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Assessing Credit with Equity: A CEV Model with Jump to

Default

Abstract

Unlike in structural and reduced-form models, we use equity as a liquid

and observable primitive to analytically value corporate bonds and credit

default swaps. Restrictive assumptions on the firm’s capital structure are

avoided. Default is parsimoniously represented by equity value hitting the

zero barrier. Default can be either predictable, according to a CEV process

that yields a positive probability of diffusive default and enables the leverage

effect, or unpredictable, according to a Poisson-process jump that implies

non-zero credit spreads for short maturities. Easy cross-asset hedging is

enabled. By means of a carefully specified pricing kernel, we also enable an-

alytical credit-risk management under possibly systematic jump-to-default

risk.

JEL-Classification: G12, G33.

Keywords: Equity, Corporate Bonds, Credit Default Swaps, Constant-

Elasticity-of-Variance (CEV) Diffusion, Jump to Default.



1 Introduction

For individual firms in segments of the market with high default risk there

is a clear link between default risk and equity returns and default risk ap-

pears to be systematic (Vassalou and Xing (2004)). Investors and credit-risk

managers seem to have taken notice. Investors have been showing appetite

for models that simultaneously handle credit and equity instruments, which

is important in managing a portfolio of these two instruments. Indeed,

cross-asset trading of credit risk has been gaining momentum1 among hedge

funds and banks. In their effort of assessing objective probabilities of de-

fault, credit-risk managers have been courting credit-risk models that focus

on equity data2 and that, given the systematic nature of default risk, could

explicitly treat the relationship between the objective probability measure

and the pricing measure(s).

Reduced-form models (see for example Duffie (1999) and the excellent

reviews in Lando (2004) and Schönbucher (2003)) are not of great help,

as they miss the direct linkage to the firm’s capital structure. Structural

models are driven by the value evolution in firm’s assets. The assets-value

evolution is often assumed to be diffusive so that the default can be seen

predictably coming by observing changes in the capital structure of the firm

(see the seminal papers of Merton (1974) and Black and Cox (1976) and

the reviews in Lando (2004) and Schönbucher (2003)). While appealing,

1The rise of capital structure arbitrage is a good example (see Yu (2004)).
2KMV output is strongly driven by equity-value data. The observation that, for non-

investment-grade reference entities, prices in credit default swap, corporate bond, and

equity markets tend to adjust simultaneously (see Schaefer and Strebulaev (2003) and

D’Ecclesia and Tompkins (2005)) impacts credit-risk management by affecting the assess-

ment of the objective probability of default (see D’Ecclesia and Tompkins (2005)).
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structural models suffer when it comes to applications. The underlying

(the sum of firm’s liabilities and equity) is illiquid and often non-tradable.

Obtaining accurate asset volatility forecasts and reliable capital structure

leverage data is difficult. Predictability of the default event implies the

counterfactual prediction of zero credit spreads for short maturities3 and,

last but not least, arbitrary use of the structural default barrier is often a

temptation hard to resist−endogenous barriers4 are impractical because of
the capital-structure assumptions under which they are derived are not fully

realistic.

We propose a parsimonious credit risk model that does look at the firm’s

balance sheet but avoids the application mishaps of structural models. We

take as underlying the most liquid and observable corporate security: Eq-

uity. This modelling choice brings in hedging viability and the possibil-

ity of reliable model calibration-leverage information from book values can

be circumvented. We parsimoniously represent default as equity value hit-

ting the zero barrier either diffusively or with a jump. The presence of

an equity-value drop to zero has its credit-risk foundation in the incom-

pleteness of accounting information (see Duffie and Lando (2001)), rules

out default predictability, and embeds the concept of unexpected default,

typical of reduced-form models, within a credit-risk model that is directly

based on equity. We assume that the continuous-path part of equity value

is a Constant-Elasticity-of-Variance (CEV) diffusion5, which enables a pos-

3Zhou (1997) posits assets-value jumps to overcome default predictability. Duffie and

Singleton (2001) explain such jumps with the presence of incomplete accounting informa-

tion.
4See for example Leland and Toft (1996), Acharya and Carpenter (2002), and references

therein.
5The CEV process has been first introduced to finance by Cox (1975). Among others,
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itive probability of absorption at zero and fits the stylized fact of a negative

link between equity volatility and equity price (the so-called ‘leverage ef-

fect’), and that the jump to default is driven by an independent Poisson

process. Such distributional assumptions prompt us to obtain closed forms

for Corporate Bond (CB) prices and Credit Default Swap (CDS) fees, from

which hedge ratios can be easily calculated. Those assumptions and a care-

ful specification of the state-price density also empower analytical credit-risk

management−we provide a closed form for the objective default probabilities
in the presence of possibly systematic jump-to-default risk.

