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August 14, 2009

Abstract

In this paper, we aim at assessing Markov-switching and threshold models in

their ability to identify turning points of economic cycles. By using vintage data

that are updated on a monthly basis, we compare their ability to detect ex-post the

occurrence of turning points of the classical business cycle, we evaluate the stability

over time of the signal emitted by the models and assess their ability to detect in real-

time recession signals. In this respect, we have built an historical vintage database for

the Euro area going back to 1970 for two monthly macroeconomic variables of major

importance for short-term economic outlook, namely the Industrial Production Index

and the Unemployment Rate.

1 Introduction

Recently, we witnessed the development of new modern tools in business cycle analysis,
mainly based on nonlinear parametric modelling. Nonlinear models have the great advan-
tage of being �exible enough to take into account certain stylized facts of the economic
business cycle, such as asymmetries in the phases of the cycle. In this respect, emphasis
has been placed on the class of nonlinear dynamic models that accommodate the possi-
bility of regime changes.

Especially, Markov-switching (MS) models popularized by Hamilton (1989) have been ex-
tensively used in business cycle analysis in order to describe economic �uctuations. The
�rst application of a switching-regime model to the business cycle analysis is Hamilton
(1989)'s seminal paper: the starting idea is that the mean growth rate of the quarterly

∗We thank Leonardo Carati for excellent research assistance. All errors are our own.
†University Ca' Foscari of Venice, email: billio@unive.it
‡Banque de France and CES, University Paris 1 Panthéon-Sorbonne, email: laurent.ferrara@banque-
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§PSE, MSE-CES, University Paris 1 Panthéon-Sorbonne, e-mail: dguegan@univ-paris1.fr
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GDP in the USA is not constant in time and, in the model, this fact is taken into account
by imposing the mean growth rate to depend on a two-state latent discrete variable which
follows a �rst-order Markov chain. A positive growth rate and a negative one are found
for the two regimes, providing thus strong evidence that the change in regime is strictly
connected with the business cycle reference chronology of turning points de�ned by the
NBER.

Since this seminal application, Markov-switching models became popular in business cycle
analysis and have been widely used and extended allowing for more than two regimes,
time varying probabilities, a vector of endogenous and dynamic factors. We refer, for
example, among others to Clements and Krolzig (1998), Krolzig (1997), Krolzig and
Sensier (2000), Krolzig and Toro (1999), Diebold and Rudebusch (1996, 1999), Kim and
Nelson (1998, 1999), Chauvet (1998), Kaufmann (2000), Layton (1996), Layton and Smith
(2007), Ferrara (2003), Anas et al. (2007b) or Billio et al. (2007).
The multivariate extension of Markov-switching models allows one to take into account
the co-movements among countries and sectors which is crucial when dealing with the
business cycle (Burns and Mitchell, 1946), Diebold and Rudebusch (1996, 1999), Kim and
Nelson (1999). In this framework, MS-VAR processes have been introduced by Krolzig
(1997), where the conditional stochastic process is a Gaussian classical VAR(p) and the
regime generating process is again a Markov chain. These multivariate models allow for a
multi-countries and multi-sectors simultaneous analysis in the search of a common busi-
ness cycle (which is represented by the latent variable) for a given area. It is possible to
quote among others Artis, Krolzig and Toro (2004), Clements and Krolzig (1998), Krolzig
(2003), who developed a Markov-switching VAR model in order to identify the European
business cycle, and Ahrens (2002), who evaluated the informational content of the term
structure as a predictor of recessions in eight OECD countries, as multi-countries exam-
ples.

Besides the well-known Markov-switching approach, another parametric model allows for
di�erent regimes in business cycle analysis, the threshold autoregressive (TAR) model,
�rst proposed by Tong and Lim (1980). This model is able to produce limit cycle, time
irreversibility and asymmetry behavior of a time-series. TAR models have been used to
describe the asymmetry observed in the quarterly US real GDP by various authors, such
as Tiao and Tsay (1994), Potter (1995) and Proietti (1998) for instance, or to model US
Unemployment Rate (Hansen, 1997). With the TAR model the transition variable is ob-
served: it may be either an exogenous variable, such as a leading index for example, or a
linear combination of lagged values of the series. In this latter case, the model is referred
to as a self-exciting threshold autoregressive (SETAR) model. This is the main di�erence
with the Markov-switching model whose parameters of the autoregressive data generating
process vary according to the states of the latent Markov chain. For example, Mont-
gomery et al. (1998) proposed a SETAR model for the US Unemployment Rate, while
Ferrara and Guégan (2006) used a SETAR model to detect in real-time, through a dy-
namic simulation approach, the dates of peaks and troughs in the industrial business cycle.

We resort to these two di�erent classes of models because they underpin a complementary
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rather than an alternative approach, as the notion captured by them is not exactly the
same. Thus, here, we propose to compare their capability to date and detect in real-
time turning points on two di�erent economic datasets: Industrial Production Index and
Unemployment Rate. These two series are of major importance for short-term economic
outlook, are usually considered to date economic cycles and are available for the Euro area
on a monthly basis. To accomplish this task, we �rst preselect a wide set of economically
meaningful possible speci�cations (i.e. that according to the previous literature have been
proved to adhere to the stylized facts of economic cycles) and then specify either on the
Industrial Production Index and the Unemployment Rate time-series the best SETAR and
MS models according to some goodness of �t measures. After this speci�cation phase, we
increase successively the original data sets by moving through all the available vintage
monthly releases, and we specify again and re-estimate the models at each step in order
to detect in real-time occurrence of turning points which can characterize changes in
the economic phases. Since the best speci�ed model can change through the di�erent
vintages, given the wider set of possible models for the MS approach, we prefer to de�ne
the relevant MS models using a grid-search-like method that selects the model that on
average is better able to timely detect turning points of a given reference chronology.
The paper is organized as follows: in Section 2 we describe the two data sets and the way
to build the vintage data. Section 3 brie�y presents the two classes of models used in this
study and the estimation procedures. Section 4 is devoted to the speci�cation phase of
SETAR ad MS models, for both of the two series. Section 5 examines the capability of
the two models, �tted either to the Industrial Production Index and Unemployment Rate
time-series, to detect turning points in real-time. Finally, Section 6 concludes.

2 Data sets

In this section we describe the data sets for the Industrial Production Index and the
Unemployment Rate (hereafter referred to as IPI and UR, respectively) considered in
this paper: both of them refer to the Euro area (12 members) aggregate; we speci�cally
focus on the description of the vintage database and the method followed to obtain the
historical part.
For the IPI series, the available data are all the 69 monthly releases1 issued by Euro-
stat from June 2003 to February 2009, and contained in the recently disclosed HistoDB
database (last access in March 2009). Moreover, a previously backcalculated series by
Eurostat of Euro 12 IPI is also available from January 1970 to December 2006. Since
the aim of the paper is to compare the two types of models both from a datation and
detection point of view, we built an historical vintage data base by backcalculating all the
available releases.
We evaluated alternative possibilities to reconstruct a longer database. Given the draw-
backs of the ARIMA approach2 in the context of economic time-series (lack of a straight

1Industrial Production Index, total industry, excluding construction, seasonally and working days
adjusted, base year 2000.

