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Abstract. We present an application of relation algebra to measure agents’ ‘strength’ in a social

network with influence between agents. In particular, we deal with power, success, and influence of an

agent as measured by the generalized Hoede-Bakker index and its modifications, and by the influence

indices. We also apply relation algebra to determine followers of a coalition and the kernel of an influence

function. This leads to specifications, which can be executed with the help of the BDD-based tool Rel-

View after a simple translation into the tool’s programming language. As an example we consider the

present Dutch parliament.
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1 Introduction

In order to measure agents’ (or players’) ‘strength’ in a voting situation, a lot of power indices

have been proposed and analyzed in the course of more than fifty years (e.g. Banzhaf, 1965;

Coleman, 1971, 1986; Felsenthal and Machover, 1998; König and Bräuninger, 1998; Rae,

1969; Shapley and Shubik, 1954). In the voting power literature, one may find theoretical

analysis (which includes both the axiomatic and probabilistic approaches to power indices) as

well as applications of power indices. They have been especially applied to political science,

i.e., to decision-making in the European Union and the national parliaments (e.g. Hosli,

1997; Laruelle and Widgren, 1998; Nurmi and Meskanen, 1999). Since power indices can be

applied to all kinds of organizations: to political bodies, international economic organizations,

as well as to business settings, searching efficient methods for computing power indices, in

particular, in large voting games, is of great importance (Leech, 2003).

Coming from a different direction is an approach proposed in (Hoede and Bakker, 1982),

where a social network with players who are to make a ‘yes’-‘no’ decision is considered. In

this framework, the Hoede-Bakker index has been introduced. The essential feature of this

framework is the distinction between the inclination of a player (to say ‘yes’ or ‘no’) and
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2 Relations, RelView and Measures in Networks

the final decision of the player, which can be different from his initial inclination, due to

influences of others in the network. Such an influence is formally represented by an influence

function. The Hoede-Bakker index has been recently studied in (Rusinowska and de Swart

2006, 2007). In the first paper a generalization and some modifications of the Hoede-Bakker

index are introduced that coincide with some standard power indices. Although the Hoede-

Bakker index has been defined in the framework of influence, in fact it does not measure the

influence between players. Influence indices, influence functions, and some other concepts

related to influence have been investigated in (Grabisch and Rusinowska, 2009).

Since more than two decades, relation algebra is used successfully for formal problem spec-

ification, prototyping, and algorithm development (Brink et al., 1997; Schmidt and Ströhlein,

1993; de Swart et al., 2003, 2006). Relations are well suited for modeling and reasoning about

many discrete structures (like graphs, games, Petri nets, orders and lattices) and, due to the

easy and/or efficient mechanization using, for instance, Boolean matrices, successor lists or

binary decision diagrams (BDDs), also for computations on them. RelView (Behnke et

al., 1998; Berghammer et al., 1996, 2003) is a BDD-based tool for the visualization and

manipulation of relations and for prototyping and relational programming.

In (Berghammer et al., 2007, 2009; Rusinowska et al., 2006) we have successfully applied

relation algebra and RelView to compute the set of all feasible stable governments in a

coalition formation model introduced in (Rusinowska et al., 2005). In the present paper we

like to apply the same approach to compute measures of agents’ ‘strength’ in a social network.

Determining such measures can become quite complex and requires a lot of computations.

Hence, using a computer program to compute the measures is extremely useful for real life

applications of the concepts in question. To be more precise, the aim of this paper is to

apply relation algebra and RelView to compute power, success, and influence of an agent

as measured by the generalized Hoede-Bakker index, its modifications, and the influence

indices, and to determine the followers of a coalition and the kernel of an influence function

in a social network with influence between agents.

2 Measures of Players’ ‘Strength’ in a Social Network

The framework studied in the paper is the following. We consider a social network with the

set of all agents (players, voters, actors) denoted by P := {1, ..., n}. The agents make a certain

acceptance-rejection decision. Each agent has an inclination either to say ‘yes’ (denoted by

1) or ‘no’ (denoted by 0). A Boolean inclination vector, denoted by i = (i1, ..., in), indicates

the inclinations of all agents. All inclination vectors are assumed to be equally probable. Let

I := {0, 1}n be the set of all inclination vectors. It is assumed that agents may influence

each other, and due to the influences in the network, the final decision of an agent may

be different from his original inclination. In other words, each inclination vector i ∈ I is

transformed into a decision vector Bi, where B : I → I is the influence function, and
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Relations, RelView and Measures in Networks 3

the decision vector Bi = ((Bi)1, ..., (Bi)n) indicates the final decisions made by all agents.

Let B(I) be the set of all decision vectors under B. We assume a group decision function

gd : B(I) → {0, 1}, having the Boolean value 1 if the group decision is ‘yes’, and the Boolean

value 0 if the group decision is ‘no’. The set of all influence functions, and the set of all group

decision functions will be denoted by B and G, respectively.

2.1 The Generalized Hoede-Bakker index and its modifications

In this section we recapitulate the generalized Hoede-Bakker index and its modifications as

given in (Rusinowska and de Swart, 2006). It generalizes the original Hoede-Bakker index

introduced in (Hoede and Bakker, 1982) in order to eliminate certain shortcomings of the

latter. First, we introduce some notations. Given an influence function B ∈ B and a group

decision function gd ∈ G, we define the two subsets I+(B, gd) and I−(B, gd) of the set I of

all inclination vectors as follows:

I+(B, gd) := {i ∈ I | gd(Bi) = 1}, I−(B, gd) := {i ∈ I | gd(Bi) = 0}

Depending on the functions B and gd, we now introduce for each agent (player) k ∈ P four

decisive sets by the following definitions:

I++
k (B, gd) := {i ∈ I | ik = 1 ∧ gd(Bi) = 1}

I+−
k (B, gd) := {i ∈ I | ik = 1 ∧ gd(Bi) = 0}

I−+
k (B, gd) := {i ∈ I | ik = 0 ∧ gd(Bi) = 1}

I−−
k (B, gd) := {i ∈ I | ik = 0 ∧ gd(Bi) = 0}

When clear from the context, we will skip ‘(B, gd)’ in the expressions above; so, for instance,

we may write I+−
k instead of I+−

k (B, gd). In order to measure the voting strength of the

players in a network, where the inclination of an agent may be different from its final decision

due to influences from other agents, the subsequent definitions have been introduced in

(Rusinowska and de Swart, 2006) (note, that n is the number of players):

Definition 2.1.1 Given B ∈ B and gd ∈ G, the generalized Hoede-Bakker index of a player

k ∈ P is defined as follows:

GHBk(B, gd) :=
|I++

k | − |I+−
k |+ |I−−

k | − |I−+
k |

2n
(1)

For each k ∈ P we define modifications of the generalized Hoede-Bakker index as follows:

M1GHBk(B, gd) :=
|I++

k | − |I−+
k |

|I+|
M2GHBk(B, gd) :=

|I−−
k | − |I+−

k |

|I−|
(2)

M3GHBk(B, gd) :=
|I++

k |+ |I−−
k |

2n
M4GHBk(B, gd) :=

|I++
k |

|I+|
(3)

Furthermore, we define independently of k: MGHB(B, gd) := |I+|
2n
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4 Relations, RelView and Measures in Networks

The value of GHBk(B, gd) measures a kind of ‘net’ Success, i.e., Success − Failure, where

by a successful player, given i ∈ I, B ∈ B and gd ∈ G, we mean a player k ∈ P whose

inclination ik coincides with the group decision gd(Bi). In (Rusinowska and de Swart, 2006)

it is shown that if all inclination vectors are equally probable, then the generalized Hoede-

Bakker index coincides with the absolute Banzhaf index, i.e., it measures ‘Decisiveness’. A

decisive player is a player who is successful and changing his inclination causes a change of the

group decision. In (Rusinowska and de Swart, 2006) it is also proved that the modifications

M1GHB, M2GHB, M3GHB and M4GHB, coincide with the Coleman’s index ‘to prevent

action’, Coleman’s index ‘to initiate action’, the Rae index, and the König-Bräuninger index,

respectively. MGHB coincides with Coleman’s ‘power of a collectivity to act’. Note that the

modification M3GHB measures Success of a player in such a network.

