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1 Introduction

The present paper aims to contribute to the problem of the existence of La-

grangian multipliers for constrained optimization. Given a solution of a con-

strained extremum problem, it consists in finding a vector of multipliers, associ-

ated to the constraints, in such a way that the pair solution-vector of multipliers

be a stationary point for the Lagrangian function. This is equivalent to claim

that a positive multiplier can be associated to the objective function. Classical

results in this sense date back to the first half of 19th century and are due to W.

Karush [9], F. John [8], H.W. Kuhn and A. W. Tucker [10].

In literature, a condition which guarantees that the multiplier associated with

the objective function is positive, is called regularity condition or constraint quali-

fication, according to whether the condition does or does not involve the objective

function, respectively.

In this paper, a regularity condition will be established by means of the image

space analysis [4] which has been shown to be a fundamental tool to study many

topics in optimization theory. More precisely, since the optimality of a feasible

point x̄ can be proved by means of the linear separation between two suitable

subsets of the image space, we begin the study by giving, in Section 2, a condition

equivalent to the linear separation between a convex cone C and a generic set S

in the Euclidean space Rn. This condition can be called of ”Helly-type” because

if each subset of S of finite cardinality enjoys a separability property then S itself

enjoys a separability property. In Section 3, we propose a regularity condition

for the linear separation between C and S, under the assumption that such

a separation holds. The regularity condition is given in terms of the tangent

cone to a suitable approximation of the set, which allows us to include also the

nonconvex case. In Section 4, given a constrained extremum problem, we consider
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in the image space a convex cone, which depends on the the kind of constraints

(equalities or inequalities), and a set, which is the image of the domain of the

given problem through the map of the constraining functions. Then, Theorem

4.1 is applied to achieve the existence of a regular separation hyperplane for the

two above sets, and hence for the existence of John multipliers (if the second

of the above sets is the linearization of the image) or of regular saddle-point

multipliers (if such a set is precisely the image set). It is worth to mention that,

even if separation arguments are developed in the finite dimensional image space,

the regularity condition which we obtain holds also for the infinite-dimensional

extremum problems having finite dimensional image, like for instance problems of

isoperimetric type. The existing literature contains a lot of interesting regularity

conditions, as those of Slater [14], Mangasarian-Fromovitz [11], Guignard [5],

Penot [13], Clarke calmness [1] and Ioffe metric regularity [6]. In this paper, we

begin the comparison among the present condition and each of the existing ones

by investigating in Section 5 and Section 6 the connections with the calmness

and the metric regularity, that are two concepts which have produced regularity

conditions. Some comments and examples are given in the paper with the aim

of showing the importance and the consequences of the condition.

We conclude this section by mentioning some notations which will be used in

the sequel:

for any x ∈ Rn, x ≥ 0 means xi ≥ 0, ∀i = 1, ..., n;

R
n
+ denotes {x ∈ Rn : x ≥ 0};

On denotes the n-tuple, whose entries are zero; when there is no fear of

confusion the subfix is omitted; for n = 1, the 1-tuple is identified with its

element, namely, we set O1 = 0;

A ⊆ B means that the set A is contained in the set B;

A ⊂ B means that the set A is contained in the set B, but A 6= B;
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A−B denotes vector difference between sets A and B;

〈·, ·〉 is the usual scalar product in Rn.

Let M ⊆ Rn, then:

dim M denotes the dimension of M ;

aff M denotes the affine hull of M ;

cl M denotes the closure of M ;

conv M denotes the convex hull of M ;

int M denotes the interior of M ;

ri M denotes the relative interior of M ;

d(x; M) :=inf {‖x− y‖ y ∈ M} denotes the distance from the point x to the

set M .

If M 6= ∅ and x̄ ∈cl M , then the set of x̄ + x ∈ Rn for which ∃{xi} ⊆cl M , with

lim
i→+∞

xi = x̄, and ∃{αi} ⊂ R+\{0} such that lim
i→+∞

αi(x
i−x̄) = x is called tangent

cone to M at x̄ and denoted by TC(x̄; M). We stipulate that TC(x̄; ∅) = ∅. If

x̄ = O, then the notation TC(M) is used.

2 A Helly-type condition for linear separability

between a cone and a set

Let C ⊂ R
n be a nonempty and convex cone with apex at O ∈cl C such that

C + cl C = C. Let S ⊂ R
n be nonempty and let s := dim S. If z ∈ Rn, then

denote by proj z its projection on the orthogonal complement of C:

C⊥ = {x ∈ Rn : 〈x, k〉 = 0,∀k ∈ C}.

Let p := dim C⊥ and hence dim C = n− p.

In the following statement, if p = 0 we stipulate that (1)-(2) shrinks to (2).

