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ABSTRACT

Foreign exchange rate plays an important role in international finance. This paper exam-

ines unit roots and the long range dependence of 23 foreign exchange rates using Robinson’s

(1994) test, which is one of the most efficient tests when testing fractional orders of sea-

sonal/cyclical long memory processes. Monte Carlo simulations are carried out to explore

the accuracy of the test before implementing the empirical applications.

1 Introduction

In recent years, there have been many changes in financial system. The perennial BOP (Bal-

ance of Payment) problem forced the countries to adopt the deregulation of interest as well

as foreign exchange. The adaption of the flexible exchange rate regime and the accelerated

integration of financial markets with globalization make the behavior of exchange rate more

complicated to understand, thus attracting a lot of attention of the policy makers. In fact,

exchange rate affects all countries small or big. For example, large exchange rate fluctua-

tions in an environment of increased international capital mobility affect the level of inflation

predictability and the pricing of financial assets, while it may be desirable to promote com-

petitive depreciation to suit domestic economic interests. Therefore, it is interesting and

meaningful to study and predict behavior of the foreign exchange rates.

One popular technique to analyze the financial data is time series analysis methodology.

The study of asset prices has begun with the findings of its stochastic nature, modeling the

exchange rate by random walk, Brownian motion, etc. But there still exist many advance-

ments concerning the modeling technique, for instance, long memory processes. Since the

introduction of fractionally integrated process by Granger and Joyeux (1980) and Hosking

(1981), many extensions of long memory processes have been made. For example, Gray et

al. (1989) and Giraitis and Leipus (1995) introduced the Gegenbauer process, or seasonal

long memory process, which takes into account the seasonal persistence. More generally,
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Robinson (1994) proposed the seasonal/cyclical long memory process as follows:

F (B)Xt = (I −B)d0+θ0

k−1∏
i=1

(I − 2νiB + B2)di+θi(I + B)dk+θkXt = εt, (1)

where B is the backshift operator. For i = 1, · · · , k − 1, νi = cosλi, λi being any frequency

between 0 and π. For i = 0, 1, · · · k, θi belongs to [−1, 1], di is such that: |di| < 1/2 and

(εt)t is an innovation process to be specified. In Robinson (1994), a parametric Lagrange

Multiplier procedure is proposed to test whether the data stemmed from a stationary or a

non-stationary process under uncorrelated and weakly-correlated innovations. This method

has been proved to be the most efficient one when directed against the appropriate alter-

natives. In particular, the Robinson’s (1994) test can also deduce a parametric estimation

method since under the null hypothesis, the test chooses the best long memory parameter

which corresponds to the greatest p−value of the Chi-squared test. In the literature, we

can find many applications of this test. For example, Gil-Alana (2000, 2001), Depenya and

Gil-Alana (2006), Gil-Alana and Robinson (1997, 2001), etc. They have made the applica-

tions on the fourteen US macroeconomic variables, Spanish Stock Market prices, UK and

Japanese consumption and income series, etc.

However, before empirical application, we need to know the accuracy of the Robinson’s

(1994) test. One interesting work is that Ferarra et al. (2010) have investigated the finite

sample behavior of Robinson’s (1994) test for several stationary long memory processes.

They study and assess the rate of convergence of the estimators, which provides a useful

reference for empirical practitioners. Whereas, we can often observe non-stationarity in the

foreign exchange data series. Many authors handle this problem by executing some trans-

formations to obtain the stationarity. To name just a few, Granger and Joyeux (1980),

Gray et al. (1989), Hsu and Tsai (2008). However, in practice, series can not always be

made stationary even by transformation or sometimes it has no sense to make the data sets

stationary. Therefore, some authors model the series directly by non-stationary processes.

In this paper, we will study and assess the rate of convergence of the estimator derived

3
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by Robinson’s (1994) test in the non-stationary setting for long memory models, aiming at

exploring the accuracy of the test in the non-stationary setting. Then we will carry out the

empirical applications on the 23 exchange rate series. In fact, the presence of long memory

dynamics in exchange rates violates the weak form of Efficient Market Hypothesis (EMH)

as it implies nonlinear dependence in the first moment of the distribution and hence a po-

tentially predictable component in series dynamics.