2.2 The influence indices and followers

We recapitulate now some concepts to measure influence between players in the presented

framework that have been investigated in (Grabisch and Rusinowska, 2009). We introduce

for any S ⊆ P such that |S| ≥ 2 the set IS of inclination vectors under which all agents of

S have the same inclination, i.e.,

IS := {i ∈ I | ∀ k, j ∈ S : ik = ij},

and define Ik := I for all k ∈ P . For all inclination vectors i ∈ IS we denote by iS the value ik

for some player k ∈ S. Due to the definition of the set IS, the Boolean value iS ∈ {0, 1} does

not depend on the choice of k. Based on these notions, let for each subset S ⊆ P of players

(that is regarded as a coalition) and each player j ∈ P the following sets be introduced:

IS→j := {i ∈ IS | ij = ¬iS}, I∗S→j(B) := {i ∈ IS→j | (Bi)j = iS}

In words, IS→j and I∗S→j(B) denote the set of all inclination vectors of potential influence of

coalition S on player j, and the set of all inclination vectors of influence of S on j under the

given influence function B ∈ B, respectively.

In (Grabisch and Rusinowska, 2009) the so-called influence indices have been defined.

The general idea is to compute the weighted number of times coalition S makes a player

j ∈ P change his decision. One particular way of weighting leads to the possibility influence

index d(B, S → j) which measures the degree of influence, coalition S has on player j, taking

into account any possibility of influence. We check therefore how many inclination vectors

of potential influence of coalition S on player j are indeed vectors of influence of S on j. We

do not verify here the inclinations of the players outside S ∪ {j}.

Definition 2.2.1 Given B ∈ B, for each coalition S ⊆ P of players and each player j ∈

P \S, the possibility influence index and the certainty influence index of coalition S on player

j are defined respectively as follows:

d(B, S → j) :=
|I∗S→j(B)|

|IS→j|
d(B, S → j) :=

|{i ∈ I∗S→j(B) | ∀ k /∈ S : ik = ¬iS}|

2
(4)
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Relations, RelView and Measures in Networks 5

By a follower of a given coalition we mean a voter who always decides according to the

inclination of the coalition in question.

Definition 2.2.2 Let ∅ 6= S ⊆ P be a coalition of players and B ∈ B. Then the set of

followers of S under the influence function B is defined as follows:

FB(S) := {j ∈ P | ∀ i ∈ IS : (Bi)j = iS} (5)

Furthermore, it is worth mentioning the concept of a kernel of an influence function B which

is the set of the ‘true’ (minimal) influential coalitions, that is, the collection K(B) of all

subsets S of P such that FB(S) 6= ∅ and FB(S
′) = ∅ for all S ′ ⊂ S.

2.3 Majority and influence by trend-setters

In the preceding two subsections we have defined the different indices and notions dealing

with coalitions, influence and followers with respect to an arbitrary influence function B ∈ B

and an arbitrary group decision function gd ∈ G. In practice, however, only a very small

number of such functions is used. Group decisions almost always are based on majority.

This means that for each inclination vector i ∈ I and each influence function B ∈ B, the

output of gd : B(I) → {0, 1} for the decision vector Bi as input is 1 if the size of the set

{j ∈ P | (Bi)j = 1} is at least [n
2
] + 1, where [x] denotes the largest natural number less

than or equal to x. In the remaining cases, gd(Bi) yields 0 as result. Instead of this so-called

simple majority, in specific cases also other majority rules are used, e.g., 2
3
-majority.

Influences in a social network essentially are based on dependency relationships, which

adequately can be modeled by a dependency graph. The vertices of such a directed loop-free

graph are the players. For different players j, k ∈ P there is an arc from j to k iff j is a

so-called trend-setter for k, that is, the vote of k may be influenced by the inclination of j.

Then k is called a dependent player. Players without trend-setters (in terms of graph theory:

the sources) are said to be independent.

Example 2.3.1. To give a concrete example, the following picture (generated with the help

of RelView) shows the dependency graph of a social network with a set P of six players

1, 2, 3, 4, 5 and 6, where the vertex with label ‘k’ corresponds to player k, 1 ≤ k ≤ 6. Since

in Section 3 we will use this social network as running example to illustrate the developed

relation-algebraic specifications, in the dependency graph also a coalition S consisting of the

three players 2, 3, 5 is indicated by black vertices.

As one can see from the directed arcs of the graph, the independent players are 1, 5 and 6

(no ingoing arcs), and the dependent players are 2, 3 and 4. The vote of player 2 depends on
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6 Relations, RelView and Measures in Networks

its three trendsetters (graph-theoretic predecessors) 1, 5 and 6, the vote of player 3 depends

on its unique trend-setter 2, and the vote of player 4 depends on its two trend-setters 2, 5.

Now, assume i ∈ I to be an inclination vector and we want to define the decision vector Bi

in terms of the dependency graph. Of course, for an independent player k ∈ P we are allowed

to define (Bi)k := ik, i.e., to presume that he does not change his vote. On the other hand,

a dependent player k ∈ P will always follow his sole trend-setter j ∈ P if there is exactly

one. In this case, hence, we put (Bi)k := ij. It is reasonable to generalize this in such a way

that a dependent player always follows his trend-setters if they have the same inclination.

However, a problem appears if there are at least two trend-setters player k ∈ P depends on,

and they have different inclinations. Which trend-setter should player k follow? There are

several possibilities to define the influence function in such a case. Usually two possibilities

are considered:

- Following only unanimous trend-setters: Here the vote of player k is equal to the inclina-

tion of his trend-setters if they all have the same inclination. Otherwise, player k votes

according to his own inclination.

- Following a majority of trend-setters: Here k votes as the inclination of the majority of

his trend-setters is. Assuming that player k has t trend-setters, this means that if there

are at least [ t
2
] + 1 trend-setters of k with the same inclination, k votes according to this

inclination. Otherwise, k follows his own inclination.

As in the case of group decisions, also in the second specification of the influence function

via trend-setters, simple majority may be replaced by other majority rules. In the remainder

of this paper, however, we restrict our analysis to simple majority in the case of the influence

rule ‘following a majority of trend-setters’.

3 Relation-algebraic Description of Measures in a Social Network

In this section we show how the concepts introduced in Section 2 can be transformed into

relation-algebraic specifications that immediately lead to RelView-code. This allows to

compute power indices, influence indices, sets of followers and kernels by means of the tool.

We demonstrate this by depicting some of the RelView-matrices and -vectors that we

have obtained for our running example. For the remainder of the paper, we assume that the

reader is familiar with some basic facts of relation algebra, needed to deal with the relation-

algebraic specifications and algorithms of the key concepts of Section 2. They can be found,

e.g. in (Berghammer et al., 2007, 2009). For more details on relations and relation algebra,

see e.g. (Brink et al., 1997; Schmidt and Ströhlein, 1993). Also for a brief description of the

RelView tool we refer to (Berghammer et al., 2007, 2009). Details and applications of the

RelView tool can be found, e.g. in (Behnke et al., 1998; Berghammer et al., 1996, 2003).
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Relations, RelView and Measures in Networks 7

3.1 Modeling inclination vectors and sets of inclination vectors

Relation algebra offers some simple and elegant ways to describe subsets of a given set. For

modeling influence vectors, decision vectors, and sets of followers, we will use column vectors .

Following (Schmidt and Ströhlein, 1993), these are relations v (analogously to linear algebra

we use lower-case letters to denote vectors) with v = vL. As for a column vector the range

is irrelevant, we consider in the following only vectors v : X↔1 with a specific singleton set

1 := {⊥} as range. A column vector v : X↔1 can be considered as a Boolean matrix with

exactly one column, i.e., as a Boolean column vector, and it describes (or: is a description

of) the subset {x ∈ X | vx,⊥} of its domain X. A non-empty column vector v is a column

point if vvT ⊆ I, i.e., it is injective in the relational sense. This means that it represents a

singleton subset of its domain or an element from it, if we identify a singleton set {x} with

the element x. In the Boolean matrix model, hence, a column point v : X↔1 is a Boolean

column vector in which exactly one entry is 1. Vectors also allow to formalize the notions

of y-columns and x-rows. E.g., for a relation R : X↔Y and y ∈ Y , the column vector

v : X↔1 equals the y-column of R if for all x ∈ X we have vx,⊥ iff Rx,y.