2Two solutions are available: estimate an ARIMA on the current series, reverse the model and use it
to produce some forecasts; reverse the series, �t an ARIMA model and use it to produce forecasts. Both
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economic interpretation of the reverted time-series, impossibility of resorting on tempo-
ral reversion test due to the presence of a trend, asymmetric seasonal components and
asymmetric cycles) and the limited number of periods that it is possible to reach into the
past (otherwise, either only a tendency will be estimated, or the estimates will converge
to the long run level, or they will explode), we preferred to discard this possibility. On the
contrary, since the time-series we want to reconstruct and the related time-series share
a su�ciently wide overlapping period, following the approach developed in Caporin and
Sartore (2006), we chose to estimate the IPI within a regression framework.
In particular, we speci�ed for the backcalculation a linear regression model over the 1st

order di�erenced series, extended with ARMA terms in the residuals. Denoting by Y 1
t

the release of the Industrial Production Index to be historically reconstructed and by
X1

t the so-called related time-series in the Caporin and Sartore's approach, which is the
aforementioned backcalculated IPI time-series which starts in January 1970, the general
model estimated is the one speci�ed below:

∆Y 1
t = β∆X1

t + δDt + γTt + Φ−1(L)Θ(L)εt,

where ∆ is the �rst order di�erence operator, Dt is a (12 × 1)-vector containing a set of
monthly dummies, Tt is the time-trend, εt is an innovation process and Φ−1(L)Θ(L) are
the ARMA polynomials.
As a matter of example, in Figure 1 we depict the pattern of the IPI time-series released
in September 2008, the IPI time-series used to carry out the retropolation exercise and
the resulting backcalculated vintage IPI.

Figure 1: September 2008 IPI release historically reconstructed working on the 1st order
di�erences.

approaches present some problems.
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Now we move on to consider the second variable, namely the Euro area total Unemploy-
ment Rate. From the HistoDB database issued by Eurostat (last access in June 2009
for this variable) we selected 97 monthly releases, from May 2001 to May 2009, of the
seasonally adjusted UR. The delay between the issuance date of the time-series and the
underlying month is of two months, hence the release issued in month t contains observa-
tions of the UR until month t − 2. For example, the last available vintage data released
in May 2009 refers to March 2009. As previously explained for the case of the Industrial
Production Index, also the vintage releases of the UR have been historically reconstructed
following the approach proposed by Caporin and Sartore (2006); in this case, the previ-
ously backcalculated time-series dates back to January 1971 instead of January 1970. In
this case we considered a linear regression model over the 12th order di�erence series,
extended with ARMA terms in the residuals, as described in the following equation:

∆12Y 2
t = β∆12X2

t + δDt + γTt + Φ−1(L)Θ(L)εt,

where Y 2
t is the release of the total Unemployment Rate to be historically reconstructed

and X2
t is the related time-series. For instance, taking into consideration the release issued

in August 2008, the related retropolated time-series is depicted in Figure 2.

Figure 2: August 2008 Unemployment Rate release historically reconstructed working on
the 12th order di�erences.

3 Models and Methodology

In this section, we specify the two classes of models which permit to take into account
the existence of various regimes or states in real data. For sake of simplicity, we describe
the models by only taking into consideration the simple speci�cation that allows for two
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regimes, but they can be easily generalised to more regimes. For a review concerning
these kinds of processes, we refer to Tong (1990), Krolzig (1997) and Franses and van
Dijk (2000).

3.1 Threshold processes

The covariance-stationary process (Yt)t follows a two-regime threshold autoregressive pro-
cess, denoted TAR(2,p1,p2), if it veri�es the following equation:

Yt = (1− I(Zt−d > c))(φ1,0 +

p1∑
i=1

φ1,iYt−i + σ1εt)

+ I(Zt−d > c)(φ2,0 +

p2∑
i=1

φ2,iYt−i + σ2εt),

where c is the threshold, d > 0 the delay, (εt)t a standardised white noise process and (Zt)t

the transition variable. Here, I(•) is the indicator function such that I(Zt−d > c) = 1 if
Zt−d > c and zero otherwise. If, ∀t, Zt = Yt, the process is referred to as self-exciting TAR
process (SETAR). For a given threshold c and the position of the random variable Zt−d

with respect to this threshold c, the process (Yt)t follows here a particular AR(p) model.
The model parameters are φj,i, for i = 0, . . . , pj and j = 1, 2, the standard variance errors
σ1 and σ2, the threshold c and the delay d. This model has been �rst introduced by Tong
and Lim (1980).

Using some algebraic notations, the model (1), with p1 = p2 = p, can be rewritten as a
regression model. Denote Id(c) ≡ I(Zt−d > c), Φ1 = [φ1,0, · · · , φ1,p]′, Φ2 = [φ2,0, · · · , φ2,p]′

and Y
′
t−1 = [1, Yt−1, · · · , Yt−p], then, we get the following alternative representation

from (1):

Yt = (1− Id(c))Y
′

t−1Φ1 + Id(c)Y
′

t−1Φ2 + ((1− Id(c))σ1 + Id(c)σ2)εt. (1)

We assume now that we observe (Y1, · · · , Yn) data stemming from model (1). The equation
(1) is a regression equation (albeit nonlinear in parameters) and an appropriate estima-
tion method for the parameters is the least squares (LS) method. Note that under the
assumption that (εt)t is a Gaussian strong white noise, LS is equivalent to the maximum
likelihood estimation. Since the regression equation (1) is nonlinear and discontinuous,
the easiest method to obtain the LS estimates is to use sequential conditional LS.

For a given value of c, using the notation Y
′
t(c) = [Y

′
t(1 − Id(c)),Y

′
t(Id(c))] and Φ =

(Φ1,Φ2), the LS estimates for the parameters Φ are:

Φ̂(c) = (
n∑

i=1

Y
′

t(c)Yt(c))
−1(

n∑
i=1

Y
′

t(c)Yt), (2)

with residuals ε̂t(c) = Yt −Y
′
t(c)Φ̂(c), and the residual variance is:

σ̂2
n(c) =

1

n

n∑
t=1

ε̂t(c)
2. (3)

6
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The LS estimate of c is the value that minimizes equation (3):

ĉ = argminc∈C σ̂
2
n(c), (4)

where C = [C1, C2], C1 and C2 are real numbers.

In practice, we �rst need to determine the parameters c, d, p1 and p2 in order to estimate
all the parameters of model (1). We can proceed in the following way:

• The threshold parameter c is chosen by grid-search procedure. The grid points
are obtained using the quantiles of the sample under investigation. One generally
uses equally spaced quantiles from the 10 (percent) quantiles and ending at the 90
(percent) quantiles.

• Now, for each �xed pair (d, ci), 0 < d < D, i = 1, . . .m, the appropriate TAR model
has to be identi�ed.

• The AIC criterion is used for selection of the orders p1 and p2.

In this context, the used AIC criterion is given by:

AIC(p1, p2, d, c) = ln(
1

n

n∑
t=1

ε̂2t ) + 2
p1 + p2 + 2

n
, (5)

where ε̂t denotes the residuals.

Finally, the model with the parameters p∗1, p
∗
2, d

∗ and c∗ that minimize the AIC criterion
can be retained. Since for di�erent d there are di�erent numbers of values that can
be used for estimation, the following adjustment should be done, with nd = max(d, P ),
P = max(p∗1, p

∗
2) :

AIC(p∗1, p
∗
2, d
∗, c∗) = min

p1,p2,d,c

1

n− nd

AIC(p1, p2, d, c). (6)

On each state, it is possible to propose more complex stationary models like ARMA(p,q)
processes.