Therefore, the issue of non-stationarity and long range dependence is not merely a statistical

curiosity but has several important implications for the modeling of exchange rates. In this

paper, we try to investigate the presence of non-stationarity and fractional dynamics of the

following foreign exchange rates, Brazilian Reals to one U.S. Dollar, Canadian Dollar to one

U.S. Dollar, Chinese Yuan to one U.S. Dollar, Danish Kroner to one U.S. Dollar, Hong Kong

Dollar to one U.S. Dollar, Indian Rupees to one U.S. Dollar, Japanese Yen to U.S. Dollar,

South Korean Won to one U.S. Dollar, Malaysian Ringgit to one U.S. Dollar, Mexican New

Pesos to one U.S. Dollar, Norwegian Kroner to one U.S. Dollar, Swedish Kroner to one U.S.

Dollar, South African Rand to one U.S. Dollar, Singapore Dollar to one U.S. Dollar, Sri

Lankan Rupees to one U.S. Dollar, Swiss Francs to one U.S. Dollar, New Taiwan Dollar to

one U.S. Dollar, Thai Baht to one U.S. Dollar, U.S. Dollar to one Australian Dollar, U.S.

Dollar to one Euro, U.S. Dollar to one New Zealand Dollar, U.S. Dollar to one British Pound,

Venezuelan Bolivares to one U.S. Dollar.

The paper is organized as follows: in Section 2, we present our methodology and the ap-

plication of Robinson’s (1994) test on seasonal/cyclical long memory processes in the non-

stationary setting. Section 3 is the result of Monte Carlo simulations. Section 4 presents

the empirical application of foreign exchange rates using Robinson’s (1994) test. Section 5

concludes.
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2 Modeling and Test

According to stationarity, stochastic processes can be classified into stationary processes and

non-stationary processes. Ferrara et al. (2010) have explored the finite sample behavior of

the Robinson’s (1994) test for the stationary seasonal/cyclical long-memory processes. Here,

we focus on the application of the Robinson’s (1994) test on non-stationary long memory

processes with constant parameter. We will explore the performance of the test and assess

the rate of convergence of the estimator obtained from the test.

2.1 Some SCLM Models

We specify now the non-stationary long memory models we derived from model (1), which

are often used for macroeconomic and financial data.

• Non-stationary FI(d) (Fractionally Integrated) process:

(I −B)dXt = εt, (2)

where (εt)t is a white noise and d > 1/2. This class of non-stationary models permits

to take into account the existence of an infinite cycle, namely an explosion for the very

low frequencies.

• Non-stationary models with a fixed seasonal periodicity s:

(I −Bs)dXt = εt. (3)

where d > 1/2 and s = 4 or s = 12. This representation is useful for quarterly data

sets using s = 4 and for monthly data using s = 12. This filter allows to model non-

stationary fractional seasonalities. The spectral density of the process (3) is unbounded

at the three seasonal frequencies {0, π/2, π} on the interval [0, π].

• Non-stationary models with an infinite cycle and another seasonality:

(I −B)d1(I −Bs)d2Xt = εt. (4)

5
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where d > 1/2, d2 > 1/2, s = 4 or s = 12. The parameter d1 corresponds to the

persistence associated to the infinite cycle and d2 to the persistence associated to

the fixed seasonality. The spectral density of the process (4) is unbounded at three

frequencies {0, π/2, π} on the interval [0, π].

• Non-stationary models with k persistent periodicities:

k∏
i=1

(I − 2νiB + B2)diXt = εt, (5)

with, for i = 1, . . . , k, νi = cos(λi), the frequencies λi = cos−1(νi) being the Gegenbauer

frequencies or the G-frequencies and di > 1/2. The spectral density of the process (5)

is unbounded at the k Gegenbauer frequencies.