For modeling kernels and subsets of the sets I and B(I), where the influence function B

is given by one of the rules ‘following only unanimous trend-setters’ and ‘following a majority

of trend-setters’ of Subsection 2.3, we will use row vectors . These relations are defined as

the transposes of column vectors. Again we only will need row vectors v of the specific type

[1↔Y ] that correspond to Boolean row vectors. Then v describes the subset {y ∈ Y | v⊥,y}

of its range Y . The distinction between column vectors and row vectors is not essential.

In the context of this paper, however, it is very helpful for the visualization of results of

relational computations.

Example 3.1.1. In Example 2.3.1 we have introduced a social network with a set P of six

players 1, 2, 3, 4, 5 and 6. The following picture shows the membership relation1 M : P ↔ 2P

between P and its powerset 2P as 6 × 64 Boolean RelView-matrix, where a black square

means a 1-entry (i.e., the relationship holds) and a white square means a 0-entry (i.e., the

relationship does not hold).

If we consider inclination vectors as relational column vectors, then this membership relation

column-wisely enumerates the set I of all inclination vectors, since its 64 columns exactly

correspond to the 64 possible inclination vectors of the six players, and these again exactly

correspond to the 64 possible subsets of the set of players. For instance, the first column

1 A membership relation M : X ↔ 2X relates x ∈ X and Y ∈ 2X iff x ∈ Y . It should be emphasized that binary
decision diagrams allow a very efficient implementation of M that uses in the worst case 3|X| + 1 BDD-vertices
only. This implementation is part of RelView; see (Berghammer et al., 2002).
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8 Relations, RelView and Measures in Networks

corresponds to the inclination vector where each player has the inclination ‘no’, and the

fourth column corresponds to the inclination vector where the players 5 and 6 have the

inclination ‘yes’ and the remaining players have the inclination ‘no’.

In the same way, we can obtain a 6 × 64 Boolean RelView-matrix showing decisions

of the players, where the X-column corresponds to the decision vector obtained from the

X-column of M representing the inclination vector. Suppose, for instance, that all players

are independent, that is, that we deal with the identity function, Bi = i for each i ∈ I.

The next RelView-picture shows a row vector m : 1↔ 2P with 64 columns that de-

scribes a subset of the powerset 2P , i.e., a subset of the set I if we identify X ∈ 2P with the

inclination vector i ∈ I where exactly the players of X vote ‘yes’.

This row vector describes the set of the inclination vectors where the majority of the players

votes ‘yes’. This becomes clear if we compare the columns of both RelView-pictures. Doing

so, we obtain that for all X ∈ 2P the relationship m⊥,X holds iff the number of 1-entries in

the X-column of M is strictly larger than the number of 0-entries in the X-column of M.

Besides column vectors, row vectors and membership relations, injective (embedding) map-

pings are another way of modeling sets. Given a relation ı : Z↔X, that is, an injective

mapping in the relational sense of (Schmidt and Ströhlein, 1993), Z may be regarded as a

subset of X by identifying it with its image under ı. Then the column vector ıTL : X↔1

describes Z in the above sense. By removing all pairs (x, x) with x /∈ Z from the identity

relation I : X↔X, the transition in the other direction is also possible, that is, the con-

struction of a relation inj (v) : Z↔X from a given column vector v : X↔1 describing Z in

such a way that inj (v)z.x holds iff z = x for all z ∈ Z and x ∈ X. Such a relation is called

the injective embedding generated by v and is also used in our applications. Namely, if the

row vector v : 1↔ 2P describes a subset S of 2P in the sense above, and M : P ↔ 2P is the

membership relation, then for all x ∈ X and Y ∈ S we get the equivalence of (M inj (vT)
T
)x,Y

and x ∈ Y . This means that the elements of S are described precisely by the columns of the

relation M inj (vT)
T
: X↔S.

3.2 Computing decision vectors and group decisions

We assume a social network with a set P of players. Let D : P ↔P be the relation of

the dependency graph of the network. The latter property means that there is an arc from

a player j ∈ P to a player k ∈ P iff Dj,k holds. Then the set of the dependent players

relation-algebraically is described by the column vector

depend(D) := DT
L (6)

of type [P ↔1], where the used L has type [P ↔1], too.

In Subsection 3.1 we have shown that the set I of all inclination vectors immediately

can be modeled by the columns of the membership relation M : P ↔ 2P . Due to this fact, in
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Relations, RelView and Measures in Networks 9

the remainder of this section we regard inclination vectors and the corresponding decision

vectors as relational column vectors i : P ↔1 and Bi : P ↔1, respectively. Our first goal is to

develop a column-wise enumeration of the set B(I) of decision vectors with relation-algebraic

means, where the influence function B is given by the rule ‘following only unambiguous

trend-setters’. As a preparatory step, we treat the transformation from i to Bi for a single

inclination vector i within relation algebra.

Theorem 3.2.1 Let d := depend(D). For each inclination vector i : P ↔1, the decision

vector Bi : P ↔1 under the influence rule ‘following only unambiguous trend-setters’ is

given by Bi = (i ∩ ( d ∪ (d ∩DTi ∩DT i ))) ∪ (d ∩ DT i ).

Proof Let k ∈ P be an arbitrary player. Using the description (6) of the dependent players

and d as abbreviation for depend(D), a formalization of the assumed rule leads to the fol-

lowing specification of (Bi)k,⊥:

(Bi)k,⊥ =















ik,⊥ : d k,⊥ ∨ (dk,⊥ ∧ ∃ j ∈ P : Dj,k ∧ ij,⊥ ∧ ∃ j ∈ P : Dj,k ∧ i j,⊥)

1 : dk,⊥ ∧ ∀ j ∈ P : Dj,k → ij,⊥

0 : dk,⊥ ∧ ∀ j ∈ P : Dj,k → i j,⊥
If we replace logical constructions by their corresponding relational counter-parts, we obtain

the subsequent equivalent specification:

(Bi)k,⊥ =











ik,⊥ : ( d ∪ (d ∩DTi ∩DT i ))k,⊥

Lk,⊥ : (d ∩ DT i )k,⊥

Ok,⊥ : (d ∩ DTi )k,⊥
Next, we transform the case distinction in the usual way with the help of disjunctions and

conjunctions into a logical formula, viz.:

(ik,⊥ ∧ ( d ∪ (d ∩DTi ∩DT i ))k,⊥) ∨ (Lk,⊥ ∧ (d ∩ DT i )k,⊥) ∨ (Ok,⊥ ∧ (d ∩ DTi )k,⊥)

Since Lk,⊥ is true and Ok,⊥ is false, this formula is equivalent to the following one:

(ik,⊥ ∧ ( d ∪ (d ∩DTi ∩DT i ))k,⊥) ∨ ((d ∩ DT i )k,⊥)

Now, we again replace in this formula logical constructions by their corresponding relational

counter-parts. This yields: ((i ∩ ( d ∪ (d ∩DTi ∩DT i ))) ∪ (d ∩ DT i ))k,⊥

If we use this formula as the right-hand side of the original specification, the definition of

relational equality shows the claim. �

The relation-algebraic expression (i ∩ ( d ∪ (d ∩ DTi ∩ DT i ))) ∪ (d ∩ DT i ) is built from

i using unions, intersections, complements and left-compositions with constants (i.e., with

relation-algebraic expressions free of i) only. Hence (see, for example, (Berghammer, 2006)),

if we replace in it the column vector i : P ↔1 by the membership relation M : P ↔ 2P

that column-wisely enumerates all inclination vectors and adopt simultaneously the type

[P ↔1] of d to the type [P ↔ 2P ] of M by a right-composition with the universal row vector

L : 1↔ 2P , we get (with d := depend(D)) the relation

Dvec(D) := (M ∩ ( dL ∪ (dL ∩DT
M ∩DT

M ))) ∪ (dL ∩ DT M ) (7)
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10 Relations, RelView and Measures in Networks

of type [P ↔ 2P ] that column-wisely enumerates the set B(I) of decision vectors. The latter

property means: For all X ∈ 2P , if the X-column of M equals i : P ↔1 then, under the

assumed rule, the X-column of Dvec(D) equals Bi : P ↔1.

