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Abstract

In a discrete time option pricing framework, we compare the empirical performance of two pricing
methodologies, namely the affine stochastic discount factor (SDF) and the empirical martingale
correction methodologies. Using a CAC 40 options dataset, the differences are found to be small:
the higher order moment correction involved in the SDF approach may not be that essential to
reduce option pricing errors. This paper puts into evidence the fact that an appropriate mod-
elling under the historical measure associated with an adequate correction (that we call here a
"martingale correction") permits to provide option prices which are close to market ones.

Keywords: Generalized Hyperbolic Distribution, Option pricing, Incomplete market, CAC40,
Stochastic Discount Factor, Martingale Correction.

JEL classification: G12, G17, C5, C8.
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1 Introduction

Once the time series properties of financial asset’s returns have been assessed, the biggest challenge to

option pricing is to thoroughly select the right pricing measure. This article questions the importance

of this step. We propose to answer this question by comparing two different modeling approaches: first,

the affine Stochastic Discount Factor (SDF), as presented in Cochrane (2002) and then the Empirical

Martingalization Correction (EMC) presented in Duan and Simonato (1998). The rationale behind

this choice is the following: for the SDF framework, when moving from the historical distribution to

the pricing one, each of the first four moments are changed. This is consistent with the existence of

volatility trading and with the idea of skewness premia. In the second approach, the moment modifi-

cation only involves the expectation, as in the Black and Scholes (1973)’s model. By comparing the

results on a comparable ground with each methodology, we aim at answering the question of the real

impact on option prices of the modifications of higher order moments when moving from the historical

to pricing probability measure. This work is quite different in its philosophy of recent works focusing

on a closed form SDF for pricing under the risk neutral measure such as Heston and Nandi (2000),

Mercuri (2008) or Chorro et al. (2008a).

To achieve such a purpose, we use a time series model that properly fits the key known features of

equity returns. The Nelson (1991)’s EGARCH model is used to handle the asymmetric reaction of the

volatility to negative returns. To match the returns’ leptokurticity and asymmetry, the conditional

distribution of the innovations is assumed to be the Generalized Hyperbolic distribution. Using a

CAC 40 dataset, we show that the option mispricing errors for both the SDF and EMC methodology

are fairly closed: what seems to be the key to option pricing is more the precise modeling of the

conditional distribution of the returns’ innovations than the change in probability measure.

2 The Modeling under P

Under the historical measure P, the discrete time economy we consider is characterized by the time

series dynamics of the stock price process (St)t∈{0,1,...,T} given by

Yt = log

(
St

St−1

)
= r + mt +

√
htzt, S0 = s ∈ R+, (1)

where r is the risk free rate expressed on a daily basis and supposed to be constant and where zt

is a sequence of independent and identically distributed centered random variables with variance 1.
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In equation (1), we consider a general conditional time varying excess of return mt that depends on

the constant risk premium λ0. In practice, it will be fixed for the empirical study and we retain the

following classical form:

mt = λ0

√
ht −

1
2
ht. (2)

In order to capture asymmetry phenomena (such as leverage effects) observed in equity returns

datasets, we restrict to the Nelson (1991)’s EGARCH(1, 1) model:

log(ht) = a0 + a1 (| zt−1 | +γ zt−1) + b1 log(ht−1). (3)

So as to deal with the leptokurticity and the asymmetry of the CAC 40 returns, the conditional

distribution of the EGARCH model is chosen to be the Generalized Hyperbolic distribution. This

distribution has been introduced by Barndorff-Nielsen (1977). It is driven by five parameters: λ being

a shape parameter, α controlling the kurtosis, β controlling the skewness, δ and µ being respectively

linked to the volatility and the expectation of the process.

For (λ, α, β, δ, µ) ∈ R5 with δ > 0 and α >| β |> 0, the one dimensional GH(λ, α, β, δ, µ) distribution

is defined by the following density function

dGH(x, λ, α, β, δ, µ) = (
√

α2−β2/δ)λ

√
2πKλ(δ

√
α2−β2)

×eβ(x−µ)
Kλ−1/2

(
α
√

δ2+(x−µ)2
)

(√
δ2+(x−µ)2/α

)1/2−λ ,
(4)

where Kλ is the modified Bessel function of the third kind. For λ ∈ 1
2Z, the basic properties of

the Bessel function allow to find simpler forms for the density. In particular, for λ = 1, we get the