When p > 0 and it does not exist affinely independent z1, ..., zs+1 ∈ S, such that
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(1) is fulfilled, then, of course, condition (1)-(2) is meant to be satisfied. We

stipulate that a singleton coincides with its relative interior.

Theorem 2.1 . If and only if for every set {z1, ..., zs+1} of affinely independent

vectors of S such that

dim aff (ri conv{proj z1, ..., proj zs+1}) = p and

O ∈ ri conv{proj z1, ..., proj zs+1} (1)

we have

(ri C) ∩ ri conv{z1, ..., zs+1} = ∅ (2)

then C and S are (linearly) separable.

Proof. If. The proof will be split up into four parts.

(A) s = 0 or p = 0. If s = 0, then S is a singleton, say {ẑ}; (1) and (2) become,

respectively,

0 = dim proj ẑ = p, O = proj ẑ, (1)′

and (ri C) ∩ {ẑ} = ∅. (2)′

(1)′ is satisfied or not, according to, respectively, p = 0 or p > 0; if p = 0, then

(2)′ gives the thesis; if p > 0, then (1)′-(2)′ collapse to (2)′ and the thesis follows.

When p = 0, then C is a convex body and thus, obviously, (2) implies linear

separation (even proper) between C and S.

(B) 1 ≤ s ≤ p − 1. Let BC and BS be bases for aff C and aff S, respectively;

dim aff BC = n− p, dim aff BS = s and dim aff (BC ∪BS) ≤ n− p + s ≤ n− 1.

This shows that there exists a hyperplane of Rn which contains C and is parallel

to aff S, so that separation holds.

(C) s ≥ p ≥ 1 and (1) does not hold, in the sense that no set of affinely in-

dependent vectors of S verifies (1). Since s ≥ 1, there exists at least one set
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of s + 1 ≥ p + 1 affinely independent vectors of S; let {z1, ..., zs+1} be one of

such sets. Denote by proj S ⊂ Rn the projection of S into C⊥. Since for every

(s + 1)-dimensional set of affinely independent vectors of S, relation (1) does not

hold, then

O /∈ ri conv proj S.

Otherwise, if O ∈ ri conv proj S, then ∃α1, ..., αp+1 > 0 with
p+1∑
i=1

αi = 1 and

∃x1, ..., xp+1 ∈ proj S affinely independent, such that O =
p+1∑
i=1

αix
i. Thus, we will

have p+1 affinely independent vectors of S such that xi = proj zi, i = 1, ..., p+1

and O =
p+1∑
i=1

αiproj zi. Since dim S = s, then the set {z1, ..., zp+1} can be

augmented to form a set {z1, ..., zs+1} of affinely independent vectors of S which

would satisfy (1), that is a contradiction with the initial assumption. Because of

Hahn-Banach Theorem, O /∈ ri conv proj S implies the existence of a ∈ C⊥\{O}

such that

conv proj S ⊆ H− := {x ∈ Rn : 〈a, x〉 ≤ 0}.

By introducing the hyperplane H0 := {y ∈ Rn : 〈a, y〉 = 0}, it is obvious that

C ⊆ H0. Because conv and proj are permutable, we get proj conv S ⊆ H−.

Let be s ∈ conv S and sp its projection on C⊥. Since a ∈ C⊥, then we have

〈a, s − sp〉 = 0, or 〈a, s〉 = 〈a, sp〉 ≤ 0, where the last inequality comes from

sp ∈ proj conv S ⊆ H−. Therefore conv S ⊆ H−. Hence we can conclude that

H0 linearly separates C and S.

(D) s ≥ p ≥ 1 and (1) holds, in the sense that there exists a set {z1, ..., zs+1} of

affinely independent vectors of S which verifies (1). We prove that (2) implies

ri C ∩ ri conv S = ∅. (3)

Suppose that (3) does not hold, i.e. there exists z̄ ∈ ri C∩ri conv S. Because of a

well-known Carathéodory Theorem, z̄ can be expressed as a convex combination
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of s + 1 affinely independent vectors of S, say {w1, ..., ws+1}. If this set verifies

(1), then (2) is contradicted. Otherwise,

O /∈ ri conv {proj w1, ..., proj ws+1}.

Set H0 := {x ∈ R
n : 〈a, x〉 = 0}, where a ∈ C⊥ \ {O} and such that conv

{proj w1, ..., proj ws+1} ⊆ H−. We have that also conv {w1, ..., ws+1} ⊆ H−. On

the other side, z̄ ∈ ri C and C ⊆ H0 imply 〈a, z̄〉 = 0, or
s+1∑
i=1

αi〈a, wi〉 = 0, where

αi > 0, i = 1, ..., s+1 and
s+1∑
i=1

αi = 1. Being 〈a, wi〉 ≥ 0 and αi > 0, i = 1, ..., s+1,

we have

〈a, wi〉 = 0, i = 1, ..., s + 1.