Having obtained a relation-algebraic specification for the column-wise enumeration of

the decision vectors, our next goal is to obtain with the help of (7) a relation-algebraic

specification of the group decisions under majority as decision rule via a row vector. To

reach the goal, we assume that a row vector m : 1↔ 2P is available such that for all X ∈ 2P

we have m⊥,X iff |X| ≥ [ |P |
2
] + 1. In RelView such a vector can be easily obtained with the

help of the base operation cardfilter 2 as m := cardfilter(L, w)
T

, where the first argument

L : 2P ↔1 describes the entire powerset 2P , and the second argument w : W ↔1 determines

the threshold for majority by its length, i.e., fulfils |W | = [ |P |
2
]+1. Based on the specification

of m, we can specify the desired row vector as shown now.

Theorem 3.2.2 Let, based on m and the specification (7), the row vector gdv(D) of type

[1↔ 2P ] be defined by gdv(D) := m syq(M,Dvec(D)), where M : P ↔ 2P is the membership

relation. Then we have for all X ∈ 2P : If the decision vector Bi : P ↔1 equals the X-column

of Dvec(D), then gdv(D)⊥,X holds iff the number of 1-entries in Bi is at least [ |P |
2
] + 1.

Proof We compute as given below, where the assumption that the X-column of Dvec(D)

equals Bi is used in the last step, and the inclination vector i(Y ) introduced in this step

coincides with the Y -column of M.

gdv(D)⊥,X ⇐⇒ (m syq(M,Dvec(D)))⊥,X

⇐⇒ ∃Y ∈ 2P : m⊥,Y ∧ syq(M,Dvec(D))Y,X

⇐⇒ ∃Y ∈ 2P : m⊥,Y ∧ (∀ k ∈ P : Mk,Y ↔ Dvec(D)k,X)

⇐⇒ ∃Y ∈ 2P : |Y | ≥ [ |P |
2
] + 1 ∧ (∀ k ∈ P : Mk,Y ↔ Dvec(D)k,X)

⇐⇒ ∃Y ∈ 2P : |Y | ≥ [ |P |
2
] + 1 ∧ i(Y ) = Bi

Now the claim follows from the simple fact that the number of 1-entries in the column vector

i(Y ) equals |Y |. �

Summing up, we have for the influence function B defined by the rule ‘following only un-

ambiguous trend-setters’ and for the group decision function gd defined by simple majority:

If the inclination vector i : P ↔1 is given by the X-column of the membership relation

M : P ↔ 2P , then the corresponding decision vector Bi : P ↔1 is given by the X-column of

the relation Dvec(D) : P ↔ 2P and, furthermore, gd(Bi) = 1 iff gdv(D)⊥,X holds.

Example 3.2.1. We have transformed the above relation-algebraic specifications into Rel-

View-programs. To give examples how such programs look like, we present in the following

the code for both specifications. In the following RelView-programs Dvec and gdv the calls

2 If v : 2M ↔1 represents the subset S of 2M and the size of the domain of w : W ↔1 is at most |M |+1, then for all
X ∈ 2M we have cardfilter(v, w)X,⊥ iff X ∈ S and |X| < |W |. Hence, the complement of cardfilter(L, w) represents
the subsets of 2M whose elements have at least size |W |.
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Relations, RelView and Measures in Networks 11

epsi(O(D)) of the pre-defined operation epsi compute the membership relation M : P ↔ 2P ,

and the calls L1n(M) of the pre-defined operation L1n yield the row vector L : 1↔ 2P .

Dvec(D)

DECL M, d

BEG M = epsi(O(D)); d = D^*L1n(M)

RETURN (M & (-d | (d & D^*M & D^*-M))) | (d & -(D^*-M))

END.

gdv(D,w)

DECL M, m

BEG M = epsi(O(D)); m = -cardfilter(L1n(M)^,w)^

RETURN m*syq(M,Dvec(D))

END.

Applied to the relation D of our running example and a column vector w of length 4 (the

threshold of majority) in the case of the RelView-program for gdv(D), we obtained by

their means the following results for Dvec(D) and gdv(D). The 64 columns of the 6 × 64

RelView-matrix represent the 64 decision vectors obtained from the 64 inclination vectors,

and the entries of the 1 × 64 row vector below this matrix indicate the group decision for

each decision vector.

Let us explain these results by the specific inclination vectors treated in Example 3.1.1. For

the first column of the membership relation M of Example 3.1.1, where each player votes

‘no’, we obtain ‘no’ also as decision of each player as well as of the entire group. The same

is the case if the inclination of the players 5 and 6 is ‘yes’ and that of the remaining players

is ‘no’; cf. the fourth columns of M, Dvec(D) and gdv(D).

We also have developed a RelView-program that computes the column-wise enumera-

tion of the decision vectors under ‘following a majority of the trend-setters’ as the influence

rule by handling one after another the columns of the membership relation via a loop. If we

use this program in the case of our running example, we obtain the following RelView-

matrix and row vector for the decision vectors and the group decisions, respectively.
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12 Relations, RelView and Measures in Networks

In contrast with the influence rule ‘following only unambiguous trend-setters’, now the incli-

nations ‘yes’ of the agents 5 and 6 and ‘no’ of the remaining agents yield a decision, where

2 changes his opinion from ‘no’ to ‘yes’, because of the ‘yes’-vote of the majority of the

trend-setters agent 2 depends on. In spite of this change, the group’s decision remains ‘no’.

An example where the different influence rules yield different group decisions for the same

inclination vector is given by the 8th columns of the matrices and row vectors, respectively.

If the inclination of the players 4, 5 and 6 is ‘yes’ and that of the remaining players is ‘no’,

then ‘following only unambiguous trend-setters’ implies ‘inclination equals decision’ and the

group decision ‘no’. Nevertheless, ‘following a majority of the trend-setters’ implies that also

player 2 finally votes ‘yes’, so that the collective vote becomes ‘yes’, too.

3.3 Computing power indices

Now, we demonstrate how to compute the indices presented in Subsection 2.1 with relation-

algebraic means. The main steps are to determine four row vectors of type [1↔ 2P ] which

describe the four sets I++
k , I+−

k , I−+
k and I−−

k , respectively. Since RelView yields for each

computed relation also the number of its 1-entries (i.e., its set-theoretic size), from the vector

descriptions we get the numbers |I++
k |, |I+−

k |, |I−+
k | and |I−−

k |, and from these also the various

power indices using straightforwardly their specifications of Subsection 2.1. Note, that the set

I+ used in the definition of the indices M1GHBk, M4GHBk and MGHB is already described

by the row vector gdv(D) of Theorem 3.2.2 or its analogon in the case of the rule ‘following

a majority of the trend-setters’.

We assume that the player k ∈ P , on which the four sets I++
k , I+−

k , I−+
k and I−−

k depend,

is described by a column point p : P ↔1 in the relational sense. As the definitions of the

sets also use the values gd(Bi) for i ∈ I, we assume, furthermore, that the group decision

row vector g := gdv(D) is at hand (where the influence rule used for its computation is

arbitrary). Then we are able to prove the following result.

Theorem 3.3.1 Let, depending on the column point p : P ↔1 and the row vector g : 1↔ 2P ,

the four vectors ipp(p, g), ipm(p, g), imp(p, g) and imm(p, g) of type [1↔ 2P ] be defined as

ipp(p, g) := pTM∩g, ipm(p, g) := pTM∩ g , imp(p, g) := pT M ∩g and imm(p, g) := pT M ∩ g ,

where M : P ↔ 2P is the membership relation. Then for all X ∈ 2P : If the X-column of M

equals the inclination vector i : P ↔1, then ipp(p, g)⊥,X holds iff i ∈ I++
k , ipm(p, g)⊥,X holds

iff i ∈ I+−
k , imp(p, g)⊥,X holds iff i ∈ I−+

k , and imm(p, g)⊥,X holds iff i ∈ I−−
k .