Hyperbolic distribution whose log-density is a hyperbola. For λ = − 1
2 , we obtain the Normal Inverse

Gaussian distribution which is closed under convolution. This family has already been suggested

as a model for financial price processes because its exponentially decreasing tails seem to fit some

fundamental statistical behaviors of asset returns remarkably, as presented in Barndorff-Nielsen (1995)

or Eberlein and Prause (2002). For instance, in Chorro et al. (2008b) with a similar dataset, the joint

use of an EGARCH model with this GH distribution offers a very realistic assessment of the returns

stochastic behavior.
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3 Option pricing modeling

Using the previous time series framework, we now discuss how to deal with the change in probability

measure toward the risk neutral distribution. To serve our purpose, we consider two ways out of

this problem. The first (the SDF approach) leads to a change in every moment of the distributions,

whereas the second one (The EMC approach) states that the only difference between the risk neutral

distribution and the historical one is the expectation.

3.1 The Stochastic Discount Factor approach

The approach that is briefly overviewed here received different presentations, the first one being

reviewed in Cochrane (2002). The second one can be found in Gerber and Shiu (1994). The method-

ology unfolds as follows. The stochastic discount factor is the ratio of the risk neutral distribution

to the historical one. We assume for the stochastic discount factor a particular parametric form:

∀t ∈ {0, ..., T − 1}

Mt,t+1 = eθt+1Yt+1+ξt+1 (5)

where Yt+1 = log
(

St+1
St

)
and where θt+1 and ξt+1 are Ft = σ(zu; 0 ≤ u ≤ t) measurable random

variables. This hypothesis is implicit in many asset pricing models such as the Black and Scholes

(1973)’s model.

We compute explicitly (θt+1, ξt+1). Considering the bond and the risky asset, the pricing relation

Pt = EP[ΦT Mt,T | Ft] (6)

with ΦT the financial asset future random payoff, gives for T = t + 1 the following restrictions for the

stochastic discount factor  EP[erMt,t+1 | Ft] = 1

EP[eYt+1Mt,t+1 | Ft] = 1.
(7)

Using the previous restrictions with Generalized Hyperbolic innovations, the distribution of Yt given

Ft−1 under Q is again a Generalized Hyperbolic one

GH

(
λ,

α√
ht

,
β√
ht

+ θq
t , δ

√
ht,Mt + µ

√
ht

)
(8)
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with Mt = r + mt and where (θq
t+1, ξ

q
t+1) is the unique solution of (7). This essential property is

proved in Chorro et al. (2008a) where the corresponding Monte Carlo pricing methodology is also

explained.

3.2 Empirical Martingale Correction approach

This second approach to "risk neutralization" is inspired from the variance reduction tool presented in

Duan and Simonato (1998). A similar idea used together with an optimization procedure is followed

by Barone-Adesi et al. (2007) to overcome the classical option pricing framework. Here, we make no

assumption on the shape of the pricing kernel and we compute prices for options with time to maturity

(T − t) by simulating sampled paths of the previous stochastic model under the historical distribution

P. To rule out arbitrage opportunities, we directly impose risk neutral constraints. The ith sampled

historical final price for the underlying is denoted by ST,i = St

T∏
k=t+1

eYk where Yk is given by (1) .

The Empirical Martingale Correction works by replacing the previous sampled prices by:

S̃T,i =
ST,i

1/N
∑N

i=1 ST,i

Ste
−r(T−t). (9)

The sampled average of S̃T,i is exactly equal to Ste
r(T−t), that is the risk neutral conditional expec-

tation. With this approach, we only shift the historical distribution in a way that prevents arbitrage

opportunities by implicitly changing the drift of this distribution.

4 Results

The dataset that we use contains the following time series. We consider daily log returns of the

French CAC 40 whose price at time t is denoted St. The sample starts on January 2, 1988 and ends

on October 26, 2007.

Concerning the estimation we are naturally led to a two steps methodology. We first estimate the

EGARCH parameters driving the historical distribution with a Quasi Maximum Likelihood Estimation

using a rolling window of 4’000 observations and ending at time t. At the second stage, since we exactly

know the form of the density function of a GH distribution (7) we adopt a classical maximum likelihood

approach to estimate the unknown remaining parameters (λ, α, β, δ, µ) using the residuals obtained at

the previous stage. The key point in our approach is to maintain as much outliers in the dataset as

possible: these extremal events are essential to fit the GH parameters and to control the tail behaviors.
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The average values obtained for each parameters driving the EGARCH model are presented in table

1 and those driving the GH distribution are presented in 2. Then, we price options using either the

SDF or the EMC methodologies.

