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Abstract

This paper studies the optimal growth of a developing non-renewable
natural resource producer. It extracts the resource from its soil, and
produces a single consumption good with man-made capital. More-
over, it can sell the extracted resource abroad and use the revenues
to buy an imported good, which is a perfect substitute of the domes-
tic consumption good. The domestic technology is convex-concave, so
that the economy may be locked into a poverty trap. We show that the
extent to which the country will escape from the poverty trap depends,
besides the interactions between its technology and its impatience, on
the characteristics of the resource revenue function, on the level of its
initial stock of capital, and on the abundance of the natural resource.
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1 Introduction

The question we want to address is the following: Can the ownership of non-
renewable natural resources allow a poor country to make the transition out
of a poverty trap? We suppose that the production function is convex for low
levels of capital and concave for high levels. The conditions of occurrence of
a poverty trap are then fulfilled (Dechert and Nishimura [4], Azariadis and
Stachurski [2]): the country, if initially poor, may be unable to pass beyond
the trap level of capital, that is to say to develop. But the country can also
extract its resource, sell it abroad 1, and use the revenues to buy an imported
good. The natural resource is a source of income, which, together with the
income coming from domestic production, can be used to consume, or to
invest in physical capital. The idea is that a poor country with abundant
natural resources could extract and sell an amount of resource which would
enable it to have a stock of capital sufficient to overcome the weakness of its
initial stock. We want to know on what circumstances would such a scenario
optimally occur. We make the assumption that the country does not have
any outside option. It does not have access to the international capital
market, and consequently has no possibility of either borrowing against its
resource stock or investing abroad. This restrictive assumption allows us
to concentrate on the interplay between the ownership of natural resources,
the technology, and development2.

We study in this paper the optimal extraction and depletion of the non-
renewable resource, and the optimal paths of physical capital and of domes-
tic consumption. We take into account the characteristics of the domestic
technology, the shape of the foreign demand for the non-renewable resource,
and of course the initial abundance of the resource and the initial level of
development of the country.

We show that in some cases, the ownership of the natural resource leads
the country to give up capital investment, eat the resource stock and col-

1In the same spirit, Eliasson and Turnowsky [5] study the growth paths of a small

economy exporting a renewable resource to import consumption goods, with a reference

to fish for Iceland, or forestry products for New-Zealand.
2We discuss in the conclusion how the results would be modified if the country had an

outside option.
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lapse asymptotically, while in others it allows the country to escape from
the poverty trap. The outcome depends, besides the interactions between
technology and impatience as in Dechert and Nishimura [4], on the charac-
teristics of the resource revenue function, on the level of its initial stock of
capital, and on the abundance of natural resource.

The remaining of the paper is organized as follows. Section 2 presents
the model. Section 3 gives the properties of the optimal growth paths and
comments the main results. Section 4 concludes by a discussion of how the
model can embed the case where the country has access to international
capital markets.

2 The model

We consider a country which possesses a stock of a non-renewable natural
resource S. This resource is extracted at a rate Rt, and then sold abroad
at a price P (Rt) in terms of the numeraire, which is the domestic single
consumption good. Extraction costs are C(Rt), with C ′(.) > 0. The revenue
from the sale of the natural resource, φ(Rt) = P (Rt)Rt − C(Rt), is used
to buy a foreign good, which is supposed to be a perfect substitute of the
domestic good, used for consumption and capital investment. φ(Rt) can
then be interpreted as the rate of transformation of the natural resource
into the consumption good. The domestic production function is F (kt)3,
convex for low levels of capital and then concave. The depreciation rate is
δ. We define the function f(kt) = F (kt) + (1 − δ)kt, and we shall, in the
following, name it for simplicity the technology. We are interested in the
optimal growth of this country which, if its initial capital is low, can be
locked into a poverty trap (Dechert and Nishimura [4]). Will the revenues
coming from the extraction of the natural resource allow it to escape from
the poverty trap? Or, on the contrary, will the existence of the natural
resource, which makes possible to consume without producing, destroy any
incentive to invest in capital?