Proof ipp(p, g)⊥,X ⇐⇒ (pTM ∩ g)⊥,X

⇐⇒ ∃ j ∈ P : pj,⊥ ∧Mj,X ∧ g⊥,X

⇐⇒ ∃ j ∈ P : j = k ∧Mj,X ∧ g⊥,X p describes k

⇐⇒ Mk,X ∧ g⊥,X gd(Bi) = 1 iff gdv(D)⊥,X

⇐⇒ ik,⊥ ∧ gd(Bi) = 1 assumption
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Relations, RelView and Measures in Networks 13

Since the relationship ik,⊥ is nothing else than ik = 1 for the k-component of a Boolean vector

in the sense of Section 2, the first claim follows from this. In the same way the remaining

equivalences can be computed. �

Due to this theorem, the row vector ipp(p, g) precisely designates those columns of the

membership relation M which belong to the set I++
k , and the remaining three row vectors

of the theorem do the same for the three sets I+−
k , I−+

k and I−−
k , respectively. Once more

it is very easy to translate the relation-algebraic specifications of Theorem 3.3.1 into the

programming language of RelView. Subsequently, we show some results for our running

example. We restrict our analysis to the generalized Hoede-Bakker index.

Example 3.3.1. Focussing on player 2 in our example, which is influenced by the three

trend-setters 1, 5 and 6, using ‘following only unanimous trend-setters’ as influence rule,

the first row of the following 4× 64 RelView-matrix depicts the row vector ipp(p, g), i.e.,

precisely designates those columns of the membership relation M : P ↔ 2P that belong to

the set I++
2 (B, gd), with gd given by simple majority. The second, third and fourth row of

the matrix do the same for I+−
2 (B, gd), I−+

2 (B, gd) and I−−
2 (B, gd) respectively.

Counting the 1-entries of the single rows, one can easily obtain the generalized Hoede Bakker

index of player 2: 5
8
.

3.4 Computing influence indices, followers and kernels

In the following, we assume a coalition S of players to be described by a column vector

s : P ↔1, and a single player j ∈ P to be described by a column point p : P ↔1. We want

to compute the possibility influence index of S on player j. Since it is defined by means

of the sizes of the sets IS→j and I∗S→j(B), our task is to describe these sets within relation

algebra. A translation of the results into RelView-code then allows to proceed exactly as

in the case of the power indices. Both IS→j and I∗S→j(B) are subsets of IS. Therefore, as

a preparatory step we describe the latter set of inclination vectors with relation-algebraic

means. Doing so, projection relations and the pairing operation come into play.

Theorem 3.4.1 Assume s : P ↔1 as description of the coalition S ⊆ P and the row

vector is(s) of type [1↔ 2P ] to be defined as is(s) := [sT, sT] ( πM ∪ ρM) ∩ ( ρM ∪ πM) ,

where M : P ↔ 2P is the membership relation and π : P×P ↔P and ρ : P×P ↔P are

the projection relations. Then we have for all X ∈ 2P : If the X-column of M equals the

inclination vector i : P ↔1, then is(s)⊥,X holds iff i ∈ IS.

Proof Since the X-column of M equals i, we have for all pairs u = (u1, u2) ∈ P×P the

following equivalence:

ha
l-0

05
15

87
8,

 v
er

si
on

 1
 - 

8 
Se

p 
20

10



14 Relations, RelView and Measures in Networks

iu1,⊥ = iu2,⊥ ⇐⇒ Mu1,X ↔ Mu2,X

⇐⇒ (πM)u,X ↔ (ρM)u,X

⇐⇒ ((πM)u,X → (ρM)u,X) ∧ ((ρM)u,X → (πM)u,X)

⇐⇒ ( πM u,X ∨ (ρM)u,X) ∧ ( ρM u,X ∨ (πM)u,X)

⇐⇒ (( πM ∪ ρM) ∩ ( ρM ∪ πM))u,X

From this result and since s describes S, we obtain

is(s)⊥,X ⇐⇒ [sT, sT] ( πM ∪ ρM) ∩ ( ρM ∪ πM) ⊥,X

⇐⇒ ¬∃u ∈ P×P : [sT, sT]⊥,u ∧ ( πM ∪ ρM) ∩ ( ρM ∪ πM) u,X

⇐⇒ ∀u ∈ P×P : [sT, sT]⊥,u → (( πM ∪ ρM) ∩ ( ρM ∪ πM))u,X

⇐⇒ ∀u ∈ P×P : su1,⊥ ∧ su2,⊥ → (iu1,⊥ = iu2,⊥)

⇐⇒ ∀u ∈ P×P : u1 ∈ S ∧ u2 ∈ S → (iu1,⊥ = iu2,⊥)

The latter formula of this calculation exactly says that i ∈ IS. �

Hence, the row vector is(s) precisely designates those columns of the membership relation

M which belong to the set IS. Next, we attack the relation-algebraic specification of the set

IS→j, where j ∈ P is described by the column point p : P ↔1. In the following theorem

we relation-algebraically specify a row vector that precisely designates those columns of M

which are inclination vectors of potential influence of S on j.

Theorem 3.4.2 Let s : P ↔1 describe the coalition S ⊆ P , the column point p : P ↔1

describe the player j ∈ P , the column point q ⊆ s describe some player k ∈ S, and the row

vector potinf (s, p) of type [1↔ 2P ] be defined as potinf (s, p) := ((r∪ r′)∩ r ∩ r′ ) inj (is(s)T),

where r := pTM inj (is(s)T)
T

and r′ := qTM inj (is(s)T)
T

with M : P ↔ 2P as membership

relation. Then we have for all X ∈ 2P : If the X-column of M equals the inclination vector

i : P ↔1, then potinf (s, p)⊥,X holds iff i ∈ IS→j.

Proof From Theorem 3.4.1 we know that the row vector is(s) describes the subset S of 2P

that consists of those sets Y ∈ 2P for which the Y -column of M is, considered as inclination

vector, a member of IS. Furthermore, inj (is(s)T) : S↔ 2P is the relational description of the

identity mapping from S to 2P ; see Subsection 3.1. Using these facts and the assumption

that the X-column of M equals i, we get

potinf (s, p)⊥,X ⇐⇒ (((r ∪ r′) ∩ r ∩ r′ ) inj (is(s)T))⊥,X

⇐⇒ ∃Y ∈ S : ((r ∪ r′) ∩ r ∩ r′ )⊥,Y ∧ inj (is(s)T)Y,X

⇐⇒ ∃Y ∈ S : ((r ∪ r′) ∩ r ∩ r′ )⊥,Y ∧ Y = X

⇐⇒ X ∈ S ∧ ((r ∪ r′) ∩ r ∩ r′ )⊥,X

⇐⇒ i ∈ IS ∧ ((r ∪ r′) ∩ r ∩ r′ )⊥,X

ha
l-0

05
15

87
8,

 v
er

si
on

 1
 - 

8 
Se

p 
20

10



Relations, RelView and Measures in Networks 15

Next, we apply that the column point p describes the player j ∈ P , again we apply the

assumption and get in the case X ∈ S the equivalence

r⊥,X ⇐⇒ ∃ l ∈ P : pl,⊥ ∧Ml,X ⇐⇒ ∃ l ∈ P : j = l ∧ l ∈ X ⇐⇒ j ∈ X ⇐⇒ ij,⊥.

In the same way3 from the description of k ∈ P by the column vector q and the assumption

we obtain that r′⊥,X is equivalent to ik,⊥, i.e., to the k-entry of i to be 1. The latter fact

implies the equivalence of r′⊥,X and iS = 1 for the Boolean value iS used in the specification

of IS→j. A consequence of the just shown properties is

((r ∪ r′) ∩ r ∩ r′ )⊥,X ⇐⇒ (r⊥,X ∨ r′⊥,X) ∧ ¬(r⊥,X ∧ r′⊥,X)

⇐⇒ (ij,⊥ ∨ iS = 1) ∧ ¬(ij,⊥ ∧ iS = 1)

⇐⇒ (ij,⊥ ↔ ¬(iS = 1))

⇐⇒ (ij = ¬iS)

since again the relationship ij,⊥ is nothing else than the validity of ij = 1 in the sense of

Section 2. A combination of this fact with the result of the above calculation yields the claim:

potinf (s, p)⊥,X ⇐⇒ i ∈ IS ∧ (ij = ¬iS) �

To obtain a row vector inf (s, p,D) of type [1↔ 2P ] that precisely designates those columns

of the membership relation M : P ↔ 2P which are inclination vectors of influence of S on j,

i.e., members of I∗S→j(B), we use the equation I∗S→j(B) = IS→j ∩ {i ∈ IS | (Bi)j = iS}.