3.2 Markov-switching processes

The covariance-stationary Markov-switching (MS) model has been �rst introduced by
Quandt (1958), then reconsidered by Neftçi (1982, 1984) and popularized in economics
by Hamilton in 1989. The process (Yt)t follows a two-regime Markov-switching model,
denoted MS(2) - AR(p), if it veri�es the following equation:

Yt − µ(St) =

p∑
i=1

φi(St)(Yt−i − µ(St−i)) + σ(St)εt, (7)

where the non-observed process (St)t is an ergodic Markov chain and where (εt)t is a
standardized white noise process. The parameters µ(St), φ1(St), . . ., φp(St) and σ(St)

7
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describe the dependence of the process (Yt)t to the current regime St. The associated
transition matrix of the Markov chain (St)t is de�ned by:

P [St = j|St−1 = i] = pij, (8)

with 0 < pij < 1 for i, j = 1, 2 and
∑2

j=1 pij = 1. In the two-regime case, the unconditional
probabilities associated to the process (Yt)t are equal to:

P [St = 1] =
1− p22

1− p11 + 1− p22

= π,

and
P [St = 2] = 1− π.

Various extensions of Markov-switching processes have been proposed in the literature,
ranging from time-varying transition probabilities (see Filardo and Gordon, 1994, Layton
and Smith, 2007) to multivariate models.
Regarding the parameter estimation issue, from an observed trajectory (y1, . . . , yT ), the
maximum likelihood method is used in connection with the Expectation Maximization
(EM) algorithm. The EM algorithm is an iterative technique for maximizing the likelihood
function in case of models with missing observations or models where the observed time-
series depends on some unobservable latent stochastic variables. Hamilton (1990) reports
that the EM algorithm is, in general, relatively robust with respect to poorly chosen
starting values of the parameters, quickly moving to a reasonable region of the likelihood
surface. Furthermore, as shown in Hamilton (1990), the EM algorithm can be used in
conjunction with the �ltering and smoothing algorithm to draw inference over the state
allocation under the simplifying assumption of knowing the parameter of the Markov-
switching model.

4 Speci�cation phase

For both approaches the analysis starts with a speci�cation process in order to come up
with the model that is best suited to adhere to business cycle features; we thus present
for both SETAR and MS models, the speci�cations that have been retained and report
the estimates obtained by �tting the selected models to the �rst available vintage release
of each of the two time-series, namely IPI and UR. As discussed in Section 1, for the
MS approach a further step has been considered to select the best speci�cation that also
consider a goodness of �t measure with respect to a reference chronology. In the following,
we thus brie�y describe both the speci�cation phase of SETAR models and the selection
procedure of MS models.

4.1 Nonlinear modelling for the Industrial Production Index

First, we focus on the IPI time-series, more in detail, on its growth rate over three months,
which is denoted by (y1

t )t. The �rst available vintage series was released in mid-June
2003, then it ends in April 2003 and has been historically reconstructed back in time to
January 1970, as described in Section 2. For both SETAR and MS models we describe
the speci�cation for (y1

t )t.

8
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4.1.1 SETAR speci�cation

In order to implement a SETAR modelling approach, we needed to determine the order p
of the AR models on each state, the delay d and the threshold c. For the autoregressive
order p, we proceeded by using a descendent stepwise approach by considering �rst p = 12.
To determine the delay d, we applied di�erent tests using several values of p. In particular
we considered the Tsay (1989) test with p = 6, which accepted the null of linearity for
d = 1 but rejected the null for d = 2 at the usual risk α = 0.05, implying thus the presence
of two regimes. The Tsay test also rejected the null for d = 3 with a risk α = 0.10. We
also considered the Hansen (1997) test with bootstrapped p-values (500 replications are
used). For the usual type I risk α = 0.05, the Hansen test rejected the null for d = 2
and d = 4, and accepted the null for all the other values. Thus, according to the testing
results, we decided to take as transition variable y1

t−2. To determine the threshold c, we
used a grid-search procedure over the various thresholds lying between the 10% and 90%
quantiles, and identi�ed that ĉ = 0.2138 returned the lowest Akaike Information Criterion
(AIC).
The model that we �nally retain for the centered series is the following:

y1
t = (0.2954y1

t−1 + 0.2116y1
t−2)(1− I[y1

t−2>0.2138]) + σ̂1
εεt

+ (0.4249y1
t−1 + 0.1088y1

t−2 − 0.1889y1
t−3 + 0.2180y1

t−4)I[y1
t−2>0.2138] + σ̂2

εεt.
(9)

and Table 1 provides the estimated parameters and the respective standard errors.

Table 1: Parameter estimates and standard errors for a 2-regime SETAR model �tted to the 1st vintage
IPI series (January 1970 � April 2003).

Low regime High regime
[yt−2 ≤ 0.2138] [yt−2 > 0.2138]

µ̂
-0.1962 0.8415
(-1.14) (7.29)

φ̂1
0.2954 0.4249
(3.61) (6.73)

φ̂2
0.2116 0.1088
(2.59) (1.60)

φ̂3
-0.1888
(-2.79)

φ̂3
0.2180
(3.46)

σ̂ε 1.0299 0.7869

This speci�cation phase has been repeated for all the 69 vintages. The speci�ed models
showed to be quite stable and thus we have preferred to �x and use this �rst model for
the next phase of real-time detection. It is noteworthy that an alternative approach for
model selection could have been to minimize a goodness of �t criterion that measures also
the ability to replicate the cyclical phases, as for example the QPS criterion described
below in equation (10); indeed, as it will be explained in the next paragraph, this further
step has been considered for Markov-switching models.

9
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4.1.2 Markov-switching speci�cation

A wide range of Markov-switching models have been taken into account and according
to the speci�cation strategy suggested by Krolzig (1997), that considers the best ARMA
representation de�ned according to the AIC criterion, we speci�ed the model for the �rst
release and repeated this step for each one of the 69 releases of the IPI time-series. Since
the MS speci�cation was less stable than the SETAR one and we were interested in consi-
dering also multivariate and time-varying transition probabilities models, we introduced a
further speci�cation step. This means that each pre-speci�ed model has been successfully
�tted to each one of the 69 releases of the IPI time-series. We have then computed the
�ltered probabilities of being in recession and computed for each release and each model
some goodness of �t measure with respect to a reference chronology. Finally, for each
model we have averaged these measures over all the releases and then selected the model
with the best �t.
As for the statistics computed to assess the ability of Markov-switching models to locate
turning points, we considered the classical Quadratic Probabilistic Score (QPS) of Brier
(1950) and the Concordance Index for regular periodic behavior in the business cycles
proposed by Harding and Pagan (2002). Moreover, we adopted as reference chronology
the turning points dating provided in Anas et al. (2007a) for the industrial business cycle.
More in detail, the classical QPS is de�ned as follows:

QPS =
1

T

T∑
t=1

(Pt −RCt)
2 , (10)

where, for t ∈ {1, . . . , T} , Pt is the �ltered probability of being in recession in month
t as it stems from the estimation of the Markov-switching model and RCt is a binary
random variable that is equal to 1 during recessionary phases of the business cycle and 0
otherwise, according to the reference chronology.
The second statistic computed as goodness of �t measure to the reference chronology is
the Concordance Index, which is de�ned as follows:

CI =
1

T

[
T∑

t=1

It ×RCt +
T∑

t=1

(1− It)× (1−RCt)

]
, (11)

where RCt is the same variable already employed in the QPS, which represents the turning
points of the reference chronology, while It is a binary random variable that assumes value
1 if the latent state variable St is in the recessionary phase of the business cycle and 0
otherwise. In this respect it is fundamental the criterion adopted to discriminate when the
unobserved state-variable St takes on value 1 or 0. Following the approach proposed by
Hamilton (1989), we chose the natural threshold of 0.5 to transform the �ltered probability
into a binary variable.
The �nal speci�cation step thus requires to select the model that returns the lowest QPS
and the highest Concordance Index.
Among all the considered Markov-switching models, speci�cations that do not allow for
autoregressive dynamics in the observable variable present the better goodness of �t mea-

10
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sure and Table 2 reports the QPS and Concordance Index statistics for some selected
models that share an autoregressive polynomial of order 0.