From here, conv {w1, ..., ws+1} ⊆ H0 and thus S ⊆ H0, in particular 〈a, zi〉 =

0, i = 1, ..., s + 1. It follows 〈a, proj zi〉 = 0, i = 1, ..., s + 1 and a 6= O implies

that

dim aff (ri conv {proj z1, ..., proj zs+1}) < p,

which contradicts (1). So (3) is true and implies separation (even proper) between

C and S.

Only if. By assumption, ∃a ∈ Rn \ {O} and b ∈ R, such that

〈a, x〉 ≥ b, ∀x ∈ C and 〈a, y〉 ≤ b, ∀y ∈ S.

Since O ∈ cl C, we can put b = 0. Set H0 := {x ∈ Rn : 〈a, x〉 = 0}, H− := {x ∈

R
n : 〈a, x〉 ≤ 0}. Let us assume that there exists a set {z1, ..., zs+1} of affinely

independent vectors of S such that (1) holds (if no set of s+1 affinely independent

vectors of S exists, such that (1) is satisfied, then the thesis is trivial) while (2)

is not valid, i.e.

O ∈ ri conv {proj z1, ..., proj zs+1}, (4)

and

(ri C) ∩ ri conv {z1, ..., zs+1} 6= ∅. (5)
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Let z̄ belong to the left-hand side of (5); thus there exists αi ≥ 0, i = 1, ..., s + 1

with
s+1∑
i=1

αi = 1 such that z̄ =
s+1∑
i=1

αiz
i ∈ ri C. From z̄ ∈ri C we have proj z̄ = O

and from (4) we have proj zi 6= O for i ∈ J ⊆ {1, ..., s + 1} such that |J | = p + 1.

Therefore, it results proj z̄ = proj
s+1∑
i=1

αiz
i =

s+1∑
i=1

αiproj zi =
∑
i∈J

αiproj zi = O.

Since z1, ..., zs+1 ∈ S, then 〈a, zi〉 ≤ 0, i = 1, ..., s + 1 and hence 〈a,
s+1∑
i=1

αiz
i〉 ≤ 0.

On the other side, z̄ ∈ ri C and thus 〈a,
s+1∑
i=1

αiz
i〉 ≥ 0. It follows z̄ ∈ H0. From

z̄ ∈ ri C and C convex, we have that ∃βi > 0, i = 1, ..., n−p+1 with
n−p+1∑

i=1

βi = 1

and ∃ki ∈ C, i = 1, ..., n − p + 1 affinely independent, such that z̄ =
n−p+1∑

i=1

βik
i.

Since z̄ ∈ H0, then
n−p+1∑

i=1

βi〈a, ki〉 = 0, which implies 〈a, ki〉 = 0, i = 1, ..., n−p+1.

Thus, conv {k1, ..., kn−p+1} ⊆ H0 and, consequently, C ⊆ H0. It follows that

a ∈ C⊥ and therefore from S ⊆ H− we have proj S ⊆ H−. Using O = proj z̄,

we obtain

〈a, O〉 = 〈a, proj z̄〉 = 〈a,
s+1∑
i=1

αiproj zi〉 =
s+1∑
i=1

αi〈a, proj zi〉.

Since αi > 0, i = 1, ..., s+1, we get 〈a, proj zi〉 = 0, i = 1, ..., s+1; hence we have

also {proj z1, ..., proj zs+1} ⊆ H0 and, obviously, conv {proj z1, ..., proj zs+1} ⊆

H0. Let us denote by B(On, ε) an open ball of center On and radius ε > 0 in Rn

such that dim aff B(On, ε) = p. From (4) we have that ∃ ε̄ > 0 such that

B(O, ε̄) ⊆ conv {proj z1, ..., proj zs+1} ⊆ H0,

i.e. 〈a, y〉 = 0, ∀y ∈ B(O, ε̄). By assumption a 6= O; hence, for γ := ε̄
‖a‖ > 0, it

turns out ȳ := γa ∈ B(0, ε̄). Consequently, we have

0 = 〈a, ȳ〉 = γ〈a, a〉 = γ‖a‖2,

which contradicts the assumption a 6= O. �
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3 A condition for regular separability

Let us consider Theorem 2.2.7 of [4].

Theorem 3.1 . Let C ⊆ R
n be a nonempty and convex cone with apex at

O /∈ C such that C +cl C = C and F be any face of C. Let S ⊆ Rn be nonempty

with O ∈ cl S and such that S−cl C is convex. F is contained in every hyperplane

which separates C and S if and only if

F ⊆ TC(S − cl C),

where TC(S − cl C) is the tangent cone to S − cl C at O.

Theorem 3.1 assumes the convexity of S−cl C. The following example shows

that if we remove such an assumption, then the necessity in the theorem does

not hold.