The definition of the set {i ∈ IS | (Bi)j = iS} is rather similar to that of the set IS→j;

cf. Subsection 2.2. Compared with the latter one, only the expressions Bi and iS are used

instead of i and ¬iS. This immediately leads to the relation-algebraic specification of the set

I∗S→j(B) by the row vector

inf (s, p,D) := potinf (s, p) ∩ (r ∪ r′) ∩ r ∩ r′ inj (is(s)T) (8)

with now r and r′ given as follows (cf. Theorem 3.4.2):

r := pTDvec(D) inj (is(s)T)
T

r′ := qTM inj (is(s)T)
T

This is due to the fact that the decision vectors column-wisely are enumerated via the relation

Dvec(D) : P ↔ 2P (where the concrete influence rule is irrelevant) and, for the inclination

vector i : P ↔1 being theX-column of the membership relationM : P ↔ 2P , the relationship

((r ∪ r′) ∩ r ∩ r′ )⊥,X does not hold iff ij,⊥ and iS = 1 are equivalent.

In the following, we demonstrate by means of our running example how results of the

RelView-programs (that immediately are obtained from the developed relation-algebraic

specifications by writing them in the programming language of the tool) look like.

Example 3.4.1. Let us consider the coalition S with players 2, 3 and 5, which have been

indicated by black vertices in the dependency graph of Example 2.3.1. For this coalition, the

set IS contains 16 inclination vectors. This follows from the following twoRelView-pictures.

3 In terms of matrices, r equals the j-row of M inj (is(s)T)
T

and r′ the k-row of the same relation.
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16 Relations, RelView and Measures in Networks

The first one shows again the membership relation M : P ↔ 2P of Example 3.1.1 and the

second one the row vector is(s) : 1↔ 2P , where the column vector s : P ↔1 describes S.

The row vector precisely designates those columns of the matrix where the entries 2, 3 and

5 have the same colour. Below we show the RelView-representations of the sets IS→j and

I∗S→j(B) for those players j which are not contained in the coalition S. The first row of

the following 2× 64 RelView-matrix indicates the columns of the membership relation M

which are inclination vectors from the set IS→1, and the second row indicates the inclination

vectors that belong to I∗S→1(B), where ‘following only unambiguous trend-setters’ is the

influence rule. The next two RelView-matrices do the same for the sets IS→4 and I∗S→4(B)

and the sets IS→6 and I∗S→6(B), respectively. From the three pictures we obtain that, under

the assumed rule, the possibility influence indices of S on the players 1 and 6 are 0, and the

possibility influence index of S on the player 4 is 1.

The next three RelView-matrices are analogous to the just presented ones, however, now

with ‘following the majority of the trend-setters’ as influence rule.

Comparing these matrices with the above ones, we get that in the case of our running

example both influence rules lead to the same sets and, hence, the same indices.4 In words,

the results say: Whatever of the two influence rules is applied, the coalition S is without any

influence on the players 1 and 6 and in the case of player 4 there is a possibility of influence

of S on 4 and it is even maximal.

4 It should be mentioned that the equal results for player k := 4 in our running example are caused by the fact that
it has exactly two trend-setters. In such a case the value (Bi)k computed from i via ‘following only unambiguous
trend-setters’ is the same as that computed via ‘following the majority of the trend-setters’. To give an example
where both rules lead to different results, we want to mention that, for S′ := {3, 5} and player 2, we get |IS′→2| = 16
and |I∗S′→2(B)| = 4 if B is given by ‘following only unambiguous trend-setters’, respectively |I∗S′→2(B)| = 12 if B
is given by ‘following the majority of the trend-setters’.
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Relations, RelView and Measures in Networks 17

The next theorem shows how sets of followers can be described relation-algebraically by

means of column vectors in the sense of Subsection 3.1. In it, the relations R and Q column-

wisely enumerate the sets IS and B(IS), respectively, and the column point q again is used

for specifying for i ∈ IS the specific Boolean value iS. Once more it is arbitrarily which

influence rule is used for the definition of the influence function B.

Theorem 3.4.3 Assume s : P ↔1 to describe the coalition S ⊆ P , and the column point

q ⊆ s to describe some player k ∈ S. Furthermore, let M : P ↔ 2P be the membership relation.

If the column vector follow(D, s) of type [P ↔1] is defined as follow(D, s) := syq(QT, RTq),

with relations R := M inj (is(s)T)
T

and Q := Dvec(D) inj (is(s)T)
T

, then for all j ∈ P we

have follow(D, s)j,⊥ iff j ∈ FB(S).

Proof As in the proof of Theorem 3.4.2, we denote the subset of 2P that is described by the

row vector is(s) : 1↔ 2P with S. Then both R and Q have the type [P ↔S]. Furthermore,

we are able to compute as given below:

follow(D, s)j,⊥ ⇐⇒ syq(QT, RTq)j,⊥

⇐⇒ ∀X ∈ S : QT

X,j ↔ (RTq)X,⊥

⇐⇒ ∀X ∈ S : Qj,X ↔ (qTR)⊥,X

⇐⇒ ∀ i ∈ IS : (Bi)j,⊥ ↔ iS = 1

⇐⇒ j ∈ FS(B)

The fourth step of this calculation uses that there is a one-to-one corrrespondence between

the sets 2P and I, that X ∈ 2P belongs to S iff the corresponding inclination vector i ∈ I

belongs to IS, that Dvec(D) column-wisely enumerates the decision vectors Bi and that

(qTR)⊥,X iff iS = 1 (see the proof of Theorem 3.4.2). �

Let us again demonstrate what the RelView-program obtained from this theorem yields in

the case of our running example with the coalition S consisting of the players 2, 3 and 5.

Example 3.4.2. In the following two RelView-pictures two column vectors are depicted

which describe two subsets of the set P . The left column vector describes the set of followers

of S under the influence rule ‘following only unambiguous trend-setters’ and the right column

vector does the same with ‘following the majority of the trend-setters’.

So, the followers of S under the first rule are 2, 3, 4 and 5 and those under the second rule

are 3, 4 and 5.

Having a RelView-program at hand for computing sets of followers, it is an easy task to

implement another one that computes the kernel of an influence function by applying the
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18 Relations, RelView and Measures in Networks

former program to all subsets of P . Applied to our running example, the second program

proved that there is no difference whether the influence function B is defined via the rule

‘following only unambiguous trend-setters’ or the rule ‘following the majority of the trend-

setters’. Both rules yield the same result, viz. {{6}, {5}, {2}, {1}}. Of course, this is a special

case. Experiments with RelView showed that, in general, the kernels of both rules we have

introduced in this paper turn out to be different.

4 The Dutch Parliament Example

In the last section, we have used an artificial running example to illustrate our relation-

algebraic approach to measure players’ ‘strength’ in a social network. In the following we

present another application of RelView. It stems from the real world and is based on

the structure of the Second Chamber (Tweede Kamer) of the present Dutch Parliament.

Although we think that our assumptions are not far from reality, one should be careful to

draw conclusions about Dutch politics from this example. We mainly want to show how our

model and software works and may be applied to the real world.

4.1 The present Dutch parliament

There are presently ten parties in the Dutch parliament, viz. (in alphabetic order) the parties

CDA - Christen-Democratisch Appel (Christian Democrats), CU - Christen Unie (Christian

Union), D66 - Democraten66 (Democrats 66), GL - GroenLinks (Green Left), PvdA - Partij

van de Arbeid (Labor Party), PvdD - Partij voor de Dieren (Animal Party), PVV - Partij

voor de Vrijheid (Party for Freedom), SGP - Staatkundig Gereformeerde Partij (Political

Reformed Party), SP - Socialistische Partij (Socialist Party), and VVD - Volkspartij voor

Vrijheid en Democratie (People’s Party for Freedom and Democracy). Hence, we have

P := {CDA,CU,D66,GL,PvdA,PvdD,PVV, SGP, SP,VVD}.

