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1 Introduction

For a large majority of U.S. households, purchasing or selling a home is one of their most important

financial decisions. In 2007, two-thirds of households owned their homes, more than a quarter of

national wealth was held in residential real estate, and there were 6.4 million sales of existing

homes.1 The National Association of Realtors (NAR) estimates that almost 80% of residential real

estate transactions involve a realtor. Nationwide, brokers’ sales commissions exceeded $100 billion

annually during the mid-2000s.2 In Greater Boston, the site of our study, more than $4.1 billion

in commissions was paid to realtors in the ten-year period from 1998-2007.

Several distinct features of the brokerage industry have long attracted popular and academic

attention. First, the commissions that realtors charge are sizable, typically representing 5-6% of

a property’s transaction price. A property in our sample sells for $472,000 on average (in 2007

dollars).3 At 5-6% of the sale price, the commission fee constitutes a significant transaction cost

for most households, and is more than 40% of Massachusetts’ average median household income in

2006. Second, the commission rate displays little variation over time and across regions, and does

not seem to reflect changes in the cost of selling houses. According to a recent federal government

report (GAO 2005), “commission rates within a market do not appear to vary significantly on the

basis of the price of a home ... and do not appear to have changed much in response to rapidly

rising home prices in recent years.” These facts have been described in several studies and contrast

with the declining fees of intermediaries in other industries (see, e.g., Hsieh and Moretti (2003) and

Levitt and Syverson (2008a)). With rising housing prices, a fixed commission rate translates into

a higher commission fee per transaction and makes working as a broker more lucrative.

The absence of price competition with regards to commission fees is counter-intuitive given

that there are low barriers to enter or exit the brokerage industry. Although all US states require

licensing of brokers and salespersons, these requirements do not appear to present significant con-

straints. For instance, when the national average housing price increased by 83% from 1997 to

2006, NAR membership surged from 716,000 to 1,358,000 during the same period. In subsequent

years, house prices fell slightly, but the total number of housing transactions plunged. Many agents

stopped working as realtors and NAR reported a 20% reduction in its membership from 2006 to

2009. Similarly, entry peaked in 2004 in our Greater Boston sample when sales prices were highest,

and dropped by about one-half by 2007 after prices declined.

In this paper, we quantify the social costs of free entry and examine implications of the current

fixed commission structure. Our rich micro-level data set contains all properties in the Multiple

Listing System (MLS) network from January 1998 to December 2007 in all cities and towns within a

15-mile radius of downtown Boston. There are 10,088 agents and 257,923 housing observations, each

with detailed property attributes and transaction information. We are able to exploit cross-market

1Sources for all numbers cited in this section can be found in the data appendix.
2While a real-estate broker usually supervises an agent, often as the owner of the firm, and is subject to stricter

licensing requirements, we use the terms agent, broker and salesperson interchangeably.
3All dollar values in this paper are in terms of 2007 dollars, deflated using the urban CPI (series CUUR0100SA0).
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variation across low and high-income suburbs of Boston and time-series variation from growing

and declining local housing markets. The first part of the paper documents that an increase in the

number of agents neither improves the likelihood of sale nor reduces the amount of time required for

properties to sell, but rather results in decreased market share for experienced agents. In addition,

listings by inexperienced agents are 9% less likely to sell than listings by an agent with six or more

years of experience.

Having documented a strong “business stealing” effect, we next formulate an econometric model

to quantify the social costs of free entry, building on existing dynamic discrete choice models

(see, e.g., Aguirregabiria and Nevo (2010)). Entry and exit decisions of agents, together with

their observed commission revenue, allow us to identify the amount of income entrants could have

alternatively earned had they not worked as agents. This foregone income is a measure of inefficiency

since agents’ entry mostly dilutes the business of existing agents without increasing the total output

of the brokerage industry. Our estimates imply that agents’ foregone income is about 80% of their

observed revenue.

By micro-founding the model on agent’s choices, we then compute three counterfactuals taking

into account agent re-optimization. First, motivated by FTC’s investigations on rigid commissions,

we present results from regulated across-the-board reductions in the commission rate.4 Reducing

the commission rate by one-half decreases entry by a third, increases the number of houses sold per

agent by 73%, and raises the average sales likelihood by 2%. For our time period, this translates

into $2 billion of savings for consumers and $900 million of savings in opportunity costs and entry

costs from fewer real estate agents.

The second counterfactual measures the alternative market structure if agents are compensated

by their costs of selling properties, a potential outcome with free entry and flexible commissions.

Since these costs are unobserved, we treat the commissions that agents charged in 1998 as a

conservative upper bound. If agents had been compensated by this upper bound, there would

be 24% fewer agents and the number of houses each agent sold would increase by 31%. Total

commissions would be reduced by $1.1 billion, and the social savings from fewer agents would be

$525 million. Alternatively, this counterfactual can be interpreted as measuring how incentives to

work as a realtor change with housing prices. Our estimates imply that only a small fraction of

the benefits from housing price appreciation is passed onto agents because of the business stealing

from entrants. If there were no housing price appreciation during our sample period, the average

commission would be $59,700; by comparison, when housing prices rose 1.5 times during the same

period, the average commission only increased to $63,300.

Finally, a fixed commission rate makes it difficult for consumers to distinguish good agents

from mediocre ones based on the prices that they charge. Our last counterfactual simulates the

4The brokerage industry has been investigated for a number of reasons since at least the 1950s, including the

case U.S. vs National Association of Real Estate Boards in 1950, which first prohibited coordination of realtor fees.

Recent FTC and Department of Justice investigations have also examined internet and virtual real estate offices. See

http://www.ftc.gov/bc/realestate/index.htm (last accessed February 2011) for additional information on the FTC’s

investigations of the real estate industry.
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consequence of providing consumers with more information on the past performance of incumbent

agents, a policy with low implementation costs given the records contained in the current MLS.

By empowering consumers with more information, this policy reduces incentives for inexperienced

agents to enter, resulting in an increased number of houses sold per agent and the potential for

significant social savings.

The remainder of the paper is structured as follows: Section 2 provides industry background,

describes our data source, and reviews the related literature. Section 3 presents an initial empirical

analysis of the real estate brokerage industry in Greater Boston. Section 4 develops our econometric

model and Section 5 outlines the estimation approach. Section 6 describes our empirical results,

while Section 7 presents the counterfactual analyses. The last section states our conclusions. Jia

and Pathak (2011) (hereafter JP2) provides supplementary material on the sample construction,

computational details, and additional results not reported here.

2 Industry Background and Data

2.1 Industry Background

Real estate agents are licensed experts specializing in real estate transactions. They sell knowledge

about local real estate markets and provide services associated with the purchase and sale of

properties on a commission basis. For home sellers, agents are typically involved in advertising the

house, suggesting listing prices, conducting open houses, and negotiating with buyers. For home

buyers, agents search for houses that match their clients’ preferences, arrange visits to the listings,

and negotiate with sellers. In addition, they sometimes provide suggestions on issues related to

changes in property ownership, such as home inspections, obtaining mortgage loans, and finding

real estate lawyers.

All U.S. states require real estate brokers and agents to be licensed, but these requirements are

minimal. In Massachusetts, applicants for a salesperson license need to take twenty-four hours of

classroom instruction and pass a written exam. The qualifications for a broker’s license involve a few

additional requirements: one year of residence in Massachusetts, one year of active association with

a real estate broker, completion of thirty classroom hours of instruction, passing a written exam,

and paying a surety bond of five thousand dollars. Agents, or salespersons, can perform most of the

services provided by a broker, except that they cannot sell or buy properties without the consent

of a broker. All licenses need to be renewed biennially, provided the license holder has received six

to twelve hours of continuing education and has paid appropriate fees for renewal (currently, $93

for a salesperson and $127 for a broker). The general perception that these requirements are not

significant deterrents to working as realtors is confirmed in our dataset where entrants account for

about 13% of active agents each year.
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2.2 Data

The data for this study come from the MLS network for Greater Boston. We collected information

on all listed non-rental residential properties for all towns within a fifteen-mile radius of downtown

Boston, with a total of 18,857 agents and 290,738 observations.5 The list of 31 markets are shown in

Figure 1, where we group together some towns and cities with few agents. The record for each listed

property includes: listing details (the listing date and price, the listing firm and agent, commissions

offered to the buyer’s agent, and so on), property characteristics, as well as transaction details (the

sale price, date, the purchasing agent and firm) when a sale occurs. The number of days on the

market is measured by the difference between the listing date and the date the property is removed

from the MLS database. We merge this data set with a database from the Massachusetts Board of

Registration on agents’ license history which we use to measure their years of experience. Agents’

gender is provided by List Services Corporation, which links names to gender based on historical

census tabulations. We exclude observations with missing cities or missing listing agents.

Information on commissions charged by real-estate agents is difficult to obtain. Even though

our data does not contain commissions paid to listing agents, it does contain commissions paid to

buyer’s agents. Jia and Pathak (2010) report that the buyer’s agent commission is 2.0% or 2.5%

for 85% of listings in the sample. Since we expect this to be a lower bound on commissions paid

to the listing agent, in the analysis to follow, we assume that the total commission rate is 5% in

all markets and years, and is split evenly between the seller’s and buyer’s agent. According to the

2007 NAR survey, most agents are compensated under a revenue sharing arrangement, with the

median agent keeping 60% of his commissions and submitting 40% to his firm. We subsequently

discuss how this assumption of a 60%-40% split impacts our analysis.

The MLS dataset does not indicate whether working as a broker is an agent’s primary occu-

pation. To eliminate agents who may have briefly obtained access to the MLS system to buy and

sell for themselves, we only keep agents who either work as a buyer’s agent or a listing agent for

more than 1.5 properties per year. This sample restriction leaves us with 10,088 agents listing

257,923 properties, about 90% of the original records. JP2 provides more details on the sample

construction.

Our analysis benefits from three sources of variation present in the data: time-series variation

in the housing market (from an up market to a down market), cross-sectional variation among

agents (from “green” realtors to established agents with decades of experience), and geographical

variation (the median household income of the most affluent town is more than three times higher

than that of the poorest one). Table 1 shows that the number of listings varied from 20,000 to

23,000 in the late 1990s and early 2000s, but increased to 32,500 in 2005. There was a sharp decline

in the number of listed houses in the following years when the housing market suffered from the

5To verify MLS’s coverage of transactions in the cities that we study, we compared it to the Warren Group’s

changes-of-ownership file based on town deeds records, which we have access to from 1999-2004. This dataset is a

comprehensive recording of all changes in property ownership in Massachusetts. The coverage was above 70% for all

cities except Boston, which was around 50%. This fact, together with concerns about data quality in Boston, lead

us to exclude the city of Boston from the empirical analysis.
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decline in the aggregate economy. The weakness of the housing market in the latter part of the

sample is apparent in the fraction of properties sold: before 2005, 75-80% of listed properties were

sold; in 2007, only 50% were sold. The third column of Table 1 shows that average sales price was

about $350,900 (in 2007 real dollars) in 1998 and peaked at $529,200 in 2005. It dropped slightly

to $489,800 - $502,400 in 2006 and 2007. The amount of time it takes for properties to sell appears

to lead the trend in sales prices: it sharply increases in 2005, and by the end of the sample a listed

property requires about two months longer to sell than in 1998.

2.3 Related Literature

This paper is related to research on real estate brokers and their impact on the housing market. An

important precursor to our work is Hsieh and Moretti (2003) which presents evidence consistent

with socially inefficient numbers of real estate agents. Using variation across 282 metropolitan

areas from the 1980 and 1990 Census of Population and Housing, they document that the average

earnings of real estate agents are similar despite large differences in housing prices, suggesting

that agent entry dilutes rents associated with house price differences under fixed commissions.

Moreover, agents in cities with high housing prices have lower productivity (measured by houses

sold per agent) compared to agents in cities with low housing prices. Using the more recent five

percent sample of the 2000 Census of Population and Housing, Han and Hong (2011) examine

agents’ variable costs of selling houses in a static entry model. Their estimates suggest that free

entry leads to a loss of economies of scale: a 10% increase in the number of realtors increases the

average variable cost of selling houses by 4.8%. Due to data limitations, they assume all agents are

identical and ignore the opportunity cost of entry.

Further afield, there are a number of related papers on real estate agents. Kadiyali, Prince, and

Simon (2009) study dual agency issues in real-estate transactions. Levitt and Syverson (2008b)

compare home sales by agents who own the property to home sales by agents hired to sell the

property. Hendel, Nevo, and Ortalo-Magné (2009) contrast traditional multiple-listing services

with for-sale-by-owner platforms. Jia and Pathak (2010) study the impact of buyer’s commissions

on home sales.

Aside from real-estate brokers, another paper which investigates the impact of free-entry is

Berry and Waldfogel (1999)’s study of the radio industry. Their paper is based on cross-sectional

data on the number of stations, radio listening, and advertising prices. More recent contributions

build dynamic econometric models of entry in imperfectly competitive industries (e.g., Collard-

Wexler (2008), Dunne, Klimek, Roberts, and Xu (2009), Ryan (2010), and Xu (2008).) While

sharing a methodological approach with these papers, our paper differs from these studies on several

dimensions. To capture the main features of the housing market while still allowing estimation to be

feasible, we work with a model with six state variables. Rather than following the common approach

of discretizing the state space, we treat it as continuous, approximate the value function using basis

functions, and cast the Bellman equation as model constraints. We adopt a similar procedure in the

counterfactual simulations. Our estimator falls into the class of estimators studied by Ai and Chen
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(2003) and Chen and Pouzo (2009). Bajari, Chernozhukov, Hong, and Nekipelov (2009) provide

identification results for dynamic games that apply to our application. In an independent study,

Kristensen and Schjerning (2011) show that maximum likelihood estimation of dynamic models

with value functions being approximated by basis functions has desirable properties.

Finally, our paper is related to an extensive literature on dynamic models of occupational

choice and job matching (see e.g., Keane and Wolpin (2009) for a recent survey). Related to our

econometric approach, Keane and Wolpin (1994) develop a finite-period dynamic model and use

backward induction to estimate the value function. In each step, they solve the value function for

a subset of state points, and extrapolate to all other state points.6 Our method may be applicable

in similar problems with the advantage that it avoids discretization and is computationally much

less demanding.