Table 2: Mean QPS and Concordance Index of some selected Markov-switching models �tted to the 69
releases of the IPI.

Model QPS Concordance Index

MSI(2)-AR(0) 0.080 0.898

MSIH(2)-AR(0) 0.113 0.844

MSI(3)-AR(0) 0.097 0.890

MSIH(3)-AR(0) 0.084 0.894

MSI(4)-AR(0) 0.127 0.858

MSIH(4)-AR(0) 0.087 0.900

According to the �gures reported in Table 2, we were not able to �nd a Markov-switching
model that returned at the same time the lowest QPS and the highest Concordance Index;
indeed, these statistics are often too close. Therefore, we supported the quantitative anal-
ysis by graphical inspection and singled out two models out of the six reported in Table
2, namely3 MSI(2)-AR(0) and MSIH(3)-AR(0). We retained these two speci�cations as
they return the best performances and also because they di�er in two respects: the num-
ber of regimes of the state-variable and the possibility of allowing for regime-dependent
heteroskedasticity.
To facilitate a comparison with the outcomes of the speci�cation phase performed for
SETAR models, Tables 3 and 4 report the estimates of the parameters obtained either
by �tting a MSI(2)-AR(0) and MSIH(3)-AR(0) model to the 3-month growth rate of the
IPI, (yt)t, in the period January 1970 � April 2003, that is the time-horizon covered by
the �rst vintage release of the endogenous variable.

Table 3: Parameter estimates and standard errors for a MSI(2)-AR(0) model �tted to the 1st vintage
IPI series (January 1970 � April 2003).

Regime 1 Regime 2

µ̂ (St)
-1.0186 0.7307
(0.1656) (0.0568)

σ̂ε 0.8965

Transition Matrix

Regime 1 Regime 2

Regime 1 0.8730 0.1270

Regime 2 0.0236 0.9764

3We consider Krolzig's (2007) classi�cation and thus I means regime dependent intercept, while H
regime dependent heteroskedasticity.
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Table 4: Parameter estimates and standard errors for a MSIH(3)-AR(0) model �tted to the 1st vintage
IPI series (January 1970 � April 2003).

Regime 1 Regime 2 Regime 3

µ̂ (St)
-1.0622 0.3854 1.4312
(0.2487) (0.0668) (0.1098)

σ̂ε 1.0769 0.63452 0.76243

Transition Matrix

Regime 1 Regime 2 Regime 3

Regime 1 0.8235 0.1053 0.07117

Regime 2 0.04979 0.9228 0.02741

Regime 3 0.0001916 0.09610 0.9037

The interpretation in terms of business cycle phases of the MSI(2)-AR(0) is straightfor-
ward, as the �rst regime locates recession phases and the second pinpoints expansion
phases. As for the economic meaning given to the MSIH(3)-AR(0) model, the �rst regime
is assumed to locate recession phases, while the second regime could be interpreted as
identifying slowdown phases that not necessarily lead to a recession and the third regime
can be labelled as expansion phase.

4.2 Nonlinear modelling for the Unemployment Rate

We focus now on the Unemployment Rate for the Euro area; more in detail, on its inverted
di�erences over 3 months, which is denoted by (y2

t )t. The �rst vintage was released in
May 2001, then it ends in March 2001 and has been historically reconstructed back in
time to January 1971. Either for SETAR and MS models, we provide the speci�cation
analysis for this series.

4.2.1 SETAR speci�cation

The same procedures as for IPI are applied to determine the order p, the delay d and the
threshold c. The Tsay (1989) test with p = 10 rejected the null of linearity for d = 1, 2, 5
at the usual risk α = 0.05. The null hypothesis was accepted for other values of d. We
also considered the Hansen (1997) test with bootstrapped p-values (500 replications). For
the type I risk α = 0.10, the Hansen test rejected the null for d = 2, 3, 4 and accepted the
null for all the other values. Thus, we decided to take as transition variable y2

t−2. Now,
applying a 3-regime SETAR model to the series (y2

t ), the AIC corresponding to a set of
thresholds ĉ have been computed and the minimum was reached for ĉ1 = −0.1401 and
ĉ2 = 0.0442. In �ne, the estimated model we have retained is given in Table 5.

As for the IPI series, we repeated the speci�cation phase for several vintages. Since the
speci�ed models showed to be quite stable, we used this speci�cation for the real-time
detection analysis.
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Table 5: Parameter estimates and standard errors for a 3-regime SETAR model applied to the 1st

vintage series of Unemployment Rate (January 1971 � March 2001).

Low regime Intermediate regime High regime
[y1

t−2 < −0.1401] [−0.1401 ≤ y1
t−2 ≤ 0.0442] [y1

t−2 > 0.0442]

µ̂ -0.2868 -0.0369 0.1667
φ̂1 0.6501 0.3138
φ̂2 0.3682
φ̂3 -0.6635
φ̂4 0.2399 0.2373
φ̂5 0.3664 0.2629
φ̂6 -0.2153
σ̂ε 0.1227 0.1228 0.0981

n 114 108 115

4.2.2 Markov-switching speci�cation

The same procedure described for IPI series has been applied to the Unemployment Rate;
once again, the reference business cycle chronology is taken from Anas et al. (2007a),
however in this case we adopted the quarterly dating referred to the classical business
cycle and transformed it on a monthly basis by considering as turning point the month
in the middle of each quarter in which a turning point has occurred.
In the same way as for the IPI, also for the UR we mainly considered Markov-switching
models that do not allow for autoregressive dynamics in the observable variable. These
models and their respective QPS and Concordance Index statistics are listed in Table 6.
Contrary to the previous case of the IPI, MSI(4)-AR(0) model turned out to be the unique
selected speci�cation as it is characterized by the lowest QPS and the highest Concordance
Index among all the considered models.

Table 6: Mean QPS and Concordance Index of some selected Markov-switching models �tted to the 97
releases of the Unemployment Rate.

Model QPS Concordance Index

MSI(2)-AR(0) 0.180 0.798

MSIH(2)-AR(0) 0.324 0.637

MSI(3)-AR(0) 0.133 0.854

MSIH(3)-AR(0) 0.148 0.840

MSI(4)-AR(0) 0.123 0.870

MSIH(4)-AR(0) 0.128 0.865

Table 7 reports the parameter estimates of the MSI(4)-AR(0) model; as for the �rst
and second regimes of the state variable, we maintain the same economic interpretation
given for the MSIH(3)-AR(0) model �tted to the IPI, namely they locate recession and
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slowdown phases, respectively; as for the third and fourth regimes, the former pinpoints
low-expansion phases and the latter high-expansion phases.