In the following table the Dutch parties of the present parliament are shown (k ∈ P ),

placed in a specific order, together with the numbers of seats (wk), where the total number

of seats is equal to 150. The main data source for these matters can be found in the Dutch

Parliamentary Election Studies [17], containing among others data about left-right self rating

scales. All experts will agree with the one-dimensional socio-economic left-right scale, though

they will disagree in the end on the number of relevant dimensions. Probably one should take

other dimensions into account too, for instance, an immaterial dimension, but although data

are being collected, among others in national election research, there is much less agreement

among experts on these other dimensions. In principle, our software can be adapted to

the multidimensional case, but would become more complex. The specific placement of the

parties below from GL to PVV is based on a socio-economic left-right scale for the postwar

period in the Netherlands, developed in (Morgan, 1976).
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k ∈ P GL SP PvdA D66 PvdD CDA VVD CU SGP PVV

wk 7 25 33 3 2 41 22 6 2 9

A winning coalition in this Dutch example is a coalition with at least 76 seats in parlia-

ment. The three parties CDA, CU and PvdA are presently forming the Dutch cabinet. We

may assume that PvdA is a trend-setter for the two parties D66 and GL: the latter parties

usually follow the former one. Furthermore, we assume that PVV is a trend-setter for VVD.

This may be only partially true, but we assume it as hypothesis for our computations. Apart

from that, we assume more influence relationships, which display both office seeking and

policy seeking motivations of the Dutch parties. Let us assume that for some of the parties,

the stronger (direct) neighbor on the left-right scale is a trend-setter of a party if this neigh-

bor has more seats than the party in question. So, apart from being trend-setter for D66,

the PvdA is assumed to be also trend-setter for SP and CDA is assumed to be trend-setter

for VVD and PvdD (hence, VVD is assumed to have two trend-setters, PVV and CDA).

4.2 Results of computations

Below is the RelView-representation of the dependency relation and the present coalition

S = {CDA,CU,PvdA}.

We have used the RelView-versions of the relation-algebraic specifications of Section 3 to

determine by means of the tool for this quasi-realistic example all the concepts mentioned in

Section 2. Since each party has at most two trend-setters, both influence rules of Subsection

2.3 lead to the same description of the influence function B. We have for each inclination

vector i that (Bi)D66 = (Bi)SP = (Bi)GL = iPvdA, (Bi)PvdD = iCDA, (Bi)VVD depends on the

inclinations iCDA and iPVV and (Bi)j = ij for j being PvdA, CDA, CU, SGP, PVV.

There are situations where parties decide without taking their numbers of seats into

account, for instance, in parliamentary committees with one representative per party. In such

situations the group decision gd is given by simple majority of the number of parties. For

each Dutch party k ∈ P , we determined the generalized Hoede-Bakker index GHBk(B, gd)

and its modifications. Moreover, for each party outside the cabinet, that is, for all j ∈ P \S,

we have computed the possibility influence indices of the cabinet on j, i.e., d(B, S → j),

as well as the set of followers of the cabinet FB(S) under B, and the kernel K(B) of B.

Here are some results. Because of their sizes we are not able to present the corresponding

RelView-matrices. We only present the decisive numbers that, as already mentioned, either
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20 Relations, RelView and Measures in Networks

are directly delivered by RelView as numbers of 1-entries of computed results or can be

easily computed from these numbers.

Let us start with the power indices. In the following table we listen for the Dutch par-

liament example the sizes of the sets underlying their definitions as computed by RelView

using the relation-algebraic specifications of the Subsections 3.2 and 3.3.

k ∈ P GL SP PvdA D66 PvdD CDA VVD CU SGP PVV

|I++
k | 216 216 400 216 216 288 224 256 256 272

|I+−
k | 296 296 112 296 296 224 288 256 256 240

|I−+
k | 216 216 32 216 216 144 208 176 176 160

|I−−
k | 296 296 480 296 296 368 304 336 336 352

From these numbers and the fact that |I+| = 432 and |I−| = 1024 − 432 = 592, we imme-

diately are able to compute all power indices introduced in Subsection 2.1. In the following

table we show the values for the power index GHBk only.

k ∈ P GL SP PvdA D66 PvdD CDA VVD CU SGP PVV

GHBk 0 0 0.72 0 0 0.28 0.03 0.16 0.16 0.22

Since the specification of the row vector gdv(D) : 1↔ 2P of Theorem 3.2.2 bases on

‘simple majority of number of parties’ as group decision function gd, in our concrete example

meaning that gd(Bi) = 1 iff the size of the set {j ∈ P | (Bi)j = 1} is at least 6, in the above

results all parties are treated as if they have exactly one seat. However, in plenary meetings

of the Dutch parliament the number of seats is decisive. Here a proposal is accepted by the

parliament iff more than 75 seats vote ‘yes’.5 As a consequence, the majority-of-parties-based

definition of gd we have used so far may lead to wrong results, if, e.g., 5 parties with few seats

vote ‘no’ while the proposal is accepted because more than 75 seats vote ‘yes’. An example

for this is: iCDA = iSGP = iPVV = 0, and ij = 1 for j /∈ {CDA, SGP,PVV}. The influences

given by the above graph changes the inclinations ‘yes’ of the two parties PvdD and VVD

to the decision ‘no’, the remaining parties vote according to their inclinations. With five ‘no’

and five ’yes’ the majority-of-parties-based definition of gd leads to group decision ‘no’. But

the parliament votes ‘yes’ due to the 2+ 41+ 22+ 2+9 = 76 seats of the five parties PvdD,

CDA, VVD, SGP and PVV together.

If we assume that each party votes as a block, then the following alternative definition of

the group decision function precisely describes how the Dutch parliament makes a decision:

gd(Bi) = 1 ⇐⇒
∑

k∈P+

i
wk > 75, (9)

where P+
i := {j ∈ P | (Bi)j = 1} is the set of parties which vote ‘yes’ under i and wk

denotes the number of seats of k ∈ P according to the table of Subsection 4.1.

5 Of course, this only holds if each member attends the House.
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To obtain a relation-algebraic specification of gdv(D) : 1↔ 2P also for the group decision

function introduced by (9), we assume N to be the set of the 150 Dutch parliament seats

and the distribution of the seats over the parties to be given by a relation W : N ↔P such

that Wn,k iff n is owned by k, for all n ∈ N and k ∈ P . The relation W is a mapping in the

relational sense and for each k ∈ P the k-column of W consists of exactly wk 1-entries. Now,

let i : P ↔1 be an inclination vector and Bi : P ↔1 the corresponding decision vector (as

relation-algebraically specified in Theorem 3.2.1). Then we have for all n ∈ N the equivalence

(WBi)n,⊥ ⇐⇒ ∃ k ∈ P : Wn,k ∧ (Bi)k,⊥ ⇐⇒ ∃ k ∈ P+
i : Wn,k

such that the column vector WBi : N ↔1 describes the set of seats N+
i ∈ 2N which are

owned by a party that votes ‘yes’ under inclination vector i. Since the relation-algebraic

expression that specifies the column vector Bi is built from i using unions, intersections,

complements and left-compositions with constants only, the same holds for the expression

WBi. Hence, a replacement of Bi in the latter by the column-wise enumeration of all decision

vectors, i.e., by the relation Dvec(D) : P ↔ 2P of (7), leads to the column-wise enumeration

of all sets P+
i . With respect to the row vector gdv(D) we are looking for, this means that

for the relation WDvec(D) : N ↔ 2P and for all sets X ∈ 2P the following property has to

hold: If the inclination vector i : P ↔1 equals the X-column of the membership relation

M : P ↔ 2P , then gdv(D)⊥,X holds iff the X-column of WDvec(D) contains at least 76 1-

entries. From this, a relation-algebraic specification of gdv(D) can be obtained exactly as

in the case of Theorem 3.2.2 for the majority-of-parties-based group decision function, i.e.,

by using a threshold vector, the operation cardfilter and a symmetric quotient construction.