3The labor input is supposed constant and is normalized to 1.
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Formally, we have to solve problem (P):

max
+∞∑
t=0

βtu(ct), β ∈ (0, 1)

under the constraints

∀t, ct ≥ 0, kt ≥ 0, Rt ≥ 0,

ct + kt+1 ≤ f(kt) + φ(Rt),
+∞∑
t=0

Rt ≤ S,

S > 0, k0 ≥ 0 are given.

We denote by V (k0, S) the value function of Problem (P). We make the
following assumptions:
H1 The utility function u is strictly concave, strictly increasing, continu-
ously differentiable in R+, and satisfies u(0) = 0, u′(0) = +∞.
H2 The production function F is continuously differentiable in R+, strictly
increasing, strictly convex from 0 to kI , strictly concave for k ≥ kI , and
F ′(+∞) < δ. Moreover, it satisfies F (0) = 0.
H3 The revenue function φ is continuously differentiable, concave, strictly
increasing from 0 to R̂ ≤ +∞, and strictly decreasing for R > R̂. It also
satisfies φ(0) = 0 and φ′(0) < +∞.

Notice that we suppose that the marginal revenue at the origin is finite
(φ′(0) < +∞) in order to rule out the case in which the resource is never
exhausted in finite time, whatever the technology, impatience and the initial
capital stock.

Throughout this paper, an infinite sequence (xt)t=0,...,+∞ will be denoted
by x. An optimal solution to Problem (P) will be denoted by (c∗,k∗,R∗).
We say that the sequences c, k, R are feasible from k0 and S if they satisfy
the constraints of problem (P).

The following results are standard.
1. The value function V (k0, S) is continuous in k0, given S.
2. There exists a constant A which depends on k0, R̂, and S, such that

for any feasible sequence (c,k,R), we have ∀t, 0 ≤ ct ≤ A, 0 ≤ kt ≤ A.
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Moreover, Problem (P) has an optimal solution. If kI = 0, then the solution
is unique.

3 Properties of the optimal paths

We now study the properties of the optimal paths.
In the following, the superscript ∗ denotes the optimal value of the vari-

ables.
The following results are based on the Inada conditions u′(0) = +∞, φ′(R̂) =

0 : For any t, c∗t > 0 and R∗t < R̂. Along the optimal path consumption
is always strictly positive and extraction always less than R̂, the extraction
corresponding to the maximum of the revenue function.

3.1 The Euler conditions and the Hotelling rule

We proceed with the optimality conditions of our problem (P).

Proposition 1 Let k0 ≥ 0. We have the following Euler conditions:

(i) ∀t, f ′(k∗t+1) ≤ u′(c∗t )
βu′(c∗t+1)

(E1)

with equality if k∗t+1 > 0,

(ii) ∀t, ∀t′, βtu′(c∗t )φ′(R∗t ) = βt
′
u′(c∗t′)φ

′(R∗t′), (E2)

if R∗t > 0, R∗t′ > 0, and

(iii) ∀t, ∀t′, βtu′(c∗t )φ′(R∗t ) ≤ βt
′
u′(c∗t′)φ

′(R∗t′), (E2′)

if R∗t = 0, R∗t′ > 0.

Proof : It is fairly standard and left to the reader.

Notice that in the case of an interior solution, equations (E1) and (E2)
allow us to obtain the Hotelling rule:

φ′(R∗t+1)
φ′(R∗t )

= f ′(k∗t+1). (1)
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It states that the growth rate of the marginal revenue obtained from the
resource is equal to the marginal productivity of capital along the optimal
path.

3.2 To accumulate or to “eat” the resource stock?

We know that consumption is always strictly positive along the optimal
path. But how is this consumption obtained? Does the country “eat” its
resource stock or does it invest in capital to produce the consumption good?
We show in the following that the answer depends on the characteristics of
the technology compared to impatience and depreciation, and on the size of
the non-renewable resource stock.

Consider first the case of a ”good” technology, in the sense that the
marginal productivity at the origin is larger than the sum of the social
discount rate and the depreciation rate, ρ+δ, with ρ = 1

β −1, i.e. f ′(0) > 1
β .

Then k∗t > 0 for any t ≥ 1. Then k∗t > 0 for any t ≥ 1, even k0 = 0. The
proof of this claim is available from the authors under request.

