution for all types of task, the nature of the task 
biases the sampling in some way(s). In order to produce the patterns we have observed, it would need to 
be the case that the ME task prompts respondents to sample more heavily from the more risk-seeking/less 
risk-averse end of the distribution, while the PE task results in oversampling from the more risk averse 
end of the distribution, with binary choices perhaps being based on a sample somewhere between those 
other two. This kind of explanation would move us away from the more formal decision theoretic 
framework that underpins our analysis and towards something more in the ‘heuristics and biases’ 
(Kahneman, Slovic and Tversky, 1982) tradition. We put such a possibility ‘on the table’ as something 
that may merit future investigation, although we do not pursue it further in this paper.  
13 We can say that regret theory does not appear to fit the bill – in Butler and Loomes (2007) it was 
shown that regret theory is at odds with the form of PE-BC reversal found there and replicated in our 
data. One of the authors has proposed a model which does appear capable of accommodating that form of 
reversal alongside the classic ME-BC phenomenon – see Loomes (2010) – but it will require a much 
broader set of experiments to test more adequately the credentials of that model.  
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 ME, PE and BC responses. Taken as a whole, our evidence strongly suggests that 

Fechner specifications are simply inappropriate.  

 The implications of such a conclusion are radical and potentially far-reaching. 

First, it raises serious doubts about much of the work to date that has used Fechner 

models to try to fit preference functions and to judge the relative merits of EU against 

other ‘core’ theories. If the whole Fechner approach is fundamentally inappropriate for 

these data, any estimates generated on the basis of such mis-specified error models and 

any inferences drawn from them must be regarded as questionable. 

Second, the use of Fechner models has not been restricted to the analysis of data 

from individual decision experiments. As discussed in Loomes (2005) and Bardsley et 

al. (2009, Chapter 7), the ‘quantal response equilibrium’ (QRE) concept, developed by 

McKelvey and Palfrey (1995, 1998) and applied to numerous datasets generated by 

experimental games, is also an essentially Fechnerian model. If the Fechner approach is 

the wrong way of modelling the stochastic component of individual behaviour in the 

face of ‘games against nature’, it may also be the wrong way of modelling the stochastic 

component in individuals’ behaviour when they are playing games against other 

individuals; and this may cast doubt on the robustness of QRE-based ways of fitting the 

data from experimental games and the inferences drawn from doing so.  

Third, essentially the same assumptions underpin a much wider body of 

empirical and theoretical ‘discrete choice’ research (see Manski, 2001): if the model is 

unsound in the context of individual decisions about simple lotteries, how confident can 

we be about its suitability in many other areas where ‘stated preference’ methods have 

been used to guide private and public decision making? 

 Of course, it would be premature to discard a large body of existing literature on 

the basis of a single experimental study, no matter how striking the results of this study 

appear to be. Further work is clearly required in order to establish the robustness of our 

findings and explore the extent of their applicability. However, if such further work 

confirms our key findings and shows that they carry over into strategic behaviour and 

into other areas of preference elicitation, the implications are fundamental: techniques 

and results predicated upon Fechnerian assumptions may no longer be viable in these 

fields and we shall need in future to formulate hypotheses, conduct statistical tests, fit 

core functional forms and derive estimates of parameters in ways consistent with RP 

specifications of the stochastic nature of people’s judgments and decisions. 
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 Appendix 1: Overview of the Experiment 
 
Subjects and design 
 
Participants in the experiment were students at three different Spanish universities: 
Vigo, Pablo de Olavide (Seville) and Murcia. The total number of people recruited was 
319 (103 in Vigo, 144 in Murcia and 72 in Seville). Recruitment of participants took 
place during the 2 weeks before the experiment started: signs were posted in 
researchers’ faculties and they also went to the classrooms to explain the aim of the 
experiment briefly and encourage participation. 
 
The experiment was computer-based. Each participant had to attend two experimental 
sessions separated by at least 1 week. 45 subjects did not show up for the second 
session leaving the total sample as 274. There were two interviewers present during the 
group sessions to help subjects with any problems.  
 
The questionnaire 
 
The questionnaire was divided into three stages. In the first stage subjects were asked to 
enter their names, age, and gender. This request was for ensuring that responses of the 
same individual in the two sessions were correctly linked. They were then told that the 
experiment aimed to investigate how people make a series of choices between two 
options. It was explained that, in addition to a €5 ‘show-up’ fee, there would also be a 
payment based on their decisions: at the end of the second session, one of their 
decisions would be retrieved and played out for real money. Because the payment 
depended on just one decision, participants were advised that it was in their interests to 
make each choice in a way that most accurately reflected their true preferences.  
 
In the second stage, subjects were presented with three practice questions. Each of these 
questions illustrated the different types of question that participants would see in the 
third stage. The instructions for each type of question were displayed on the computer 
screen and they were also read aloud by the researchers. After being given an 
opportunity to clarify anything they were uncertain about, subjects were invited to 
proceed to the third stage. 
 
The final stage consisted of nine sequences of questions, grouped in three blocks, 21 
questions each. These questions were the same for the three blocks. The order in which 
the questions were administered within each block was as follows: first, there were 6 
Money Equivalence (ME) questions; next, 6 Probability Equivalence (PE) questions; 
and finally, 9 Binary Choices (BC). Therefore each participant repeated this set of 21 
tasks three times within each session – so, six times over the two sessions.  
 