Albanese and Chen (2004) and Campi and Sbuelz (2004) also use a CEV-

equity model to price credit instruments but they disregard the default pre-

dictability issue. In deriving closed-form values, we build upon a CEV result

in Campi and Sbuelz (2004). Brigo and Tarenghi (2004), Naik, Trinh, Bal-

akrishnan, and Sen (2003) and Trinh (2004) introduce a hybrid debt-equity

model that considers equity as primitive but that, like structural models,

necessitates a free default barrier, which is then left to potentially ad-hoc

uses−equity value is assumed to be a geometric Brownian motion, except in
Brigo and Tarenghi (2004)6. Das and Sundaram (2003) have proposed an

equity-based model that accounts for default risk, interest risk, and equity

risk using a lattice framework. As such, they do not seek hedger-friendly

analytical solutions. Numerical credit risk pricing based on equity has also

the CEV-based asset-pricing literature includes the works of Albanese, Campolieti, Carr,

and Lipton (2001), Beckers (1980), Boyle and Tian (1999), Cox and Ross (1976), Davydov

and Linetsky (2001), Emanuel and MacBeth (1982), Forde (2005), Goldenberg (1991),

Leung and Kwok (2005), Lo, Hui, Yuen (2000), Lo, Hui, and Yuen (2001), Lo, Tang, Ku,

and Hui (2004), Sbuelz (2004), and Schroder (1989).
6Brigo and Tarenghi (2004) and Hui, Lo, and Tsang (2003) employ a flexible time-

varying default barrier. Hui, Lo, and Tsang (2003) do not take equity as the underlying.
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been suggested by the convertible bond7 literature (see, for example, An-

dersen and Andreasen (2000), Andersen and Buffum (2003), and Tsiveriotis

and Fernandes (1998); McConnell and Schwartz (1986) ignore the possibil-

ity of bankruptcy). In Cathcart and El-Jahel (2003), default occurs when

a geometric-Brownian-motion signaling variable, interpreted as the credit

quality of the reference entity, hits a lower default barrier or according to

a hazard rate process, so that both expected and unexpected defaults are

accomodated in a single framework. However, the signaling variable can

hardly be identified with equity value (the default barrier is above the in-

accessible zero level and there is no ‘leverage effect’) and the problem of a

possibly freewheeling default barrier remains.

Linetsky (2005) builds upon the convertible bond literature to assess

zero-coupon CB prices within a geometric-Brownian-motion model with

jump-like bankruptcy where the hazard rate of bankruptcy is a negative

power of the share price. The dependence of the hazard rate on the share

price strongly complicates the analysis8. In a recent independent work, Carr

and Linetsky (2005) take the stock price to follow a CEV diffusion, punc-

tuated by a possible jump to zero. To capture the possible positive link

between default and volatility, they assume that the hazard rate of default

is an increasing affine function of the instantaneous variance of returns on

the underlying stock. Carr and Linetsky (2005) pursue a risk-neutral pricing

analysis without showing the existence of some equivalent martingale mea-

sure in their incomplete-markets setting−with CEV-like complete markets,
7See Nelken (2000) for a review of hybrid debt-equity instruments.
8The valuation formulae in Linetsky (2005) are spectral expansions that embed sin-

gle integrals with respect to the spectral parameter and calculations imply the use of

numerical-integration routines.
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Delbaen and Shirakawa (2002) show existence for a given lower bound on

the CEV parameter. Also, no study of the pricing-kernel-based choice of an

equivalent martingale measure is attempted.

By contrast, the (possibly) systematic nature of CEV-like diffusive risk

as well as of jump-to-default risk is carefully and parsimoniously treated

in our work. In particular, we prove that our parametric pricing kernel9

does support equivalent martingale measures. In doing so, we extend the

existence result of Delbaen and Shirakawa (2002) to any negative value of

the CEV parameter.