We get the approximated option price C̃(.) as the sample average of the simulated final prices:

C̃(t, T, K) =
1
N

N∑
i=1

(ST,i −K)+ e−r(T−t). (10)

In practice, the number of sampled paths N is equal to 10 000.

Finally, to compare the two option pricing methods, we use the average absolute relative pricing

errors criterion for the working days t between January 2, 2006 (τ1) and October 26, 2007 (τ2). Let

C̃(t, Tj ,Ki) be the estimated call option price with a time to maturity equal to Tj − t and a strike

price worth Ki and C(t, Tj ,Ki) be the corresponding quoted market option price. Then the criterion

is

AARPE =
τ2∑

t=τ1

Jt∑
j=1

Gt,j∑
i=1

∣∣∣∣∣ C̃(t, Tj ,Ki)− C(t, Tj ,Ki)
C(t, Tj ,Ki)

∣∣∣∣∣ , (11)

where Jt is the number of call option maturities Tj available at time t and Gt,j the number of strikes

Ki available at time t for this particular maturity Tj .

This criterion is robust to the well known fact that option pricing errors are proportional to the

moneyness: out of the money call option prices are very low, and so are the usual errors found. The

converse is true for deep in the money option prices. Table 3 presents the value obtained for this

criterion with the two different approaches to produce this change in distribution.

First, the scale of errors obtained are very closed to the one obtained in Barone-Adesi et al. (2007),

whereas they directly optimize the GARCH parameters to match the option prices. Second, for time to

maturities beyond 1 year, the pricing kernel based option prices are clearly dominated by the simpler

method. Third, for time to maturities between .5 and 1 year, the results get trickier to analyze:

depending on the moneyness, one method may dominate the other. Globally, the errors obtained for

each approach are very close. The main conclusion of these estimation results can be summarized as

follows: when taking into account the returns’ time series properties with much care, the change in

distribution from the historical to the risk neutral probabilities is not that essential anymore. The

simple martingalization produced by the EMC approach is enough to ensure small pricing errors.
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5 Conclusion

We compare two different approaches to price options in a discrete time setting. The first one lies

on classical theoretical results derived from the Black and Scholes (1973)’s hedging methodology to

change from the historical to the risk neutral distribution. The second one is only based on no arbitrage

requirements avoiding any technical arguments. By doing this, we end up with the intuition that a

simple change in the drift clearly challenges a more sophisticated methodology that is widely used in

the financial economics literature. The use of a time series model with innovations that encompasses

most of the known features of financial assets’ returns seems to be more essential to option pricing.

A forthcoming paper is ongoing to deeply explore this feature with other datasets and also to compare

the (EMC) to the pricing methodology proposed by Elliott and Madan (1998).
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a0 b1 a1 γ λ0

Average -5.51 0.47 0.01 0.91 0.08
Std. Dev. 0.33 0.04 0.02 0.02 0.03

Table 1: Descriptive statistics on the average estimated parameters for the EGARCH model.

α β δ µ λ

Average 308.42 -2.77 335.64 3.04 -78.46
Std. Dev. 139.90 5.08 152.02 5.51 76.68

Table 2: Descriptive statistics on the average estimated parameters for the GH distribution.

.5 < Maturity < 1
[.8-.9] [.9-1] [1-1.1] [1.1-1.2] > 1.2

SDF correction Nelson GH 0.072508156 0.034220274 0.08973236 0.211844412 0.473990647
Mart. Correction Nelson GH 0.070375688 0.032051441 0.112397312 0.225184538 0.40081137

Maturity > 1
[.8-.9] [.9-1] [1-1.1] [1.1-1.2] > 1.2

SDF correction Nelson GH 0.120757162 0.088165393 0.069513071 0.118837264 0.261635523
Mart. correction Nelson GH 0.119581221 0.087505694 0.067820071 0.119243876 0.266680359

Table 3: Absolute average mispricing errors for the CAC 40 french index disaggregated by maturities
and moneyness, using the stochastic discount factor restrictions (SDF correction) or the empirical
martingale correction (Mart correction).
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