Consider now the case of an ”intermediate” technology, in the sense that
the marginal productivity of capital at the origin F ′(0) is larger than the
depreciation rate δ, i.e. if f ′(0) > 1. Then, even without any initial capital
endowment, the country will invest in capital from some date on and the
resource stock will be exhausted in finite time, at date Te (Proposition 2).

Proposition 2 Let k0 ≥ 0. Assume f ′(0) > 1. Then there exists T and Te
such that for all t ≥ T we have k∗t > 0, and for all t > Te, we have R∗t = 0.

Proof : See Appendix A.

Consider finally the case of a ”bad” technology, in the sense that the
average productivity of capital is very low, such that its highest possible
value is smaller than the depreciation rate. This can be due to very high
fixed costs, and is compatible with large marginal productivities at some
levels of capital. Then if the country’s initial capital endowment is smaller
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than a certain threshold, it will never invest in capital, whatever the level of
the resource stock (Proposition 3, part (a)). Moreover, for any given initial
capital endowment, when impatience is high enough the country will never
invest if the resource is very abundant (part (b)). If the country never in-
vests, it will not exhaust its resource in finite time, but “eat” it and collapse
asymptotically. Finally, for any given initial capital endowment, when impa-
tience is low enough the country will invest from period 1 on if the resource
is very abundant (part (c)). Depending on impatience, the abundance of
the natural resource has opposite incentive effects: abundance encourages
a patient economy to invest in physical capital, whereas it discourages an
impatient one to do so. Moreover, the smaller the initial capital stock the
larger the range of discount rates for which the country never invests.

Proposition 3 (a) Assume max{f(k)
k : k > 0} ≤ 1 and R̂ < +∞. Then

there exists ε > 0 such that, if k0 ≤ ε, then k∗t = 0 ∀t.
(b) Assume max{f(k)

k : k > 0} ≤ 1, R̂ < +∞ and β < u′(f(k0)+φ(R̂))

u′(φ(R̂))
.

Then k∗t = 0 ∀t ≥ 1 when S is large enough.
(c) Assume max{f(k)

k : k > 0} ≤ 1, R̂ < +∞, u′(+∞) = 0 and β >
1

f ′(0)
u′(f(k0)+φ(R̂))

u′(φ(R̂))
. Then k∗1 > 0 when S is large enough.

Proof : It is available under request.

3.3 The long term: is it possible to escape from the poverty

trap?

We now study the long term of our economy.
In the case of a good technology relatively to impatience, we will ob-

viously have the same result as Dechert and Nishimura [4]’s one, as the
ownership of an additional natural resource cannot worsen the conditions
of the country’s development in this optimal growth set-up. The resource
cannot be a curse, in the sense that a country is always better off with it
than without.

The interesting cases are those of intermediate and bad technologies
relatively to impatience. When the economy does not own any additional
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natural resource, it can be prevented from developing by the poverty trap
due to the shape of the technology, if its initial capital endowment is low.
Intuitively, if the country owns a large stock of natural resource and can
obtain high revenues from the extraction of a large amount of this stock at
the beginning of its development path, it may be able to have a stock of
capital large enough to reach the concave part of the technology and escape
the proverty trap. That is the point we want to investigate further.

We need a preliminary proposition, in which we study the case of an econ-
omy without natural resource, initially in the concave part of its production
function, receiving an exogenous additional resource, an international aid
for example, in periods 1 to T . We show that under some (mild) conditions
the total resources available at any period t between 1 and T increase with
the aid received at t along the optimal path, which is not a priori obvious as
the expectation of aid could induce less capital investment in the previous
periods. Hence, the economy is at period T still on the concave part of its
production function, whatever the aid it has received before.

Proposition 4 Consider the following problem:

max
+∞∑
t=0

βtu(ct)

under the constraints

c0 + k1 ≤ f(k0)

c1 + k2 ≤ f(k1) + a1

...

cT + kT+1 ≤ f(kT ) + aT

ct + kt+1 ≤ f(kt) t ≥ T + 1,

∀t, 0 ≤ ct, 0 ≤ kt, k0 > kI given,

with at ≥ 0 ∀t = 1, ..., T.