The rest of the work is organized as follows. Section 2 describes the un-

derlying equity value process. Section 3 provides analytical results for CBs

and CDSs. Section 4 specifies a pricing kernel that permits analytical ob-

jective default probabilities. After the conclusions (Section 5), an Appendix

gathers lengthy proofs, analytical formulae, and details about model-based

hedging.

9Since the jump to default is not a stopping time of the filtration generated by the

continuous-path part of the stock price, our chosen Radon-Nikodym derivative is simi-

lar to the one coming from dynamic asset pricing theory with uncertain time-horizon,

Blanchet-Scaillet, El Karoui, and Martellini (2005), Proposition 2. Bellamy and Jean-

bleanc (2000) analyze the incompleteness of markets driven by a mixed diffusion, construct

a similar Radon-Nikodym derivative, and, among other contingent claims, study Ameri-

can contracts. Both Blanchet-Scaillet, El Karoui, and Martellini (2005) and Bellamy and

Jeanbleanc (2000) assume bounded local volatility for the stock returns, which is not our

CEV case. They also refrain from considering default-driven time-horizon uncertainty.
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2 The equity value

Under an equivalent martingale measure10 Q, the reference entity’s share-

price process {S} has the following pre-default jump-diffusion dynamics:

dSt
St−

= (r − q) dt+ σSρ−1
t− dzt − (dNt − λdt) .

Here below we list the main objects appearing in the dynamics of {S}:

(i) S0 = S (current share price),

(ii) St− ≡ limε&0 St−ε (left time limit),

(iii) ρ− 1 < 0 (constant elasticity of the diffusive volatility),

(iv) Nt ≥ 0 (first-jump-stopped Poisson process),

(v) τ ≡ inf {t : Nt = 1} (time of jump-like default),

(vi) EQ0
£
1{τ>T}

¤
= exp (−λT ) (chance of surviving to jump-like default),

(vii) T > 0 (finite maturity, in years),

(viii) λ ≥ 0 (jump-to-default intensity),

where r is the constant riskfree rate, q is the constant dividend yield11,

σ (σ > 0) is a constant scale factor for the diffusive volatility, and dz is the

increment of a Wiener process under Q. The processes {z} and {N} are
10Given our incomplete-markets setting, see Section 4 for a discussion of a tractable

relationship between admissible Qs and the objective measure P.
11We consider the case r− q + λ > 0. For stocks, the cost of carry is typically positive.
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assumed to be independent. The assumed absence of interest rate risk is

unlikely to be restrictive for non-investment-grade reference entities, as the

interest-rate sensitivity of credit instruments (mainly CBs) related to those

entities is low (see Cornell and Green (1991) and Guha and Sbuelz (2003)).

According to the boundary classification, an inverse relationship between

volatility and share price (ρ− 1 < 0) is necessary to have absorption at zero
with positive probability mass in the absence of jumps. Such an assump-

tion of inverse relationship not only enables predictable default at the zero

barrier, but it is also consistent with much empirical evidence on the nega-

tive correlation between stock returns and their volatilities. Realized stock

volatility is negatively related to stock price. This ‘leverage effect’ was first

discussed in Black (1976) and its various patterns have been documented

by many empirical studies, for example, Christie (1982), Nelson (1991), and

Engle and Lee (1993).

The time of absorption at zero in the absence of jumps is ξ, that is

ξ ≡ inf {t : St = 0, Nt = 0} ,

whereas the time of absorption at zero tout court is the minimum between

τ and ξ, that is

τ ∧ ξ = inf {t : St = 0} .
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We take the point 0 to be the absorbing state of the share-price process {S},
so that, once default has occurred, the share price remains at zero,

St = 0, ∀t ≥ τ ∧ ξ.

We also introduce the time of absorption at zero of the continuous part {Sc}
of {S}, that is,

ξc ≡ inf {t : Sc
t = 0},

where

dSc
t

Sc
t

= (r − q + λ)dt+ σ(Sc
t )
ρ−1dzt,

so that ξc and τ are clearly independent.

