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Abstract 
We propose a likelihood ratio (LR) test of stationarity based on a widely-used correlated 
unobserved components model. We verify the asymptotic distribution and consistency of the LR 
test, while a bootstrap version of the test is at least first-order accurate. Given empirically-
relevant processes estimated from macroeconomic data, Monte Carlo analysis reveals that the 
bootstrap version of the LR test has better small-sample size control and higher power than 
commonly used bootstrap Lagrange multiplier (LM) tests, even when the correct parametric 
structure is specified for the LM test. A key feature of our proposed LR test is its allowance for 
correlation between permanent and transitory movements in the time series under consideration, 
which increases the power of the test given the apparent presence of non-zero correlations for 
many macroeconomic variables. Based on the bootstrap LR test, and in some cases contrary to 
the bootstrap LM tests, we can reject trend stationarity for U.S. real GDP, the unemployment 
rate, consumer prices, and payroll employment in favor of nonstationary processes with volatile 
stochastic trends. 
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Introduction 
Beginning in the 1970s, a number of econometric studies suggested that permanent 

movements in many macroeconomic time series follow a stochastic trend instead of a smooth 

deterministic time trend.  Granger and Newbold (1974) were among the first to argue that 

macroeconomic data as a rule contained stochastic trends, characterized by autoregressive unit 

roots, and that using these series in regression models may lead to spurious inferences about their 

underlying relationships. Nelson and Plosser (1982) could not reject the autoregressive unit root 

hypothesis in favor of trend stationarity for 13 out of 14 major U.S. macroeconomic time series 

using statistical techniques developed by Dickey and Fuller (1979).   

One drawback of autoregressive unit root tests is that they can have low power in small 

samples against estimated trend stationary processes (see, for example, DeJong et al., 1992, and 

Rudebusch, 1992, 1993). As a consequence, stationarity tests, in which the null hypothesis is 

level-stationarity or trend-stationarity and the alternative is a nonstationary unobserved 

components process, have become popular. The most well-known stationarity test is the KPSS 

test (Kwiatkowski et al. 1992) that has the form of a Lagrange multiplier (LM) test, but has a 

nonstandard asymptotic distribution. KPSS take a nonparametric approach to addressing any 

serial correlation in the process under the null hypothesis. Leybourne and McCabe (1994) 

consider a similar LM-type test, but take a parametric approach to addressing serial correlation. 

In this paper, we propose a likelihood ratio (LR) test of stationarity based on a correlated 

unobserved components model that has previously been applied to many macroeconomic 

variables in the empirical literature and compare its performance to the widely-used LM tests. 

Drawing from theoretical results in Davis and Dunsmuir (1996) and Chen, Davis, and Dunsmuir 

(1996) for a moving-average (MA) unit root test, we verify the asymptotic distribution and 
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consistency of our LR test. Meanwhile, following Gospodinov’s (2002) results for an MA(1) 

model in first differences, a bootstrap version of the LR test of stationarity for our unobserved 

components model is at least first-order accurate when the bootstrap data are generated under the 

null hypothesis. Having established the asymptotic validity of our test, we evaluate its small-

sample performance given null and alternative processes of the kind estimated for 

macroeconomic data. Specifically, we estimate null and alternative models for four U.S. 

macroeconomic time series (real GDP, the unemployment rate, consumer prices, and payroll 

employment) and make use of the implied data generating processes to simulate data for several 

Monte Carlo experiments. These experiments reveal that, given the sample sizes and estimated 

processes for these time series, asymptotic tests are dramatically over-sized, regardless of 

whether nonparametric or parametric approaches are taken for addressing serial correlation. For 

the bootstrap versions of the LM tests, the empirical rejection probabilities are closer to the 

nominal size of the tests, but they still have a tendency to over-reject. Furthermore, the bootstrap 

LM tests have much lower power against empirically-relevant alternatives than their asymptotic 

counterparts.1 By contrast, the bootstrap LR test has excellent small-sample properties, including 

accurate size and more power than the bootstrap LM tests for empirically-relevant alternatives. 

When we apply the bootstrap stationarity tests to the four U.S. macroeconomic time series 

considered in our Monte Carlo analysis, we find that we are able to reject trend stationarity in 

every case using the bootstrap LR test, while we are unable to reject in some cases using the 

bootstrap LM tests. Thus, the bootstrap LR test is more informative about the prevalence of 

stochastic trends in macroeconomic data than its LM counterparts.   

                                                
1 Rothman (1997) also finds that the bootstrap version of the KPSS test has low power in the case of an alternative 
based on estimates for U.S. real per capita GNP.  
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Although much of the econometrics literature on stationarity tests has focused on the 

LM-type tests, our LR test is motivated by a related literature on likelihood-based inference for 

an MA(1) model with a root of the MA polynomial close to or equal to 1. An LR test of whether 

the MA root equals 1 is directly related to stationarity tests due to the equivalence between 

unobserved components models and autoregressive moving average (ARMA) models for first 

differences.  For example, a random walk plus noise model with normally distributed shocks is 

equivalent to an MA(1) model in first differences, with the MA root equal to 1 corresponding 

directly to stationarity for the levels. Davis and Dunsmuir (1996) derive an asymptotic 

approximation of the distribution of the maximum likelihood estimator and the LR test for an 

MA(1) model with values of the MA root close to or equal to 1, while Davis, Chen, and 

Dunsmuir (1996) show that the results generalize to testing the closest MA root for ARMA 

models. Gospodinov (2002) extends Davis and Dunsmuir’s (1996) analysis to show that it is 

asymptotically valid to bootstrap the LR test for an MA(1) model when imposing the null 

hypothesis of an MA root equal to 1. We make use of these results in order to verify the 

asymptotic distribution and consistency of the LR test of stationarity based on a correlated 

unobserved components model and to consider the asymptotic validity of a bootstrap version of 

this test. 

A key feature of our proposed LR test is its allowance for correlation between 

permanent and transitory movements in the time series under consideration. This is important 

because estimates for correlated unobserved components models support non-zero correlations 

for many macroeconomic variables, meaning that allowing for the correlation increases the 
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power of the LR test by generating higher likelihood values under the alternative.2 Also, the 

estimated alternatives when allowing for this correlation often imply large permanent 

movements in the data over time and are, therefore, far away from the null of stationarity. Thus, 

we find that the statistical significance of the bootstrap LR test corresponds directly to economic 

relevance in terms of the importance of stochastic trends in macroeconomic time series. 