3 Initial empirical analysis

3.1 Descriptive statistics

Greater Boston’s housing market exhibits significant time-series variation in the number of prop-

erties listed, the likelihood of sale, and sales prices over our sample period. Total volume of home

sales increased from 18,094 in 1999 to 21,432 in 2004, an increase of 18%. It subsequently de-

creased to 76% of the 1999 level within three years. The average real sales price of homes went

from $385,900 in 1999 to $529,200 in 2004, down to $489,800 in 2007. Since the expected revenue

of an agent depends on each of these factors, it is unsurprising that agent entry and exit follow

these market-wide trends. Table 2A shows that the number of active agents increased from around

3,800 in 1998 to a peak of more than 5,700 in 2005, just as house price appreciated during the same

period. The number of agents who left the industry was around 400-500 during the early period,

but rose to 700-800 in the latter part of our sample, when housing market conditions deteriorated

and the fraction of listed properties that were sold dropped.

Agent performance is also related to overall trends in the housing market. During the run-up in

prices in the early part of the 2000s, the number of properties each agent intermediated was about

eight per year. By 2007, the average agent conducted a little more than five transactions. The

distribution of agents’ transactions is highly skewed: both the number of listings sold per agent and

the number of houses bought per agent at the 75th percentile is four to six times that of the 25th

percentile. During the down markets of 2006 and 2007, a significant fraction of real estate agents

were hit hard: more than 25% of the listing agents did not sell any properties at all.

Home sales, agent entry and exit, and agent performance also vary across markets within Greater

Boston, as shown in Table 2B. The most expensive town in our sample is Wellesley, where the

average house sold for more than $1 million. On the other end, in Randolph, the average sold

price is $290,000. Quincy, a town with over 10,000 housing transactions, has significant turnover:

6For a few other examples (including discussions) of value function approximation, see Ericson and Pakes (1995),

Judd (1998), Farias, Saure, and Weintraub (2010), and Fowlie, Reguant, and Ryan (2011).
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it is home to the most entries and has the second largest number of exits. Cambridge has about

the same number of properties, but there are considerably fewer agents and much less turnover.

This translates into a higher number of properties sold and bought per agent in Cambridge than

in Quincy: 10.46 versus 7.27. In general, agents in higher-priced towns are involved in fewer

transactions, and the correlation coefficient between the average housing price and the number of

transaction per agent is around -0.43 across all markets.

An important component of performance differences between agents is their experience. Panel

A of Table 3 reports the average annual commissions of agents based on the number of years they

worked as a broker. The category of nine or more years of experience has 19,210 observations with a

total of 3,146 agents. These agents were active at the beginning of our sample. All other categories

(one to eight years of experience) are mostly comprised of brokers who entered during our sample

period. Agents who have worked for one year earn $20,000 on average. They sell about 61% of

their listed houses and generate a larger share of their income from working as a buyer’s agent.

In contrast, agents with the most experience are 13% more likely to sell their listed properties,

earn about $73,000 in commissions, and earn more of their commission income working as a seller’s

agent than as a buyer’s agent. There is a clear monotonic pattern between measures of agent

experience, sales probabilities, and commissions. Finally, more experienced agents appear to sell

faster, although the difference in days on market is modest.

Performance differences are also closely related to agent skill, which we measure by the number

of transactions they brokered in the previous year. Panel B of Table 3 reports sales probabilities,

days on the market, and commissions by deciles of agent skill. Since this measure is highly correlated

with years of experience, Panel B displays similar patterns as Panel A. Agents in top deciles have

higher sales probabilities, earn higher commissions, and a larger portion of their income comes from

the selling side.

Next we examine agents’ performance over time. We assign agents who were present in 1998 (the

1998 cohort) into four groups based on their 1998 commissions, and plot their annual commissions

from 1999 to 2007 in Figure 2. Results using other cohorts are similar. The top quartile agents

consistently earned $100,000 or more for most of the years, while the bottom quartile barely earned

$30,000 in commissions even when housing prices were at their peak. Moreover, agents in the top

quartile earn significantly more than those in the 2nd or 3rd quartile. The earning gap between the

2nd and the 3rd quartile agents is much smaller and also compresses in down markets.

Earning differences also influence an agent’s decision on whether to work as a broker. Figure 3

follows the same 1998 cohort and reports the fraction of agents who continue working as a broker for

each quartile in each year. There are stark differences in the exit rates among the four groups. Only

25% of the top quartile agents left by 2007. In contrast, about three quarters of the agents in the

bottom quartile exited at some point during the ten-year period. Figure 3 presents our identification

argument in a nutshell: differences in the exit rate of agents earning different commissions allow us

to identify their opportunity cost of being a broker.
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3.2 Descriptive regressions

We next investigate how competition affects agent performance. The correlations we document here

inform the modeling choices we make in the next section. In the regressions below, we measure the

extent of competition by the number of competing real estate agents who work in the same market

and year.

We report estimates of agent performance, , for agent  working in market  in year  from

the following equation:

 =  +  +  + log() +  (1)

where  is one of two measures of performance: commissions and the number of transactions.

 and  are market and year fixed effects.  is agent skill, proxied by the number of properties

agent  intermediated the previous year following Table 3B.7 The parameter of central interest is 

the coefficient of the competition measure, which reveals the impact of an increase in the number

of competing agents on agent ’s performance, adjusting for his skill.

We estimate equation (1) for a fixed cohort, defined as the set of agents who are active or have

entered as of a given initial year. This formulation avoids changes in the composition of agents,

which would confound our results. For instance, the 1998 cohort analysis includes all agents active in

1998. Agents who entered in subsequent years are excluded from the regression, but they contribute

to the competition variable log().
8 Table 4A reports estimates of  for the first seven cohorts

(the 1998- to the 2004- cohort). Estimates for later cohorts 2005-2007 are much less precise as

sample sizes drop. To allow for differential competition effects for established agents and others,

we assign each agent in a cohort to four groups according to his commission in the initial cohort

year, and estimate equation (1) separately for each group. Results of the commission regression

and the number-of-transaction regression are reported in columns (1)-(5) and columns (6)-(10) of

Table 4A, respectively.

Since agent entry is cyclical and our competition measure increases during a booming market,

we anticipate that our estimates are biased downward. Despite this, the  estimates are significantly

negative and sizable for almost all regressions we estimated, implying that incumbent agents receive

lower commissions and conduct fewer transactions when competition intensifies. For example, a 10%

increase in the level of competition is associated with a 1.1%-6.7% decrease in average commissions

and a 2.5-7.3% reduction in the number of transactions, with the largest impact born by the

2004 cohort. Across agent quartiles, the estimates tend to be larger for the 2nd and 3rd quartiles,

implying that competitors steal more business from middle-tier agents, and have a smaller impact

on superstar agents.9

Having documented a strong business stealing effect, we now examine whether home sellers

7We also estimated models using the number of years worked as a broker and found similar estimates.
8Changes in the composition of cohorts do arise when agents exit. We also estimated equation (1) on the subset

of agents who are active in all years (a balanced panel). These estimates produce larger estimates of the negative

impacts of competition, although the differences are not significant.
9The coefficients for the bottom quartile agents are less precise since many have zero or one transaction in any

given year.
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benefit from more competition among agents. Let  be a measure of the sales experience (the

likelihood of sale, days on the market, or sales price) of a home intermediated by agent  who works

in market  in year . We estimate a property level regression of the following form:

 =  +  +  + 0 +  log() +  (2)

where  ,  and  are defined as in equation (1).  represents a vector of property

attributes including zip code fixed effects, the number of bedrooms, bathrooms, and other rooms,

the number of garages, age, square footage, lot size, architectural style, whether it has a garden,

type of heating, whether it is a condominium, a single family or a multi-family dwelling, and

sometimes the list price. We report estimates of  in Table 4B.

When the number of competing agents in a market increases, the likelihood that a property

sells decreases, even though more agents are typically associated with a booming market. The

point estimate in column (1) implies that a 10% increase in the number of agents is associated

with nearly a 1% reduction in the sales probability, whose sample average is 69%. It is possible

that when there are more agents, sellers are more likely to list their property at a higher price

to ‘fish’ for a buyer. We add list price in column (2) to control for seller’s preference. With this

adjustment, the negative impact reduces to 0.6%, but still significant. Another possible explanation

is that the composition of properties changes with the market condition: houses that are harder to

sell (due to unobserved attributes) are more likely to be listed in a booming market. To examine

this possibility, we interact the competition measure with indicators for before or after 2005 in

column (3). The estimates for both periods remain negative, suggesting that the negative impact

of competition is not solely driven by unobserved changes in the composition of properties listed

in an up market.

The impact of more agents on days on the market is negative, but insignificant. It is possible

that variation in days on the market are mostly driven by market-wide conditions, captured by

market and year fixed effects in equation (2). Competition does seem to be associated with an

increase in the sales price of a property, but the impact is modest when we control for the list

price, as documented in columns (8) and (9). A 10% increase in competition generates a 014%

increase in the sales price, which translates to about $600 for a typical home. The estimate is

similar when we allow for differential competition effects before and after 2005. Since a higher sales

price is a transfer from buyers to sellers and has a negligible impact on aggregate consumer surplus,

in subsequent sections we do not focus on the impact agents have on sales prices. In summary,

results from estimates of equation (2) suggest that the benefit home sellers receive from more agent

competition is limited at best.

4 Econometric Model

The patterns in the previous section show that there is a strong business stealing effect and that

competition from more agents does not improve agents’ quality of service as measured by sales
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likelihood and time to sale. In this section, we incorporate competition among agents in modeling

their entry and exit decisions. These decisions, together with observed commission revenue, allow

us to estimate their opportunity cost of being a broker. We first describe various elements of

the model: the state variables, the revenue (or payoff) function, and the transition process of

state variables. Then we present the Bellman equation and the value function and discuss some

limitations of the model.

4.1 State variables

To model the evolution of the housing market and how it affects the entry and exit decisions of

agents, we need to represent the housing market in terms of state variables. Since our data includes

information on the attributes of each property that an agent intermediates, in principle, we could

model how agents are matched to particular properties, and how this would impact their commission

revenue. We do not pursue this rich representation and instead work with a more stylized version

of the housing market.

There are two main reasons for this simplification. First, including property-specific features

in the state space substantially increases its dimension. A large number of payoff relevant state

variables in dynamic models is challenging for estimation and in counterfactual analyses that involve

solving for a new equilibrium. In particular, it is difficult to estimate the joint transition process

of many state variables and compute a high-dimensional integral of an unknown value function.

Second, even if it were possible to surmount these computational and estimation hurdles, our data

do not include information on the characteristics of home sellers and buyers, making it formidable

to model the matching process between households and agents without ad hoc assumptions. As

a result, we choose a parsimonious representation of the housing market that still allows for a

reasonable fit of the main moments of the data.

We assume that agents’ commissions are determined by two sets of (payoff-relevant) variables:

aggregate variables and their individual characteristics. The aggregate variables are the total

number of houses listed on the market, the average housing price, the ratio of inventory over the

number of properties sold in the previous year, and the number of competing agents. The total

number of listed houses  counts all houses for sale as of the first day of year  together with all

new listings throughout the year in market . The average house price  is the equal-weighted

price of all houses that are sold in market  in year . To construct the inventory-sales ratio, at the

beginning of each month, we take the ratio of the number of listed properties in inventory (which

includes new listings and unsold properties) and the number of properties sold in the previous year.

Next, we average over 12 months to compute the inventory-sales ratio in year , denoted by .

This ratio is included as a proxy for market tightness, considered an important factor by the NAR

who publishes a similar Market Tightness Index. In our application, this ratio is an important

predictor of whether a listed property is sold and the amount of time it takes to sell.

Individual characteristics include an agent’s gender, firm affiliation, the number of years they

have worked as a broker, and a count of their past transactions. We assume that the first three
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aggregate state variables describing the housing market — the number of houses for sale, the average

price of houses, and the inventory-sales ratio — transition exogenously. That is, we abstract away

from potential feedback between agent entry and the aggregate housing market state variables since

it seems unlikely that this accounts for a significant fraction of market-level variation.

4.2 Revenue function

Realtors earn commissions either from sales (as listing agents) or purchases (as buyer’s agents) of

homes. We model these two components of agent revenue separately.

Agent ’s commissions from sales depends on his share of houses listed for sale and the probability

that these listings are sold within the contract period. Since the aggregate variables are the same

for all agents in market  and year , the listing share only depends on individual and rival

characteristics (we omit the market subscript  throughout this section). The following listing

share equation can be derived from a static home seller’s discrete choice model (presented in the

appendix):

 =
exp(


 + )P

 exp(



 + )
 (3)

The variables 
 include agent ’s demographics, work experience, firm affiliation, and proxies

for agent skill. The variable  represents his unobserved quality (observed by all agents, but

unobserved by the econometrician), much like unobserved quality variables in Berry, Levinsohn,

and Pakes (1995) and other discrete choice models. We report estimates assuming that  is

independent across periods. In Section 6.1, we present evidence that correlated unobserved state

variables may not be important once we include our proxy for agent skill. This assumption is also

needed because of computational difficulties of incorporating correlated state variables in dynamic

discrete choice models.

The denominator in equation (3)

 ≡
X


exp(


 + ) (4)

is sometimes called the “inclusive value” (see, e.g., Aguirregabiria and Nevo (2010)). It measures the

level of competition agents face in obtaining listings. Rather than tracking all rivals’ decisions, they

behave optimally against the aggregate competition intensity  This approximation of competition

can be motivated by the large number of agents per market.

Agents only receive commissions when listings are sold. The probability that agent ’s listings

are sold is assumed to have the following form:

Pr(sell) =
exp(


)

1 + exp(


)


where 
 includes measures of aggregate housing market conditions (total number of houses listed,

the inventory-sales ratio, etc.), as well as his own characteristics. Since we treat the sales price as
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exogenous, this formulation does not allow for a trade-off between the probability of sale and the

sales price. An agent’s total commission from selling listed houses is:


 =  ∗ ∗  ∗  ∗ Pr(sell)

where  is the commission rate,  is the aggregate number of houses listed, and  is the average

price index.

We develop the model for an agent’s commissions from representing buyers in a similar way:



 =  ∗

 ∗  ∗ 

where 
 is the total number of houses bought by all home buyers,  is the same as before, and

 is agent ’s share of the buying market:

 =
exp(

 
 +  )P

 exp(



 + )
 (5)

Here, 
 and  are his observed and unobserved characteristics, respectively. Similar to the

listing share, the inclusive value on the buyer side is:

 ≡
X


exp(


 + )

To reduce the number of state variables, we make the simplifying assumption that 
 = 069

where 069 is the average probability that houses are sold. In our sample the correlation between


 and  is 0.94, so this simplification allows us to reduce the state space. Since an agent’s

revenue depends on  ∗ , we group these two variables together as , a single state variable

that measures the aggregate size (in dollars) of a housing market.