3 Analytical results for CBs and CDSs

Let T > 0 be a finite maturity (in years) and let V Q (S, T, y) be the T -

truncated Laplace transform of τ ∧ ξ’s probability density function under Q
(Q-p.d.f.) with Laplace parameter y (y ≥ 0),

V Q (S, T, y) ≡ EQ0
£
exp (−y(τ ∧ ξ))1{τ∧ξ≤T}

¤
.
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Such a quantity is of great importance, as it is the building block for the an-

alytical pricing of CBs and CDSs (with maturity T ). V Q (S, T, r) represents

the fair present value of 1 unit of currency at the reference entity’s default if

default occurs within T , while V Q (S, T, 0) represents the risk-neutral prob-

ability of default within T .

The next proposition is a neat and useful result stemming from the in-

dependence between {z} and {N}. It gives an analytical characterization of
V Q (S, T, y). It states that the quantity of interest is the linear convex com-

bination of the adjusted risk-neutral probability of default within T (with

weight λ
y+λ) and of the (y + λ)-discounted value of 1 unit of currency at the

diffusive default within T (with weight y
y+λ). The latter is the T -truncated

Laplace transform of ξc’s Q-p.d.f. with Laplace parameter y + λ,

EQ0
£
exp (− (y + λ) ξc)1{ξc≤T}

¤
,

and its closed form12 has been recently derived by Campi and Sbuelz (2004).

The closed form is provided in the Appendix.

Proposition 1 Under the above assumptions, the T -truncated Laplace trans-
12Davidov and Linetsky (2001), see pp. 953 and 956, point out that the T -truncated

Laplace transform of ξc’s Q-p.d.f. with Laplace parameter y + λ can be obtained by

numerically inverting the closed-form non-truncated Laplace transform

1

a
EQ
0 [exp (− (y + λ+ a) ξc)] ,

where the inversion parameter is a > 0.
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form of τ ∧ ξ’s Q-p.d.f. with Laplace parameter y is

V Q (S, T, y) =
λ

y + λ

h
1− exp (− (y + λ)T )

³
1−EQ0

£
1{ξc≤T}

¤´i

+
y

y + λ
EQ0

£
exp (− (y + λ) ξc)1{ξc≤T}

¤
.

Proof. See the Appendix.

Proposition 1 empowers analytical pricing of CBs and CDSs. Consider a

reference entity’s CB that has face value F and pays an (annualized) coupon

C at regular 1k -spaced dates Tj up to its maturity T (k is a positive integer).

For the sake of simplifying notation, we take the maturity T to be a rational

number of the type n
k , n ∈ N .

Proposition 2 Given the recovery rate R at default and given the assump-

tion of Recovery of Face Value at Default (RFV), the fair CB price is

PCB (S, T, r) =
kTX
j=1

1

k
exp (−rTj)

h
1− V Q (S, Tj , 0)

i
C

+exp (−rT )
h
1− V Q (S, T, 0)

i
F

+V Q (S, T, r) ·R · F.
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Proof. The result comes from taking the Q-expectation of CB’s dis-

counted payoffs. RFV bears the value V Q (S, T, r)·R ·F for CB’s defaultable
part.

R is a fixed historical data input in applications. Under RFV, CB holders

receive the same fractional recovery R of the face value F at default for

CBs issued by the reference entity regardless of maturity. Guha and Sbuelz

(2003) show that the RFV recovery form is consistent with typical bond

indenture language (for example, the claim acceleration clause), defaulted

bond price data, and relevant stylized facts of non-defaulted bond price data

(the mentioned low duration of high-yield bonds; see Cornell and Green

(1991)).

Consider a CDS related to the CB just described. It offers a protection

payment of (1−R)F in exchange for an (annualized) fee fCDS paid at

regular 1k -spaced dates up to the contract’s maturity.

Proposition 3 The fair CDS fee is

fCDS (S, T, r) =
V Q (S, T, r) (1−R)PkT

j=1
1
k exp (−rTj) [1− V Q (S, Tj , 0)]

.

Proof. Under Q, the fee fCDS (S, T, r) zeroes the CDS’ net present

value.