Assume f(kI)
kI

> 1
β and f ′(0) < 1

β <max{f(k)
k : k > 0}. Then, for any

ã = (a1, ..., aT ) ≥ 0, we have a unique solution {k∗t (ã)}t≥1 which increases
with ã. Hence, f(k∗T (ã)) + aT > f(kI).
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Proof : See Appendix B.

We now show, in the case of an intermediate technology relatively to
discounting, that the resource can allow the country to pass the poverty
trap. We need to suppose that there exists a feasible (i.e. less than R̂)
extraction level R̃ which, if performed in one go and used to invest in capital,
leads the country to the concave part of its technology. In Proposition 5, we
add the assumption ( φ

′(0)

φ′(R̃)
< f ′(0)) which can be interpreted either as low

decreasing returns to extraction or as small extraction level R̃. The second
case implicitly means that the concave part of the technology is reached for
a relatively small capital stock kI . We drop this assumption in Proposition
6, and give a lower bound for the initial stock of resource which ensures the
convergence to the steady state.

Proposition 5 Assume there exists R̃ ∈ (0, R̂) such that, if k′0 satisfies
f(k′0) = φ(R̃), then k′0 > kI . Assume moreover that f(kI)

kI
> 1

β and φ′(0)

φ′(R̃)
<

f ′(0) ≤ 1
β ≤ max{f(k)

k : k > 0}. The optimal sequence k∗ converges to ks as
t→ +∞.

Proof : From Proposition 2, there exists Te such that:

c∗Te−1 + k∗Te = f(k∗Te−1) + φ(R∗Te−1)

c∗Te + k∗Te+1 = f(k∗Te) + φ(R∗Te)

c∗t + k∗t+1 = f(k∗t ), ∀t ≥ Te + 1.

Case 1: R∗0 ≥ R̃.
Let k∗′0 satisfy f(k∗′0 ) = f(k∗t0) + φ(R∗t0). Then, k∗′0 > kI . From Proposition
4, f(k∗Te) + φ(R∗Te) > f(kI), and hence k∗Te+1 > kI . The optimal sequence
{k∗t }t>Te converges therefore to the steady state ks since kI > kc.
Case 2: R∗0 < R̃.
We have, from the Euler conditions

f ′(k∗1) ≤ φ′(R∗1)
φ′(R∗0)

≤ φ′(0)

φ′(R̃)
< f ′(0).

Observe that f ′(k) > f ′(0) for k ∈ [0, ks]. Hence k∗1 > ks > kI . From
Proposition 4, f(k∗Te) +φ(R∗Te) > f(kI), and hence k∗Te+1 > kI . The optimal
sequence {k∗t }t>Te converges therefore to ks.
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Proposition 6 Assume there exists R̃ ∈ (0, R̂) which satisfies φ(R̃) >

f(kI). Assume moreover that f(kI)
kI

> 1
β , 1 < f ′(0) < 1

β ≤ max{f(k)
k :

k > 0}. Let T̂ be defined by

φ′(0) = (f ′(0))T̂φ′(R̃). (2)

If S ≥ (T̂ + 1)R̃, then the optimal path {k∗t }t>Te converges to the steady
state ks.

Proof : Case 1 : There exists t0 ≤ Te such that f ′(k∗t0) < f ′(0). Then
k∗t0 > ks. From Proposition 4 again, k∗Te+1 > kI . The optimal sequence
converges to ks.
Case 2: ∀t ≤ Te, f

′(k∗t ) ≥ f ′(0) > 1. In this case, R∗t > 0 for t = 0, . . . , Te.

Since
φ′(R∗t+1)

φ′(R∗t )
≥ f ′(k∗t+1), ∀t ≤ Te − 1, we have R∗0 > R∗1 > . . . > R∗Te .

If R∗0 < R̃, then

φ′(0) > φ′(R∗Te) ≥
(
f ′(0)

)Te φ′(R∗0) ≥
(
f ′(0)

)Te φ′(R̃)

Therefore, T̂ > Te. And

S =
Te∑
t=0

R∗t < (Te + 1)R∗0 < (Te + 1)R̃ < (T̂ + 1)R̃

We have a contradiction. Hence, either R∗0 ≥ R̃ or there exists t0 ≤ Te such
that f ′(k∗t0) < f ′(0). In each case, the optimal capital path converges to ks.