The remainder of the paper proceeds as follows.  In Section 2, we discuss asymptotic and 

bootstrap tests of stationarity, including both the traditional LM tests and our proposed LR test.  

In Section 3, we present Monte Carlo analysis of the small-sample size and power performance 

of the various stationarity tests. In Section 4 we apply the tests to U.S. macroeconomic data. 

Section 5 concludes. 

Section 2:  Stationarity Tests 

As discussed in KPSS, it is often possible to think about a time series of interest as the 

sum of a deterministic trend, a random walk component, and a stationary error.  In this setting, 

the test of trend stationarity involves determining whether or not the innovation to the random 

walk component has zero variance.  In this section we focus on three tests of stationarity: KPSS 

(Kwiatkowski et al., 1992) and LMC (Leybourne and McCabe, 1994), which are both versions of 

a Lagrange Multiplier (LM) test, and our proposed likelihood ratio (LR) test.  

2.1 The LM Statistic 

Let ût , t = 1, …, T, be the estimated residuals from a regression of the time series of 

interest, y, on an intercept and a time trend.  Assuming that that the innovations to the random 

                                                
2 See Morley (2007) and Mitra and Sinclair (forthcoming) and references therein for examples of correlated 
unobserved components models applied to macroeconomic data with significant estimates of non-zero correlation 
between permanent and transitory movements. 
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walk component are normally distributed and that the stationary errors are iid N(0, σu
2), the one-

sided LM statistic is the locally best invariant (LBI) statistic for the hypothesis that the 

innovation to the random walk component has a zero variance (Nyblom and Mäkeläinen, 1983; 

Nabeya and Tanaka, 1988).  The statistic depends on the partial sum process, St, of these 

residuals, and the estimate of the error variance from the regression, !̂ u
2 : 

 LM = St
2 /

t=1

T

! !̂ u
2  (1) 

The nonstandard asymptotic distribution of the LM statistic can be derived based on the 

assumption of iid errors.  However, this assumption is unrealistic for most time series to which a 

stationarity test would be applied because these series are in general highly dependent over time. 

To address serial correlation in the error, KPSS take a nonparametric approach, whereas LMC 

take a parametric approach.  

2.1.1 KPSS Nonparametric Approach 

To allow for general forms of temporal dependence, KPSS modify the LM test statistic 

by replacing !̂ u
2  with a nonparametric estimator of the “long-run variance” (i.e., 2!  times the 

spectral density of u  at frequency zero), which can be denoted as s2(l): 

 LM = St
2 /

t=1

T

! s2 l( )  (2) 

where s2 l( ) = T !1 ût
2

t=1

T

" + 2T !1 w s, l( )
s=1

l

" ûtût!s
t=s+1

T

"  and w s, l( )  is a weighting function, typically the 

Bartlett kernel, w s, l( ) =1! s / l +1( ) .  There is a trade-off between size distortions and test power 

related to the selection of the lag truncation parameter, l:  the larger the choice of l, the smaller 

the size distortion, but the lower the power of the test.  Setting l equal to zero is equivalent to not 
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correcting for autocorrelation in the errors.  In our analysis, we use the generalized KPSS test of 

Hobijn, Franses and Ooms (2004) with the Bartlett kernel, automatic lag selection (following 

Newey and West, 1994), and initial bandwidth (n) as a function of the length of the series: 

n = int 4* T 100( )(2/9)!
"

#
$ , where int is a function that takes the integer portion.   

KPSS derive the asymptotic distribution of their statistic as an integrated Brownian 

bridge for level stationarity and an integrated second-level Brownian bridge for trend 

stationarity. Thus, in both cases, the asymptotic distribution is pivotal, although Müller (2005) 

considers local-to-unity asymptotics to show that the KPSS tests performs poorly in the presence 

of high autocorrelation, which is the empirically-relevant context for most macroeconomic data. 

Caner and Kilian (2001) employ Monte Carlo analysis to show that a parametric bootstrap of the 

KPSS test reduces small-sample size distortions compared to the asymptotic test for stylized 

stationary processes with similar levels of persistence to those estimated for real exchange rates.  

However, as we find in our Monte Carlo analysis, they also show that the bootstrap version of 

the KPSS has very low power against a nonstationary alternative with large permanent 

movements. 

2.1.2 Leybourne and McCabe Parametric Approach 

Leybourne and McCabe (1994, LMC hereafter) employ a parametric version of the LM 

test of the null hypothesis of stationarity against the presence of a stochastic trend.  LMC address 

serial correlation by assuming an AR(p) under the null and thus they include p lagged terms of yt 

in their initial model specification.  To obtain their test statistic, LMC construct a series: 

 yt
* ! yt " !̂i yt"i,

i=1

p

#  (3) 
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where the !̂i  are the maximum likelihood estimates of !i  from the ARIMA(p, 1, 1) model:   

 !yt = ! + "i!yt"i
i=1

p

# +ut +#ut"1 . (4) 

The ARIMA(p, 1, 1) is the reduced-form representation of the unobserved components model 

LMC assume under the alternative, which is the local-level model of Harvey (1989).  This 

approach gives consistent estimates of the AR(p) parameters both when the null and the 

alternative are true.3 By contrast, if we were to estimate an AR(p) in levels, the estimates would 

be inconsistent when the alternative is true. In particular, the estimates would capture an 

autoregressive unit root, rather than converge to their true values, and the test would have little 

power, as discussed in LMC. 

Similar to KPSS, LMC calculate the residuals, ût , from a regression of yt
*  from equation 

(3) on an intercept and a time trend.  The LMC test statistic is then  

 LMC = ˆ!uVû , (5) 

where V is a T x T matrix with ijth element equal to the minimum of i and j.  LMC derive the 

asymptotic distributions under level-stationarity and trend-stationarity of standardized versions 

of (5), which, like the KPSS test, depend on integrated Brownian bridges and are pivotal. Also, 

as with the KPSS test, Caner and Kilian (2001) find that a parametric bootstrap version of the 

LMC test reduces small-sample size distortions compared to the asymptotic test, but the 

bootstrap version of the test has low power. 