Finally, agents earn commissions as both buyer’s and seller’s agents. As a result, agent ’s

earnings at any given set of payoff-relevant state variables  = {
 


 


    }

is:

() = () +()

= 0015 ∗ ∗ ( ∗ Pr + ∗ 069)

Despite this stylized representation of the housing market, the correlation between the model’s

predicted revenue and the observed revenue is 0.70. The model also captures well the upward and

downward trend of observed revenues. We provide details on the model’s fitness in Section 6.4.

4.3 Transition process of state variables

When agents consider entry and exit, they factor in both their current revenue and their future

prospects as realtors, which are determined by the exogenous state variables as well as rival agents’
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entry and exit decisions. Table 2A shows that entry nearly doubled in 2005 and then dropped

substantially afterward. We do not explicitly model agent’s beliefs on how the aggregate state

variables evolve. Instead, we adopt a standard AR(1) model with trend breaks before and after

2005, when house prices peaked in our sample.

The aggregate state variables are assumed to evolve according to the following equation:

+1 = 0 ∗ 1 [  2005] + 1 ∗ 1 [ ≥ 2005] + 2 ∗  +  +  (6)

where 0 and 1 are coefficients of the trend break dummies, 1{·} are indicator functions, 2 is a
matrix of autoregressive coefficients,  is the market fixed effect, and  is a mean-zero multi-

variate normal random variable. Market fixed effects in equation (6) are included to control for

size differences across markets: the largest 5 markets have twice as many listings as the smallest

5 markets. In JP2, we show that omitting market fixed effects leads to biased estimates for the

autoregressive coefficients.

We also investigated splitting the sample at year 2005 and estimating a separate transition

process for each sub-sample without much success. The 2 for the second part of the sample is

very low, since we have only a few periods per market after 2005. An alternative to the structural

break is to add multiple lags and high-order polynomials. We prefer equation (6) given that its 2

is high (ranging from 0.77 to 0.96) and that our panel is relatively short. An agent’s skill is also

modeled as an AR(1) process, including the trend break as above.

4.4 Entry and exit decisions

In the econometric model, agents can make career adjustments each period: some incumbent agents

continue to work as realtors, others leave it (exit), and new agents become brokers (entry). At the

beginning of a period, agents observe the exogenous state variables, their own characteristics,

as well as two endogenous variables −1 and −1 at the end of the previous period.  and

 are measures of the competition intensity and are determined by all agents’ entry and exit

decisions jointly: they increase when more people become realtors and decrease when realtors quit

and seek alternative careers. Agents also observe their private idiosyncratic income shocks and

simultaneously make entry and exit decisions.

Since agents can start earning income as soon as they find clients, we assume that there is no

time lag between entry (becoming an agent) and earning commissions. This assumption contrasts

with the literature on the dynamic entry and exit decisions of firms, which assume that firms pay

an entry cost at period  and start generating revenues in period +1 after a one-period delay due

to installing capital and building plants (see, e.g., Ericson and Pakes (1995)).

Let  denote exogenous state variables and individual characteristics and  denote endogenous

state variables  and . The Bellman equation for an active agent  is:

̃ ( −1) = ̃ max

(
 [( )| −1]− + ̃1 + ̃ (+1 | −1)

̃0
(7)
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where  [( )| −1] is his expected commission revenue conditional on observed state
variables. Conditioning on state variables, the revenue function also depends on  and  which

we integrate out using their empirical distributions.10 Since income shocks are private, agent  does

not observe  that is determined by all rivals’ entry and exit at period . Instead, he forms an

expectation of his commission revenue for the coming period if he continues working as a broker.

The variable  captures agent ’s costs of brokering house transactions. It includes his foregone

labor income from working in an alternative profession, as well as the per-period fixed cost of being

an agent due to the expense of renting office space, the cost of maintaining an active license, and

resources devoted to building and sustaining a customer network. We assume that the cost of being

a broker does not depend on the number of houses he handles, because the marginal monetary cost

of listing more properties is likely swamped by the fixed costs. We report counterfactual results

under different assumptions on marginal cost as a robustness check. In all specifications we consider,

 differs across markets, but is the same for agents within a market. In the main specification,  is

fixed throughout the sample period, but we also present results allowing it to vary over time.

The econometric model treats “exit” as a terminating action. Re-entering agents account for

about 9% of our sample. Relaxing this assumption would require estimating two value functions

and substantially increase the complexity of the model.11

Private shocks ̃0 and ̃1 are assumed to be i.i.d. extreme value random variables with standard

deviation 1
1
 where 1  0. Denoting the expected commission revenue  [( )| −1] as

̄( −1), and multiplying both sides of equation (7) by 1, the original Bellman equation can

be rewritten as:

 ( −1) =  max

(
1̄( −1)− 1+ 1 +  (+1 | −1)

0

where  ( −1) = 1̃ ( −1) and  = 1̃ for  = 0 1 Given the distributional

assumptions on  the Bellman equation is simplified to the usual log-sum form:

 ( −1) = log
£
1 + exp

¡
̄( −1 ) +  (+1 | −1)

¢¤


where we have replaced 1̄( −1)− 1 with ̄( −1 ) to keep the notation simple. The
main focus of the empirical exercise is estimating  = {1 2} with 2 = −1.

The probability that incumbent agent  is active at the end of period  is:

Pr(stay| −1 ) =
exp

¡
̄( −1 ) +  (+1 | −1)

¢
1 + exp

¡
̄( −1 ) +  (+1 | −1)

¢  (8)

10We ignore the dependence of  and  on , which we suspect is negligible given the large number of agents

included in  and 
11The estimation strategy would be similar, except that we need to use the exit choice probability to recast one of

the choice-specific value functions as a fixed point of a Bellman equation following Bajari, Chernozhukov, Hong, and

Nekipelov (2009).
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Let  = 1 be an indicator that agent  remains active at . The log likelihood (for incumbent

agents) is:

()=
X


1 [ = 0] ∗ log[1− Pr(stay|)]+
X


1 [ = 1] ∗ log[Pr(stay|)] (9)

Provided we are able to solve for  and calculate the choice probability Pr(stay|) we can
estimate  by maximizing equation (9).

Potential entrants must pay a fee (entry cost) to become a broker. They enter if the net present

value of being an agent is greater than the entry cost  (up to some random shock). The Bellman

equation for potential entrant  is:

 ( −1) =  max

(
−+ ̄( −1 ) + 1 +  (+1 | −1)

0

= log
£
1 + exp

¡−+ ̄( −1 ) +  (+1 | −1)
¢¤


Just as in equation (8), the probability of entry is:

Pr(entry| −1  ) =
exp

¡−+ ̄( −1 ) +  (+1 | −1)
¢

1 + exp
¡−+ ̄( −1 ) +  (+1 | −1)

¢ 
Let  = 1 be an indicator that potential entrant  enters at . The log likelihood of observing


 = Σ new entrants out of a maximum of ̄ potential entrants is:

() =
X

≤̄ 

1[ = 1]∗log[Pr(entry| )]+
X

≤̄ 

1[ = 0]∗log[1−Pr(entry| )] (10)

Since the entry cost estimate ̂ is sensitive to the assumption of the maximum number of potential

entrants ̄ we estimate equation (10) separately from the main model (9). We report estimates

of entry costs under three different assumptions on ̄.

4.5 Discussion on modeling assumptions

The main structural parameter of interest is , the average agent’s total costs of brokering trans-

actions. The current formulation of the model does not allow  to depend on state variables. This

is constrained by the fact that we only observe one action for each active agent (stay or exit) and

cannot separately identify the impact of a state variable working through  versus its impact work-

ing through revenue  on agent actions. Likewise, we cannot allow for a variable cost component

in  (which depends on the number of transactions) because agent revenue is proportional to his

total number of transactions. However, the model does allow  to vary across markets, as might be

expected if outside opportunities are related to market conditions.

Some real estate brokers work part time. According to NAR (2007), 79% of realtors report

that real estate brokerage is their only source of income. For the other 21% of agents holding more
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than one job, we do not observe their income from other sources. However, our estimate ̂ is the

relevant measure of agents’ time devoted to working as brokers. Suppose an agent has two jobs,

earning $35,000 as a broker and $10,000 from a second job. If we observe him exit after earning

$30,000, then his opportunity cost of working as a broker is between $30,000 and $35,000 (ignoring

the optional value of future earnings), even though the value of his total working time is higher.

Having part-time agents reduces ̂, but this correctly measures the average value of time that agents

devoted to being a broker. We attempted to formally address part-time agents using a discrete

mixture model that allows two types of agents with different opportunity costs, but the likelihood

was flat in a large region of parameter values.

Two other features of the model are also due to data constraints that we do not observe all

aspects of the interaction between home-sellers, agents, and the housing market. First, the model is

silent on possible unobserved benefits that consumers derive from competition among realtors. For

instance, we do not measure gifts that agents give away in marketing their services. In addition,

when there is enhanced competition from entry, agents might work harder to satisfy requests from

their clients and provide better services. The results in Section 3 suggest that these possibilities did

not translate into gains for sellers on the likelihood of sale and days on the market. It is possible,

however, that buyers benefit from the variety afforded by a large pool of agents. If this is an

important source of consumer surplus, then our counterfactual results miss the losses to consumers

with fewer agents.

Second, since we do not observe the actual contract terms between agents and their firms, we

assume that agents keep 60% of total commissions, based on the 2007 national survey conducted

by NAR. This assumption affects our estimate proportionately: if the average commission is under-

estimated by %, then 1 will be over-estimated by the same amount. As a result, the opportunity

cost  = −2
1
will be under-estimated by %.

5 Solution Method

As explained above, the unknown value function  (·) is implicitly defined by a functional Bellman
equation. The ability to quickly compute the value function is a crucial factor in most empirical

dynamic models and in many cases is a determining factor in model specification. In this section,

we describe our solution algorithm. JP2 contains additional computational details and Monte-Carlo

results. To simplify notation, we omit subscripts throughout this section, and use  to denote the

vector of state variables.

5.1 Difficulties with existing approaches

We began our analysis with the traditional approach of discretizing the state space, but met with

substantial memory and computational difficulties when we tested our model with four state vari-

ables. One of the challenges involves calculating the future value,  (0|), a high-dimensional
integral of an unknown function. The quadrature rules require evaluating the value function  ()
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at quadrature points that do not overlap with grid points. Since  () is unknown at any point

outside grids, we need to interpolate  () from grid points to quadrature points. With four state

variables and ten grids each, more than 95% of our computing time was spent on interpolation.

As a result, solving the value function using the Bellman iteration  () = Γ(( −1(0|))
for a given parameter value was slow and often took a couple of hours. Moreover, the memory

requirements of discretization increases exponentially.12

Another factor that discouraged us from discretization is that there are far fewer data points

than the size of the state space when the number of state variables is large. Discretizing the state

space and solving the value function for the entire state space implies that most of the time in

estimation is spent solving value function  () for states that are never observed in the data

(and hence not directly used in the estimation). In addition, both discretization and interpolation

introduce approximation errors that grow with the number of state variables.

The alternative method we pursue approximates the value function  () using sieves where

unknown functions are approximated by parametric basis functions (see, e.g., Chen (2007)). For

our application, this approach has several benefits. First, the sieve approximation eliminates the

need to iterate on the Bellman equation to solve the value function, and therefore avoids the most

computationally intensive part of estimation. The Bellman equation is instead cast as a constraint

of the model that has to be satisfied at the parameter estimates. This formulation reduces the

computational burden and makes it feasible to solve for the equilibrium of models with medium to

high dimensions. In addition, the algorithm does not spend time calculating the value function in

regions of the state space not observed in the sample. The method has the potential to improve

upon methods that require calculating the value function for the entire state space, whose number

of elements is often an order of magnitude larger than a typical sample size. For example, with six

state variables (which is the number of state variables in our base specification) and ten grids for

each, there are 106 elements in the state space. There are two main downsides of our approach: a)

finite-sample biases from the approximation and b) the non-parametric approximation converges

to the true value function at a rate slower than the square root of the sample size. JP2 documents

Monte-Carlo evidence that the method works well in our application: with a reasonable number of

basis functions, the value function approximation error is small, the bias in parameter estimates is

negligible, and the computation is very fast. We now present the estimation procedure in detail.

5.2 Sieve estimation of the value function

Recall that our Bellman equation is:

 () = log
¡
1 + exp

£
̄( ) +  (0|)¤¢  (11)

12We ran out of memory on a server with 32GB of RAM when we experimented with 20 grid points for each of the

four state variables.
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Kumar and Sloan (1987) show that if the Bellman operator is continuous and  (0|) is finite,
then sieve approximation approaches the true value function arbitrarily close as the number of

sieve terms increases.13 This fact provides the theoretical foundation for using basis terms to

approximate for the value function  ()

Specifically, let  () be approximated by a series of  basis functions ():

 () '
X

=1

() (12)

with unknown coefficients {}. Substitution of equation (12) into equation (11) leads to a nonlinear
equation:

X
=1

() = log

⎛⎝1 + exp
⎡⎣̄( ) + 

X
=1

 ∗(0|)
⎤⎦⎞⎠ 

This equation should hold at all states observed in the data. Our approach is to choose {} to
best-fit this non-linear equation in “least-squared-residuals”:

n
̂

o
= argmin

{}

°°°°°°
X

=1

(())− log
⎛⎝1 + exp

⎡⎣̄(() ) + 

X
=1

(
0|())

⎤⎦⎞⎠°°°°°°
2

(13)

where
©
()

ª
=1

denotes state values observed in the data, and k·k2 is the 2 norm. Essentially,
{} are solutions to a system of first order conditions that characterize how changes in {} affect
violations of the Bellman equation. There are many possible candidates for suitable basis functions

() including power series, Fourier series, splines, and neural networks. Jia and Genz (2011)

compare a group of popular basis functions using Monte-Carlo simulations. In general, the best

basis function is application specific, but well-chosen basis functions should approximate the shape

of the value function. A large number of poor basis functions can create various computational

problems and estimation issues such as large bias and variance.

Since we observe agents’ revenue directly, we exploit information embodied in the revenue

function to guide our approximation of the value function. In general, if the revenue function ̄()

increases in  and the transition process  also increases in , then the value function  ()

increases in 14 This property suggests the following approach: use basis functions that fit the

revenue function ̄() to approximate the value function in the Bellman equation. Since these

basis functions are chosen to preserve the shape of ̄() they should also capture the shape of the

value function.