Remark If φ′ is ”flat” (i.e. φ′(0)

φ′(R̃)
is close to one) or f ′(0) is close to 1

β with

β very small, we can take S close to R̃ . Indeed, if R∗0 < R̃, then as before
T̂ > Te. But from (2), T̂ is very small. And Te is zero and we exhaust
in one shot. This implies R∗0 = S ≥ R̃: a contradiction. Hence R∗0 ≥ R̃.
From Proposition 4 again, k∗Te+1 > kI . The optimal sequence converges to
ks. Observe that one can choose S = (T̂ + 1)R̃ which is close to R̃.

We have already noticed that in this optimal growth set-up the natural
resource cannot be a curse, in the sense that the economy is always better
off with this additional resource than without. The natural resource may
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nevertheless be a curse in the very specific sense of Rodriguez and Sachs [7]:
in some cases, the economy may optimally overshoot its steady state, and
then have, during the convergence towards the steady state, decreasing stock
of capital and consumption and a negative growth rate. This happens in
case 2 of the proof of Proposition 5, and in case 1 of the proof of Proposition
6.

4 Conclusion

We have shown under which circumstances can the ownership of a non-
renewable natural resource allow a poor country to escape from the poverty
trap, under the assumption that the amounts of the natural resource ex-
tracted at each period are directly transformed into the consumption good
through international trade. We want to show here how our model can
embed the more appealing case where the country is able to invest in inter-
national capital markets, or borrow against its resource stock. One could
plausibly assume that if the country wants to borrow, it will face a debt
constraint all the tighter since its resource stock is small. This framework
would be particularly relevant for oil-exporting countries.

Let mt be net good imports, Dt T 0 net foreign lending or debt, and
r the world interest rate, exogenous and constant for simplicity. The final
good domestic market and the foreign market balances read respectively:

ct + kt+1 = f(kt) +mt

Dt+1 +mt = (1 + r)Dt + φ(Rt).

Let Wt = kt + Dt be total wealth. The resource constraint the country
faces is then

ct + kt+1 +Dt+1 = max
kt≥0,Dt≥χ(S)

{f(kt) + (1 + r)Dt : kt +Dt = Wt}+ φ(Rt)

i.e.

ct +Wt+1 = max
kt≥0
{f(kt)− (1 + r)kt}+ (1 + r)Wt + φ(Rt)

= Ψ(Wt) + φ(Rt) with Wt ≥ χ(S),

12
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where χ(S) is the debt constraint, depending on the initial resource stock
and non-positive.

We consider by way of illustration the case of a technology satisfying
f ′(0) < 1 + r and f ′(kI) > 1 + r. Extending the reasoning to other convex-
concave technologies is straigthforward. Then maxkt≥0 {f(kt)− (1 + r)kt}
admits a unique solution k > kI , satisfying f ′(k) = 1+r. Following Askenazy
and Le Van [1], define k̃1 and k̃2 by

f(k̃1) = (1 + r)k̃1

f(k̃2) = (1 + r)k̃2

0 < k̃1 < k < k̃2.

Then function Ψ will be as follows:

Ψ(W ) = (1 + r)W, 0 ≤W ≤ k̃1

Ψ(W ) = f(W ), k̃1 ≤W ≤ k
Ψ(W ) = f(k) + (1 + r)W, k ≤W.

The extended technology Ψ is convex-concave. The most noteworthy dif-
ference from our model is that the return to wealth is constant for levels of
wealth greater than k, which will allow the country to grow without bounds
if it is patient enough.
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Appendix

A. Proof of Proposition 2

A.1. Lemma

In order to prove Proposition 2 we need an intermediary step.
Consider Problem (Q), the same problem as problem (P) but without

natural resource:

U(k0) = max
+∞∑
t=0

βtu(ct), β ∈ (0, 1)

under the constraints

∀t, ct ≥ 0, kt ≥ 0,

ct + kt+1 ≤ f(kt),

k0 ≥ 0 is given.