Table 7: Parameter estimates and standard errors for a MSI(4)-AR(0) model �tted to the 1st vintage
Unemployment Rate series (January 1971 � March 2001).

Regime 1 Regime 2 Regime 3 Regime 4

µ̂ (St)
-0.4371 -0.1487 0.0326 0.2209
(0.0152) (0.0186) (0.0144) (0.0125)

σ̂ε 0.097129

Transition Matrix

Regime 1 Regime 2 Regime 3 Regime 4

Regime 1 0.9258 0.07383 0.0003755 3.422e-007

Regime 2 0.03756 0.8370 0.1190 0.006463

Regime 3 4.612e-008 0.1010 0.8790 0.01996

Regime 4 2.350e-009 8.480e-005 0.03405 0.9659

5 Real-time turning point detection

In this section we compare the previously selected SETAR and MS models in terms of their
ability to detect in real-time turning points of the classical business cycle, either when they
are �tted to the IPI and UR series. However, it is important to underline that the reference
dating chronologies (see Anas et al., 2007a), which could be used as benchmark to compute
goodness of �t statistics (QPS and Concordance Index) for the selected models, do not
cover and only partially cover, respectively, the sample horizons through which span the
IPI and UR vintages. Indeed, both the reference dating chronologies end in December
2002, while the real-time exercise for the IPI series starts only in April 2003 and for the
UR series in March 2001; therefore, in the former case they are not overlapping at all
and only slightly overlapping in the latter case. As a result, real-time analysis is mainly
tackled by graphical inspection and by taking into account our a-priori beliefs about the
evolution of the business cycle outside the reference chronology.
The lack of quantitative measures for the months outside the reference chronology are
partially overcome by taking into exam the historical ability, of both SETAR and MS
models, to ex-post date the occurrence of turning points. Indeed, this ex-post exercise is
the starting point for the analysis of each of the two time-series considered in this paper;
once we have measured to what extent either SETAR and MS models are able to locate
the turning points of the respective reference chronology, we are allowed to tackled the
real-time analysis.

14

Document de Travail du Centre d'Economie de la Sorbonne - 2009.53

ha
ls

hs
-0

04
23

89
0,

 v
er

si
on

 1
 - 

13
 O

ct
 2

00
9



5.1 Real-time detection based on the Industrial Production Index

As discussed above, �rst we graphically analysed the issue of ex-post dating of turning
points of the Industrial Production Index by looking at Figure 3, which is divided in three
panels:

• the lower panel shows the industrial recessionary phases derived by applying the 0.5
�natural rule� to regime 1 �ltered probabilities obtained by �tting the MSI(2)-AR(0)
model to the �rst vintage of the IPI;

• the mid panel depicts the recessionary periods as stated in the reference chronology;

• the upper panel replicates the same exercise of the lower panel for the case of the
2-regime SETAR model.

Figure 3: Classical business cycle recession dating (mid panel) is compared to recession
dates obtained either by �tting MSI(2)-AR(0) model (lower panel) and 2-regime SETAR
model (upper panel) to the 1st vintage release, issued in June 2003, of the IPI series.

By graphical inspection, it came out a marked di�erence between selected SETAR and
MS models; on one hand, MSI(2)-AR(0) model lags behind the 2-regime SETAR model
in detecting four out of the �ve recessions located by the reference chronology and, on
the other hand, the former model emits many more short-lived recession signals than
the latter one. Due to the short-lived duration of these events, we though interesting to
gauge the e�ect of introducing a censoring rule so as to get rid of the signals that do not
actually represent a recession. This was achieved by introducing a restriction according to
which a phase of the cycle must last at least three months to be recognized as a recession
or expansion. It is worth noting that, although this rule reduces risk of false signals, it
has the drawback of delaying turning points detection by three months. In Figure 4 we
propose the previous graph when the aforementioned censoring rule is applied.

15

Document de Travail du Centre d'Economie de la Sorbonne - 2009.53

ha
ls

hs
-0

04
23

89
0,

 v
er

si
on

 1
 - 

13
 O

ct
 2

00
9



Figure 4: Classical business cycle recession dating (mid panel) is compared to recession
dates obtained either by �tting MSI(2)-AR(0) model (lower panel) and 2-regime SETAR
model (upper panel) to the 1st vintage release, issued in June 2003, of the IPI series;
recession signals must satisfy a censoring rule stating that a recession must last at least 3
months.

By applying the censoring rule, we have discarded the noise that characterized the raw
output of the 2-regime SETAR model, so as to be facilitated in analysing either the missed
recessionary episodes and the extra cycles detected by the two models. On one hand, the
MSI(2)-AR(0) model encounters di�culties in indentifying the double-dip recession of the
early '80s, but no extra-cycles is detected; on the other hand, the 2-regime SETAR model
does not miss any recession episodes of the reference dating, but a false signal of recession
is emitted between April and November 19774, furthermore it anticipates the starting date
and postpones the ending date of the recession between 1992 and 1993.

The following Figures 5 and 6 replicate the above analysis when the MSI(2)-AR(0) is
replaced with the MSIH(3)-AR(0) model. Since the result in terms of detected turning
points almost matches the one already described in the case of the MSI(2)-AR(0) model,
we refer the reader to the previous discussion.

As previously stated, we prefer to ground on a quantitative basis the insights gained by
graphical inspection. Due to the nature of the outcome returned by SETAR models (bi-
nary variable rather than probabilities), we can compare them with Markov-switching
models only on the basis of the Concordance Index. Table 8 reports the Concordance In-
dex computed on selected SETAR and MS models estimated on the �rst available release

4A further recession is detected starting in October 2002, but since it is located on the border of the
reference chronology, we discarded it as it could be subject to edge e�ects.
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Figure 5: Classical business cycle recession dating (mid panel) is compared to recession
dates obtained either by �tting MSIH(3)-AR(0) model (lower panel) and 2-regime SETAR
model (upper panel) to the 1st vintage release, issued in June 2003, of the IPI series.

Figure 6: Classical business cycle recession dating (mid panel) is compared to recession
dates obtained either by �tting MSIH(3)-AR(0) model (lower panel) and 2-regime SETAR
model (upper panel) to the 1st vintage release, issued in June 2003, of the IPI series;
recession signals must satisfy a censoring rule stating that a recession must last at least 3
months.
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(June 2003), with and without censoring rule and on di�erent time horizons. According
to the de�nition of the Concordance Index, the higher its value, the closer the related
dating to the reference chronology is.

Table 8: Concordance Index for selected MS and SETAR models �tted to the 1st vintage release of the
IPI series (January 1970 � April 2003).