Choosing basis terms in high-dimensional models is not a simple matter; hence, we want an

adaptable procedure to economize on the number of terms to reduce numerical errors and parameter

13We thank Alan Genz for suggesting this reference.
14The formal proof of this fact follows from the Contraction Mapping Theorem and is contained in the appendix.

In our application, this observation applies since (·) increases in − and − and −0 and −0 increase in − and
− (i.e., the transition process increases in − and −).
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variance. We adopt the ‘Multivariate Adaptive Regression Spline’ (MARS) method popularized by

Friedman (1991) and Friedman (1993) to find spline terms that approximate the revenue function

to a desired degree. MARS repeatedly splits the state space along each dimension, adds spline

terms that improve the fitness according to some criterion function, and stops when the marginal

improvement of the fit is below a threshold (10 ∗ 10−3, for example).15 Once we obtain a set of
spline basis terms {̂()} that best fit our revenue function ̄(), we substitute them for {̂()}
in equation (13). The estimated coefficients {̂} are those that minimize the squared difference
between the left-hand-side and right-hand-side of the Bellman equation, where the value function

is approximated by
P

=1 ̂(()) for each point in the state space (). As in other applications

of Mathematical Programming with Equilibrium Constraints (see, e.g., Judd and Su (2008) and

Dube, Fox, and Su (2009)), we impose equation (13) as a constraint and do not explicitly solve for

{̂} in each iteration of the estimation procedure.
The number of spline terms  is an important component of estimation. We propose a data

driven method to determine  . Let ̂

denote the parameter estimates when the value function

is approximated by  spline terms. We increase  until parameter estimates converge, when the

element by element difference between ̂

and ̂

−1
is smaller than half of its standard deviation

(which we estimate using non-parametric bootstrap simulations).

5.3 Identification

Identification of 1 and 2 follows from the identification argument of a standard entry model.

Substantial exit following a moderate reduction in revenue implies a relatively large value of 1,

the coefficient which measures sensitivity to revenue. On the other hand, if exit does not vary

much with reductions in revenue, then 1 is small. The coefficient 2 is identified from the level of

revenue at which exits start to occur. Identification of the spline coefficients  follows from Hotz and

Miller (1993), which proved that differences in choice-specific value functions can be identified from

observed choice probabilities. In our application, the value function associated with the outside

option is set to 0. With this normalization, choice probabilities directly lead to identification of the

value function and the spline coefficients .

6 Estimates

We first examine estimates of the revenue function and state variables’ transition process, then

present opportunity cost estimates and discuss the model’s fit. Throughout this section, we bring

back the market subscript . Following Hajivassiliou (2000), we standardize all state variables

to avoid computer overflow errors. The aggregate state variables,    and  are

standardized with zero mean and 1 standard deviation; the skill variable  is standardized with

15We use the R package ‘earth’ (which implements MARS, written by Stephen Milborrow), together with the 2

norm as our criterion function. We search for spline knots and spline coefficients that minimize the sum of the square

of the difference between the observed revenue and the fitted revenue at each data point.
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zero mean and 0.5 standard deviation. JP2 includes additional details and alternative specifications

not presented below.

6.1 Revenue function

The revenue function contains three elements: the listing share equation, the buying share equation,

and the probability that an agent’s listings are sold. De-meaning the log of the listing share (3),

we obtain:

ln − ln· = (

 −·)

 + ( − ·) = (

 −·)

 + ̃


 (14)

where ln· =
1


P
=1 ln. The other two averages are defined similarly.

We estimated equation (14) using different control variables : gender, firm affiliation, the

number of years as a realtor, and an agent’s total number of transactions in the previous period,

which is used as a proxy for his skill  We excluded observations with 0 shares, or entrants

and second-year agents since their  is either undefined or biased downward.
16 There are 32,237

agent-year observations.

The number of transactions an agent intermediates in the previous year is an important predictor

of listing shares, partly because agents with many past transactions are more likely to receive

referrals and attract new customers. When  is the sole regressor, the 2 of the listing-share

regression is 0.44, a high value given the extent of potential agent heterogeneity. The coefficient on

 is also economically large: increasing  by one standard deviation increases agent ’s listing share

by more than sixty percent. In contrast, conditioning on past transactions, gender or affiliation

with the top three firms (Century 21, Coldwell Banker, and ReMax) does not improve the 2.

Experience is also an important predictor of listing shares, but it has a limited explanatory power

once  is included. Our preferred specification is column (1) of Table 5A, which only uses  as

a regressor; alternative specifications are reported in JP2.

Given that our proxy  cannot fully capture all aspects of an agent’s skill, residuals ̃


 could

be positively serially correlated: a good agent consistently out-performs his peers with the same

observed value of . To investigate this issue, we regressed the residual estimate
b̃



 on its lags.

Interestingly, these residuals exhibit little persistence over time. The 2 of the OLS regression is

0.002, and the coefficient of lagged
b̃



 is small and negative (about -0.04), which seems to suggest

a “mean reversion” phenomenon. We repeated the analysis with the Arellano-Bond estimator that

accommodates agent fixed effects. The coefficient of lagged
b̃



 is slightly larger in the absolute

value but again with a negative sign: −015, which indicates the possibility of a “luck” component
in agents’ performance: a good year is often followed with a bad year. These results suggest

that unobserved persistent attributes, which induce a positive serial correlation, are unlikely to be

important given our controls.

16 Including first- or second-year agents only slightly reduces  coefficient.
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Once we have estimated the listing share equation, we compute the state variable

̂ =
X


exp(
̂


+
b̃



)

for all markets and periods. Since we cannot estimate ̃


 for agents with  = 0, we replace

these missing ̃


 with the average ̃


 among agents with the same experience.
17 Results of the

purchasing share (5) are similar, with a slightly lower 2 of 0.3. We construct state variable ̂

analogously as ̂

The third element in the revenue function is the probability that agent ’s listings are sold:

Pr(sell) =
exp(


)

1 + exp(


)


where  includes both aggregate state variables and agent attributes. Assuming whether listed

properties get sold are independent events conditioning on , the probability that agent  with

a total of  listings sells  properties is:

Pr(|) =

µ




¶
Pr(sell)

 (1− Pr(sell))
− 

We report MLE estimates of  in column (3) of Table 5A. A linear probability model delivers

similar results. A standard deviation change in the inventory-sales ratio reduces the probability

of sales by 11-16%, while a standard deviation change in  increases the probability of sales by

3-6.5%. Market fixed effects are included to control for aggregate conditions in different housing

markets that affect whether a property gets sold.

Once we have estimated payoff parameters  =
©
  

ª
 we construct our revenue function

as follows:

(; ) = 0015 ∗ ∗ (Pr(sell) ∗  + 069 ∗ ) 

where  denotes state variables {     whether   2005}. Note that agents
do not observe their revenue in the coming period , because  and  are determined by all

agents’ decisions simultaneously and are unknown ex ante. We calculate expected revenue by

integrating out  and  using their empirical distributions estimated in Section 6.2.

6.2 State variable’s transition

There are four stochastic aggregate state variables    and . We estimate equation (6)

with market fixed effects using the Arellano-Bond GMM-IV estimator to accommodate size differ-

ences across markets. Market fixed effects in these autoregressions are incidental parameters and

cannot be consistently estimated; yet they are necessary for our second stage estimation when we

17We also experimented with replacing missing ̃


 with zero. Both procedures lead to very similar estimate of

.
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forecast future state variables. We compute the average residual within each market during the

ten-year sample period as our estimate of market fixed effects.

We add the lag of  in ’s autoregressions because a large number of listings in the previous

year is likely to generate an upward pressure on the inventory-sales ratio. Similarly, the lag of 

and  are added to  and ’s autoregressions, as both  and  are endogenous and respond to

market conditions: a growing housing market with a larger  attracts more agents, while a dete-

riorating market with a higher inventory-sales ratio leads to fewer agents. The lag of  in ’s

regressions and the lag of  and  in  and ’s autoregressions are treated as predetermined.

As shown in Table 5B, there is a sizeable level shift in the housing market before and after 2005,

and the trend-break dummies are significantly different from each other in the regressions for 

and . On the contrary, such a level shift is not pronounced in  and ’s regressions, suggesting

that conditioning on aggregate housing market conditions, there are no structural breaks in the

amount of competition agents face in each market. Finally, the adjusted 2 is high, ranging from

0.77 to 0.96.

We estimated a variety of AR(1) models for  As in the listing share regression, agent gender

and firm affiliation have no impact on 2, but a different constant term before and after 2005

produces noticeable differences. Our preferred specification (column (5) of Table 5B) includes the

lag of skill as well as trend-break dummies.

6.3 Structural Parameters

As explained in Section 4.4, we allow the cost parameter  to differ across markets. Specifically, we

choose  = {1 2}=1 and  = {}=1 to maximize the following constrained log-likelihood:

max


(; ) such that

{}=1 = argmin

°°°°°°
X

=1

()− log
⎡⎣1 + exp

⎛⎝̄( ) + 

X
=1

(+1|)

⎞⎠⎤⎦°°°°°°
2

where  denotes state variables,  is the vector of state variables for agent  in market  and

period , and the log-likelihood function (·) is defined in equation (9).18
Since we use a data dependant approach to determine the number of spline basis functions

that approximate the value function, we estimate parameters eight times, with an increasing num-

ber of spline terms ranging from 24 to 45. For each set of parameters, the standard errors are

computed using 100 non-parametric bootstraps.19 Then we choose the set of parameter estimates

̂ =
n
̂


1 ̂


2

o
=1

whose element by element difference from the previous set
n
̂
−1
1  ̂

−1
2

o
is

18To minimize potential issues with numerical computing, we use the KNITRO optimization procedure for all

estimation (including bootstrap simulations), provide analytic gradients for both the objective function and the

nonlinear constraints, experimented with different starting values, and use 10−6 for all tolerance levels.
19 In these bootstrap estimations, we hold estimates of the revenue function and state variables’ transition process

fixed, because re-estimating them in bootstrap samples requires recomputing all elements of the model and would

take too long to compute for all of the specifications we present in Section 6.
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smaller than half of their standard deviation:

 = min

½
̃ ∈ (1  8) : |̂̃ − ̂

̃−1
 | ≤ 05 ∗ std

µ
̂
̃



¶
 ∀

¾


Our parameters stabilize when the number of spline terms increases to 39. Once we have ̂ we

take the ratio of ̂2 to ̂1 to compute opportunity cost estimates: ̂ = − ̂2
̂1

 The standard

errors of ̂ are calculated from the empirical sample of the bootstrap estimates. We report ̂

and their standard errors, the number of observations, and the number of spline terms in the first

two columns in Table 6A.
n
̂


1 ̂


2

o
for  = 1  8 are reported in JP2.

There is a total of 41,856 observations. All estimates have the right sign and are significant

at the 0.01 level.20 On average, the opportunity cost is $49,000 and accounts for 80% of observed

commissions. There is a substantial variation across markets, from $30,000 for poor towns like

Revere to above $60,000 for wealthier towns such as Newton and Wellesley, which might be expected

if residents in richer towns have better outside options.

An important premise of our econometric model is that entry and exit decisions are based in

part on the future path of state variables. To examine whether or not agents consider their future

earnings, we estimate the model with discount factor  equal to zero and report ̂ in columns (3)-

(4) of Table 6A. For a third of the markets, the estimates are negative or insignificantly different

from zero; they average $9,850 for the remaining markets. Compared to Massachusetts’ per capita

income of $46,000 in 2006, these numbers appear to be too small and suggest that agents are

not entirely myopic. As in most empirical dynamic studies, we do not estimate  and instead set

it to  = 090. In columns (5)-(8), we examine how results vary with different discount factors.

Everything else equal, a smaller  = 085 leads to a lower discounted stream of future income and

reduces the incentive to work as a broker. To offset the change in , the model relies on smaller

opportunity cost estimates, which could be interpretated as diminished payoff from an alternative

career. The opportunity costs vary from 85% to 90% of the original estimates in column (1) for

most markets. With a higher value of  = 095 the average opportunity cost is about $56,300, or

15% larger than our original estimate.

In our preferred specification, we measure an agent’s skill or ability by his past number of

transactions . One might be concerned about using the lagged outcome variable as a regressor. To

address this issue, we re-estimate our model replacing past transactions with an agent’s experience

in columns (9)-(10). These estimates are similar to those in column (1): the correlation between

these two sets of estimates is 0.89, and the average is $47,300 and $49,000, respectively. Despite the

similarity in ̂, this alternative measure of skill delivers a much worse fit of the data. The sample

log-likelihood is -14,645, compared with -12,883 using past transactions. Using this measure also

reduces the model’s fit of observed commissions considerably.

There is a shift in the aggregate economy at the end of our sample, and it is possible that agents

outside options are impacted by this change. The last variation on the model allows two opportunity

20We restrict { } to between -150 and 150 to prevent overflow or underflow of the exponentiation.
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costs per market, ≥2005 and 2005.
21 Results are reported in columns (11)-(14). All but one

parameter is significant at the 0.01 level. Interestingly, the opportunity costs are generally higher

prior to 2005, although the differences are significant for only a few markets. Mechanically, lower

opportunity cost estimates are driven by the fact that conditioning on observed commissions which

decreased substantially post 2005, observed exit rates were actually smaller than those prior to

2005, ceteris paribus. Results from our preferred specification (column (1)) are in general between

̂2005 and ̂≥2005 and are closer to ̂2005 on average.

Aside from specifications reported in Table 6A, we estimated a large number of alternative

models. For instance, we experimented with imposing a common  across markets, and found that

market specific values of  significantly improved the model’s fit. Restricting  to be the same

for all markets leads to an estimate of $41 300. However, the fit as measured by log-likelihood

is worse (-14,088 compared with -12,883 when  varies across market). In addition, the difference

between the observed and fitted Pr(stay) is greater than 0.02 for more than half of the markets.

In light of large differences across cities, we also estimated our model separately for each market,

with or without variations in  over time. Finally, we experimented with different revenue functions

that control for both agent experience and skill. Our opportunity cost estimates display consistent

patterns across all specifications we analyzed. These results lead us to conclude that the estimates

presented here are driven by entry and exit patterns observed in our data and are quite robust.

Our preferred specification is column (1), and is the basis of the discussions below.