Let ϕ denote the optimal correspondence of (Q), i.e., k1 ∈ ϕ(k0) iff we have
k1 ∈ [0, f(k0)] and

U(k0) = u(f(k0)− k1) + βU(k1)

= max{u(f(k0)− y) + βU(y) : y ∈ [0, f(k0)]}.

Next consider Problem (Qa) where a is a sequence of non-negative real
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numbers which satisfies
+∞∑
t=0

at < +∞:

W (k0, (at)t≥0) = max
+∞∑
t=0

βtu(ct), β ∈ (0, 1)

under the constraints

∀t, ct ≥ 0, kt ≥ 0,

ct + kt+1 ≤ f(kt) + at,

k0 ≥ 0 is given.

Obviously, W (k0, 0) = U(k0), and W (k0, (at)t≥0) ≥ U(k0). We also have
the Bellman equation: for all k0,

W (k0, (at)t≥0) = max{u(f(k0)−y+a0)+βW (y, (at)t≥1) : y ∈ [0, f(k0)+a0]}.

Let ψ(., (at)t≥0) denote the optimal correspondence associated with (Qa),
i.e., k1 ∈ ψ(k0, (at)t≥0) iffW (k0, (at)t≥0) = u(f(k0)−k1+a0)+βW (k1, (at)t≥1)
and k1 ∈ [0, f(k0) + a0]. We have the following lemma, which basically as-
certains, in the model without natural resources but with windfall foreign
aid, the continuity of the optimal choiceswith respect to the initial capital
stock k0 and the sequence of aid a..

Lemma 1 Let kn0 → k0 and an → 0 in l∞ when n converges to infinity. If,
for any n, kn1 ∈ ψ(kn0 ,a

n) and kn1 → k1 as n→ +∞, then k1 ∈ ϕ(k0).

Proof : The proof is tedious and available from the authors under request.

A.2. Proof of Proposition 2

It will be done in many steps.
Step 1. Since f ′(0) > 1, we can choose ε > 0 such that f ′(0) > 1+ε. Assume
that there exists an infinite sequence {k∗tν}ν such that k∗tν = 0, for any ν, and
hence correspondently R∗tν > 0. Because

∑+∞
t=o R

∗
t = S we have R∗tν −→ 0
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as ν −→ +∞. Since R∗tν −→ 0 and R∗tν−1 either equals 0 or converges to 0,

there exists T such that φ′(R∗tν )

φ′(R∗tν−1)
< 1 + ε if tν ≥ T . We can write down the

optimal consumptions at time tν and tν − 1 as follows:

c∗tν−1 = φ(R∗tν−1) + f(k∗tν−1)

c∗tν = φ(R∗tν )− k∗tν+1

We have

u(c∗tν−1 − y) + βu(c∗tν + f(y)) ≤ u(c∗tν−1)) + βu(c∗tν ),

for all y ∈ [0, c∗tν−1], thus

−u′(c∗tν−1) + βu′(c∗tν )f ′(0) ≤ 0,

and we get a contradiction:

1 + ε < f ′(0) ≤
u′(c∗tν−1)
βu′(c∗tν )

≤ φ′(R∗tν )
φ′(R∗tν−1)

< 1 + ε.

So, there must exist T ≥ 1 such that k∗t > 0 for all t ≥ T .
Step 2. We will show that there exists T ′ such that R∗T ′ = 0. If not, for any
t ≥ T we have the Euler conditions:

βu′(c∗t+1)f ′(k∗t+1) = u′(c∗t ),

βu′(c∗t+1)φ′(R∗t+1) = u′(c∗t )φ
′(R∗t ).

Hence

f ′(k∗t+1) =
u′(c∗t )

βu′(c∗t+1)
=
φ′(R∗t+1)
φ′(R∗t )

.