                                                
3 McCabe and Leybourne (1998) show that the marginal distribution of the maximum likelihood estimates of AR 
parameters in the case of an MA unit root is asymptotically the same as the distribution of the maximum likelihood 
estimates in a pure AR(p) model.  Therefore, if we estimate the first difference of a stationary model (i.e. estimating 
under the alternative when the null is true), the AR parameter estimates can be used for the null. Meanwhile, for a 
more complicated alternative, such as the nonstationary unobserved components process considered in this paper, it 
is straightforward to modify the reduced-form model to allow it to capture the full parametric structure under the 
alternative, while still being consistent when the null is true. 
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2.2 The LR Statistic 

Likelihood ratio statistics have been widely used to test for parameter constancy. A 

stationarity test is an example of a test for parameter constancy with the specific alternative 

hypothesis of a stochastic trend process. In particular, the alternative can be thought of as a time-

varying parameter model in which the long-run mean follows a random walk.  

For the LR test proposed here, we follow the parametric approach of LMC. We also 

assume an AR(p) under the null. Our alternative, however, has a reduced-form ARIMA(p, 1, p) 

representation, which follows from the assumption that the long-run mean is a random walk, 

whereas LMC consider a local-level model in which the intercept in an autoregression follows a 

random walk.  If the true process is an unobserved components model, then even accounting for 

the AR(p) in constructing the test statistic, there is still a transitory MA component in the errors.  

Under the null of (trend) stationarity, our model in first differences is ARMA(p, 1) with a unit 

MA root.  It should be noted that for our Monte Carlo analysis, we modify the reduced-form 

model for the LMC test in order to allow it to capture the full parametric structure under the 

alternative, while still being consistent under the null.  Thus, the differences in performance 

between the LMC test and the LR test are not due to parametric misspecification, but purely 

reflect the relative merits of the tests themselves for given data generating processes. 

As discussed in the previous literature, the distribution of the LR statistic is nonstandard 

for tests of parameter constancy for a variety of reasons, including that, under the null, variances 

of time-varying parameters are on the boundary of the parameter space, there may be nuisance 

parameters that are only identified under the alternative, and because the alternative may be a 

nonstationary process. However, despite its nonstandard distribution, the LR test has been 

applied in the literature for tests that the root of an MA lag polynomial for an MA(1) model is 
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close to or equal to 1. To derive the asymptotic approximation of the distribution of the 

likelihood ratio test statistic for the value of the MA root in this setting, Davis, Chen, and 

Dunsmuir (1996) make use of the asymptotic approximation of MLE based on local-to-unity 

analysis for an MA(1) model as follows: 

 !yt = ut "!ut"1 , (6) 

where ut ~ iid(0,! u
2 )  and E(ut

4 )<! , with the likelihood ratio statistic given as 

 2 l !( )! l ! =1( )"# $%
d& '& Z( !!) , (7) 

where l(!)  denotes the log likelihood function, β = T(1 - ! ), and  

 ( ) ,ln
1

222

22

1
222

22

∑∑
∞

=

∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

+
=

kk

k

k
k

k
Z

βπ
π

βπ
χβ

β  (8) 

with β~  being the global maximizer of Z(β), χk ~ iid N(0, 1), and ⎯→⎯d  denoting weak 

convergence on the space of continuous functions [0,  ∞). 

In determining the asymptotic critical values for this test, we follow Davis and Dunsmuir 

(1996) and Gospodinov (2002) and consider the local maximizer of Z(β), given by 

{ }0)(')('' and 0)(':0inf~
<+=≥= βββββββ ZZZl .  The infinite series is truncated at k = 

1000 and Zʹ′(β) is computed for a given draw of the χk’s.  If Zʹ′(0) ≤ 0, set 0~
=lβ  for that draw.  

Otherwise, we find the smallest nonnegative root of Zʹ′(β) by grid search.  We consider 100,000 

replications to obtain the asymptotic distribution, which Davis, Chen, and Dunsmuir (1996) 

show generalizes to more complicated ARMA processes that correspond to the models 

considered in this paper, as discussed in further detail below.  Table 1 reports the asymptotic 

critical values for the LR test.  
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Chen, Davis, and Dunsmuir (1995) establish that the LR test is consistent (i.e., has 

asymptotic power of 100%) against any fixed alternative. Furthermore, they also show that in 

small samples, the LBI LM-type tests have slightly higher power (in the third decimal place) 

only for alternatives that are very close to the stationary null. In terms of a bootstrap version of 

the LR test for an MA(1) model, Gospodinov (2002) establishes that a bootstrap LR test 

imposing the null hypothesis of a unit MA root is at least first-order accurate. However, given 

the nonstandard setting for the test, optimality of the LR test and higher-order accuracy of the 

bootstrap is more difficult to determine, as discussed by Gospodinov (2002). 

Section 2.2.1:  The Correlated Unobserved Components (UC) Representation 

In our analysis, we consider a correlated unobserved components (UC) model, which 

nests the full range of possibilities about the relative importance of permanent and transitory 

movements and has previously been applied to many macroeconomic variables in the empirical 

literature (see, for example, Morley, 2007, and Mitra and Sinclair, forthcoming). Specifically, we 

assume that the observed series yt{ }t=1
T  can be decomposed into a random walk with drift and a 

strictly-stationary AR(p) cycle:   

 ttt cy +=! ,   t = 1,…, T. (9) 

 ! t = µ +! t!1 +"t . (10) 

 ! L( )ct =!t , (11) 

where the roots of ! L( )  lie strictly outside the unit circle, corresponding to stationarity of the 

cycle component. Following Morley, Nelson, and Zivot (2003), we assume the innovations (ηt, 

and εt) are jointly normally distributed random variables with mean zero and variance-covariance 

matrix Σ: 
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!t

"t

!

"
#
#

$

%
&
&
~ N(0,'), ' =

# 2$ 2 %#$

%#$ $ 2

!

"

#
#

$

%

&
&
, 

where ! ! 0  and ! ! ["1,1] .  