We report entry cost estimates in Table 6B. As mentioned in Section 4.4, the entry cost is

sensitive to the assumption on the maximum number of entrants ̄
. We examine three different

scenarios. The first one assumes that ̄
 is equal to the largest number of entrants ever observed,

max(
), which has been used in a number of studies (see., e.g., Seim (2006).) The second one

assumes that ̄
 is twice the number of max(


) The third scenario recognizes that markets with

many listed houses are more likely to attract potential realtors and assumes that ̄
 is proportional

to the average number of listings ̄
 = 

25
 where  =

1

Σ=1 We also experimented with

several other measures (2 ∗mean(
)



10
 

20
 etc.) with similar results.

The entry cost  its standard deviation, and the probability of entry (defined as



̄

) are

reported for each market in all three scenarios.22 Entry costs increase mechanically with the

assumed number of potential entrants. Under the assumption ̄
 = max(


) the average entry

rate across all markets is 61%, leading to the lowest average entry cost estimates of $18,000 among

the three cases reported. Three markets have negative entry costs, which are necessary to justify

the high entry rates observed in these markets. The estimated entry costs in the other two scenarios

exhibit similar patterns, except that higher costs are associated with a larger value of ̄
. The

average entry cost is $79,000 assuming ̄
 = 2∗max(

) and $26,800 assuming ̄

 =



25
 These

21We also estimated the model using ≥2006 and 2006 This introduces an additional state variable (a trend

break dummy at year 2006). Results are similar, but estimates of ≥2006 are less stable since our sample ends in
2007.
22We do not report the fitted probability of entry, because in this simple MLE estimation (without any constraint),

the model is able to match the average entry rate exactly market by market.
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numbers might seem high given the general perception of low entry barriers of the realtor brokerage

industry. We use the most conservative estimates of entry cost in the counter-factual analysis, and

report welfare estimates both with or without incorporating entry costs.

6.4 Model’s fit

We compare our model’s predictions to the observed data in two ways: information used directly

in estimation vs. information not exploited in estimation. We start with the difference between

observed revenues and our fitted revenues. Given that agents’ commissions are the main driving

force of their entry/exit decisions, it is important that our model can approximate the observed

commissions.

Observed and predicted revenues may differ because our model abstracts away from differences

in properties’ physical attributes and only exploits measures of the aggregate housing market.

Moreover, observed commissions are agents’ realized ex post revenue, while fitted commissions

are ex ante revenue that agents expect to earn: [( ; )| −1] Any deviation in
realized competitive measure from the expected one would cause () to differ from .

Given these considerations, it is encouraging to observe that the correlation coefficient between

 and () is as high as 0.70. The first two columns of Table 7 tabulate observed vs. predicted

commissions by year. The model is able to replicate both the upward and the downward trend

without year-specific effects. The average observed commission is $63,300, and the average fitted

expected commission is $63,900. Columns (1) and (2) in Table 8 report observed vs. predicted

commissions by market, with small differences for all markets except Arlington and Revere.23

Since agents’ exit patterns identify their opportunity costs, it is important that the model fits

this pattern. Columns (3) and (4) in Table 7 and 8 document observed vs. fitted probability of

staying by year and by market, respectively. We are able to match exit probabilities for all years

except 2005 when the difference is around 0.02. In particular, the model captures the U-shaped

exit probability accurately, even though the only time-series control is the trend-break dummy in

state variables’ transition matrix. On average, 12% of incumbents exit in any given year, varying

from 15% in down markets to 10% in up markets.

Exit rates exhibit bigger differences across markets and range from 16% to 8%. As reported in

columns (3) and (4) in Table 8, the model closely approximates the average exit rate for almost all

markets, and the biggest difference between the model’s prediction and the observed exit rate is

0.02. One reason for this tight relation is the market-specific cost parameter, ̂, though the fit is

notable given the model’s nonlinear structure and complex equilibrium constraints.

To benchmark our estimate of agent’s opportunity cost ̂, we searched for other suitable

measures that are not in our dataset. By construction, opportunity costs depend on what agents

would have earned in an alternative profession and are never observed in reality. We looked for

data on earnings by professions, but are not able to obtain such information at the city level. As

23The gap is $10,000 for Arlington and $7000 for Revere. There is a big discrepancy between the observed and

predicted  and  for these two markets, which contributes to the large gaps.
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a result, we compare our estimates to each city’s 2007 median household income available from

http://www.city-data.com/. Figure 4 plots the estimated opportunity cost ̂, from the smallest

to the largest, together with the median household income for each market in our sample. As

the opportunity cost increases from the left to the right, the median household income also rises:

in general, the foregone income is lower in poor cities and higher in rich towns. The correlation

coefficient between ̂ and the median household income is reasonably high: 0.74. There is some

variation in the gap between a realtor’s opportunity cost and a typical household income across

towns, but on average, his foregone income is slightly higher than half the median household

income. These results — high correlation coefficients and comparable magnitudes — reassure about

the sensibility of the opportunity cost estimates.

7 Counterfactual analyses

7.1 Methods

In this section, we use the parameter estimates to simulate alternative market structures when

agents’ payoff functions change. We first describe how we solve for the counterfactual equilibrium,

and then present our results. All standard errors of the counterfactual analyses are calculated using

100 nonparametric bootstrap simulations.

The main issue in simulating counterfactuals involves finding the new transition process of

future  and . These two endogenous state variables are determined by all agents’ joint entry

and exit decisions. In estimating structural parameters, we obtain their transition process directly

from data; in a counterfactual, we need to find the equilibrium transition process for 0 and 0

that is consistent with changes in the payoff function.

To explain our approach, consider the thought experiment of realtors facing reduced payoffs

for their services. After forming a belief of the distribution of 0 and 0 based on current state
variables, agents individually solve the new Bellman equation and choose an optimal decision.

These decisions jointly determine the distribution of 0 and 0 Given the large number of agents
(≥100 per market) and the assumption of i.i.d private random shocks {01}, the distribution
of 0 and 0 (conditional on current state ) can be approximated by that of a normal random
variable with two parameters: the mean and the variance.

Agents beliefs are consistent when they are the same as the distribution of 0 and 0 generated
by all realtors’ optimal behavior (which in turn depends on their beliefs). In other words, the

distribution of 0 is a fixed point of the new Bellman equation, with its mean determined by the
following equation:
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where the first and second term sums over incumbents and potential agents, respectively.24 ̃( )

is agent ’s expected revenue in the counterfactual, 00 [ (
0
)|] is the expectation of his value

function  (0) over the distribution of future state variables (
0 0, and other exogenous state

variables), and exp(
 

) is 

£
exp(

 
 + )

¤
 Replacing  [1 {·}] with choice probabilities,

simplifying the summation over entrants who are identical ex ante (with attributes), and omitting

the dependence of 0 on , we have:


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0
¢
=
X

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0 0) exp(
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=
X

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0 0) exp(

 
) (15)

where we write Pr(active;0 0) to emphasize that agent ’s optimal decision depends on his belief
about future competition intensity 0 and 0 Equation (15) is similar to equation (4), except that
the former takes expectation over agents’ entry and exit decisions. The variance of 0 is:

Var(0) =
X


Pr(active;
0 0)(1− Pr(active;0 0)) exp(2 ∗

 
) (16)

The equilibrium conditions for 0 are defined analogously. To summarize, computing the equilib-
rium is equivalent to searching for the mean and variance of 0 and 0 in each period for each
market.

We show in the appendix that equation (15) has a unique fixed point when 0 and 0 can
be approximated as a normal random variable. Hence, an iterative approach can be employed to

compute the equilibrium in the counterfactual.25 Starting from an initial guess of

 0 =
©
0(0) 

0(0)Var
0(0)Var

0(0)∀
ª


we compute expected revenue ̃( ̂) (which depend on  0 and our estimate ̂) and search for

{}=1 that minimizes the Bellman constraint:

{}=1 = argmin
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2



With {}=1 at hand, we calculate the choice probability Pr(active) for both incumbents and
potential entrants, and update our initial guess  0 using equations (15) and (16).

In practice, solving this problem using an iterative procedure is cumbersome. We use the MPEC

24The transition process of exogenous state variables remains unchanged throughout the counterfactual exercises.

The dependence of  on the transition process of exogenous state variables is understood and not explicitly stated

for notational simplicity.
25The right-hand-side of equation (15) monotonically decreases in (0), so the iterative approach is guaranteed

to converge.
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framework to cast the counterfactual analysis as another problem of constrained optimization:

min
(0)Var(0)
(0)Var(0)
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7.2 Three counterfactuals and results

Several recent developments in the brokerage industry imply downward pressure on the current

commission rate. There has been an increasing interest in using non-traditional methods to buy

and sell properties (e.g., Levitt and Syverson (2008a)). Some home sellers list their houses on the

MLS database for a flat fee (usually less than a thousand dollars) and sell properties on their own.

Others use discount brokers who offer a la carte service or work on an hourly basis, often with

reduced fees. Our first counterfactual asks the following question: if a regulator imposes a price

cap on the commission rate, what is the market structure and social cost savings at various levels

of the commission rate? We simulate the brokerage industry using ten different commission rates,

and report results in Table 9.

The first row of Table 9 replicates the sample, where the average annual number of agents and

entrants across all markets is 154 and 23, respectively. The average number of transactions per

agent is 7.78. A typical agent earns $63,300 per year, and sells 70% of his listings. The other rows

of the table report simulations with commission rates ranging from 2.5% to 4.75%. The standard

errors are in parentheses, most of which are reasonably tight. When the commission rate is as

low as 2.5%, the number of entrants declines 31%, the exit rate initially doubles and gradually

stabilizes, and the number of incumbents drops to 91, which is only 59% of what is observed in the

sample. Agents’ productivity increases by 73%, with a typical agent conducting 13.5 transactions

annually. All of these numbers are significantly different from the first row. Note that a 50%

reduction in commission rate only leads to a moderate change in the revenue per agent — $54,400

vs. $63,300 — due to fewer rivals that partially offsets the decline in the commission rate. This

finding is consistent with Hsieh and Moretti (2003), who documented that free entry dissipates

rents associated with housing price appreciation, leading the average agent to benefit much less

from higher prices. As agents leave this industry, the average sales probability increases by 2%,

because remaining agents are generally more experienced and better at striking a deal.

Perhaps the most noteworthy finding of this exercise is that the magnitude of social savings is
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substantial. Savings in opportunity cost amounts to $863 million, or 22% of total commissions paid

by households during the same period. Using our most conservative estimate of entry cost, savings

in entry cost is still sizeable, about $36 million. Hsieh and Moretti (2003) compares houses sold

per agent across cities and uses a benchmark city to derive social losses from excess entry. Using

the top 10th-quantile most productive city or the bottom 25th-quantile city as a benchmark, social

loss is about 50% or 7% of brokers’ earnings, respectively. While exploiting very different methods

and datasets, our results are broadly consistent with their finding.

The last column of Table 9 presents the reduction in commissions paid by households. These

figures do not constitute increases in social surplus, because commissions are transfers from house-

holds to realtors. To the extent that we care about the distributional effect of commissions, these

benefits are huge and twice larger than the welfare cost of free entry. For example, when the

commission rate is reduced by half, households would benefit by about $1.94 billion.

A rough back-of-the-envelope calculation suggests that reducing the commission rate by half at

the national level would decrease opportunity costs and entry costs by as much as $23 billion, while

lowering the commission payments of consumers by $50 billion. While there are many caveats with

applying our results at the national level, it is clear that policies which encourage lower commissions

could generate significant welfare gains.

Results for other commission rates reveal a similar pattern: lower commissions lead to fewer

agents, higher productivity, and higher social savings. While our simulation rests on the assumption

that agents are not capacity constrained, we believe that this assumption is defendable for situations

considered here. For instance, agents in our study sold 80% more houses in earlier years than they

did in later years. In addition, while the membership of NAR nearly doubled from 1998 to 2006,

the number of national home sales only increased by 30%. These empirical patterns suggest that

most agents are not capacity constrained and that reducing the number of agents by 40% may not

have a major impact on the total number of properties brokered.

Under the assumption that free entry does not increase consumer surplus, supported by the

descriptive regressions presented in Section 3.2, the socially optimal commission rate is one that

minimizes agents’ idle capacity. Since our data do not contain information on the number of hours

it takes an agent to sell a property, we cannot directly measure the number of transactions an agent

could manage at full capacity. If an agent could handle 5 listings or more at the same time and a

property takes 12 weeks to sell, then a broker could conduct 20 or more transactions per year. At

that level, the optimal fixed commission rate would be considerably lower than 2.5%.

The second counterfactual examines what would happen if agents were compensated by their

cost of selling a house, a possible outcome under adjustable commission rates and free entry. Unlike

housing prices that experienced significant appreciation in the last decade, the cost of selling houses

is likely to have decreased with widespread internet use.26 Since the cost of selling houses is not

observed, we use the 1998 average commission ($18,118 per transaction) as a conservative upper

26According to Survey of California Home Buyers (C.A.R. 2008), 78% used the internet as an important part of

their home-buying process.
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bound and hold it fixed for 1999-2007. This exercise could also answer the question of what would

have happened if there were no housing price appreciation throughout our sample period. Table

10 shows that if agents had been compensated at the 1998 level, there would be 24% fewer agents,

each facilitating 31% more transactions. Total commissions paid by households would be reduced

by $1.1 billion, and the social savings in opportunity costs and entry costs would reach $525 million.

So far our exercises are mainly concerned with the impact of lowering commissions. Our third

counterfactual examines the benefit of providing consumers with more information. Under the

current commission structure, households cannot use the price to distinguish good agents from

mediocre ones. Many rely on referrals, which are often subjective and are sometimes difficult to

obtain. In 2006, the FTC published FTC Facts for Consumers and explicitly advised consumers to

“find out what types of properties, how many units, and where brokers have sold” to “determine how

efficiently they’re operating and how much experience they have” (FTC 2006). A potentially useful

policy instrument, therefore, is an experience rating program, where a government makes public

agent past performance or uses this information to certify good vs. subpar agents. Understanding

the economic forces at play in such interventions is the focus of our third counterfactual analysis.

Specifically, we simulate the model raising the skill coefficient by 20% to 100%. Larger coefficients

represent higher premiums to skills and lead to bigger market shares for skilled brokers, a likely

consequence when consumers can easily access information on agents’ past performance.