Since
φ′(R∗t+1)

φ′(R∗t )
→ 1, we have f ′(k∗t+1) → 1, as t → +∞. Under our assump-

tions there exists a unique k̂ which satisfies f ′(k̂) = 1. Thus k∗t+1 → k̂. In
this case, for t large enough, u′(c∗t+1) > u′(c∗t ) ⇔ c∗t > c∗t+1. The sequence
c∗ converges to c̄. If c̄ > 0, we have f ′(k̂) = 1

β : a contradiction. So, c̄ = 0.
Since

∀t, c∗t+1 + k∗t+2 = f(k∗t+1) + φ(R∗t+1),

we have k̂ = f(k̂) with f ′(k̂) = 1, and that is impossible. Hence, there must
be T ′ with R∗T ′ = 0.
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Step 3. Assume there exists three sequences (c∗tν )ν , (k∗tν )ν , (R∗tν )ν which
satisfy

∀ν, c∗tν−1 + k∗tν = f(k∗tν−1)

c∗tν + k∗tν+1 = f(k∗tν ) + φ(R∗tν ), with R∗tν > 0.

Hence

∀ν, f ′(k∗tν ) =
u′(c∗tν−1)
βu′(c∗tν )

≤ φ′(R∗tν )
φ′(0)

< 1.

Therefore, ∀ν, k∗tν > k̂. Observe that there exists λ > 0 such that

∀ν, βtνu′(c∗tν )φ′(R∗tν ) = λ.

This implies c∗tν → 0 as ν → +∞. We know that k∗tν ≤ A,∀ν. One can
suppose k∗tν → k̄ ≥ k̂ > 0 and k∗tν+1 → k = f(k̄). From Lemma 1, k ∈ ϕ(k̄).
This implies c∗tν → c̄ = f(k̄)− k = 0. But, since k̄ > 0, we must have c̄ > 0
(see Le Van and Dana [6]). This contradiction implies the existence of Te
such that for all t ≥ Te, we have R∗t = 0.

B. Proof of Proposition 4

Let ã = (a1, ..., aT ). We write ã > 0 if at ≥ 0 ∀t = 1, ..., T, with strict
inequality for some t.

When ã = 0, we have k∗t (ã) > k0 > kI for any t ≥ 1. Then when ã > 0
and close to 0, it will still be true that k∗t (ã) > k0 > kI for any t ≥ 1, and
f(k∗T (ã)) + aT > f(kI).

We say that ã increases if no component decrease and at least one in-
creases.

We have 3 cases.
Case 1: kI < k0 < ks.

If V denotes the value function, then we have the Bellman equations

V (f(k0)) = max
0≤y≤f(k0)

{u(f(k0)− y) + βV (f(y) + a1)}

V (f(k1) + a1) = max
0≤y≤f(k1)+a1

{u(f(k1) + a1 − y) + βV (f(y) + a2)}
...

V (f(kT ) + aT ) = max
0≤y≤f(kT )+aT

{u(f(kT ) + aT − y) + βV (f(y))}.
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For ã > 0 and close to 0, the value function V is concave.We have the
following Euler relations:

u′(f(k0)− k∗1(ã)) = βV ′(f(k∗1(ã)) + a1)f ′(k∗1(ã))

u′(f(k∗1(ã)) + a1 − k∗2(ã)) = βV ′(f(k∗2(ã)) + a2)f ′(k∗2(ã))

...

u′(f(k∗t (ã)) + at − k∗t+1(ã)) = βV ′(f(k∗t+1(ã)) + at+1)f ′(k∗t+1(ã))

...

u′(f(k∗T (ã)) + aT − k∗T+1(ã)) = βV ′(f(k∗T+1(ã)))f ′(k∗T+1(ã)).

We first claim that when ã is close to 0 and increases, f(k∗t (ã)) + at

increases for any t = 1, ..., T.
Assume that ã increases and f(k∗1(ã)) + a1 decreases. It must then be

the case that k∗1(ã) decreases. Then the right-hand side of the first Euler
relation increases since V ′(k) and f ′(k) are decreasing functions for k > kI ,

and the left-hand side decreases since u′(c) is a decreasing function. We
have a contradiction. Hence f(k∗1(ã)) +a1 increases when ã is close to 0 and
increases. The claim is true for t = 1.

Assume now it is true up to t. We prove it for t + 1. Indeed if k∗t+1(ã)
increases, it is done. So assume k∗t+1(ã) decreases. If f(k∗t+1(ã)) + at+1

decreases, then the RHS of the corresponding Euler relation increases. For
the LHS, by induction f(k∗t (ã)) + at increases. Since k∗t+1(ã) decreases, this
LHS will decrease: a contradiction, and our claim is true.