Example 3.1. Let C be the following convex cone in R3:

C = {x ∈ R3 : x1 > 0, x2 = 0, x3 = 0}

and

S = {x ∈ R3 : x1 = x2 ≥ 0, x3 = −x2
1 − x2

2}∪

∪{x ∈ R3 : x1 = −x2 ≥ 0, x3 = −x2
1 − x2

2}.

Choose F = C. Obviously S and S − cl C are not convex. The plane H0 = {x ∈

R
3 : x3 = 0} is the unique plane which separates C and S and it contains the

face F , nevertheless F is not contained in TC(S − cl C).

In order to extend Theorem 3.1 to nonconvex case, we have to consider

TC(conv (S − cl C)) in place of TC(S − cl C) and hence we have the follow-

ing result.
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Theorem 3.2 . Let C ⊂ Rn be a nonempty convex cone with apex at O /∈ C

such that C + cl C = C and F be any face of C. Let S ⊆ Rn be nonempty with

O ∈ cl S. F is contained in every hyperplane which separates C and S (if any),

if and only if F ⊆ TC(conv (S − cl C)).

Before proving Theorem 3.2, let us state some preliminary properties by means

of the following lemma.

Lemma 3.1 . Under the same hypotheses of Theorem 3.2, the following state-

ments, where H0 denotes a generic hyperplane of Rn, are equivalent:

(i) H0 separates C and S;

(ii) H0 separates C and S − cl C;

(iii) H0 separates C and conv (S − cl C);

(iv) H0 separates C and TC(conv (S − cl C)).

Proof. (i) ⇒ (ii) Suppose that the hyperplane H0, whose equation is 〈a, x〉 = b,

a 6= O separates C and S. Since O ∈ cl C, we can set b = 0. Then C ⊆ H+

and S ⊆ H−, where H+ and H− are the halfspaces identified by 〈a, x〉 ≥ 0 and

by 〈a, x〉 ≤ 0, respectively. Ab absurdo, suppose that ∃x̂ ∈ S − cl C such that

〈a, x̂〉 > 0. From x̂ ∈ S − cl C we get the existence of x1 ∈ S and x2 ∈ cl C such

that x̂ = x1 − x2. Therefore 〈a, x̂〉 > 0 implies

0 ≥ 〈a, x1〉 > 〈a, x2〉 ≥ 0,

where the first inequality is implied by x1 ∈ S ⊆ H− and the third by x2 ∈

cl C ⊆ H+.

(ii) ⇒ (iii) Suppose that the hyperplane H0, whose equation is 〈a, x〉 = 0,

separates C and S − cl C, i.e. C ⊆ H+ and S − cl C ⊆ H−. Let z be any

element of conv (S − cl C). From Carathéodory’s Theorem we have the exis-

tence of z1, ..., zn+1 ∈ S − cl C and αi ∈ [0, 1], i = 1, ..., n + 1 with
n+1∑
i=1

αi = 1,
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such that z =
n+1∑
i=1

αiz
i. From z1, ..., zn+1 ∈ S − cl C we have 〈a, zi〉 ≤ 0,

∀i = 1, ..., n + 1, and hence 〈a, αiz
i〉 ≤ 0, ∀i = 1, ..., n + 1. Therefore it fol-

lows 〈a,
n+1∑
i=1

αiz
i〉 ≤ 0 or 〈a, z〉 ≤ 0.

(iii) ⇒ (iv) Suppose that the hyperplane H0, whose equation is 〈a, x〉 = 0, sep-

arates C and conv (S − cl C), i.e. C ⊆ H+ and conv (S − cl C) ⊆ H−. Now we

will prove that conv (S − cl C) ⊆ H− implies TC(conv (S − cl C)) ⊆ H−. Let

t ∈ TC(conv (S−cl C)); then there exist a sequence {xn} ⊆ conv (S−cl C) with

lim
n→+∞

xn = 0 and a sequence {αn} ⊂ R+ \ {0} such that lim
n→+∞

αnx
n = t. Since

xn ∈ conv (S− cl C), ∀n ≥ 0, then 〈a, xn〉 ≤ 0, and hence 〈a, αnx
n〉 ≤ 0, ∀n ≥ 0.

Letting n → +∞ we obtain 〈a, t〉 ≤ 0 and thus TC(conv (S − cl C)) ⊆ H−.