Horizon Model Concordance Index
No Censoring Rule 3-month Censoring Rule

1970 � 2002
MSI(2)-AR(0) 0.893 0.914

MSIH(3)-AR(0) 0.893 0.914

2-regime SETAR 0.716 0.862

1970 � 1986
MSI(2)-AR(0) 0.865 0.885

MSIH(3)-AR(0) 0.870 0.885

2-regime SETAR 0.708 0.849

1986 � 2002
MSI(2)-AR(0) 0.926 0.946

MSIH(3)-AR(0) 0.922 0.946

2-regime SETAR 0.721 0.882

By looking at Table 8, and in particular to the results referring to the whole time-horizon
covered by the reference chronology (1970 � 2002), both Markov-switching models return
Concordance Index values that are higher than the one of the SETAR model; that is, the
former models are better able than the latter one to date turning points de�ned by the
reference chronology. This can be explained by the huge amount (although mainly short-
lived) of false signals emitted by the 2-regime SETAR model when we did not consider
any censoring rule. In fact, when we imposed the aforementioned 3-month censoring rule,
all the short-lived false signals have been discarded and the Concordance Index of the
2-regime SETAR model rose considerably from 0.716 to 0.862, whereas the �gure for both
MS models improved only from 0.893 to 0.914.

Finally, we joined graphical inspection and quantitative measures to draw some conclu-
sions. The former approach suggests that both chosen MS models outperform 2-regime
SETAR model as they did not locate any false recession cycles, while the latter did. Fur-
thermore, we notice that both MS models have improved more than the 2-regime SETAR
model in their respective ability to date turning points of the industrial cycle along the
sample horizon; as a matter of fact, although we cannot rely to any statistical signi�cance
test, by comparing the concordance indexes computed in the equally-wide periods 1970
� 1986 and 1986 � 2002, it follows that both the MS models enhanced their capability
of detecting turning points, while the �gures for the 2-regime SETAR model were almost
unchanged. Therefore, as we are interested in using SETAR and MS models in a real-time
analysis to detect the occurrence of turning points, we should be aware of the di�erent
performances over time of these models.
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The previous analysis was based on the outcomes derived by �tting either SETAR and
MS models to the �rst available release of the IPI time-series. In what follows, we leave
this static perspective and move on to a real-time analysis. In this respect, we considered
all the 69 vintage releases of the IPI, issued from June 2003 to February 2009, which
have been sequentially modelled as a MSI(2)-AR(0) or MSIH(3)-AR(0) model and as a
2-regime SETAR model. Due to the dynamic nature of this exercise, the information set
used to draw inference about the parameters changes according to the evolution of the
releases, in the sense that it includes an increasing number of observations and it also
re�ects the data revision e�ect. Then, for each release, a binary variable was returned for
the last month in the sample, which assumed value 1 if a recession signal was detected and
0 otherwise. Stated di�erently, these are the same inferential and detection issues that we
would have faced if we had actually performed the study in real-time. All these binary
variables have been collected up and graphically represented in the following Figures 7,
8, 9 and 10.
Real-time analysis con�rmed one of the main �ndings stemming from the ex-post data-
tion exercise: unlike Markov-switching models, the 2-regime SETAR model returns many
short-lived recession signals. Although we were prevented from discriminating right from
wrong signals because of the lack of a reference chronology in the real-time analysis, we
�ltered out recession signals by constraining them to last at least three months. The
resulting recession periods are depicted in Figures 8 and 10.

Figure 7: Real-time recession signals obtained either by �tting MSI(2)-AR(0) model (lower
panel) and 2-regime SETAR model (upper panel) to all the 69 vintage releases, issued
from June 2003 to February 2009, of the IPI series.

From April 2003 to December 2008, the 2-regime SETAR model locates three recession
phases; two of them are identi�ed, although with a di�erent timing between them and
also with respect to the SETAR model, by both MS models. On the contrary, MS models
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Figure 8: Real-time recession signals obtained either by �tting MSI(2)-AR(0) model (lower
panel) and 2-regime SETAR model (upper panel) to all the 69 vintage releases, issued from
June 2003 to February 2009, of the IPI series; recession signals must satisfy a censoring
rule stating that a recession must last at least 3 months.

Figure 9: Real-time recession signals obtained either by �tting MSIH(3)-AR(0) model
(lower panel) and 2-regime SETAR model (upper panel) to all the 69 vintage releases,
issued from June 2003 to February 2009, of the IPI series.

do not detect at all a recession phase between December 2004 and June 2005.
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Figure 10: Real-time recession signals obtained either by �tting MSIH(3)-AR(0) model
(lower panel) and 2-regime SETAR model (upper panel) to all the 69 vintage releases,
issued from June 2003 to February 2009, of the IPI series; recession signals must satisfy
a censoring rule stating that a recession must last at least 3 months.

As for the most recent months in the sample, the MSIH(3)-AR(0) model is the one that
detects earliest a peak of the industrial cycle in April 2008, that is, a recession starts in
May 2008; the 2-regime SETAR model locates this peak to be occurring in June 2008
and the MSI(2)-AR(0) only in August 2008. In the light of our knowledge of the ongoing
economic conjuncture, according to which a slowdown started in mid 2008, the MSIH(3)-
AR(0) model deserved to be singled out among the models here considered.

To conclude, the fact that from an historical perspective the MSIH(3)-AR(0) model re-
turned the highest Concordance Index reinforces the potential role that it could play in
timely detecting forthcoming turning points.

5.2 Real-time detection based on the Unemployment Rate

Also in the case of the Unemployment Rate, we tackled the comparison between SETAR
and MS models either by graphical inspection and also by providing a quantitative mea-
sure of their ability to ex-post date turning points of the reference chronology. Note that
in this case, we considered as benchmark the global economic cycle, rather than the in-
dustrial cycle previously considered.

For the UR, only two models have been retained, namely a 3-regime SETAR model and
a MSI(4)-AR(0) model; these models are graphically compared in Figure 11, which is
organized as before in three panels:
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• the lower panel shows the classical business cycle recessionary phases obtained by
applying the 0.5 �natural rule� to regime 1 �ltered probabilities derived by �tting
the MSI(4)-AR(0) model to the �rst vintage release of the Unemployment Rate;

• the mid panel depicts the recessionary periods as stated in the reference chronology;

• the upper panel replicates the same exercise of the lower panel for the case of the
3-regime SETAR model.

It came out that the 3-regime SETAR model has, although to a lesser extent, a feature
in common to the previous 2-regime SETAR model �tted to the IPI series, namely the
great number, compared to MS models, of false and short-lived signals of recession. For
what concerns the reduction in the number of short-lived recession signals, it could be
straightforwardly explained by the smoother behaviour of the Unemployment Rate time-
series when compared to the IPI series.

Figure 11: Classical business cycle recession dating (mid panel) is compared to recession
dates obtained either by �tting MSI(4)-AR(0) model (lower panel) and 3-regime SETAR
model (upper panel) to the 1st vintage released, issued in May 2001, of the TUR series.

Also in case of the UR series, we preliminary constrained the recession signals to last at
least three months by applying a censoring rule. The resulting datings of the classical
business cycle are depicted in Figure 12.
As expected, all the short-lived recession signals that a�ected both SETAR and MS mod-
els have been wiped out; however, three false recession cycles still persist in the dating
obtained from the 3-regime SETAR model; furthermore, this model sensibly postpones
the ending date of the double-dip recession until November 1984, while the reference
chronology declared it to have come to end in December 1982; the same is true for what
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Figure 12: Classical business cycle recession dating (mid panel) is compared to recession
dates obtained either by �tting MSI(4)-AR(0) model (lower panel) and 3-regime SETAR
model (upper panel) to the 1st vintage released, issued in May 2001, of the TUR series;
recession signals must satisfy a censoring rule stating that a recession must last at least 3
months.

concerns the 1992 � 1993 recession, whose ending date is moved ahead in time from May
1993, according to the reference chronology, to April 1994. Contrary to SETAR model,
the MSI(4)-AR(0) model does not locate any extra cycle. Moreover, on one hand, neither
model misses a recession period of the reference chronology, but on the other hand, nei-
ther of them is able to distinguish as separate phases the two downturns of the double-dip
recession in the early '80s.