For this model, trend stationarity is equivalent to the null hypothesis H0 :! = 0  versus 

the composite alternative hypotheses Ha :! > 0  corresponding to the presence of a stochastic 

trend. As discussed in Morley, Nelson, and Zivot (2003), the correlated UC model is only 

identified for AR(p) specifications of the transitory component for which p ≥ 2. However, 

assuming this constraint is satisfied, the correlated UC model can be cast into state-space form 

and the Kalman filter can be applied for maximum likelihood estimation of the parameters for 

both the restricted and unrestricted models to directly obtain the LR statistic: 

 LR = 2 l(µ, !!," ,#,$)! l(µ, !!," ,# = 0)( ) , (12) 

where !!  denotes the px1 vector of AR parameters. Because ! = 0  lies on the boundary of the 

parameter space and !  is not identified under the null, the LR test statistic has a nonstandard 

distribution. 

Proposition 2.1 The LR statistic in (12) for a correlated UC model in (9)-(11) has the asymptotic 

distribution given in (7) under the null of stationarity H0 :! = 0  and the test is consistent at least 

at rate T  for alternatives with a stochastic trend H1 :! > 0 . 

Proof See appendix. 

It should be emphasized that allowing for correlation between the permanent and 

transitory innovations is a crucial feature of our approach. If we had only considered alternatives 

for which the correlation, ! , between the permanent and transitory movements was restricted to 



 12 

be 0, we would be placing a strong restriction on the variability of the permanent component 

(i.e., it can be no greater than the variability of !y ). To the extent that this restriction is false, a 

LR test based on an uncorrelated UC model will have lower power as a result of imposing the 

restriction. Based on our estimates, the restriction appears to be false for the macroeconomic 

variables that we consider.   

Section 2.3 The Bootstrap Test Procedure 

Asymptotic distributions often provide poor approximations to small-sample distributions 

of test statistics. Thus, the bootstrap can be used to approximate the small-sample distributions of 

the stationarity tests under consideration, as was done in Rothman (1997) and Caner and Kilian 

(2001) for the LM statistics.4 Given that the asymptotic distribution in (7) is pivotal, the first-

order accuracy of a bootstrap version of the LR test for UC model follows directly the results in 

Gospodinov (2002). Thus, consideration of a bootstrap LR test is asymptotically valid. 

Unfortunately, as discussed by Gospodinov (2002), higher-order accuracy is difficult to 

determine. However, our Monte Carlo analysis below suggests that the bootstrap test has better 

empirical size than the asymptotic test in practice.   

For our analysis, we consider parametric bootstrap tests. Specifically, bootstrap simulated 

data are based on estimated parameters and distributional assumptions. The full bootstrap testing 

procedure is given as follows: 

1) Consistently estimate the parameters under the null of a trend stationary 

autoregressive process. We also calculate the likelihood value under the 

alternative, being careful to consider a large number of different starting values 

                                                
4 More recently, Cavaliere and Taylor (2005) consider bootstrap versions of the KPSS test that address time-varying 
second moments. 
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for numerical optimization in order to ensure that we find the global maximum. 

We then construct the likelihood ratio test statistic for the actual or Monte 

Carlo data (depending on whether we are using the bootstrap test for actual 

data or using Monte Carlo simulated data to explore the size and power of the 

different tests).  Note that the test statistic is actually a supLR statistic since we 

obtain the maximum likelihood estimate of the nuisance parameter (the 

correlation ! ) under the alternative.  We also construct the KPSS statistic and 

the LMC statistic for the actual or Monte Carlo data, with the appropriate 

parametric assumption made when constructing the LMC statistic. 

2) Simulate bootstrap data imposing the null based on the parameters estimated in 

step 1.  Again, this is fully parametric. We simulate bootstrap data a maximum 

of 499 times for each bootstrap test in our applications, while we do so 199 

times for each bootstrap test in our Monte Carlo exercises.5 

3) For each bootstrap data series, estimate both the null and alternative models.  

For the alternative models we consider a large number of starting values for 

numerical optimization in order to ensure that we obtain the global maximum. 

4) For each bootstrap data series, construct bootstrap draws of the test statistics 

based on the estimates from step 3. 

5) Calculate a bootstrapped p-value as the number of bootstrap draws of a given 

test statistic that are greater than the test statistic found from the actual or 

                                                
5 For the Monte Carlo experiments, we use the procedure proposed in Davidson and MacKinnon (2000) and 
consider fewer than 199 draws in a given bootstrap experiment if the estimated p-value from the bootstrap is 
significantly smaller or larger than the size at a 5% level. This maintains the nominal size of a bootstrap test at 5%. 
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Monte Carlo data, divided by the total number of bootstrap draws (MacKinnon, 

2002).   

Section 3: Monte Carlo Experiments 

Monte Carlo experiments provide the standard way to evaluate the small-sample 

properties of tests for given data generating processes (DGPs). While both KPSS and LMC use 

Monte Carlo analysis to evaluate the small-sample properties of their test statistics, their assumed 

DGPs are highly stylized and do not correspond very closely to estimated processes for most 

macroeconomic variables. Here, we consider Monte Carlo analysis of the small-sample size and 

power properties of stationarity tests for empirically-relevant DGPs. 

For our experiments, we simulate data based on our estimates of the null and alternative 

models for each of four macroeconomic data series discussed below.  We generate the same 

number of observations for each of the simulated Monte Carlo samples as we have for the actual 

corresponding data series.  For each of the four trend stationary AR(2) DGPs (the first column of 

Tables 2a through 2d), we generate 1000 simulated samples and consider empirical rejection 

probabilities to compare the size of the asymptotic and bootstrap versions of the LR test, KPSS, 

and LMC.  We then use the correlated UC estimates to simulate 1000 data samples under the 

alternative and consider empirical rejection probabilities to compare the power of the tests.   