(iv) ⇒ (i) This is an obvious consequence of the inclusions S ⊆ S − cl C ⊆

conv (S − cl C) ⊆ TC(conv (S − cl C)). �

Proof of Theorem 3.2. Only if. Since S 6= ∅ and O ∈ cl S, then O ∈

cl conv (S − cl C) and thus we can consider TC(conv (S − cl C)). Now, ab ab-

surdo, suppose F * cl cone conv (S − cl C) or, equivalently, that ∃f 0 ∈ F such

that f 0 /∈ TC(conv (S− cl C)). Since TC(conv (S− cl C)) is closed and convex,

then there exists a hyperplane H0 of equation 〈a, x〉 = b with a ∈ Rn \ {O} such

that

〈a, x〉 ≤ b < 〈a, f0〉, ∀x ∈ TC(conv (S − cl C)).

Because of O ∈ TC(conv (S − cl C)), we can set b = 0 and thus we have

〈a, x〉 ≤ 0 < 〈a, f0〉, ∀x ∈ TC(conv (S − cl C)). (6)

The inclusion S − cl C ⊆ TC(conv (S − cl C)) implies that 〈a, x〉 ≤ 0, ∀x ∈

S−cl C. Now we prove that 〈a, x〉 ≥ 0, ∀x ∈ C. Ab absurdo, suppose that ∃k ∈ C

such that 〈a, k〉 < 0 and let s ∈ S. Then we have s − αk ∈ S − cl C, ∀α ∈ R+

so that lim
α→+∞

〈a, s − αk〉 = +∞, which contradicts 〈a, x〉 ≤ 0, ∀x ∈ S − cl C.
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Therefore H0 separates C and S − cl C. Because of Lemma 3.1, H0 separates

also C and S. Due to the assumption, we have F ⊆ H0 and therefore 〈a, f0〉 = 0,

which contradicts (6).

If. Suppose that there exists a hyperplane H0, whose equation is 〈a, x〉 = 0,

which separates C and S. Because of Lemma 3.1, H0 separates also C and

TC(conv (S − cl C)) or, equivalently,

〈a, x〉 ≤ 0 ≤ 〈a, y〉, ∀x ∈ TC(conv (S − cl C)), ∀y ∈ C. (7)

These inequalities can be written as TC(conv (S − cl C)) ⊆ H− and C ⊆ H+,

where H− and H+ are the halfspaces identified by 〈a, x〉 ≤ 0 and by 〈a, x〉 ≥

0, respectively. The assumption F ⊆ TC(conv (S − cl C)) and the inclusion

TC(conv (S − cl C)) ⊆ H− imply F ⊆ H−. Besides, since F ⊆ cl C, then from

(7) we obtain F ⊆ H+. It follows F ⊆ H− ∩H+ = H0.�

Notice that in Theorem 3.2 the tangent cone TC(conv (S − cl C)) can be

replaced by cl cone conv (S − cl C); in fact, if A is a convex set, then TC(A) =

cl cone A. Moreover, observe that in Theorem 3.2 it is not possible to replace

TC(conv (S− cl C)) by conv TC(S− cl C)); in such a case the necessity of The-

orem 3.2 does not hold, due to the fact that, without the convexity assumption,

it may exist a hyperplane which separates C and TC(S − cl C) but does not

separate C and S − cl C. This situation is illustrated by the following example.

Example 3.2. Let C be the following convex cone in R3 :

C = {x ∈ R3 : x1 > 0, x2 = 0, x3 = 0} and

S = {x ∈ R3 : x1 = x2 ≥ 0, x3 ≤ 0, x3 = (x1 − 1)2 + (x2 − 1)2 − 2}∪

∪{x ∈ R3 : x1 = −x2 ≥ 0, x3 ≤ 0, x3 = (x1 − 1)2 + (x2 + 1)2 − 2}.
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Choose F = C. Obviously S and S− cl C are not convex. The plane H0 = {x ∈

R
3 : x3 = 0} is the unique plane which separates C and S and it contains the

face F . It results:

TC(S − cl C) = {x ∈ R3 : x1 = x2, x3 ≤ 0, x3 ≤ −4x1}∪

∪{x ∈ R3 : x1 = −x2, x3 ≤ 0, x3 ≤ −4x1}.

TC(S−cl C) is not convex and we have that F * conv TC(S−cl C). Moreover,

every plane H0
a = {x ∈ R3 : ax1 + x3 = 0}, with 0 < a ≤ 4, separates C and

TC(S− cl C) (and hence also C and conv TC(S− cl C) ), but does not separate

C and S and does not contain the face F .

Remark. Observe that both in Example 3.1 and 3.2 we have int C = ∅. It

is possible to give similar examples with int C 6= ∅, by putting for instance

C = {x ∈ R3 : x1 ≥ 0,−10x1 ≤ x2 ≤ 0, 0 ≤ x3 ≤ 10x1} and choosing F ⊂ C,

F = {x ∈ R3 : −10x1 ≤ x2 ≤ 0, x3 = 0} .