Table 11 shows that when the skill coefficient is doubled, entry declines by 34% and the average

number of exits decreases from 18 to 15. On net, the number of active agents drops from 154 to 127,

a 17% reduction. Agent productivity is enhanced by 23%, the average sales probability increases

to 72%, and the average commission income rises from $63,300 to $77,200. This is because large

coefficients diminish entry, dampen the business stealing effect, and raise the skill premium for

experienced agents. There is no direct benefit to consumers (except for a higher sales probability),

but savings in opportunity costs and entry costs are still sizable at $372 million. Increasing the

skill coefficient by 20% to 80% generates similar benefits, though of a smaller magnitude.

Relative to a price cap, this proposal has the advantage of easy implementation with all infor-

mation directly available in the Multiple Listing System. Moreover, our estimates suggest that it

may have the support of incumbent agents whose average commissions could increase substantially.

We repeated Table 9-11 using other specifications discussed in Section 6 and obtained similar

results. For example, the social saving in opportunity costs is roughly 10-12% less assuming the

discount factor  = 085 and about 13-15% more with  = 095 Using two cost estimates per

market, when the commission rate is reduced by half, savings in opportunity cost and entry cost

would be $880 million, compared to $899 million in Table 9.

One might be concerned that our social cost savings are mismeasured because the marginal

monetary cost of housing transactions is assumed to be zero. To address this issue, we simulated

our model twice, assuming the marginal cost is either $100 or $500 per transaction.27 Using agent

’s observed number of transactions in our MLS data, we first backed out his fixed cost () by

27As explained in Section 4.5, the marginal cost cannot be seperately identified from the fixed cost.
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subtracting the variable cost ( ) from ̂:

 = ̂ −   = ̂ − ∗ 

where  is the marginal cost of $100 or $500 and  is the number of transactions by agent

 Then we re-computed the counter-factual analysis where agents incur both a fixed cost and a

variable cost buying or selling properties.

A non-zero marginal cost introduces two countervailing forces. On the one hand, agents sell

more properties in the counterfactual and hence incur a higher variable cost. These additional

marginal costs are ignored in Table 9-11. Incorporating them leads to lower social cost savings. On

the other hand, with these costs factored in, agents’ net earning is lower. As a result, fewer agents

would remain active, which translates into higher cost savings. In our application, these two forces

largely cancel each other out. For example, with a $500 marginal cost, when the commission rate

is reduced by half, there are on average 86 active agents per market/year instead of 91 agents as

reported in Table 9. However, the total cost savings are similar: $902 million (with marginal costs)

vs. $899 million (without marginal costs).

8 Conclusion

In this paper we use a new dataset to document stylized facts of entry and exit among realtors

in Greater Boston. Traditional arguments suggest that if the production process involves fixed

costs, free entry could be socially inefficient, although such inefficiencies might be outweighed by

benefits to consumers if free entry brings more variety, better products, or lower prices. Among

real estate brokers, the absence of price competition between agents implies that agents compete on

non-price dimensions. Yet, increased competition is not associated with higher sales probabilities

or faster sales. While it is possible that competition among brokers improves the allocation between

houses and buyers in ways that our data do not capture, on the dimensions that we do observe, the

consumer benefits from increased competition appear limited. Our dynamic structural model of

real estate agent entry and exit allows us to quantify the social costs of free entry. The method for

estimating dynamic discrete choice models may have applications in other settings with rich state

spaces.

It is important to emphasize that this paper is not against free entry. Creating additional

barriers to entry might lead to adverse effects that are not captured by the model, for example, if real

estate licenses are rationed inefficiently. Instead, our analysis measures social costs from competition

among brokers under rigid commissions in the absence of observable benefits for households. Since

most agents do not appear capacity constrained, alternative market structures with fewer agents

seem unlikely to impact the total number of properties brokered and may lead to social savings.

Our counterfactuals are intended to investigate these alternatives. Although the econometric

model we develop is stylized in certain dimensions, we are able to match key moments of the

data. Hence, the counterfactuals may be useful for measuring quantitative changes in the market
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structure. Each of the three situations we investigate — regulated price caps, commissions based on

costs, or improved information about agents’ past performance — indicate large social costs with the

current fixed percentage commission regime and the potential for interventions to generate social

savings.

There are other benefits associated with lower or flexible commissions that are not captured

by our model or the counterfactuals. For example, lower commissions reduce transaction costs,

which might lead to a more liquid housing market, improved asset allocation, and better housing

consumption. Flexible commissions also provide a channel for consumers to choose services tailored

to their preferences. While we take the absence of price competition as given throughout this paper,

an interesting issue for future work is understanding forces that sustain this market structure.
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A Seller’s choice model

We derive the listing share (3) using a simple sellers’ choice model. Suppose there are  home

sellers, each with a unit of property to sell. All properties are identical. A total of  agents

compete for the listing business. There are many more houses than agents:    The utility of

seller  listing with agent  at time  is assumed to have the following form:

 =

(


 +  +   = 1  

0

where  is a vector of agent ’s characteristics, including demographics, past experience, firm

affiliation;  represents agent ’s unobserved quality; and 8 is the iid error term that captures

idiosyncratic utility seller  derives from listing with agent . If a seller is not matched with any

listing agent, he consumes his outside option with utility 0 Assuming that {}

=0 are mean

zero iid extreme value random variables, agent ’s listing sharing is:


 =

exp(
 + )P

 exp(
 + )

B Value function monotonicity

Claim. If the revenue function ̄() and transition process  increase in , then the value

function  () increases in .

Let  = { −− } denote our state variables, where − is the negative of 
We want to show that our value function  () is monotonically increasing in , where:

 () = log(1 + ()+

 (0)(0|)0)

It is straightforward to show that the operator

Γ( ) = log(1 + ()+

 (0)(0|)0)

is a contraction mapping because  ≤  implies Γ() ≤ Γ() and Γ( + ) ≤ Γ( ) +  for

  0  ∈ (0 1)  According to Corollary 1 on page 52 in Sokey, Lucas, and Prescott (1989), if the
contraction mapping operator satisfies Γ [ 0] ⊆  00 where  0 is the set of bounded, continuous, and
nondecreasing functions, while  00 is the set of strictly increasing functions, then its fixed point 
is strictly increasing.

In our application, () strictly increases in  and the transition matrix

0 =  + 

also increases in  ( 0 increases in  , −0 increases in − etc.). To prove that Γ [ 0] ⊆  00
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we only need to show that if  () is nondecreasing in , then
R
 (0)(0|)0 is nondecreasing

in  Note that:

() =

Z
 (0)(0|)0

=

Z
 (0)(0 − )0

Let  = 0 −  Using change of variables, we have:

() =

Z
 ( + )()

which is nondecreasing in  because  () is nondecreasing in ,  increases in , and  ≥ 0

C Unique fixed point of equation (15) under normality

Conditional on a given vector of state variables , if we can approximate 0 by a normal random
variable, then write

0 = + 

where  is a mean-zero normal random variable. We will show that there is a unique  associated

with any value of 

Recall that  is the fixed point of the following equation (we omit  since we are conditioning

on ):

 = (0) =
X


Pr(active)

 



=
X


()+

 (0)(0;)0

1 + ()+

 (0)(0;)0



 



 (18)

We first show that the right-hand-side of this equation is monotonic in  Since expected profits

reduce with more competition, () decreases in . In addition,Z
 (0)(0;)0 =

Z
 (0)(0 − )0

=

Z
 ( + )()

where we replaced 0 with  +  in the second equation. Since  ( + ) decreases in  (because

 (·) increases in −, as shown above) and   0 this completes the proof that the right-hand-

side decreases in  Hence, equation (18) has at most one fixed point. At the boundary, when 

approaches 0 (so that few agents are active), Pr(active) is close to 1, so the right hand side of

equation (18) exceeds ; as →∞, Pr(active)→ 0, the right hand side of equation (18) is smaller

than  Hence there is a unique fixed point.
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D Data sources cited in Section 1

• In 2007, two-thirds of households owned their homes, more than a quarter of national wealth
was held in residential real estate, and there were 6.4 million sales of existing homes.

— U.S. Department of Housing and Urban Development, Office of Policy Development and

Research, “U.S. Housing Market Conditions,” 1st, 2nd, 3rd, 4th Quarters 2007, 1st Quar-

ter 2008. Available: http://www.federalreserve.gov/releases/z1/current/accessible/b100.htm,

B.100 Balance Sheet of Households and Nonprofit Organizations, from Flow of Funds

Accounts of the United States published by the Federal Reserve.

• Brokers’ commissions on the sale of real estate properties exceeded $100 billion annually
during the mid 2000s.

— Bureau of Economic Analysis, National Income and Product Accounts Table 5.4.5. Pri-

vate Fixed Investment in Structures by Type. 1929-2008.

• The recent nationwide appreciation of housing prices by 83% from 1997 to 2006 corresponded
to a substantial increase in agent entry.

— http://www.huduser.org/portal/periodicals/ushmc/spring10/hist_data.pdf, Table 10: Re-

peated Sales House Price Index: 1991-Present. U.S. Department of Housing and Urban

Development.

• NAR membership surged from 716,000 to 1,358,000 during this period

— http://www.realtor.org/library/library/fg003, “Field Guide to NAR Membership Sta-

tistics, 1908-Present,” National Association of Realtors.
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      No. of Properties (1000)
Year   Listed   Sold   mean  std. dev  mean  std. dev

(1) (2) (3) (4) (5) (6) (7)
1998 23.7 18.3 350.9 295.7 70.4 38.5 281.3
1999 22.0 18.1 385.9 320.4 61.5 35.0 342.6
2000 20.9 17.2 436.5 367.3 54.4 35.0 367.6
2001 22.6 17.6 462.8 365.5 64.5 35.8 386.3
2002 23.2 17.9 508.0 375.2 67.7 40.5 437.0
2003 25.6 19.4 513.1 362.7 77.5 39.0 476.0
2004 28.6 21.4 529.2 363.0 73.7 41.1 547.9
2005 32.5 21.1 526.1 355.6 96.8 45.5 536.3
2006 31.5 17.2 502.4 361.0 131.9 51.0 417.0
2007 27.3 13.6 489.8 364.2 126.2 52.9 359.5

All 257.9 181.9 472.1 358.5 85.4 50.0 4151.6

      Incumbent Exiting Number of
Year  Entrant Agent Agents Properties Sold mean 25th 75th mean 25th 75th

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1998 0 3,840 0 18,256 4.75 1 6 3.76 1 5
1999 602 4,054 388 18,094 4.46 1 6 4.43 1 6
2000 462 4,013 503 17,235 4.29 1 6 4.15 1 6
2001 483 4,052 444 17,645 4.35 1 6 3.94 1 6
2002 696 4,344 404 17,872 4.11 1 5 3.91 1 6
2003 883 4,791 436 19,418 4.05 1 5 3.72 1 5
2004 1,005 5,328 468 21,432 4.02 1 5 3.70 1 5
2005 1,002 5,763 567 21,078 3.66 1 5 3.38 1 5
2006 691 5,671 783 17,198 3.03 0 4 2.75 1 4
2007 424 5,227 868 13,648 2.61 0 3 2.90 1 4

All 6,248 10,088 4,861 181,876 3.86 1 5 3.61 1 5

Num. Sold per Listing Agent Num. Bought per Buyer's Agent

Note: data from the Multiple Listing Service for Greater Boston.  An entrant is an agent who did not work in the previous year (either as a listing or a buyer's agent), an 
incumbent is one who worked as an agent in the year, and an exiting agent does not work in subsequent years.

Sales Price ($1000) Days on Market
Table 1: Number of Properties, Prices, Days on the Market, and Total Commissions

Amount Spent on 
Intermediation ($mill)

Note: the numbers include all properties listed and sold by 10,088 agents in the Greater Boston Area.  List of towns is in the 
supplemental material.  All prices in 2007 dollars, deflated using urban CPI.  Days‐on‐market is winsorized at 365.

Table 2A: Real Estate Agent Listings and Sales by Year



      Average Sold Incumbent Exiting Number of Num. Sold per Num. Bought per
Town Price ($1000) Entrant Agent Agents Properties Sold Listing Agent Buyer's Agent

(1) (2) (3) (4) (5) (6) (7)
WELLESLEY 1051.16 239 505 280 7,459 2.93 2.73
CONCORD 925.47 67 174 91 2,581 2.68 2.46
NEWTON 746.73 215 434 195 8,779 3.94 3.93
LEXINGTON 711.98 141 268 113 4,814 3.27 3.27
HINGHAM 701.88 142 261 132 3,715 2.78 2.75
WINCHESTER 694.65 76 161 90 2,980 3.48 3.36
NEEDHAM 692.15 82 175 71 3,347 3.48 2.97
BROOKLINE 616.98 129 244 104 6,346 4.94 4.60
CAMBRIDGE 582.23 262 417 159 10,763 5.18 5.28
MARBLEHEAD 550.26 107 238 109 5,769 4.33 4.38
WATERTOWN 528.37 157 259 106 5,229 4.10 3.98
DEDHAM 516.62 110 207 103 3,689 3.55 3.12
ARLINGTON 454.32 103 196 85 5,230 4.96 4.86
WALPOLE 446.14 218 369 193 5,496 3.36 2.73
SOMERVILLE 444.83 229 303 152 4,762 3.87 3.89
READING 430.76 128 244 124 4,918 3.95 3.45
WALTHAM 405.42 146 228 108 4,823 4.58 4.10
WILMINGTON 399.37 148 250 150 3,745 3.52 2.69
PEABODY 390.43 191 317 151 5,529 3.73 3.28
STOUGHTON 386.12 272 453 235 7,234 3.48 2.99
MEDFORD 385.21 113 191 86 4,826 5.20 4.10
WAKEFIELD 381.57 243 403 208 7,919 4.19 3.84
QUINCY 379.84 472 677 321 10,757 3.68 3.59
DANVERS 357.96 97 203 110 2,771 2.89 2.59
MALDEN 347.58 404 495 215 7,136 3.70 4.10
WOBURN 347.09 109 179 103 2,918 3.80 3.16
REVERE 325.41 408 520 216 8,454 4.04 4.10
WEYMOUTH 324.14 470 652 329 9,938 3.52 3.04
SALEM 303.79 173 268 134 5,103 4.18 3.75
LYNN 299.47 470 605 286 11,048 4.37 4.18
RANDOLPH 290.57 127 192 102 3,798 4.81 3.60

All 495.38 6,248 10,088 4,861 181,876 3.86 3.61

Table 2B: Real Estate Agent Listings and Sales by Market

Note: data from the Multiple Listing Service for Greater Boston.  An entrant is an agent who did not work in the previous year (either as a listing 
or a buyer's agent), an incumbent is one who worked as an agent in the year, and an exiting agent does not work in subsequent years.  All sales 
prices in 2007 dollars, deflated using urban CPI.