2.2 Robinson’s (1994) test

Now we briefly describe Robinson’s (1994) test which is a Lagrange Multiplier test for testing

unit roots and other fractionally hypotheses when the roots are located at any frequency on

the interval [0, π]. The test is derived via the score principle and its asymptotic critical

values obey the Chi-squared distribution. Let (Yt)t be a stochastic process such that:

Yt = β
′
Zt + Xt, (6)

where (Zt)t is a k × 1 observable vector, β an unknown k × 1 vector and (Xt)t a process

which follows Equation (1). Since we focus on the test of the long memory parameters in

model (1), in the rest of the paper, we assume a priori that β = 0 in (6) and (εt)t is either a

strong white noise or a weekly autocorrelated noise.

Robinson (1994) works with the general model (1) for a fixed d and tests the assumption

H0 : θ = (θ0, · · · , θk)
′ = 0,

against the alternative:

Ha : θ 6= 0.

6
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The test statistic is defined by:

R̃ =
T

σ̃4

ã2

Ã
, (7)

where T is the length of the raw time series and

σ̃2 =
2π

T

∗∑
j

Iε̃(λj).

Iε̃(λj) is the periodogram of ε̃t with ε̃t = F (B)Yt, F (B) being given in Equation (1) under

the null. Moreover, we get:

Ã =
2

T

∗∑
j

ψ(λj) · ψ(λj)
′,

and

ã2 =
−2π

T

∗∑
j

ψ(λj)I(λj),

where
∑∗

j is the sum over λj =
2πj

T
∈ M = {λ : −π < λ < π, λ /∈ (ρl − η, ρl + η)} such that

ρl are the distinct poles of ψ(λ) on (−π, π], η is a given positive constant. Finally, we get:

ψ(λj) = (ψl(λj)),

with

ψl(λj) = δ0l log |2sin1

2
λj|+ δkl log(2cos

1

2
λj) +

k∑
i=1

δil log(|2(cosλj − cos ωi)|,

for l = 0, 1, · · · , k, where δil = 1 if i = l and 0 otherwise.

Under certain regularity conditions, Robinson (1994) established that:

R̃ →d χ2
k+1,

where k + 1 = dim(θ). If χ2
k+1 represents the χ2 distribution with k + 1 degrees of freedom

then χ2
k+1,α represents a quantile for a given level α. As soon as R̃ > χ2

k+1,α, we reject H0,

with a risk α.

7
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2.3 Estimation

In fact, the Robinson’s (1994) test can work as a parameter estimation method for the SCLM

models both in the stationary and in the non-stationary settings, since under the null, the

test chooses the best long memory parameter which corresponds to the greatest p-value of the

Chi-squared test. We accept the null hypotheses if the p−value is greater than the significant

level and we reject it if the p-value is smaller than or equal to the significance level. Thus,

using the grid-search method, we can obtain the best estimation of the fractional parameter

in the models.

3 Monte Carlo Experiment

In this section, we carry out the Monte Carlo experiments for the non-stationary models

derived from model (1) using different sample sizes with replications in order to assess the

accuracy of the Robinson’s (1994) test for various sample sizes. Under (H0), we simulate

different models using a strong Gaussian white noise (εt)t with zero mean and unit variance.

We consider nine various models: one model (2), two models (3), two models (4) and four

models (5). When we have only one factor in the model, the true value of the long memory

parameter is d = 0.8; in presence of two factors, we use d1 = 0.8 and d2 = 0.9; in presence

of three factors, we use d1 = 0.7, d2 = 0.8 and d3 = 0.9.

We consider several sample sizes T from 100 to 3000. We do not give the results up to 3000.

In all cases, we use three sizes of replication, TT = 100, 1000, 5000. We only present the

results for TT = 5000, because the results are quite similar with the other two cases. The

results are available upon request.

We carry out the code on the computer Dell Optiplex, written in language R. The random

numbers are generated by the command "rnorm()" as the pseudo random numbers. In the

8
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tables the notation d̂ represents the estimated mean of the TT realizations (d̂1, . . . , d̂TT ) pos-

sessing the greatest p−value of the test. In Table 1, ..., Table 9, n represents the percentage of

times that we get the true value for all the long memory parameters involved into the models.