Section 3.1:  The Data Generating Processes 

For the empirically-relevant DGPs in our Monte Carlo analysis, we consider parameter 

values based on estimates for four important U.S. macroeconomic time series. For ease of 

modeling, all series have been transformed to the quarterly frequency which allows us to use an 

AR(2) transitory component as a reasonable empirical specification and potentially reduces the 
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small-sample distortions of the KPSS test that would occur if we were to use higher frequency 

data (see Müller, 2005). We consider observations from 1947-2006 for U.S. real GDP and the 

CPI, from 1948-2006 for the U.S. unemployment rate, and from 1939-2006 for the U.S. total 

nonfarm payroll employment.6 For the three monthly series (CPI, unemployment rate, and 

payroll employment), quarterly averages of the data are used.  We further transform the data by 

taking 100 times the natural log of each series except for the unemployment rate, which is 

modeled directly in levels.   

The estimates for the four series provide a range of different empirically-relevant 

processes with which to illustrate the relative effectiveness of the different stationarity tests in 

our Monte Carlo experiments.  Tables 2a through 2d present the parameter estimates based on 

trend stationary and unobserved components models of U.S. Real GDP, the unemployment rate, 

the CPI, and payroll employment, respectively. For all four series under the null, the 

autoregressive dynamics are highly persistent, which is exactly the setting where standard 

autoregressive unit root tests have low power and we would like to use a stationarity test.  Under 

the alternative, the permanent movements are large, but their relative importance and the 

correlations with transitory movements vary somewhat across the series. 

Section 3.2:  Results from the Monte Carlo Experiments 

For each simulated Monte Carlo sample, we follow the full bootstrap procedure outlined 

in Section 2.3 that we also apply to the actual macroeconomic data below in Section 4. We 

present the results for the Monte Carlo experiments in Tables 3a through 3d.   

As shown in the tables, we find that empirical rejection probabilities for the bootstrap LR 

test are much closer than those for the other tests to the nominal size of the test for trend 

                                                
6 All data were obtained from the FRED2 database of the Federal Reserve Bank of St. Louis. 
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stationary processes of the kind estimated for macroeconomic variables.  For a nominal 5% test, 

the bootstrap LR rejection probabilities range from 4.4% to 6.2% under the null hypothesis 

whereas the bootstrap LM tests are always over-sized, with rejection probabilities ranging from 

5.8% to 11.4%. Meanwhile, the asymptotic KPSS test is severely over-sized with rejection 

probabilities as high as 86.3% under the null.  The rejection probabilities of the asymptotic LMC 

test range widely from 6.9% to 27.1% under the null, while the asymptotic LR test is also over-

sized, with rejection probabilities ranging from 12.7% to 29.5% under the null.  In all four cases 

the KPSS was the most severely over-sized.  In three of the four cases the asymptotic LMC test 

had the lowest rejection probability amongst the asymptotic tests. In the fourth case, based on 

U.S. real GDP parameter estimates, the asymptotic LR test had the lowest rejection probability 

amongst the asymptotic tests. In terms of the different DGPs, it is perhaps not surprising that the 

various asymptotic and bootstrap tests have their largest size distortions for the trend stationary 

DGP based on the CPI data, which is the most persistent process, with AR coefficients summing 

to 0.998. 

In addition to better size properties, we also find higher power using the bootstrap LR test 

for empirically-relevant nonstationary processes with stochastic trends. In particular, for the 

power experiments, where the data were simulated under the alternative, the rejection 

probabilities for the bootstrap LR test are larger than for the bootstrap version of KPSS test in all 

four cases and larger than for the bootstrap version of LMC test in three of four cases. In the case 

of the DGP corresponding to the U.S. unemployment rate estimates, the bootstrapped LMC test 

has slightly higher power (rejection probability of 52.8% for KPSS, as compared to 49.2% for 

the LR test). However, note that for the unemployment rate DGP under the null, the size of the 

bootstrapped LMC test is not very well controlled at 7.3% compared to the bootstrap LR size of 
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4.9% for a nominal size of 5%. Thus, the bootstrap LR test always performs best in terms of 

size-adjusted power. 

Section 3.3:  Why does the power of the tests vary across different DGPs? 

While the LM tests are LBI, meaning that they have the highest asymptotic power against 

“local” alternatives (i.e., alternatives in which the variance of the shocks to the stochastic trend is 

small, even asymptotically under the thought experiment of letting the variance shrink with the 

sample size), they clearly do not have the highest power against the alternatives in our Monte 

Carlo power experiments.7 One reason for this result is that the empirically-relevant and 

economically-interesting alternatives are in no sense “local” given that the variances of the 

permanent innovations are large.8 As discussed in Nyblom (1989), an LR test of parameter 

constancy can have more power against distant alternatives than the LBI test. Indeed, as 

mentioned above, Chen, Davis, and Dunsmuir (1995) find that the small-sample power of their 

LR test for an MA(1) model is higher for all but the closest alternatives for the MA(1) parameter. 

It is interesting to note, however, that we find no direct relationship between the small-

sample power of the tests and the signal-to-noise ratios for the DGPs as measured by the relative 

variances of the permanent and transitory innovations.9 Instead, what appears to matter more is 

the correlation between the permanent and transitory innovations. We find that the more negative 

                                                
7 Bailey and Taylor (2002) show that if the cycle and trend innovations are contemporaneously correlated, then the 
test statistic used by KPSS is still the LBI test for a null of stationarity.   
8 See Rothman (1997) and Rudebusch (1993) who also discuss the issue of alternatives that are not “local in 
economic terms” to the null.   
9 Similarly, there is no obvious link between the divergence rates for the LR test discussed in the appendix and the 
small-sample power results from the Monte Carlo experiment. Specifically, for the DGP based on real GDP data, we 
have complex roots (off the unit circle) for the implied MA polynomial and imperfect correlation between trend and 
cycle innovations, corresponding to divergence of the LR test at rate T0.5. By contrast, we have real roots and 
imperfect correlation for the DGP based on the unemployment rate data and perfect correlation for the DGPs based 
on the CPI and payroll employment data, corresponding to divergence at rate T. Yet, the LR test has somewhat 
higher small-sample power for the DGP based on real GDP than for the DGPs based on the unemployment rate and 
the CPI, although the highest small-sample power is for the DGP based on the payroll employment data. 
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the correlation, the higher the power of the LR test. This is actually related to a signal-to-noise 

issue in the following sense: when the correlation is exactly negative one, as it is for the DGPs 

based on the CPI and payroll employment, there is no independent transitory shock, but only 

transitory movements due to a slow adjustment of the process to permanent shocks. Thus, the 

“signal-to-independent-noise” ratio is infinite. In such cases, the LR test has very high power, 

while the LM-based tests do not. Evidently, the LM-based tests are more easily fooled into 

thinking the whole process is trend stationary with highly persistent autoregressive dynamics, 

rather than a nonstationary process with a volatile stochastic trend. Given that a correlation of 

negative one turns up for two of the four series, it is certainly an empirically-relevant 

phenomenon. Meanwhile, in the case of the unemployment rate, which has the lowest correlation 

(in absolute value) and, therefore, the lowest signal-to-independent-noise ratio, the various tests 

have more similar power. 