4 A regularity condition for constrained opti-

mization

Let us consider the particular case of a constrained extremum problem. For

this, assume we are given the integers m and p with m ≥ 0 and 0 ≤ p ≤ m,

the nonempty subset X of a Banach space B and the functions f : X → R,

gi : X → R, i ∈ I := {1, ...,m}. Let us consider the following constrained

extremum problem

min f(x), s.t. (8)

gi(x) = 0, i ∈ I0 := {1, ..., p},
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gi(x) ≥ 0, i ∈ I+ := {p + 1, ...,m}, x ∈ X.

We stipulate that if p = 0 then I0 = ∅, if m = 0 then I+ = ∅, while when m = 0

we have I = I0 ∪ I+ = ∅. The feasible region of (8) is the set

R := {x ∈ X : g(x) ∈ D},

where g(x) := (g1(x), ..., gm(x)), D := Op ×Rm−p
+ .

Suppose x̄ ∈ R and set fx̄(x) := f(x̄)− f(x); introduce the following sets:

H := {(u, v) ∈ R×Rm : u > 0, v ∈ D}

Hu := {(u, v) ∈ R×Rm : u > 0, v = 0}

Kx̄ := {(u, v) ∈ R×Rm : u = fx̄(x), v = g(x), x ∈ X}

E(Kx̄) := Kx̄ − cl H.

The set Kx̄ is called the image of the problem (8) and the space R1+m, where

both H and Kx̄ lay, is called image space.

It is quite immediate to prove the following result [4].

Proposition 4.1 .(i) x̄ ∈ R is a global minimum point of (8) ⇔ the system (in

the unknown x)

fx̄(x) > 0, g(x) ∈ D, x ∈ X (9)

is impossible or, equivalently,

H ∩Kx̄ = ∅. (10)

(ii) H ∩Kx̄ = ∅ ⇔ H ∩ E(Kx̄) = ∅.

The direct proof of (10) is, in general, impracticable; therefore a separation ap-

proach has been introduced in [4] which consists in finding a functional such that

H and Kx̄ lie in opposite level sets of the functional.

Given a nonempty subset K of R1+m, we say that H and K are linearly

separable if and only if ∃(θ, λ) 6= O1+m such that

θu + 〈λ, v〉 ≥ 0,∀(u, v) ∈ H and (11)
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θu + 〈λ, v〉 ≤ 0,∀(u, v) ∈ K (12)

where the separation hyperplane H0 is the zero level set of the functional: H0 :=

{(u, v) ∈ R × Rm : θu + 〈λ, v〉 = 0}. Conditions (11) and (12) are equivalent to

saying that ∃θ ≥ 0, ∃λ ∈ D∗, (θ, λ) 6= O1+m such that θu+〈λ, v〉 ≤ 0,∀(u, v) ∈ K

or, if K = Kx̄, such that

θfx̄(x) + 〈λ, g(x)〉 ≤ 0,∀x ∈ X. (13)

Definition 4.1 .A condition assuring the existence of θ > 0 (or equivalently,

after normalization, θ = 1) in (12) is called a regularity condition.

Combining Theorem 2.1 and Theorem 3.2 for the particular case of the ex-

tremum problem (8), we obtain a general regularity condition, where the set K

can play the role of both the image set and its linearization or homogenization [3].

The former part of (i) of the following theorem, i.e. conditions (14)-(15), guaran-

tees the existence of a separation hyperplane, while the latter one, i.e. condition

(16), guarantees that at least one of the existing separation hyperplanes has gra-

dient (θ, λ) with θ = 1.

Theorem 4.1 . Let K ⊂ R1+m be any nonempty subset of the image space and

s :=dim K. The following conditions are equivalent:

(i) For every set {z1, ..., zs+1} of affinely independent vectors of K such that

dim aff(ri conv {proj z1, ..., proj zs+1}) = p and

O ∈ ri conv {proj z1, ..., proj zs+1} (14)

we have

(ri H) ∩ ri conv {z1, ..., zs+1} = ∅. (15)

Moreover,

Hu ∩ TC(conv E(K)) = ∅. (16)
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(ii) θ = 1 in (12).

Proof.(i) ⇒ (ii) Consider Theorem 2.1 in the particular case n = m + 1, C = H

and S = K; conditions (14)-(15) imply linear separation between H and K and

thus the existence of a separation hyperplane

H0 = {(u, v) ∈ R×Rm : θu + 〈λ, v〉 = 0}, (θ, λ) 6= O1+m.

Ab absurdo, suppose θ = 0. Then the separation hyperplane becomes H0 =

{(u, v) ∈ R×Rm : 〈λ, v〉 = 0}, λ 6= Om. We observe that Hu ⊆ H0; hence from

Theorem 3.2 it follows that Hu ⊆ TC(conv E(K)), which contradicts (16).