The above features are con�rmed by �gures reported in the upper frame of Table 9.

Table 9: Concordance Index for selected MS and SETAR models �tted to the 1st vintage release of the
TUR series (January 1971 � March 2001).

Horizon Model Concordance Index
No Censoring Rule 3-month Censoring Rule

1971 � 2001
MSI(4)-AR(0) 0.881 0.892

3-regime SETAR 0.772 0.797

1971 � 1985
MSI(4)-AR(0) 0.853 0.870

3-regime SETAR 0.655 0.672

1986 � 2001
MSI(4)-AR(0) 0.907 0.913

3-regime SETAR 0.885 0.918
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When no censoring rule is applied, the Concordance Index computed for the selected MS
model is 0.881, while it is 0.772 for the SETAR model. These values slightly increased
when the 3-month censoring rule is taken into account. For the 3-regime SETAR model,
there is only a small improvement in the Concordance Index, since only few of the false
signals are short-lived, while the remaining do satisfy the aforementioned censoring rule;
also for the MSI(4)-AR(0) model, the improvement in the Concordance Index is limited
because only two short-lived extra cycles were detected by this model.

Di�erently from what seen with the IPI series, in the case of the UR series, both selected
SETAR and MS models are characterized by higher values of the Concordance Index in
the second part of the sample, namely 1986 � 2001.

In line with these results, the MSI(4)-AR(0) could be preferred to the 3-regime SETAR
model, independently of any preferences on extra- and missing-cycles, because the former
model dominates the latter one in terms of its ability to date turning points of the refe-
rence chronology.

Also for the Unemployment Rate, we conclude our discussion by performing a real-time
analysis starting from May 2001 by �tting either SETAR and MS models to each monthly
release of the UR series until May 2009.
Figure 13 shows the binary variable representing the recession signals obtained by �tting
either the 3-regime SETAR and MSI(4)-AR(0) model to the sequence of all the 97 vintage
releases of UR series; and Figure 14 is obtained by imposing the 3-month censoring rule.

Figure 13: Real-time recession signals derived either by �tting MSI(4)-AR(0) model (lower
panel) and 3-regime SETAR model (upper panel) to all 97 vintage releases, issued from
May 2001 to May 2009, of the TUR series.
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Figure 14: Real-time recession signals obtained either by �tting MSI(4)-AR(0) model
(lower panel) and 3-regime SETAR model (upper panel) to all 97 vintage releases, issued
from May 2001 to May 2009, of the TUR series; recession signals must satisfy a censoring
rule stating that a recession must last at least 3 months.

By graphical inspection of Figures 13 and 14 we are able to indentify two main di�erences
between the 3-regime SETAR and MSI(4)-AR(0) model; on one hand, the 3-regime SE-
TAR model locates a recession between July 2002 and May 2003, whereas MSI(4)-AR(0)
model does not; on the other hand, this latter model lags behind the former in signalling
the starting date of the ongoing recession, namely December 2008 vs. August 2008.

6 Conclusions

In the paper we aim at assessing Markov-switching and SETAR models, either in their
ability to detect the occurrence of turning points of economic cycles and the stability over
time of the signals they emitted in a real-time analysis. We resort to these di�erent classes
of models because they underpin a complementary rather than an alternative approach,
as the notion captured by them is not exactly the same. In the framework of SETAR
models the transition variable is observed, in particular it is a linear combination of lagged
values of the series; this is the main di�erence with MS models whose parameters of the
autoregressive data generating process vary according to the states of a latent Markov
chain.
These tasks haves been accomplished by �tting both classes of models to ad hoc histori-
cally reconstructed databases, either of the Industrial Production Index and Unemploy-
ment Rate of the Euro area, that are updated on a monthly basis so as to simulate a
real-time exercise. These two series have been considered since they are commonly em-
ployed to date economic cycles and are available for the Euro area on a monthly basis.
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For what concerns Markov-switching models, a speci�cation that allows for state-dependent
heteroskedasticity seems to play an important role when modelling time-series that are
quite noise, like the IPI time-series; this conclusion is drawn from the fact that MSIH(3)-
AR(0) model is well-suited to deal with the IPI time-series, while in the case of the
smoother series of the Unemployment Rate, an homoskedastic MSI(4)-AR(0) model re-
turns an higher performance than heteroskedastic speci�cations. In this respect, it could
be interesting to investigate Markov-switching models that further extends heteroskedas-
ticity by specifying a Markov chain that drives the changes in the variance of the observable
process.
On the contrary of Markov-switching models, we have experienced how SETAR models
can return many short-lived recession signals and, although they could be easily driven
out by applying some simple censoring rule, this can represent a drawback as far as real-
time detection of turning points is concerned. In fact, resorting to a censoring rule usually
ends up in delaying the signal of a turning point.
With regards to the ex-post dating, Markov-switching models have been proved to return
higher values for the Concordance Index than the SETAR models. However, if on one
hand, MS models emit a delayed signal with respect to SETAR models but without detect-
ing extra-cycles; on the other hand, SETAR models do not miss any recession episodes of
the reference chronology but emit some false signal of recession. The choice between them
must then resort to the policy maker's preferences, according to the weights attached to
extra- and missed-cycle, respectively.
Although we do not have performed a complete dynamic analysis in order to assess the
evolution of ex-post detected turning points, as we move through all the vintages releases,
we note that, for both IPI and Unemployment Rate, Markov-switching models improve
their capability in correctly detecting turning points in the second half of the sample
horizon compared to the performance recorded in the �rst half. The same is true also
for the SETAR model when it is �tted on the Unemployment Rate. Moreover and more
importantly, we can observe that both Markov-switching and SETAR models convey sig-
nals that are robust and stable over time, that is moving through the vintage releases
considered, MS and SETAR models stem signals that do not vary sensibly.
To conclude, also if the Markov-switching models show some higher ability to date turn-
ing points, it is not possible to clearly state their superiority since if a missing a cycle
is a worse error than emitting false signals, as it can be, then a SETAR model could be
preferred to a MS one.

26

Document de Travail du Centre d'Economie de la Sorbonne - 2009.53

ha
ls

hs
-0

04
23

89
0,

 v
er

si
on

 1
 - 

13
 O

ct
 2

00
9



References

[1] Ahrens, R. (2002), "Predicting recessions with interest rate spreads: A multicountry regime-
switching analysis", Journal of International Money and Finance, 21, 519-537.

[2] Akaike, H. (1974), "A New Look of Statistical Model Identi�cation", IEEE Transactions on Auto-

matic Control, 19, 716-722.

[3] Anas, J. and Ferrara, L. (2004), "Turning points detection: The ABCD approach and two proba-
bilistic indicators", Journal of Business Cycle Measurement and Analysis, 1, 1-36.

[4] Anas, J., Billio, M., Ferrara, L. and M. LoDuca (2007a), "A turning point chronology for the Euro-
zone", in Growth and Cycle in the Euro zone, G.L. Mazzi and G. Savio (eds.), 261-274, Palgrave
MacMillan, New York.