The Three Types of Question 
 
Each ME question elicited the amount of money €XME that made a subject indifferent 
between €XME for certain and a lottery giving €X1 with probability p and €X2 with 
probability (1-p). An example of the kind of display used is shown in Figure A1. 
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 Figure A1: Screenshot of a Money Equivalence question 
 

 
 
For each alternative, the bar was divided in proportion to the probability attached to the 
relevant payoff. For Option A (the lottery) the chance of winning the higher outcome 
(€84 in the example) was always coloured in green. The lower outcome (€0 in the 
example) was in red. As Option B only offered one sure amount, the entire bar was in 
green. Participants were asked to press “A” or “B” buttons until they considered both 
options equally attractive in terms of their preferences. Whenever the “A” button was 
pressed, the sure sum of money was increased, making Option B more desirable. The 
reverse occurred when subjects pressed the “B” button. Once subjects felt that they 
were indifferent between the two options, they registered this and moved on to the next 
question by pressing the “Continue” button.   
 
Each PE question elicited the probability q that made the subject indifferent between a 
particular lottery and an alternative lottery giving €120 with probability q and €0 with 
probability (1-q). Figure A2 shows an example of this type of question. 
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 Figure A2: Screenshot of a Probability Equivalence question 
 

 
 
The procedure to reach the indifference point was essentially the same as for the ME 
questions. So, when the subject indicated a preference for the fixed lottery by pressing 
the “A” button, the probability attached to €120 in Option B increased; and the opposite 
happened when the “B” button was pressed. When indifference was reached, the subject 
pressed “Continue” to register that value and move to the next question. 
 
The BC questions presented subjects with two fixed lotteries and asked them to make a 
straight choice between them. An example of the display is shown in Figure A3. 
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 Figure A3: Screenshot of a Binary Choice question 
 

 
 
The Incentive System 
 
After a subject had completed all questions in both sessions, one of his/her decisions 
was picked at random: it was equally likely to be any question from either of the two 
sessions. If it was a BC question, he/she simply played out whichever lottery s/he had 
chosen. If it was an equivalence question, an ‘offer’ – some sure sum of money in the 
case of an ME question, or a lottery offering some probability of €120 in the case of a 
PE question – was drawn at random: if this was as good as, or better than, the stated 
indifference sum/probability, the individual either received the full amount of the sure 
money offer or else played out the €120 lottery offered. If the offer was worse than the 
stated indifference value, s/he played out Option A instead.  
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 Appendix 2: Results Tables After Exclusions (n = 165) 

 
 

Table 2: Key Statistics for Money Equivalents and Probability Equivalents 

Lottery A B C D E F 
       

Average meanME 20.30 17.15 14.91 20.99 18.88 15.48 

Average medME 20.20 17.00 15.02 20.87 18.84 15.52 
       

Average sdevME 3.55 2.49 1.98 3.21 2.28 1.49 

Median sdevME 2.88 2.15 1.80 2.89 2.01 1.41 
       

Average sdevPE 1.81 3.98 5.93 4.91 4.98 6.20 

Median sdevPE 1.64 3.22 4.83 3.33 3.78 5.24 
       

Average meanPE 16.96 23.27 26.21 22.61 24.46 27.29 

Average medPE 17.02 23.12 25.83 22.18 24.20 26.85 

 

 
 

 

Table 3: Binary Choice Distributions 

{R, S} Frequency of Choice of  Riskier Lottery   

Pair 6 5 4 3 2 1 0 Total R:S 

{A, B} 17 12 15 19 14 26 62 333 : 657 

{B, C} 16 11 15 12 22 22 67 313 : 677 

{A, C} 27 13 7 17 16 27 58 365 : 625 

{D, E} 54 27 34 16 13 11 10 680 : 310 

{E, F} 37 25 27 20 15 19 22 564 : 426 

{D, F} 57 20 20 21 15 15 17 630 : 360 

{A, D} 10 13 8 3 12 32 87 222 : 768 

{B, E} 5 3 9 5 10 17 116 133 : 857 

{C, F} 1 1 - - 1 10 152   23 : 967 
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 Table 4: Comparing MERs with MESs 

Lottery Pair MER > MES MER = MES MER < MES 
 

A vs D 
 

2295 (38.6%) 
 

611 (10.3%) 
 

3034 (51.1%) 
 

B vs E 
 

1631 (27.5%) 
 

603 (10.1%) 
 

3706 (62.4%) 
 

C vs F 
 

2292 (38.6%) 
 

802 (13.5%) 
 

2846 (47.9%) 

 

 
 
 

Table 5: Conjunctions of Median Responses 

Direction of Median Lottery Pairs 

ME PE BC {A, B} {B, C} {A, C} {D, E} {E, F} {D, F} 

R ≥ S R ≥ S R ≥ S 26 32 39 52 63 62 

R ≥ S R ≥ S R < S 10 31 7 7 18 10 

R > S R < S R ≥ S 32 14 25 53 42 50 

R > S R < S R < S 59 39 61 17 32 30 

R < S R > S R > S 0 3 1 7 2 4 

R < S R > S R ≤ S 0 11 0 1 4 2 

R ≤ S R ≤ S R > S 4 3 1 19 1 1 

R ≤ S R ≤ S R ≤ S 37 35 34 12 6 9 

 

 
 
 
 

 