(ii) ⇒ (i) Suppose that we have regular separation, i.e. θ = 1 in (12). Obviously,

from Theorem 2.1 conditions (14)-(15) hold. If, ab absurdo, (16) does not hold,

i.e. Hu ⊆ TC(conv E(K)), then from Theorem 3.2 it results that Hu is contained

in every hyperplane which separates H and K, that is θu + 〈λ, v〉 = 0, ∀(u, v) ∈

Hu, or θu = 0, ∀u > 0. This implies θ = 0 and hence the thesis follows.�

5 Comparison with calmness

Let us recall the definition of calmness which was introduced in [1].

Definition 5.1 .Problem (8) is said to be calm at a local solution x̄ if and only

if there exist two real numbers ρ > 0 and ε > 0 such that for all ξ ∈ B(Om, ε)

and for all x ∈ Rε(ξ) := {x ∈ X ∩B(x̄, ε) : g(x) + ξ ∈ D} 6= ∅ we have:

f(x)− f(x̄) + ρ‖ξ‖ ≥ 0. (17)

Analyzing Definition 5.1, we can see that the notion of calmness is a local

notion with respect to x̄, not only because x̄ is a local solution of the problem,

but mostly because in the definition of Rε(ξ) it is required that x belong to the
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neighbourhood B(x̄, ε). Hence, in order to compare the notion of calmness with

the regularity condition (16), we have to remove the condition x ∈ B(x̄, ε) in the

definition of Rε(ξ) or, alternatively, to consider the regularity condition (16) in a

local form.

In the next theorem we will make the comparison from a local point of view.

First of all, observe that condition (16) is equivalent to

eu /∈ TC(conv E(K)), (18)

where eu := (1, Om) ∈ R1+m.

Now, consider the following local regularity condition

eu /∈ TC(conv (Kε
x̄ − cl H)), (19)

where Kε
x̄ := {(u, v) ∈ R1+m : u = fx̄(x), v = g(x), x ∈ X ∩B(x̄, ε)}.

Theorem 5.1 .Let us consider problem (8), where f is supposed to be continu-

ous at the local solution x̄. If the condition (19) holds then problem (8) is calm

at x̄.

Proof. Ab absurdo, suppose that (8) is not calm at x̄. Then, if we set ρ = n

and ε = 1
n
, ∀n ≥ 1, we obtain the existence of ξn ∈ B(O, 1

n
) and of xn ∈ Rε(ξn),

in particular ‖xn − x̄‖ < 1
n
, such that

fx̄(xn) = f(x̄)− f(xn) > n‖ξn‖. (20)

From g(xn)+ξn ∈ D it follows the existence of dn ∈ D such that g(xn)−dn = −ξn,

n ≥ 1. Since ‖xn − x̄‖ < 1
n

and ‖ξn‖ < 1
n
, ∀n ≥ 1, we have that lim

n→+∞
xn =

x̄ and lim
n→+∞

g(xn) − dn = O; hence, from the continuity of f at x̄, it results

lim
n→+∞

fx̄(xn) = 0. Moreover, it is obvious that (fx̄(xn), g(xn)− dn) ∈ Kε
x̄ − cl H,

∀n ≥ 1. Taking αn := 1
fx̄(xn)

(observe that (20) implies fx̄(xn) > 0, ∀n ≥ 1), then
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we get

lim
n→+∞

αn(fx̄(xn), g(xn)− dn) = lim
n→+∞

αn(fx̄(xn),−ξn) = (1, O)

or, equivalently, that

(1, O) ∈ TC(Kε
x̄ − (O × cl D)). (21)

Since Kε
x̄ − (O × cl D) ⊂ Kε

x̄ − cl H ⊆ conv (Kε
x̄ − cl H), from (21) and from

the isotonicity of the tangent cone we have (1, O) ∈ TC(conv (Kε
x̄− cl H)) which

contradicts the assumption (19).�

The following example shows that the converse statement of Theorem 5.1 does

not hold.

Example 5.1. Let us consider problem (8) with the following positions: p =

m = 2; X = R, D = {O2}, f(x) = −|x|, g1(x) = x, g2(x) = −2x2. Obviously

x̄ = 0 is the (unique) optimal solution to problem (8). It will be shown that

the problem is calm at x̄ = 0. Set ξ = (ξ1, ξ2); g(x) + ξ ∈ D is equivalent to

x + ξ1 = 0, −2x2 + ξ2 = 0, so that:

Rε(ξ) =

{
x ∈ R : |x| < ε and either x = −ξ1 =

√
ξ2

2
or x = −ξ1 =

√
ξ2

2

}
, ξ2 ≥ 0.

Condition (17) becomes |x| ≤ ρ
√

ξ2
1 + ξ2

2 ; being x = −ξ1, the last inequality

is either an identity (if ξ1 = 0) or it is equivalent to 1 ≤ ρ
√

1 + 4ξ2
1 , which is

verified, if ρ ≥ 1 and ε > 0. Hence Definition 5.1 is fulfilled.