If we use this version of gdv instead of the version of Subsection 3.2, then we obtain the

following sizes of the sets underlying the definitions of the various power indices.

k ∈ P GL SP PvdA D66 PvdD CDA VVD CU SGP PVV

|I++
k | 256 256 416 256 256 352 256 288 288 352

|I+−
k | 256 256 96 256 256 160 256 224 224 160

|I−+
k | 256 256 96 256 256 160 256 224 224 160

|I−−
k | 256 256 416 256 256 352 256 288 288 352

In this new case |I+| = |I−| = 512 and thus from the values of the table above also all other

power indices of Subsection 2.1 can be obtained. In the following table we again show the

values for the power index GHBk only.

k ∈ P GL SP PvdA D66 PvdD CDA VVD CU SGP PVV

GHBk 0 0 0.62 0 0 0.37 0 0.12 0,12 0.37

Comparing this table with the table presenting GHBk for the previous case, we see that

in case of the two largest parties PvdA (33 seats) and CDA (41 seats), the net Success of

PvdA (measured by GHBPvdA) increases but the net Success of CDA decreases if decisions

are transfered from the plenum to parliamentary commissions.
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22 Relations, RelView and Measures in Networks

We have used RelView also to find all inclination vectors for which majority-of-seats-

based decision differs from majority-of-parties-based decision and obtained the following

result: If the majority-of-parties-based decision is ‘yes’, then the same holds for the majority-

of-seats-based decision. The other direction does not hold. There are exactly 80 inclination

vectors which lead to ‘yes’ if the decision bases on the majority of seats and to ‘no’ if it bases

on the majority of parties. In each of these cases the inclination of PVV is ‘yes’.

Having discussed power indices in great detail, let us now present the RelView results

concerning the influence indices, sets of followers and kernels. Note that for computing these

values the group decision function gd does not play a role. The next table shows for all Dutch

parties not in the coalition S = {CDA,CU,PvdA} (the present Dutch cabinet) the sizes of

the sets defining the possibility influence indices d(B, S → j) as computed by RelView.

j /∈ S GL SP D66 PvdD VVD SGP PVV

|IS→j| 128 128 128 128 128 128 128

|I∗S→j| 128 128 128 128 64 0 0

Hence, the possibility influence index of S on GL, SP, D66 and PvdD is 1 (denoting maximal

influence), the possibility influence index of S on VVD is 0.5 and the possibility influence

index of S on SGP and PVV is 0 (denoting no influence).

Let us, finally, present the results concerning the set of followers and kernels. We obtained

with the help of the RelView tool that

{GL,SP,PvdA,D66,PvdD,CDA,CU}

is the set of the seven followers of the present cabinet S, and that the set of singleton sets

{{PvdA}, {CDA}, {CU}, {SGP}, {PVV}}

is the kernel of the influence function induced by the above dependency graph and both

influence rules we have considered in Subsection 2.3.

5 Conclusions and Discussion

The paper disseminates our results on applications of relation algebra and the RelView

tool to Game Theory and Social Choice Theory. In (Berghammer et al., 2007, 2009) we have

already presented such applications to coalition formation, where with the help of relation

algebra and RelView the set of all feasible stable governments has been determined. In

the present paper, we apply relation algebra and RelView to network formation, i.e., to

compute some measures of agents’ strength, like power, success, and influence, in a network.

Algorithms to compute several power indices different from ours are given in (Alonso-

Meijide et al., 2008). Crama and Leruth (2007) have proposed an algorithmic approach for

the computation of power indices associated with corporate networks. Algaba et al. (2007)

use a combinatorial method based on generated functions to compute the normalized Banzhaf
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index in pseudo-polynomial time. Since computing the exact value of the power indices is

a hard algorithmic problem, it is interesting to see that RelView can deal with far from

simple cases, due to its very efficient BDD-implementation.

The algorithms used are expressed by the extremely short RelView programs, see, for

instance, the RelView program in Example 3.2.1. Another advantage of RelView is that

although all problems are hard since they deal with sets of exponential size, the BDD based

implementation of RelView is of immense help, compared with naive implementations of

relations. And a third advantage is the extremely formal correctness proofs of the algorithms.

What we particularly like in our approach is its usefulness with respect to applying the

tools to organizations and trend-setter structures with a larger number of players. One of the

straightforward ideas is to apply the measures computed by RelView to parliaments. This

is what we presented in the previous section. For networks with more than, say 5 or 6 players,

where some of the players have trend-setters that they follow, calculating the measures and

concepts of influence is far too complicated to be done by hand due to the sizes of the set of

inclinations. In case of networks with, say, 25 players, even a naive Boolean vector approach

within a conventional programming language like C leads to serious difficulties. It is hardly to

imagine to generate all the 225 = 33.554.432 Boolean column vectors of length 25 one after

another and to transform them into the corresponding decision vectors within reasonable

time. Due to the very efficient BDD-implementation of relations, the RelView tool allows

to do this in a very efficient and elegant way in many cases, viz. if programs essentially are

described by relation-algebraic expressions and do not use loops that range over huge sets.

To give an impression of the amazing power of the BDD-implementation of relations, we

want to mention that RelView needs on a Sun Fire-280R workstation (750 MHz, 4 GByte

main memory, running Solaris) only 0.04 seconds to compute the group decision vector in

the case of the Dutch parliament. Note that the symmetric quotient syq(M,WDvec(D)) used

here has type [2N ↔ 2N ]. Regarded as a Boolean matrix, this means that it has 2150 rows

and columns.

Of course, we also are not able to compute within reasonable time with RelView the

kernel of an influence function in the case of, say again, 25 players, if we apply the program

for computing sets of followers to all subsets of P , i.e., all possible column vectors Mp : P ↔1

with p : 1↔ 2P being a row point, via a simple loop. A strategy that may help in such a

situation is to estimate the sizes of the sets of the kernel. If we are able to show by an analysis

of the dependency relationships, for instance, that each set of the kernel consists of at most 3

players, then we can use the base-operation cardfilter to obtain a row vector v : 1↔ 2P that

represents the set {X ∈ 2P | |X| ≤ 3}. In the case of 25 players, instead of all 33.554.432

column vectors Mp : P ↔1 we then only have to loop through the
∑3

m=0

(

25
m

)

= 14.426

possible row vectors Mp with the row point p contained in v.

A further advantage of the approach of the present paper is that, because of the concise

form of the RelView-programs and the expressiveness of the relation-algebraic language,
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24 Relations, RelView and Measures in Networks

the combination of both tools additionally allows to experiment with given concepts and

concepts being still under development without having a large overhead and, furthermore,

to animate computations and to visualize their results. There are many more possibilities to

combine relation algebra andRelView to investigate and solve problems from Game Theory

and Social Choice Theory. One of them could be an application of the tools in question to

bargaining theory, in particular, to determining solutions of bargaining games.
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[22] König T, Bräuninger T. The inclusiveness of European decision rules. Journal of The-

oretical Politics 1998;10; 125-142.

[23] Laruelle A, Widgren M. Is the allocation of power among EU states fair? Public Choice

1998;94; 317-339.

[24] Leech D. Computing power indices for large voting games. Management Science

2003;49(6); 831-838.

[25] Morgan MJ. The Modelling of governmental coalition formation: A policy-based ap-

proach with interval measurement. Doctoral Dissertation, University of Michigan; 1976.

[26] Nurmi H, Meskanen T. A priori power measures and the institutions of the European

Union. European Journal of Political Research 1999;35(2); 161-179.

[27] Rae D. Decision rules and individual values in constitutional choice. American Political

Science Review 1969;63; 40-56.

[28] Rusinowska A, Berghammer R, Eklund P, Rijt JW van der, Roubens M, de Swart H.

Social software for coalition formation. In: (de Swart et al., 2006, 1-30)

[29] Rusinowska A, de Swart H. Generalizing and modifying the Hoede-Bakker index. In:

(de Swart et al., 2006, 60-88)

[30] Rusinowska A, de Swart H. On some properties of the Hoede-Bakker index. Journal of

Mathematical Sociology 2007;31(4); 267-293.

[31] Rusinowska A, de Swart H, Rijt JW van der. A new model of coalition formation. Social

Choice and Welfare 2005;24; 129-154.
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