The holder of a CB can achieve total recouping of the face value F at de-

fault by being long a CDS. Being short ∂
∂SPCB (S, T, r) shares Delta-hedges

13

13We already remarked that interest-rate sensitivity of bonds issued by non-high-credit-

quality entities is low. However, parallel shifts of the (flat) term structure of the interest

rates can be hedged by selling a portfolio of default-free bonds that has interest-rate
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against the pre-default price shocks driven by diffusive news. Recent evi-

dence shows that such equity-based hedges perform reasonably well for high-

yield CBs (see Naik, Trinh, Balakrishnan, and Sen (2003) and Schaefer and

Strebulaev (2003)). Given analytical CB prices, an easy and effective mea-

sure of the Delta-hedge ratio is

∂

∂S
PCB (S, T, r) ' PCB (S + ε, T, r)− PCB (S − ε, T, r)

2ε
,

for a small ε. More details on model-based CB hedging are in the Appendix.

Tables 1 and 2 exhibit, across different maturities and levels of the pa-

rameter ρ, the yield spread of a semiannual-coupon 7% CB and the fee of

a CDS with quarterly installments. The left-hand (right-hand) panel fixes

λ = 1
20 (λ =

1
10), that is, it refers to a situation in which, on Q-average,

there is one chance of jump-like default every 20 (10) years. Positive levels

of the the risk-neutral jump intensity exert the remarkable pricing impact

(for short maturities in particular) that is known from pure reduced-form

models. The ‘leverage effect’ is quite important in boosting CB spreads and

CDS fees, especially at low levels of the risk-neutral jump intensity.

Table 1: The CB spread (promised yield to maturity minus r, %)

The input values are C = 7%, F = $100, R = 50%, S = $1, k = 2, r = 5%, q = 2%, and

σ = 35%.

sensitivity equal to ∂
∂rPCB (S, T, r). Such a hedge ratio can be easily calculated in our

model as PCB(S,T,r+ε)−PCB(S,T,r−ε)
2ε for a small ε.

12



λ = 1
20 T = 2 T = 5 T = 10 λ = 1

10 T = 2 T = 5 T = 10

ρ− 1 = −0.75 02.70 03.18 03.20 05.05 05.13 04.79

ρ− 1 = −2.00 05.30 04.40 03.68 07.06 05.97 05.14

Table 2: The CDS fee (%)

The input values are R = 50%, S = $1, k = 4, r = 5%, q = 2%, and σ = 35%.

λ = 1
20

T = 1
2

T = 2 T = 5 λ = 1
10

T = 1
2

T = 2 T = 5

ρ− 1 = −0.75 02.53 02.71 03.25 05.09 05.22 05.57

ρ− 1 = −2.00 03.88 05.48 04.74 06.28 07.49 06.78

4 The objective default probability

Our equity-based model contributes also to credit risk management by being

conducive to closed forms for the objective default probability14, V P (S, T, 0),

14For example, the New Basel Capital Accord allows the use of model-based objective

probabilities of default to determine the appropriate level of reserves to support credit

risky activities.
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with

V P (S, T, y) ≡ EP0

h
exp (−y(τ ∧ ξ)){τ∧ξ≤T}

i
,

where P is the objective probability measure. A parsimonious and closed-

form-conducive way of specifying the dynamics of the share price process

{S} under the objective measure is the following:

dSt
St−

= µPdt+ σSρ−1
t− dzPt −

³
dNP

t − λPdt
´
,

where

(i) µP ≡ r − q + θσ +EP[(exp(ζ)− 1)]λP,

(ii) θσ ≥ 0 (premium for the diffusive risk),

(iii) EP[(exp(ζ)− 1)]λP ≥ 0 (premium for the jump-like default risk).

ζ is a random variable independent from {zP} and {NP}, which are
assumed to be independent15. Such a terse specification of {S}’s P-dynamics
makes a neat account of systematic jump-like default risk. The risk-neutral

15The underlying filtration is that generated by {zP}, {NP}, and ©ζ1{τ<t}ª.
14



jump-to-default intensity λ maintains a simple link to the objective jump-

to-default intensity λP (λP > 0):

λ = EP [exp (ζ)]λP.

If the jump-like default risk disappears (λP & 0 ), its premium shrinks to

zero and the risk-neutral jump-to-default intensity does so as well. In the

case of a jump to default (τ ∧ ξ = τ), the state-price-density process {π}
that backs the measure Q jumps from πτ− to πτ ,

πτ = πτ− exp (ζ) .