We find that for the models with only one term, like models (2) and (5) with k = 1,

the test performs correctly for sample size greater than 1000. However, for the models (3),

although there is only one parameter to test, the test does not present good performances.

The performances become correct for sample sizes equal to 2000 and 3000. The same results

are observed when we simulate models with several factors, like the models (4) and (5) with

k ≥ 2. The more the explosions are inside the spectral density, the worse is the test’s perfor-

mance. From a general point of view, as expected, the performance of the test improves with

the sample size. These results are consistent with the simulation results for the stationary

long memory processes realized by Ferrara et al. (2010).

In the presence of an infinite cycle, when we simulate the models (2) and (4), the com-

parison of the performances of the test shows that the convergence is slower. Sometimes

the test does not converge at all. We observe also that the test does not converge when we

use the model (3) with s = 12. In any case, the test’s convergence is very slow for all the

models we use. As soon as we have more than one explosion, we need to use almost 1000

data to be sure to attain in mean the correct estimated value. When we have more than one

explosion inside the spectral density, it appears difficult to use the test for samples whose

size is smaller than 3000.

Comparing our results with that of the stationary long memory processes using Robin-

son’s (1994) test, we find that they are quite similar. The sample size is still crucial for the

accuracy of the test, which can not be too small on order to apply Robinson’s (1994) test.

This is not surprising since they stemmed from the same test.

The main results are the following: assuming that the noise (εt)t is a strong white noise in

9
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T 100 300 500 700 900 1000 2000 3000

n 35.98 67.8 81.08 88.96 94.22 95.74 99.94 99.48

d̂ 0.750 0.785 0.792 0.797 0.799 0.799 0.800 0.800

Table 1: Test for model (1−B)0.8Xt = εt where εt ∼ N(0,1).

T 100 300 500 700 900 1000 2000 3000

n 6.24 36.06 58.24 73.28 83.88 87.44 98.62 99.88

d̂ 0.596 0.730 0.760 0.775 0.785 0.788 0.799 0.800

Table 2: Test for model (1−B4)0.8Xt = εt where εt ∼ N(0,1).

T 100 300 500 700 900 1000 2000 3000

n 0 1.94 1.94 7.36 19.34 23.4 76.74 95.88

d̂ 0.5 0.551 0.643 0.6929 0.7172 0.7223 0.7767 0.796

Table 3: Test for model (1−B12)0.8Xt = εt where εt ∼ N(0,1).

T 100 300 500 700 900 1000 2000 3000

n 2.24 17.42 32.98 46.6 56.44 61.62 88.72 95.96

d̂1 0.785 0.804 0.803 0.804 0.802 0.803 0.801 0.800

d̂2 0.658 0.819 0.855 0.870 9 0.878 0.882 0.895 0.898

Table 4: Test for model (1−B)0.8(1−B4)0.9Xt = εt where εt ∼ N(0,1).

T 100 300 500 700 900 1000 2000 3000

n 0 0.78 3.74 10.9 21.04 24.04 65.92 87.94

d̂1 0.753 0.807 0.804 0.8044 0.8045 0.804 0.802 0.800

d̂2 0.501 0.629 0.737 0.7875 0.8186 0.823 0.870 0.889

Table 5: Test for model (1−B)0.8(1−B12)0.9Xt = εt where εt ∼ N(0,1).

all the models:

• For the model (2), d̂ = 0.8 when T reaches 2000.

10
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T 100 300 500 700 900 1000 2000 3000

n 36.38 69.28 81.5 89.5 94.1 94.54 99.54 99.98

d̂ 0.749 0.786 0.793 0.797 0.799 0.799 0.800 0.800

Table 6: Test for model (1− 2νB + B2)0.4Xt = (1 + B)0.8 = εt where εt ∼ N(0,1).