Section 4:  Application to Macroeconomic Data  

Having considered Monte Carlo analysis to evaluate the small-sample performance of the 

various stationarity tests for DGPs related to U.S. real GDP, the unemployment rate, the CPI, and 

payroll employment, we now turn to applying the bootstrap versions of the tests to the actual 

data.  Table 4 presents the results.  In all four cases we can reject the null of a trend stationary 

AR(2) process in favor of the correlated UC process using the bootstrap LR test.  For U.S. real 

GDP and the unemployment rate, all of the bootstrap tests agree on the rejection of trend 

stationarity.10 However, for CPI and payroll employment we find conflicting results.  For these 

                                                
10 It is possible that level stationarity is a more appropriate null hypothesis for the unemployment rate. However, 
allowing for trend stationarity should only serve to diminish the power of our tests if level stationarity were true. 
Given that we reject trend stationarity of the unemployment rate for all three tests, this loss of power is not a 
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two series, which were the two series with an estimated perfect negative correlation between 

permanent and transitory innovations, the bootstrap versions of KPSS and LMC do not reject the 

null, while the bootstrap LR test does.  The estimates under the alternative for CPI and payroll 

employment correspond to large permanent movements and no independent transitory shocks. 

Thus, to conclude that they are stationary, as one would do using the bootstrap LM tests, would 

result in quite different long-horizon forecasts and economic implications than to conclude that 

they follow a nonstationary process with a volatile stochastic trend, as one would do using the 

bootstrap LR test.  

Section 5:  Conclusions  

In this paper, we have verified the validity of asymptotic and bootstrap versions of a 

likelihood ratio (LR) test for stationarity based on a correlated unobserved components model 

that has previously been applied to many macroeconomic variables in the empirical literature. 

We then compared the LR test to asymptotic and bootstrap versions of widely-used Lagrange 

multiplier (LM) tests of stationarity. For the relatively small sample sizes that are available for 

macroeconomic time series, our Monte Carlo analysis reveals that the various asymptotic tests of 

stationarity have huge size distortions given estimated trend-stationary processes. Meanwhile, 

correcting for these size distortions using bootstrap versions of LM tests results in low power 

against estimated nonstationary processes with stochastic trends. By contrast, we found that a 

bootstrap version of our proposed LR test has more accurate small-sample size and higher power 

than bootstrap LM tests. As discussed by Caner and Kilian, “we learn very little from conducting 

tests with size-corrected critical values except in the rare case of a rejection of stationarity” 

                                                                                                                                                       
particular concern, especially for the bootstrap LR test that accurately controls size for the null DGP based on the 
unemployment rate.  
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(2001, page 641). Thus, having a more powerful test of stationarity in small sample sizes is 

extremely useful, especially given that the bootstrap LR test leads us to reject trend stationarity 

in favour of correlated unobserved components processes with large permanent movements for 

all four of the U.S. macroeconomic time series under consideration. Evidently, the prevalence of 

stochastic trends in macroeconomic data implied by standard autoregressive unit root tests is 

confirmed with a powerful version of a stationarity test.  

Appendix: Proof of Proposition 2.1  

It is straightforward to show that UC model in (9)-(11) is strictly equivalent in moments 

to a reduced-form ARIMA( p ,1,q ) model: 

  !(L)(!yt "µ) = !(L)"t + (1" L)#t =$(L)ut , (A.1) 

where ut ~ N(0,! u
2 )  and the parameters for the MA polynomial !(L)  depend on the vector of 

AR parameters !! , ! , and ! , with the order of the MA polynomial q ! p . Strict equivalence of 

the models follows from the normality assumption for the innovations  and  in the UC 

model. However, it should be noted that the results below rely only on second-order equivalence 

of the models, which would follow from the assumption that the innovations in the UC model 

and the forecast error ut  in the ARIMA model are iid with finite fourth moments. Also, even 

though we assume the p ! 2  for identification of the correlated UC model, the results below 

would hold as long as the process is at least equivalent to a reduced-form ARIMA(0,1,1) process 

after any cancellation of roots and the specification of an ARIMA model used in estimation 

under the null and alternative is sufficiently rich enough to capture the true underlying process.11  

                                                
11 The specific result in terms of the rate of divergence of the test under the alternative hypothesis also requires that 
the model used in estimation allows for autoregressive dynamics, even if none are present in the true process. 

!t !t



 21 

Under the null hypothesis H0 :! = 0 , the implied MA lag order for the corresponding 

reduced-form ARIMA model is q =1 , with the coefficient in the implied MA polynomial 

!(L) =1!!L  restricted to ! =1 . That is, the MA polynomial has a single root equal to 1.  

Lemma 1: Under the alternative hypothesis H1 :! > 0 , the roots of the MA lag 

polynomial for the reduced-form ARIMA model in (A.1) corresponding to the UC model in (9)-

(11) are strictly different than 1 (although they may be on the unit circle).  

There are two cases to consider for the alternative hypothesis. 

Case 1: If the correlation between UC innovations is less than perfect, ! ! ("1,1) , the 

variance-covariance matrix for the UC model, ! , is strictly positive definite and invertibility of 

the MA polynomial !(L)  follows directly from Theorem 1 in Teräsvirta (1977), which states 

that the sum of possibly correlated MA processes with positive definite variance-covariance 

matrix is invertible if and only if the MA polynomials have no common roots of modulus 1. 

Because the!(L)"t  and (1! L)!t processes in (A.1) have no common roots of modulus 1 for their 

lag polynomials due to the stationarity assumption for !(L) , the MA polynomial !(L)  is 

invertible, directly implying that none of its roots is equal to 1. 