We now prove that actually, for any t = 1, ..., T, f(k∗t (ã)) + at grows
without bounds. We proceed by induction.

First consider t = 1. Assume there exists ã such that if a1 > a1, then
f(k∗1(ã)) + a1 < f(k∗1(ã)) + a1. Let ã and ã′ be defined by at = a′t = at

∀t 6= 1 and a′1 < a1 < a1 with a1 close to a1 and a′1 close to a1, such that
f(k∗1(ã)) + a1 = f(k∗1(ã′)) + a′1. Consider the sequences (k∗t (ã)), (k∗t (ã

′))
satisfying

c∗0(ã) + k∗1(ã) = f(k0)

c∗1(ã) + k∗2(ã) = f(k∗1(ã)) + a1

c∗t (ã) + k∗t+1(ã) = f(k∗t (ã)) for t ≥ 2,
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and

c∗0(ã′) + k∗1(ã′) = f(k0)

c∗1(ã′) + k∗2(ã′) = f(k∗1(ã′)) + a′1

c∗t (ã
′) + k∗t+1(ã′) = f(k∗t (ã

′)) for t ≥ 2.

Since f(k∗1(ã′)) + a′1 = f(k∗1(ã)) + a1, the resources are the same at period
1 in the 2 cases, and the optimality principle implies c∗1(ã′) = c∗1(ã). The
following Euler relations hold:

u′(c∗0(ã)) = βu′(c∗1(ã))f ′(k∗1(ã)),

u′(c∗0(ã′)) = βu′(c∗1(ã′))f ′(k∗1(ã′)).

But k∗1(ã′) > k∗1(ã) since a1 > a′1, and hence c∗0(ã′) < c∗0(ã) and we have a
contradiction with the Euler relations. Hence f(k∗1(ã)) + a1 grows without
bounds with a1.

Assume it is true up to t− 1. We will prove it for t. Assume there exists
at such that if at > at, then f(k∗t (ã)) + at < f(k∗t (ã)) + at. Construct as
before ã and ã′ with as = a′s = as ∀s 6= 1 and a′t < at < at with a′t and at

close to at, and f(k∗t (ã)) + at = f(k∗t (ã
′)) + a′t. We have

c∗t−1(ã) + k∗t (ã) = f(kt−1(ã)) + at−1

c∗t (ã) + k∗t+1(ã) = f(k∗t (ã)) + at,

and

c∗t−1(ã′) + k∗t (ã
′) = f(kt−1(ã′)) + a′t−1

c∗t (ã
′) + k∗t+1(ã′) = f(k∗t (ã

′)) + a′t.

Since f(k∗t (ã
′)) + a′t = f(k∗t (ã)) + at, we have, by the optimality principle,

c∗t (ã
′) = c∗t (ã). We also have the following Euler relations:

u′(c∗t−1(ã)) = βu′(c∗t (ã))f ′(k∗t (ã)),

u′(c∗t−1(ã′)) = βu′(c∗t (ã
′))f ′(k∗t (ã

′)).

But we have assumed that f(k∗t−1(ã′))+a′t−1 ≤ f(k∗t−1(ã))+at−1. And since
k∗t (ã

′) > k∗t (ã), we get c∗t−1(ã′) < c∗t−1(ã). But a contradiction arises in the
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Euler relations because u′ and f ′ are decreasing. Hence f(k∗t (ã)) + at grows
without bounds with at. We conclude that fT (k∗T (ã)) +aT ) ≥ f(k0) > f(kI)
for any aT ≥ 0.
Case 2: k0 > ks.

When ã = 0, from Dechert and Nishimura we have k∗t (ã) > ks ∀t. We
use the same technics as in case 1 to get that f(k∗T (a)) + aT ≥ ks ∀aT ≥ 0.
Case 3: k0 = ks.

Actually k∗T (ã) depends continuously on k0, so we write k∗T (k0, ã) instead
of k∗T (ã). For k0 > ks, we have f(k∗T (k0, ã))+aT ≥ ks ∀aT ≥ 0. By continuity,
f(k∗T (ks, ã)) + aT ≥ ks ∀aT ≥ 0.
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