Experience N mean median mean median mean median mean median mean median
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 6,729 0.61 0.67 73.1 54.4 19.9 13.4 7.7 4.2 12.2 8.3
2 6,635 0.63 0.67 71.9 56.0 35.8 24.3 14.0 7.6 21.8 15.0
3 5,237 0.64 0.67 74.6 58.0 40.8 27.7 17.4 9.7 23.4 15.5
4 4,184 0.64 0.68 72.2 55.7 45.1 30.5 21.0 12.0 24.1 16.1
5 3,366 0.67 0.75 70.9 55.7 50.2 33.3 24.4 14.8 25.8 17.4
6 2,657 0.70 0.76 68.9 53.7 55.1 37.4 28.0 17.2 27.1 18.5
7 2,138 0.70 0.78 69.1 54.8 59.6 39.9 31.4 19.2 28.1 18.8
8 1,788 0.70 0.75 70.9 56.5 63.7 42.2 34.2 19.2 29.5 19.5
9+ 19,210 0.74 0.80 71.7 58.5 73.4 47.5 41.8 24.8 31.6 20.5

Skill
Entrants 7,421 0.62 0.67 71.6 53.7 20.3 13.6 8.0 4.3 12.3 8.3
<10% 3,966 0.67 0.75 73.6 55.0 24.7 17.4 10.7 6.1 13.9 9.8
10‐20% 3,966 0.67 0.75 72.8 55.0 26.8 18.4 11.8 6.8 15.0 10.0
20‐30% 3,966 0.67 0.75 74.7 55.3 28.6 20.0 13.3 7.9 15.3 10.0
30‐40% 3,966 0.68 0.75 75.1 57.0 34.4 24.5 16.1 10.1 18.3 12.7
40‐50% 3,967 0.69 0.75 72.7 55.5 39.8 30.1 19.1 12.7 20.7 15.0
50‐60% 3,966 0.70 0.75 71.2 56.0 47.0 35.6 23.4 16.5 23.6 17.3
60‐70% 3,966 0.71 0.75 71.4 57.0 59.7 47.2 30.2 22.5 29.5 22.3
70‐80% 3,966 0.71 0.75 71.2 57.8 73.5 60.0 38.0 28.6 35.5 27.5
80‐90% 3,966 0.73 0.78 68.6 58.0 97.0 79.7 52.4 41.2 44.5 35.3
90%+ 3,967 0.73 0.78 69.2 60.6 158.7 126.4 94.6 71.8 64.1 50.4

Note: data source is Multiple Listing Service for Greater Boston. All reported commissions are in $1000 2007 dollars, deflated using urban CPI.  Skill is 
proxied by the number of transactions in the previous year.  Days‐on‐market is winsorized at 365.  Experience equals 1 means first year of entry.

A. Agents, Sorted by Years of Experience

B. Agents, Sorted by Deciles of Skill

Table 3: Days on market, Sales probability, and Commission by Agent Experience and Skill
CommissionsSales Days on SalesListing

MarketProbability ($1000) Commissions Commissions



Agent
Cohorts

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1998 ‐0.11** ‐0.05 ‐0.17** ‐0.25*** ‐0.07 ‐0.26*** ‐0.20*** ‐0.35*** ‐0.34*** ‐0.26***
(0.04) (0.07) (0.07) (0.08) (0.11) (0.04) (0.06) (0.06) (0.08) (0.09)

1999 ‐0.13*** ‐0.04 ‐0.07 ‐0.24** ‐0.22* ‐0.25*** ‐0.20*** ‐0.26*** ‐0.31*** ‐0.31***
(0.05) (0.06) (0.07) (0.09) (0.12) (0.04) (0.05) (0.07) (0.08) (0.10)

2000 ‐0.21*** ‐0.17*** ‐0.16** ‐0.22** ‐0.38*** ‐0.30*** ‐0.31*** ‐0.34*** ‐0.31*** ‐0.29***
(0.05) (0.06) (0.08) (0.09) (0.11) (0.04) (0.06) (0.07) (0.09) (0.11)

2001 ‐0.36*** ‐0.24*** ‐0.40*** ‐0.26** ‐0.45*** ‐0.39*** ‐0.32*** ‐0.49*** ‐0.34*** ‐0.30**
(0.05) (0.07) (0.08) (0.11) (0.14) (0.05) (0.07) (0.08) (0.10) (0.13)

2002 ‐0.42*** ‐0.40*** ‐0.47*** ‐0.49*** ‐0.31* ‐0.41*** ‐0.46*** ‐0.54*** ‐0.45*** ‐0.16
(0.07) (0.09) (0.11) (0.13) (0.16) (0.06) (0.09) (0.11) (0.13) (0.15)

2003 ‐0.50*** ‐0.47*** ‐0.61*** ‐0.73*** ‐0.52** ‐0.49*** ‐0.52*** ‐0.66*** ‐0.70*** ‐0.47**
(0.09) (0.11) (0.13) (0.17) (0.23) (0.09) (0.12) (0.15) (0.18) (0.21)

2004 ‐0.67*** ‐0.50*** ‐0.75*** ‐1.01*** ‐0.30 ‐0.73*** ‐0.70*** ‐0.90*** ‐1.03*** ‐0.15
(0.13) (0.17) (0.19) (0.24) (0.33) (0.14) (0.19) (0.22) (0.26) (0.33)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Log(Nmt) ‐0.096*** ‐0.061** ‐0.048 ‐0.073 0.182*** 0.014***

(0.03) (0.02) (0.07) (0.07) (0.03) (0.00)
Log(Nmt) Before 2005 ‐0.043* ‐0.059 0.015***

(0.03) (0.08) (0.00)
Log(Nmt) After 2005 ‐0.066** ‐0.082 0.013***

(0.03) (0.07) (0.00)

List price control N Y Y N Y Y N Y Y
R2 0.0888 0.0979 0.0979 0.1169 0.1173 0.1173 0.8569 0.9933 0.9933
N   239462 239252 239252 171314 171217 171217 171228 171212 171212
Note: * significant at 10% level, ** significant at 5% level, and *** significant at 1% level. Each cell reports coefficients on log of total number of agents in a given 
market/year (log(Nmt)).  All models include flexible controls for property characteristics, market/year fixed effects, zip code fixed effects, and number of transactions sold 
in the previous by listing agent.  Robust standard errors clustered by market.

log(Sales Price)Sales Probability log(Days on Market)
Table 4B: Impact of Competition on Property Sales

Note: * significant at 10% level, ** significant at 5% level, and *** significant at 1% level.   Dependent variable is the log of the total agent commissions in Panel I and log of 
number of transactions in Panel II.  The regressors are: log of total number of agents in a given market/year, market/year fixed effects. Each cell reports coefficient on log 
of total number of agents in a given market/year, with robust standard errors clustered by agent.  Each model is estimated by cohort, holding fixed the set of incumbent 
agents in the cohort year.  The sample excludes 1,631 agent‐years without transactions (out of 47,083, or 3%).  

II. Number of TransactionsI. Agent Commissions

Table 4A: Impact of Competition on Agent Performance Across Cohorts

All Agents
Top 

Quartile
2nd 

Quartile
3rd 

Quartile
Bottom 
Quartile All Agents

Top 
Quartile

2nd 
Quartile

3rd 
Quartile

Bottom 
Quartile



Listing Share Buying Share Sold Probability
(1) (2) (3)

Skill 1.27*** 0.90*** 0.21***
(0.01) (0.01) (0.01)

Inv ‐0.35***
(0.01)

L05 1.27***
(0.03)

Ge05 0.83***
(0.03)

Estimation Method OLS OLS MLE
Market Fixed Effects No No Yes
N 32237 30986 32237
R2 adjusted 0.44 0.30 0.18

HP Inv L B Skill
(1) (2) (3) (4) (5)

lag_HP 0.74*** 0.21*** 0.35*** 0.35***
(0.05) (0.06) (0.02) (0.02)

lag_Inv 0.65*** ‐0.13*** ‐0.13***
(0.05) (0.02) (0.02)

lag_L 0.79***
(0.02)

lag_B 0.76**
(0.02)

lag_Skill 0.75***
(0.00)

L05 0.29*** ‐0.10** 0.03* 0.04** 0.04**
(0.03) (0.05) (0.02) (0.02) (0.00)

Ge05 0.17*** 0.62*** 0.12*** 0.09*** 0.00
(0.05) (0.07) (0.03) (0.03) (0.00)

Estimation Method GMM‐IV GMM‐IV GMM‐IV GMM‐IV OLS
Market Fixed Effects Yes Yes Yes Yes No
N 279 279 279 279 30648
R2 adjusted 0.93 0.77 0.96 0.96 0.59

Table 5A: Revenue Function Regressions

Table 5B: State Variable Autoregressions

Note: '*' significant at 10% level, '**' significant at 5% level, and '***' significant at 1% level. 'HP' is the product of the 
aggregate number of house listings and the average housing price index, 'Inv' is the sales‐inventory ratio, 'L' is the listing 
share inclusive value, 'B' is the buying share inclusive value, and 'Skill' is agent i's number of transactions in the previous 
year. 'L05' and 'Ge05' are indicators for year<2005 and year>=2005, respectively. GMM‐IV refers to the Arellano‐Bond 
estimator. 'R2 adjusted' for MLE and GMM‐IV is pseudo adjusted R2. Entrants as well as agents with 0 shares are 
excluded in Table 5A and column (5) of Table 5B.



C std(C) C std(C) C std(C) C std(C) C std(C) Ct<2005 std(Ct<2005) Ct≥2005 std(Ct≥2005)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

ARLINGTON 0.42*** (0.05) 0.07*** (0.02) 0.37*** (0.05) 0.49*** (0.06) 0.53*** (0.01) 0.44*** (0.07) 0.37*** (0.08)
BROOKLINE 0.65*** (0.01) 0.21*** (0.02) 0.59*** (0.01) 0.71*** (0.01) 0.74*** (0.01) 0.66*** (0.04) 0.64*** (0.06)
CAMBRIDGE 0.69*** (0.02) 0.19*** (0.02) 0.61*** (0.02) 0.77*** (0.02) 0.74*** (0.02) 0.83*** (0.02) 0.40*** (0.05)
CONCORD 0.83*** (0.01) 0.24*** (0.02) 0.75*** (0.01) 0.95*** (0.02) 0.68*** (0.01) 0.77*** (0.04) 0.94*** (0.06)
DANVERS 0.31*** (0.05) ‐0.05*** (0.02) 0.25*** (0.05) 0.40*** (0.05) 0.28*** (0.01) 0.30*** (0.06) 0.21** (0.08)
DEDHAM 0.46*** (0.05) 0.08*** (0.02) 0.40*** (0.04) 0.54*** (0.05) 0.44*** (0.02) 0.41*** (0.06) 0.43*** (0.07)
HINGHAM 0.56*** (0.01) 0.13*** (0.02) 0.50*** (0.01) 0.62*** (0.01) 0.49*** (0.01) 0.54*** (0.04) 0.58*** (0.06)
LEXINGTON 0.60*** (0.01) 0.13*** (0.02) 0.53*** (0.01) 0.69*** (0.01) 0.58*** (0.01) 0.61*** (0.04) 0.61*** (0.05)
LYNN 0.38*** (0.03) 0.01 (0.01) 0.33*** (0.02) 0.43*** (0.03) 0.32*** (0.01) 0.34*** (0.04) 0.47*** (0.03)
MALDEN 0.40*** (0.02) 0.02* (0.01) 0.35*** (0.02) 0.47*** (0.03) 0.35*** (0.01) 0.49*** (0.04) 0.37*** (0.04)
MARBLEHEAD 0.44*** (0.05) 0.10*** (0.02) 0.40*** (0.05) 0.50*** (0.06) 0.59*** (0.02) 0.44*** (0.06) 0.45*** (0.08)
MEDFORD 0.49*** (0.05) 0.06*** (0.02) 0.42*** (0.05) 0.58*** (0.06) 0.49*** (0.02) 0.39*** (0.08) 0.51*** (0.07)
NEEDHAM 0.63*** (0.01) 0.14*** (0.02) 0.56*** (0.01) 0.72*** (0.01) 0.57*** (0.01) 0.71*** (0.04) 0.52*** (0.07)
NEWTON 0.62*** (0.02) 0.23*** (0.01) 0.59*** (0.02) 0.64*** (0.03) 0.74*** (0.01) 0.70*** (0.05) 0.56*** (0.03)
PEABODY 0.37*** (0.04) 0.01 (0.02) 0.32*** (0.03) 0.44*** (0.04) 0.36*** (0.01) 0.38*** (0.05) 0.34*** (0.06)
QUINCY 0.32*** (0.03) 0.01 (0.01) 0.28*** (0.02) 0.36*** (0.03) 0.33*** (0.01) 0.42*** (0.03) 0.31*** (0.03)
RANDOLPH 0.47*** (0.06) 0.01 (0.02) 0.40*** (0.05) 0.57*** (0.06) 0.36*** (0.02) 0.42*** (0.07) 0.43*** (0.07)
READING 0.41*** (0.04) 0.03** (0.02) 0.35*** (0.04) 0.49*** (0.05) 0.40*** (0.01) 0.34*** (0.06) 0.43*** (0.07)
REVERE 0.30*** (0.03) 0.03** (0.01) 0.27*** (0.03) 0.34*** (0.03) 0.37*** (0.01) 0.52*** (0.04) 0.34*** (0.04)
SALEM 0.37*** (0.04) ‐0.03 (0.02) 0.30*** (0.04) 0.45*** (0.05) 0.30*** (0.01) 0.35*** (0.06) 0.36*** (0.06)
SOMERVILLE 0.59*** (0.05) 0.11*** (0.02) 0.51*** (0.04) 0.67*** (0.05) 0.47*** (0.01) 0.50*** (0.08) 0.61*** (0.06)
STOUGHTON 0.37*** (0.04) 0.00 (0.01) 0.31*** (0.03) 0.44*** (0.04) 0.32*** (0.01) 0.37*** (0.03) 0.31*** (0.05)
WAKEFIELD 0.44*** (0.03) 0.03** (0.01) 0.38*** (0.03) 0.52*** (0.04) 0.36*** (0.01) 0.45*** (0.04) 0.36*** (0.05)
WALPOLE 0.42*** (0.03) 0.03** (0.01) 0.36*** (0.03) 0.50*** (0.03) 0.39*** (0.01) 0.39*** (0.04) 0.39*** (0.06)
WALTHAM 0.44*** (0.05) 0.05*** (0.02) 0.37*** (0.04) 0.51*** (0.05) 0.43*** (0.01) 0.44*** (0.07) 0.41*** (0.07)
WATERTOWN 0.50*** (0.01) 0.10*** (0.02) 0.45*** (0.01) 0.57*** (0.01) 0.55*** (0.01) 0.53*** (0.04) 0.48*** (0.06)
WELLESLEY 0.87*** (0.01) 0.36*** (0.01) 0.81*** (0.01) 0.92*** (0.01) 0.79*** (0.01) 0.92*** (0.02) 0.79*** (0.05)
WEYMOUTH 0.34*** (0.03) ‐0.03*** (0.01) 0.29*** (0.03) 0.41*** (0.03) 0.27*** (0.01) 0.35*** (0.03) 0.29*** (0.04)
WILMINGTON 0.41*** (0.05) 0.04*** (0.02) 0.35*** (0.05) 0.48*** (0.06) 0.41*** (0.01) 0.47*** (0.05) 0.35*** (0.08)
WINCHESTER 0.69*** (0.01) 0.20*** (0.02) 0.62*** (0.01) 0.78*** (0.01) 0.68*** (0.01) 0.61*** (0.04) 0.82*** (0.05)
WOBURN 0.38*** (0.07) 0.03 (0.02) 0.32*** (0.06) 0.46*** (0.08) 0.34*** (0.03) 0.45*** (0.08) 0.38*** (0.07)