Case 2: If the correlation between UC innovations is perfect, ! = ±1 , it implies that 

!t = ±"#t . Thus, the MA polynomial is !(L) = ±"#(L)+ (1! L) . Note, then, that an MA root 

equal to 1 implies that the MA polynomial can be factorized as follows: !(L) = (1! L)! "(L) , 

where !!(L)  is based on the other roots. It is trivial to show from !(L) = (1! L)! "(L)  that 

!(1) = 0 . However, if !(1) = 0 , then !(L) = ±"#(L)+ (1! L)  would imply that !(1) = 0 , which 
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contradicts our assumption !(L)  has roots that are strictly outside the unit circle. Thus, as in the 

previous case, none of the roots of !(L)  is equal to 1. 

Based on Lemma 1, testing stationarity for the UC model is equivalent to testing whether 

the corresponding ARIMA( p ,1, q ) model has a root equal to 1 for its MA polynomial. In terms 

of this test, it is again useful to factorize the MA polynomial: 

 !(L) =!c (L)!
!(L)  (A.2) 

where !c (L)  is the factor of the MA polynomial of order one or two with the single root or 

complex conjugate roots for !(L)  that are closest to 1 and !!(L)  is the residual factor that 

reflects all of the other roots that are further away from 1. Denoting the root or 2x1 vector of 

roots closest to 1 as zc  and !zc , respectively, with zc  also being the first element of !zc , and the 

vector of all the other roots as !z! , the hypotheses H0 :! = 0  and H1 :! > 0  for the UC model 

are equivalent to the respective hypotheses H0 : zc =1  and H1 : zc !1  for the ARIMA model. 

To impose the null hypothesis for both the UC model and ARIMA model, we can 

estimate a trend-stationary AR(p) model in levels. Assuming the null hypothesis is true, it is 

straightforward to show that MLE for the drift, AR parameters, and variance will be consistent 

for this model. Meanwhile, if we allow for the alternative hypothesis in estimation, consistency 

of MLE for all of the ARMA model parameters, both under the null and alternative, follows from 

Pötscher (1991). Focusing on the roots of the MA polynomial and assuming the null hypothesis 

is true, but allowing for the alternative in estimation, it follows from McCabe and Leybourne 

(1998) that the implied MLE estimate for zc  will be T -consistent with the Davis and Dunsmuir 
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(1996) asymptotic distribution given in (7) and the estimates for the elements of !z!  will be T -

consistent and asymptotically normal. 

Conditional on µ , !! , and ! u  which, assuming the null hypothesis is true, will be 

consistent both when imposing the null and when allowing for the alternative in estimation, as 

discussed above, the likelihood ratio statistic for testing H0 : zc =1  vs. H1 : zc !1  for an ARMA 

model is 

 LRzc=1 = 2 (l(zc )! l(zc =1))+ (l( !z
" zc )! l( !z

" = 0 zc =1))( )  (A.3) 

Under the null hypothesis, the first term converges to the Davis and Dunsmuir distribution given 

in (7) as T!" . The second term is continuous in the neighbourhood of zero and, from McCabe 

and Leybourne (1998), is of order T , meaning that it converges in probability to 0 as T!" . 

Thus, given the equivalence of the UC model and the ARIMA model, the LR statistic for testing 

H0 :! = 0  vs. H1 :! > 0  has the asymptotic distribution given in (7) when the null hypothesis is 

true. 

When the alternative hypothesis is true, the estimates for !!  are no longer consistent when 

imposing the null in estimation, as discussed in Leybourne and McCabe (1994). In this case, 

imposing the null is equivalent to estimation of a trend-stationary AR(p) model in levels when 

there is an autoregressive unit root. Thus, following the Phillips (1987), the implied MLE for 

!(1)  when imposing the null converges arbitrarily close to 0 at rate T, even though the true !(1)  

is strictly not equal to 0. By contrast, from Pötscher (1991), the implied MLE for !(1)  when 

allowing for the alternative is consistent at rate T . Thus, based on the differences in estimates 

for !!  alone, the LR statistic for testing stationarity will diverge at rate T . 
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For some alternative DGPs, the LR statistic will diverge at a faster rate than T . There are 

four cases to consider.  

Case 1: If the correlation between UC innovations is less than perfect, ! ! ("1,1)  and the 

MA polynomial !c (L)  is of order 1, the first term of the LR statistic in (A.3) diverges at rate T, 

following Davis, Chen, and Dunsmuir (1996). The second term diverges at rate T  given the 

T -consistency of the roots of !!(L) , !z! , which follows from the invertibility of !(L)  due to 

Theorem 1 in Teräsvirta (1977) and the consistency results for ARMA models in Pötscher 

(1991). Thus, in this case, the overall LR statistic in (A.3) diverges at rate T. 

Case 2: If the correlation between UC innovations is less than perfect, ! ! ("1,1)  and the 

MA polynomial !c (L)  is of order 2 (i.e., the roots closest to 1 are complex conjugates), the LR 

statistic in (A.3) is modified as follows: 

 LRzc=1 = 2 (l( !zc )! l( !zc = (1, 0 ") ))+ (l( !z
# !zc )! l( !z

# = 0 !zc = (1, 0 ") ))( ) . (A.4) 

Because the MLE for the MA parameters are T -consistent when allowing for the alternative, 

again following from the invertibility of !(L)  due to Theorem 1 in Teräsvirta (1977) and the 

consistency results for ARMA models in Pötscher (1991), the LR statistic diverges at rate T  in 

this case. 

Case 3: If the correlation between UC innovations is perfect, ! = ±1 , and the MA 

polynomial !c (L)  is of order 1, we have a similar result to Case 1. Denoting the vector of roots 

of !(L)  as !z , we have two subcases to consider. First, if all of the roots !z  are strictly off the unit 

circle, then we have the same result as in Case 1 that the LR statistic diverges at rate T. However, 

if some of the roots !z  lie on the unit circle, the estimates are consistent following Pötscher 
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(1991), but at an unknown rate. If the second term in (A.3) diverges at a faster rate than T, then 

the LR statistic will diverge at a faster rate. Thus, in this case, the overall LR statistic diverges at 

least at rate T. 