However, the problem is not regular. Its image set is

Kε
0 = {(u, v1, v2) ∈ R3 : u = |v1|, v2 = −2v2

1, |v1| < ε},

and is formed by two parabolic arcs having the bisectors of quadrants (u, v1) and

(u,−v1) as tangents at O. We notice that in this case H = Hu and hence

TC(conv (Kε
0 − cl H)) = {(u, v1, v2) ∈ R3 : v2 ≤ 0}.
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The unique plane which separates H and Kε
0 is H0 = {(u, v1, v2) ∈ R3 : v2 = 0}

and the regularity condition (19) is not satisfied.

6 Comparison with metric regularity

Definition 6.1 .Let us consider problem (8). Let x̄ ∈ X. The mapping g is said

to be metrically regular at x̄ with respect to R if and only if there exist two real

numbers L > 0 and ε > 0 such that

d(x; R) ≤ Ld(g(x); D), ∀x ∈ X ∩B(x̄, ε). (22)

Let us suppose that problem (8) is convex; i.e., the functions f and −gi,

i ∈ I+, are convex, and the functions gi, i ∈ I0, are linear. In what follows,

we shall prove that under these assumptions, the metric regularity implies the

regularity condition (18) with K = Kx̄. The convexity of problem (8) imply the

convexity of E(Kx̄) and therefore condition (18) becomes

eu /∈ TC(E(Kx̄)). (23)

Theorem 6.1 .Let x̄ ∈ X be a local solution to problem (8), where f and −gi,

i ∈ I+, are convex, and gi, i ∈ I0, are linear. If f is locally Lipschitz at x̄ and g

is metrically regular at x̄, then the regularity condition (23) holds.

Proof. Since f is locally Lipschitz at x̄, we can apply Theorem 5.1 from [2] which

proves our assertion. We want to remark that in the mentioned theorem of [2] it

is not needed gi, i = 1, ...,m to be locally Lipschitz at x̄. �

Removing the convexity assumption in Theorem 6.1, the metric regularity is

no more sufficient for regularity condition (18). For this, consider again Example

5.1.
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Example 5.1(continuation). Recall that in this case the sets R and D are

R = {0} and D = {O2} = {(0, 0)}, respectively. Thus, for a given ε > 0, we have

d(x; R) = |x|, ∀x ∈ B(0, ε). On the other hand, it turns out that

d(g(x); D) = ‖g(x)‖ =
√

x2 + 4x4 = |x|
√

1 + 4x2, ∀x ∈ B(0, ε).

Setting L = 1, relation (22) becomes obvious at x = 0, while if x 6= 0 we have

1 ≤
√

1 + 4x2, ∀x ∈ B(0, ε).

This means that the metric regularity condition holds, but, as we have seen, the

problem is not regular.

The following example shows that also the locally Lipschitz condition cannot

be removed in the above theorem.

Example 6.1. Let problem (8) be given with p = 1, m = 1; X = [0, +∞),

D = {0}; f(x) = −
√

x and g(x) = x. We have R = {0}. The function f is

convex but not locally Lipschitz at x̄ = 0, which is the (unique) optimal solution

to problem (8).

It results

Kx̄ = {(u, v) ∈ R2 : u =
√

v, v ≥ 0}

and

TC(conv E(Kx̄)) = {(u, v) ∈ R2 : v ≥ 0}.

One obtains d(x; R) = |x| and d(g(x); D) = |x|, ∀x ∈ X. Thus the metric regu-

larity condition holds but, as it can be easily seen, the regularity condition (23)

does not.

The following example shows that the converse statement of Theorem 6.1 does

not hold.
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Example 6.2. Let us consider problem (8) with the following positions: p =

0, m = 1; X = R, D = [0, +∞); f(x) = x4 and g(x) = −x2. We have R = {0}.

Obviously, f and −g are convex functions and x̄ = 0 is the (unique) optimal

solution to problem (8).

We find

Kx̄ = {(u, v) ∈ R2 : u = −v2, v ≤ 0}

and

TC(conv E(Kx̄)) = {(u, v) ∈ R2 : u ≤ 0, v ≤ 0}.

Therefore the regularity condition (23) holds.

On the other hand it results d(x; R) = |x| and d(g(x); D) = x2, ∀x ∈ R. Con-

dition (22) becomes |x| ≤ Lx2; ∀L > 0 and in every neighborhood of x̄ = 0 this

inequality is not fulfilled.

7 Futher developments

Further investigations will deal, first of all, with comparison of the present results

with the existing regularity conditions and with the well-posedness. We consider

interesting to extend such a result to optimality conditions of higher order, to

extremum problems having infinite dimensional image and to vector extremum

problems.
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