[5] Anas, J., Billio, M., Ferrara, L. and M. LoDuca (2007b), "Business cycle analysis with multivariate
Markov switching models", in Growth and Cycle in the Euro zone, G.L. Mazzi and G. Savio (eds.),
249-260, Palgrave MacMillan, New York.

[6] Anas, J., Billio, M., Ferrara, L. and Mazzi, G.-L. (2008), "A system for dating and detecting cycles
in the Euro area", The Manchester School, 76, 549-577.

[7] Artis, M., Krolzig, H-M. and Toro, J. (2004), "The European business cycle", Oxford Economic

Papers, 56, 1-44.

[8] Billio, M., Caporin, M. and Cazzavillan, G. (2007), "Dating Euro15 monthly business cycle jointly
using GDP and IPI", Journal of Business Cycle Measurement and Analysis, 3/3, 333-366.

[9] Burns, A. F. and Mitchell,W. C. (1946), Measuring Business Cycles, NBER, Columbia University
Press.

[10] Caporin, M. and Sartore, D. (2006), "Methodological aspects of time series back-calculation", DSE
Working paper, Ca' Foscari.

[11] Chauvet, M. (1998), "An economic characterization of business cycle dynamics with factor structure
and regime switches"', International Economic Review, 39, 969 - 996.

[12] Clements, M. P. and Krolzig, H.-M. (1998), "A comparison of the forecast performance of Markov-
switching and threshold autoregressive models of US GNP", Econometric Journal, 1, C47-C75.

[13] Deschamps, P. (2008), "Comparing smooth transition and Markov switching autoregressive models
of US unemployment", Journal of Applied Econometrics, 23, pp. 435-462.

[14] Diebold, F. X. and Rudebusch, G. D. (1996), "Measuring business cycles: A modern perspective",
Review of Economics and Statistics, 78, (1), 67 - 77.

[15] Ferrara, L. (2003), "A three-regime real-time indicator for the US economy", Economic Letters, 81,
(3), 373 - 378.

[16] Ferrara, L., Guégan D. (2006), Detection of Industrial Business Cycle using SETAR models, Journal
of Business Cycle Measurement and Analysis, 2, (3), 1 - 20.

[17] Filardo, A.J. and Gordon, S.F. (1994), "Business cycles duration"', Journal of Econometrics, 85, 1,
99-123.

[18] Franses, P.H. and D. van Dijk (2000), Non-Linear Time Series Models in Empirical Finance, Cam-
bridge University Press, Cambridge.

27

Document de Travail du Centre d'Economie de la Sorbonne - 2009.53

ha
ls

hs
-0

04
23

89
0,

 v
er

si
on

 1
 - 

13
 O

ct
 2

00
9



[19] Hamilton, J.D. (1988), "Rational Expectations Econometric Analysis of Change in Regime: An
Investigation of the Term Structure of Interest Rates", Journal of Economic Dynamics and Control,
12, 385-423.

[20] Hamilton, J.D. (1989), "A New Approach to the Economic Analysis of Non-stationary Time Series
and the Business Cycle", Econometrica, 57, 357-384.

[21] Hamilton, J. D. (1990), "Analysis of time series subject to changes in regime", Journal of Econo-
metrics, 45, 39 - 70.

[22] Hamilton, J.D., and Susmel, R. (1994), "Autoregressive conditional heteroscedasticity and changes
in regimes", Journal of Econometrics, 64, 307-353.

[23] Hansen, B.E. (1997), "Inference in TARModels", Studies in Nonlinear Dynamics and Econometrics,
2, 1-14.

[24] Harding, D. and Pagan A. (2002), "Dissecting the cycle: a methodological investigation", Journal
of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.

[25] Jones, D.A. (1978), "Nonlinear Autoregressive Processes", Proceedings of the Royal Society, A, 360,
71-95.

[26] Kaufmann, S. (2000), "Measuring business cycle with a dynamic Markov switching factor model:
An assessment using Bayesian simulation methods", The Econometrics Journal, 3, 39 - 65.

[27] Kim, C.-J. and Nelson, C. R. (1998), "Business cycle turning points, a new coincident index, and
tests of duration dependence based on dynamic factor model with regime-switching", The Review

of Economics and Statistics, 80, 188-201.

[28] Kim, C.-J. and Nelson, C. R. (1999), State-Space Models with Regime Switching: Classical and

Gibbs-sampling Approaches with Applications, Cambridge, MA: MIT Press.

[29] Krolzig, H.-M. (1997), Markov-Switching Vector Autoregressions: Modelling, Statistical Inference,

and Application to Business Cycle Analysis, Lecture Notes in Economics and Mathematical Systems,
New York/Berlin/Heidelberg: Springer.

[30] Krolzig, H.-M. (2003), "Constructing turning point chronologies with Markov-switching vector au-
torgressive models: the Euro-zone business cycle", in Eurostat Colloquium on Modern Tools for

Business Cycle Analysis.

[31] Krolzig, H.-M. and Toro, J. (1999), "A new approach to the analysis of shocks and the cycle in a
model of output and employment", European University Institute, Florence, Working paper ECO,
99-30.

[32] Krolzig, H.-M and Sensier, M. (2000), "A disaggregated Markov-switching model of the business
cycle in UK manufacturing", The Manchester School, 68, 442 - 460.

[33] Layton, A. P. (1996), "Dating and predicting phase changes in the U.S. business cycle", International
Journal of Forecasting, 12, (3), 417 - 428.

[34] Layton, A.P., Smith, D.R. (2007), "Business cycle dynamics with duration dependence and leading
indicators", Journal of Macroeconomics, 29, 855�875.

[35] Montgomery A., Zarnowitz V., Tsay R. et Tiao G. (1998), "Forecasting the U.S. unemployment
rate", Journal of the American Statistical Association, 93, 442, pp. 478-493

[36] Neftçi, S. (1982), "Optimal Predictions of Cyclical Downturns", Journal of Economic Dynamics

and Control, 4, 307-327.

28

Document de Travail du Centre d'Economie de la Sorbonne - 2009.53

ha
ls

hs
-0

04
23

89
0,

 v
er

si
on

 1
 - 

13
 O

ct
 2

00
9



[37] Neftçi, S. (1984), "Are Economic Time Series Asymmetric over the Business Cycle", Journal of
Political Economy, 92, 307-328.

[38] Proietti, T. (1998), "Characterizing Asymmetries in Business Cycles Using Smooth-Transition
Structural Times Series Models", Studies in Nonlinear Dynamics and Econometrics, 3, 141-156.

[39] Quandt, R.E. (1958), "The Estimation of Parameters of Linear Regression System Obeying Two
Separate Regime", Journal of the American Statistical Association, 55, 873-880.

[40] Tiao, G.C., and Tsay, R.S. (1994), "Some Advances in Non-Linear and Adaptive Modelling in
Time-Series", Journal of Forecasting, 13, 109 - 131.

[41] Tong, H., and Lim, K.S. (1980), "Threshold Autoregression, Limit Cycles and Cyclical Data",
Journal of the Royal Statistical Society, B, 42, 245-292.

[42] Tong, H. (1990), Non-linear Time Series: A Dynamical Approach, Oxford Scienti�c Publications,
Oxford.

29

Document de Travail du Centre d'Economie de la Sorbonne - 2009.53

ha
ls

hs
-0

04
23

89
0,

 v
er

si
on

 1
 - 

13
 O

ct
 2

00
9