Case 4: If the correlation between UC innovations is perfect, ! = ±1 , and the MA 

polynomial !c (L)  is of order 2, we have a similar result to Case 2. If all of the roots !z  are 

strictly off the unit circle, then we have the same result as in Case 2 that the LR statistic in (A.4) 

diverges at rate T . However, if some of the roots !z  lie on the unit circle, the estimates are 

again consistent at an unknown rate. Thus, in this case, based on the differences in the estimates 

for !! , the LR statistic diverges at least at rate T . 
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Table 1: Asymptotic Critical Values  
for the LR Test of Stationarity  

 

 10% 5% 1% 

Critical Value 0.96 1.89 4.42 
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Table 2: Parameter Estimates  
Used for the Monte Carlo Simulations and Empirical Results 

 
Table 2a: Quarterly Real GDP 1947.1 - 2006.4 

 
Description AR(2) UC 

Log Likelihood LLV -319.275 -316.049 

S.D. of Permanent Innovation  ση Restricted to be 0 1.115 
(0.127) 

S.D. of Temporary Innovation σε 
0.917 

(0.042) 
0.560 

(0.127) 

Correlation btwn. Innovations σηε - -0.944 
(0.006) 

Drift µ 0.830 
(0.022) 

0.826 
(0.031) 

1st AR parameter φ1 
1.317 

(0.061) 
1.363 

(0.099) 

2nd AR parameter φ2 
-0.346 
(0.061) 

-0.779 
(0.107) 

 
 

Table 2b: Quarterly average unemployment rate 1948.1-2006.4  
 

Description AR(2) UC 
Log Likelihood LLV -50.401 -47.877 

S.D. of Permanent Innovation  ση Restricted to be 0 0.212 
(0.109) 

S.D. of Temporary Innovation σε 
0.298 

(0.014) 
0.385 

(0.053) 

Correlation btwn. Innovations σηε - -0.763 
(0.120) 

Drift µ 0.005 
(0.005) 

0.003 
(0.014) 

1st AR parameter φ1 
1.585 

(0.049) 
1.481 

(0.074) 

2nd AR parameter φ2 
-0.642 
(0.050) 

-0.584 
(0.075) 
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Table 2c: Quarterly average of monthly CPI Index 1947.1 - 2006.4 
 

Description AR(2) UC  
Log Likelihood LLV -186.780 -180.649 

S.D. of Permanent Innovation  ση Restricted to be 0 2.836 
(0.219) 

S.D. of Temporary Innovation σε 
0.528 

(0.024) 
2.577 

(0.217) 

Correlation btwn. Innovations σηε - -1.000 
(-) 

Drift µ 0.924 
(0.083) 

0.933 
(0.189) 

1st AR parameter φ1 
1.762 

(0.042) 
0.778 

(0.021) 

2nd AR parameter φ2 
-0.763 
(0.042) 

0.100 
(0.021) 

Note:  Standard errors in this table are based on fixing the correlation at its MLE. 
 
 

Table 2d: Quarterly average payroll employment 1939.1-2006.4 
 

Description AR(2) UC 
Log Likelihood LLV -248.895 -226.851 

S.D. of Permanent Innovation  ση Restricted to be 0 1.066 
(0.003) 

S.D. of Temporary Innovation σε 
0.600 

(0.026) 
1.373 

(0.010) 

Correlation btwn. Innovations σηε - -1.000 
(-) 

Drift µ 0.536 
(0.016) 

0.602 
(0.065) 

1st AR parameter φ1 
1.734 

(0.040) 
1.522 

(0.028) 

2nd AR parameter φ2 
-0.760 
(0.041) 

-0.525 
(0.031) 

Note:  Standard errors in this table are based on fixing the correlation at its MLE. 
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Table 3:  Monte Carlo Results 
 

Table 3a: Based on U.S. Real GDP Parameter Estimates 
 

Nominal Size 5% Asymptotic Bootstrap 

KPSS 62.6% 5.8% 

LMC 25.2% 9.0% 
LR 18.4% 4.8% 

     
Power Asymptotic Bootstrap 
KPSS 84.4% 19.8% 
LMC 95.6% 51.4% 
LR 93.7% 77.0% 

 
 

Table 3b: Based on Unemployment Rate Parameter Estimates 
 

Nominal Size 5% Asymptotic Bootstrap 

KPSS 17.9% 6.4% 

LMC 9.2% 7.3% 
LR 0.3% 4.8% 

     

Power Asymptotic Bootstrap 
KPSS 56.9% 45.9% 
LMC 60.5% 52.8% 
LR 16.3% 49.2% 
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Table 3c: Based on CPI Parameter Estimates 
 

Nominal Size 5% Asymptotic Bootstrap 

KPSS 86.3% 11.3% 
LMC 27.1% 11.4% 

LR 3.6% 3.4% 
     

Power Asymptotic Bootstrap 
KPSS 90.5% 10.4% 
LMC 93.8% 24.5% 
LR 55.7% 63.2% 

 
 

Table 3d: Based on Payroll Employment Parameter Estimates 
 

Nominal Size 5% Asymptotic Bootstrap 

KPSS 23.8% 6.2% 

LMC 6.9% 7.1% 
LR 0.6% 4.2% 

     
Power Asymptotic Bootstrap 
KPSS 85.9% 21.7% 
LMC 59.0% 21.7% 
LR 100% 100.0% 
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Table 4:  Empirical Application Results 
 

Data Series KPSS Statistic 
(Bootstrapped P-value) 

LMC Statistic 
(Bootstrapped P-value) 

LR Statistic 
(Bootstrapped P-value) 

Real GDP 0.360 
(0.026)* 

2.994 
(0.020)* 

6.453 
(0.034)* 

Unemployment 
Rate 

0.237 
(0.008)* 

0.507 
(0.016)* 

5.047 
(0.030)* 

CPI 0.258 
(0.447) 

2.497 
(0.136) 

12.260 
(0.026)* 

Payroll 
Employement 

0.184 
(0.116) 

0.085 
(0.295) 

44.088 
(<0.001)* 

*Reject the null of trend stationarity at 5%. 
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