Log‐Likelihood ‐12883 ‐12819 ‐12892 ‐12875 ‐14645 ‐12779
Number of 
Observations 41856 41856 41856 41856 41856 41856
Number of 
Splines 39 NA 39 39 39 39

Two Cost‐Parameters Per Market

Table 6A: Opportunity Cost Estimates

Note: standard errors are estimated via 100 bootstrap simulations, except for column (4) where standard errors are derived using the delta method. '*' significant at 10% level, '**' significant at 5% level, and '***' 
significant at 1% level. All opportunity costs are in $100,000 2007 dollars. The last row is the number of spline terms used in approximating the value function.

δ=0.85 δ=0.95 Years of Experienceδ=0δ=0.90 (Main Specification)



Market Ƙ std(Ƙ) Prob. Entry Ƙ std(Ƙ) Prob. Entry Ƙ std(Ƙ) Prob. Entry
(1) (2) (3) (4) (5) (6) (7) (8) (9)

ARLINGTON 0.44*** (0.03) 0.50 0.95*** (0.03) 0.25 0.54*** (0.03) 0.44
BROOKLINE 0.04 (0.04) 0.65 0.69*** (0.03) 0.33 0.47*** (0.03) 0.43
CAMBRIDGE 0.17*** (0.01) 0.55 0.81*** (0.01) 0.27 0.31*** (0.01) 0.48
CONCORD 0.21*** (0.06) 0.53 0.75*** (0.06) 0.27 0.21*** (0.06) 0.53
DANVERS 0.28*** (0.04) 0.60 0.87*** (0.04) 0.30 0.28*** (0.04) 0.60
DEDHAM 0.34*** (0.03) 0.53 0.88*** (0.03) 0.27 0.34*** (0.03) 0.53
HINGHAM 0.24*** (0.03) 0.63 0.86*** (0.03) 0.32 0.24*** (0.03) 0.63
LEXINGTON 0.04 (0.04) 0.75 0.70*** (0.05) 0.37 0.23*** (0.04) 0.62
LYNN 0.06*** (0.01) 0.67 0.72*** (0.01) 0.33 0.06*** (0.01) 0.67
MALDEN 0.34*** (0.01) 0.52 0.88*** (0.01) 0.26 0.34*** (0.01) 0.52
MARBLEHEAD 0.21*** (0.04) 0.63 0.83*** (0.04) 0.31 0.70*** (0.04) 0.38
MEDFORD 0.30*** (0.03) 0.52 0.83*** (0.03) 0.26 0.39*** (0.03) 0.47
NEEDHAM 0.21*** (0.04) 0.61 0.81*** (0.04) 0.30 0.36*** (0.04) 0.53
NEWTON 0.02 (0.02) 0.66 0.67*** (0.02) 0.33 0.33*** (0.02) 0.50
PEABODY 0.24*** (0.02) 0.61 0.84*** (0.02) 0.30 0.24*** (0.02) 0.61
QUINCY 0.38*** (0.01) 0.55 0.93*** (0.01) 0.27 0.38*** (0.01) 0.55
RANDOLPH 0.29*** (0.02) 0.50 0.81*** (0.03) 0.25 0.29*** (0.02) 0.50
READING 0.07* (0.04) 0.68 0.74*** (0.05) 0.34 0.30*** (0.04) 0.57
REVERE 0.42*** (0.01) 0.53 0.96*** (0.01) 0.27 0.42*** (0.01) 0.53
SALEM 0.42*** (0.02) 0.49 0.93*** (0.02) 0.25 0.42*** (0.02) 0.49
SOMERVILLE 0.07*** (0.02) 0.61 0.66*** (0.02) 0.30 0.07*** (0.02) 0.61
STOUGHTON 0.15*** (0.02) 0.64 0.78*** (0.02) 0.32 0.15*** (0.02) 0.64
WAKEFIELD 0.09*** (0.02) 0.64 0.72*** (0.02) 0.32 0.09*** (0.02) 0.64
WALPOLE 0.03 (0.03) 0.69 0.71*** (0.03) 0.35 0.03 (0.03) 0.69
WALTHAM 0.25*** (0.02) 0.58 0.82*** (0.02) 0.29 0.25*** (0.02) 0.58
WATERTOWN 0.18*** (0.02) 0.65 0.82*** (0.02) 0.32 0.26*** (0.02) 0.61
WELLESLEY ‐0.17*** (0.02) 0.72 0.57*** (0.02) 0.36 ‐0.06*** (0.02) 0.67
WEYMOUTH ‐0.05*** (0.01) 0.74 0.69*** (0.01) 0.37 ‐0.05*** (0.01) 0.74
WILMINGTON 0.22*** (0.03) 0.61 0.82*** (0.03) 0.30 0.22*** (0.03) 0.61
WINCHESTER ‐0.14** (0.06) 0.70 0.56*** (0.06) 0.35 0.19*** (0.06) 0.54
WOBURN 0.29*** (0.03) 0.58 0.86*** (0.03) 0.29 0.29*** (0.03) 0.58

max(NE) 2*max(NE) H/25

Table 6B: Entry Cost Estimates

Note: parameter standard errors are estimated via 100 bootstrap simulations. '*' significant at 10% level, '**' significant at 5% level, and '***' 
significant at 1% level. Max. num. of potential entrants equal to max. num. of observed entrants for columns 1‐3, twice the max. num. of 
observed entrants for columns 4‐6, and the average num. of listings divided by 25 for columns 7‐9. Entry costs in $100,000 2007 dollars.



Observed Fit Observed Fit
1999 0.60 0.58 0.90 0.90
2000 0.63 0.59 0.88 0.89
2001 0.66 0.67 0.89 0.89
2002 0.72 0.73 0.90 0.90
2003 0.73 0.74 0.90 0.90
2004 0.75 0.76 0.90 0.89
2005 0.67 0.71 0.89 0.87
2006 0.51 0.56 0.86 0.87
2007 0.46 0.46 0.85 0.86
All 0.63 0.64 0.88 0.88

Observed Fit Observed Fit
ARLINGTON 0.79 0.71 0.91 0.91
BROOKLINE 1.07 1.04 0.91 0.91
CAMBRIDGE 1.05 1.11 0.91 0.89
CONCORD 0.78 0.81 0.90 0.90
DANVERS 0.32 0.34 0.87 0.87
DEDHAM 0.60 0.62 0.89 0.88
HINGHAM 0.61 0.65 0.89 0.89
LEXINGTON 0.78 0.77 0.91 0.92
LYNN 0.47 0.48 0.87 0.88
MALDEN 0.50 0.52 0.87 0.88
MARBLEHEAD 0.76 0.79 0.91 0.91
MEDFORD 0.64 0.67 0.90 0.89
NEEDHAM 0.76 0.77 0.92 0.92
NEWTON 0.96 0.99 0.90 0.90
PEABODY 0.47 0.50 0.89 0.88
QUINCY 0.49 0.48 0.88 0.88
RANDOLPH 0.44 0.46 0.85 0.85
READING 0.54 0.55 0.89 0.89
REVERE 0.48 0.58 0.88 0.90
SALEM 0.45 0.43 0.88 0.88
SOMERVILLE 0.62 0.65 0.86 0.86
STOUGHTON 0.44 0.43 0.87 0.87
WAKEFIELD 0.53 0.51 0.88 0.88
WALPOLE 0.49 0.48 0.87 0.86
WALTHAM 0.65 0.59 0.88 0.89
WATERTOWN 0.73 0.73 0.91 0.91
WELLESLEY 1.03 0.99 0.88 0.88
WEYMOUTH 0.39 0.38 0.87 0.86
WILMINGTON 0.43 0.43 0.84 0.86
WINCHESTER 0.76 0.80 0.89 0.89
WOBURN 0.43 0.44 0.85 0.87
Note: commissions in Table 7 and 8 are in $100,000 2007 dollars.

Commissions Probability of Stay
Table 7: Model Fit, by Year

Table 8: Model Fit, by Market
Commissions Probability of Stay



Ave. Number Ave. Number Ave. Number Ave. Number Avg. Avg. Sales oppCst Entry Cost Commission
Transactions of Entrants of Active Agents of Exiting Agents Commission Probability Savings ($mil) Savings ($mil) Savings ($mil)

Actual (5%) 7.78 22.52 153.78 18.05 0.63 0.70
Counterfactual
    4.75% 8.13 21.70 147.18 18.23 0.63 0.70 90.37 4.25 193.52

(0.15) (0.22) (2.37) (0.58) (0.00) (0.00) (3.75) (0.51)
    4.50% 8.50 20.93 140.81 18.40 0.62 0.71 177.25 8.26 387.03

(0.16) (0.22) (2.35) (0.57) (0.00) (0.00) (4.05) (0.68)
    4.25% 8.91 20.17 134.47 18.57 0.62 0.71 263.90 12.16 580.55

(0.18) (0.23) (2.32) (0.56) (0.00) (0.00) (4.40) (0.87)
    4.00% 9.36 19.44 128.15 18.75 0.61 0.71 350.31 15.95 774.06

(0.19) (0.23) (2.29) (0.55) (0.00) (0.00) (4.79) (1.05)
    3.75% 9.86 18.72 121.85 18.93 0.60 0.71 436.47 19.63 967.58

(0.21) (0.24) (2.26) (0.53) (0.00) (0.00) (5.20) (1.24)
    3.50% 10.42 18.03 115.57 19.11 0.59 0.71 522.36 23.20 1161.09

(0.23) (0.24) (2.22) (0.52) (0.00) (0.00) (5.62) (1.42)
    3.25% 11.04 17.35 109.32 19.29 0.58 0.71 607.95 26.66 1354.61

(0.26) (0.24) (2.18) (0.50) (0.00) (0.00) (6.04) (1.59)
    3.00% 11.74 16.70 103.09 19.47 0.57 0.71 693.23 30.01 1548.12

(0.28) (0.24) (2.14) (0.48) (0.00) (0.00) (6.47) (1.77)
    2.75% 12.54 16.06 96.89 19.66 0.56 0.72 778.19 33.25 1741.64

(0.31) (0.24) (2.09) (0.47) (0.00) (0.00) (6.88) (1.93)
    2.50% 13.46 15.45 90.70 19.84 0.54 0.72 862.82 36.39 1935.15

(0.35) (0.24) (2.03) (0.45) (0.00) (0.00) (7.27) (2.10)

Table 9: Market Structure with Different Commission Rates

Note: average commissions are in $100,000 2007 dollars. In each of the counterfactual simulations, we reduce the commission rate to the denoted fraction of the original commission 
rate. Standard errors (in brackets) are derived from 100 bootstrap simulations.



Ave. Number Ave. Number Ave. Number Ave. Number Avg. Avg. Sales oppCst Entry Cost Commission
Transactions of Entrants of Active Agents of Exiting Agents Commission Probability Savings ($mil) Savings ($mil) Savings ($mil)

Actual 7.78 22.52 153.78 18.05 0.63 0.70
Counterfactual

    No Price Appreciation 10.20 17.99 116.93 19.12 0.60 0.71 502 23 1105.06
(0.22) (0.24) (2.23) (0.52) (0.00) (0.00) (5.50) (1.42)

Note: average commissions are in $100,000 2007 dollars. Standard errors (in brackets) are derived from 100 bootstrap simulations.

Ave. Number Ave. Number Ave. Number Ave. Number Avg. Avg. Sales oppCst Entry Cost
Transactions of Entrants of Active Agents of Exiting Agents Commission Probability Savings ($mil) Savings ($mil)

Actual 7.78 22.52 153.78 18.05 0.63 0.703
Counterfactual

    Raise Skill Coef by 20% 8.09 20.83 148.33 17.17 0.66 0.71 62.80 8.90

(0.14) (0.19) (2.33) (0.54) (0.00) (0.00) (3.93) (0.64)

    Raise Skill Coef by 40% 8.43 19.16 142.56 16.41 0.69 0.71 134.32 17.74

(0.16) (0.18) (2.29) (0.51) (0.00) (0.00) (4.52) (1.02)

    Raise Skill Coef by 60% 8.76 17.69 137.60 15.74 0.72 0.71 193.71 25.57

(0.17) (0.17) (2.28) (0.48) (0.00) (0.00) (5.08) (1.38)

    Raise Skill Coef by 80% 9.15 16.26 132.22 15.19 0.75 0.71 269.94 32.94

(0.19) (0.17) (2.28) (0.46) (0.00) (0.00) (5.63) (1.77)

    Double Skill Coef 9.53 14.95 127.48 14.68 0.77 0.72 332.76 39.63

(0.21) (0.17) (2.30) (0.45) (0.00) (0.00) (6.13) (2.09)

Table 10: No Price Appreciation

Table 11: Improved Information on Agent's Past Performance

Note: average commissions are in $100,000 2007 dollars. In each of the counterfactual simulations, we increase the skill coefficient by the denoted percentage. Standard 
errors (in brackets) are derived from 100 bootstrap simulations.
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