T 100 300 500 700 900 1000 2000 3000

n 16.06 39.24 54.94 61.54 69.9 71.82 89.8 95.82

d̂ 0.674 0.747 0.764 0.770 0.777 0.779 0.792 0.797

Table 7: Test for model (1− 2νB + B2)0.8Xt = εt, ν = cos π
3 and εt ∼ N(0,1).

T 100 300 500 700 900 1000 2000 3000

n 1.56 19 37 52.38 66.76 70.54 93.82 98.82

d̂1 0.556 0.701 0.741 0.760 0.776 0.780 0.796 0.799

d̂2 0.713 0.830 0.858 0.871 0.882 0.885 0.897 0.900

Table 8: Test for model (1 − 2ν1B + B2)0.8(1 − 2ν2B + B2)0.9Xt = εt, ν1 = cos π
3 , ν2 = cos 5π

6 and εt ∼
N(0,1).

T 100 300 500 700 900 1000 2000 3000

n 0.28 12.46 33.74 56.04 73.2 79.02 98.56 99.96

d̂1 0.545 0.631 0.659 0.676 0.687 0.690 0.699 0.699

d̂2 0.665 0.746 0.769 0.781 0.788 0.792 0.800 0.800

d̂3 0.646 0.812 0.849 0.871 0.884 0.887 0.899 0.900

Table 9: Test for model (1− 2ν1B + B2)0.2(1− 2ν2B + B2)0.3(1− 2ν3B + B2)0.4Xt = εt, ν1 = cos π
6 , ν2 =

cos π
2 , ν3 = cos 2π

3 and εt ∼ N(0,1).

• For the models (3), d̂ = 0.8, for s = 4 when T reaches 2000, and the test does not

converge when we use s = 12.

• For the models (4), d̂1 = 0.800, d̂2 = 0.898, for s = 4 and d̂1 = 0.800, d̂2 = 0.889 for

s = 12, when T reaches 3000.

11
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• For the 1-factor model (5),

1. If ν = −1, d̂ = 0.800 when T reaches 2000.

2. If ν = cos(π/3), d̂ = 0.797 when T reaches 3000.

• For a 2-factors model (5), d̂1 = 0.799 and d̂2 = 0.900 when T reaches 3000.

• For a 3-factors model (5), d̂1 = 0.699, d̂2 = 0.800 and d̂3 = 0.900 when T reaches 3000.

4 Empirical Application

In this section, we explore the 23 series of daily foreign exchange rates: Brazilian Reals to

one U.S. Dollar, Canadian Dollar to one U.S. Dollar, Chinese Yuan to one U.S. Dollar, Dan-

ish Kroner to one U.S. Dollar, Hong Kong Dollar to one U.S. Dollar, Indian Rupees to one

U.S. Dollar, Japanese Yen to U.S. Dollar, South Korean Won to one U.S. Dollar, Malaysian

Ringgit to one U.S. Dollar, Mexican New Pesos to one U.S. Dollar, Norwegian Kroner to

one U.S. Dollar, Swedish Kroner to one U.S. Dollar, South African Rand to one U.S. Dollar,

Singapore Dollar to one U.S. Dollar, Sri Lankan Rupees to one U.S. Dollar, Swiss Francs to

one U.S. Dollar, New Taiwan Dollar to one U.S. Dollar, Thai Baht to one U.S. Dollar, U.S.

Dollar to one Australian Dollar, U.S. Dollar to one Euro, U.S. Dollar to one New Zealand

Dollar, U.S. Dollar to one British Pound, Venezuelan Bolivares to one U.S. Dollar. The data

are obtained from the Board of Governors of the Federal Reserve System. We include all the

historical available data in this study from 1971/01/04 to 2010/05/14. Noon buying rates

in New York City for cable transfers is payable in foreign currencies.

First of all, we explore the graphical characteristics, such as trajectory, autocorrelation

function (ACF), spectrum and histogram of these 23 series, see Figure 1, ..., Figure 23.

Therefore, we decide to model the series by the model

(I −B)d = εt, (8)

12
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Figure 1: Trajectory, ACF, spectrum and

histogram of Brazil/U.S. exchange rate.
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Figure 2: Trajectory, ACF, spectrum and his-

togram of Canada/U.S. exchange rate.
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Figure 3: Trajectory, ACF, spectrum and

histogram of China/U.S. exchange rate.
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Figure 4: Trajectory, ACF, spectrum

and histogram of Denmark/U.S. exchange

rate.

Time

y

0 2000 4000 6000

5.
0

6.
0

7.
0

8.
0

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  y

0.0 0.1 0.2 0.3 0.4 0.5

1e
−

07
1e

−
03

1e
+

01

frequency

sp
ec

tr
um

Series: x
Raw Periodogram

bandwidth = 3.85e−05

Histogram of y

y

F
re

qu
en

cy

5 6 7 8

0
10

00
30

00
50

00

Figure 5: Trajectory, ACF, spectrum and

histogram of Hong Kong/U.S. exchange

rate.
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Figure 6: Trajectory, ACF, spectrum and

histogram of India/U.S. exchange rate.

13

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.59

ha
ls

hs
-0

05
05

11
7,

 v
er

si
on

 1
 - 

22
 J

ul
 2

01
0



Time

y

0 2000 4000 6000 8000 10000

10
0

20
0

30
0

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F
Series  y

0.0 0.1 0.2 0.3 0.4 0.5

1e
−

05
1e

+
01

frequency

sp
ec

tr
um

Series: x
Raw Periodogram

bandwidth = 2.89e−05

Histogram of y

y

F
re

qu
en

cy

100 150 200 250 300 350

0
50

0
15

00
25

00

Figure 7: Trajectory, ACF, spectrum and

histogram of Japan/U.S. exchange rate.
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Figure 8: Trajectory, ACF, spectrum and

histogram of South Korea/U.S. exchange

rate.
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Figure 9: Trajectory, ACF, spectrum

and histogram of Malaysia/U.S. exchange

rate.
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Figure 10: Trajectory, ACF, spectrum

and histogram of Mexico/U.S. exchange

rate.
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Figure 11: Trajectory, ACF, spectrum

and histogram of Norway/U.S. exchange

rate.
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Figure 12: Trajectory, ACF, spectrum

and histogram of Sweden/U.S. exchange

rate.
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Figure 13: Trajectory, ACF, spectrum

and histogram of South Africa/U.S. ex-

change rate.
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Figure 14: Trajectory, ACF, spectrum

and histogram of Singapore/U.S. ex-

change rate.
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Figure 15: Trajectory, ACF, spectrum

and histogram of Sri Lanka/U.S. ex-

change rate.
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Figure 16: Trajectory, ACF, spectrum

and histogram of Switzerland/U.S. ex-

change rate.
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Figure 17: Trajectory, ACF, spectrum

and histogram of Taiwan/U.S. exchange

rate.
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Figure 18: Trajectory, ACF, spectrum

and histogram of Thailand/U.S. exchange

rate.
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Figure 19: Trajectory, ACF, spectrum

and histogram of U.S./Australia exchange

rate.
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Figure 20: Trajectory, ACF, spectrum

and histogram of U.S./EU exchange rate.
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Figure 21: Trajectory, ACF, spectrum

and histogram of U.S./New Zealand ex-

change rate.
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Figure 22: Trajectory, ACF, spectrum

and histogram of U.S./UK exchange rate.
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Figure 23: Trajectory, ACF, spectrum

and histogram of Venezuela/U.S. ex-

change rate.
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where d is a real number and εt is an innovation. We adopt Robinson’s (1994) test as the

estimation method. Since the sample sizes of these 23 series are all large enough, the accu-

racy of the estimation is ensured according to the Monte Carlo simulation results obtained

in the previous section. The estimation results are presented in the Table 10.

Reading the table, we find that the estimates for the parameter d in model (2) are all

close to 1, which indicates the existence of unit roots. More precisely, We can classify the

series into three classes. There are nine exchange rate series possessing the parameters d

which are greater than 1, i.e., Brazilian Reals/U.S. Dollar, Canadian Dollar/U.S. Dollar,

Japanese Yen/U.S. Dollar, South Korean Won/U.S. Dollar, Malaysian Ringgit/U.S. Dol-

lar, Swiss Francs/U.S. Dollar, New Taiwan Dollar/U.S. Dollar, Thai Baht/U.S. Dollar and

U.S. Dollar/British Pound. Besides, there are thirteen series possessing the parameter d

slightly smaller than 1, i.e., Danish Kroner/U.S. Dollar, Hong Kong Dollar/U.S. Dollar, In-

dian Rupees/U.S. Dollar, Mexican New Pesos/U.S. Dollar, Norwegian Kroner/U.S. Dollar,

Swedish Kroner/U.S. Dollar, South African Rand/U.S. Dollar, Singapore Dollar/U.S. Dollar,

U.S./Australian Dollar, U.S. Dollar/Euro, U.S. Dollar/New Zealand Dollar and Venezuelan

Bolivares/U.S. Dollar. The third class is the Chinese Yuan/U.S. Dollar, whose parameter d

equals strictly to 1. Thus, we can have a basic understanding of the difference and similarity

between the exchange rate series of 23 countries and regions.

5 Conclusion

In this paper, we first evaluate the performances of the Robinson’s (1994) test for several

simulated SCLM models in the non-stationary setting. We show that the sample size is

crucial for the accuracy of the test in the non-stationary setting. It appears that the use of

this test is mainly recommended when we observe only one explosion in the spectral density

if we have at least 1000 points. If more than one explosion are present inside the spectral

density, this test does not provide accurate information if the sample size of the data set is
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Exchange Rate Series #Observation estimated parameter d̂ p-value

Brazilian Reals to one U.S. Dollar 3865 1.013 0.9892759

Canadian Dollar to one U.S. Dollar 9889 1.008 0.9787710

Chinese Yuan to one U.S. Dollar 7323 1.000 0.9782972

Danish Kroner to one U.S. Dollar 9882 0.976 0.9610163

Hong Kong Dollar to one U.S. Dollar 7383 0.967 0.9672684

Indian Rupees to one U.S. Dollar 9375 0.98 0.9831581

Japanese Yen to U.S. Dollar 9877 1.027 0.9823676

South Korean Won to one U.S. Dollar 7269 1.004 0.9610163

Malaysian Ringgit to one U.S. Dollar 9861 1.012 0.9714096

Mexican New Pesos to one U.S. Dollar 4151 0.957 0.9886739

Norwegian Kroner to one U.S. Dollar 9882 0.994 0.9718242

Swedish Kroner to one U.S. Dollar 9882 0.996 0.9909451

South African Rand to one U.S. Dollar 9856 0.986 0.9922439

Singapore Dollar to one U.S. Dollar 7382 0.965 0.9907880

Sri Lankan Rupees to one U.S. Dollar 9023 0.951 0.9726769

Swiss Francs to one U.S. Dollar 9883 1.010 0.9820905

New Taiwan Dollar to one U.S. Dollar 6396 1.009 0.9733031

Thai Baht to one U.S. Dollar 7302 1.002 0.9935269

U.S. Dollar to one Australian Dollar 9867 0.996 0.9754904

U.S. Dollar to one Euro 2862 0.970 0.9977455

U.S. Dollar to one New Zealand Dollar 9867 0.988 0.9972029

U.S. Dollar to one British Pound 9883 1.030 0.9978828

Venezuelan Bolivares to one U.S. Dollar 3859 0.996 0.9838211

Table 10: Estimation Results for the long memory parameter in model (8) using Robinson’s (1994) test.
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less than 3000. This latter result raises concern as regards the applications of Robinson’s

(1994) test to seasonal macroeconomics data.

The application of Robinson’s (1994) test on the popular 23 daily foreign exchange rate

series indicates the existence of unit roots and some kind of long rang dependence. Accord-

ing to the values of estimations of the parameters, we classified the series into three classes,

which indicates the similar GDP behavior with respect to the long memory parameter in the

same class.
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