Since πτ provides the fair present value of 1 unit of currency received at the

time of jump-like default per unit probability of such a dislikeable event,

it is reasonable to impose the restriction that πτ must always be at least

as much as πτ− is. Such restriction is granted by a non-negative ζ, which

forces the risk premium EP[(exp(ζ) − 1)]λP to be non-negative. This is in
line with the finding of Vassalou and Xing (2004) that high default risk

firms earn higher equity returns than low default risk firms. The criterion

of parameter parsimony suggests to take for ζ a one-parameter non-negative

distribution. One such distribution is the discrete Poisson distribution with

parameter φ (φ > 0) and with support {0, 1, 2, ...}, so that the expectation

15



EP [exp (ζ)] admits a concise closed form,

EP [exp (ζ)] = exp (φ (e− 1)) > 1,

EP [ζ] = φ,

V arP [ζ] = φ.

As long as jump-like default risk is systematic (φ is well above 0), the jump-

to-default intensity underQ is always greater than its level under P (λ > λP).

If the state-price density does not jump in the case of a jump to default

(φ& 0, that is, ζ = 0 P-almost surely), the systematic nature of the jump-

like default risk is washed away so that risk-neutral and objective jump-to-

default intensities tend to coincide (λ& λP).

As far as diffusive risk is concerned, if its premium faints, it is either

because such a risk is not priced (θ & 0) or because the risk is dimming

(σ & 0).

The above specification of {S}’s P-dynamics forces {π}’s P-dynamics to
be as follows.

Proposition 4 For t < τ ∧ ξ, the P-dynamics of the state-price-density

16



process {π} is

dπt
πt−

= −rdt

−θS1−ρt− dzPt

+
³
(exp (ζ)− 1) dNP

t − [exp (φ (e− 1))− 1]λPdt
´
,

and, for t ≥ τ ∧ ξ,

πt = πτ∧ξ exp (−r (t− τ ∧ ξ)) .

Proof. If the process {π} has the stated P-dynamics, then there are
no arbitrage opportunities. By virtue of Itô’s Formula, the π-deflated gain

processes generated by holding one share and by holding one unit of currency

in the money-market account are local P-martingales,

EPt [d (πt · St exp (qt))] = 0, EPt [d (πt · exp (rt))] = 0,

and, hence, the market is arbitrage-free16.
16This indeed rules out arbitrage opportunities involving St exp (qt) and exp (rt), under

natural conditions on dynamic trading strategies. See, for example, Appendix B.2 in Pan

(2000).
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We can even say more. Given finite values for θ and φ, our chosen

state-price-density process does support an equivalent martingale measure

Q.

Proposition 5 Let πt be defined as above and let T > 0 be any finite time

horizon. Then, the local P-martingale process {ertπt}, is a P-martingale
over [0, T ].

Proof. See the Appendix.

The previous proposition can be rephrased as follows: since the π-

deflated gain process generated by holding one unit of currency in the

money-market account is also a P-martingale, its T -time level represents

the Radon-Nikodym derivative of Q with respect to P , πT exp(rT ) = dQ
dP .

Given our choice of the pricing kernel, the quantity V P (S, T, y) admits

an analytical expression and, as soon as diffusive risk and/or jump-to-default

risk are systematic, it is always smaller than the quantity V Q (S, T, y) for any

y. In particular, systematic risk makes the P-probability of default smaller

than the Q-probability of default.

Proposition 6 The quantity V P (S, T, y) has the following closed form:

V P (S, T, y) =
λP

y + λP

h
1− exp (− (y + λP)T )

³
1−EP0

£
1{ξc≤T}

¤´i

+
y

y + λP
EP0
£
exp (− (y + λP) ξ

c)1{ξc≤T}
¤
,

Proof. Since the objective drift µP + λP is constant, arguments similar

to those behind Proposition 1 lead to the result.
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The T -truncated Laplace transform of ξc’s P-p.d.f. with Laplace param-

eter y + λP is analytical (see Campi and Sbuelz (2004)). Its closed form is

provided in the Appendix.

Table 3 exhibits, across different maturities and levels of the parameter

ρ, the probabilities of default V Q (S, T, 0) and V P (S, T, 0). The equity pre-

mium is fixed at µP− (r − q) = 12% by choosing a pricing kernel that, given

λ = 1
10 , implies on average one chance of jump-like default every 16.67 years

under the objective probability measure P (λP = 1
16.67). A greater ‘leverage

effect’ clearly inflates the probabilities of default, which, even if the drifts

r − q and µP + λP are positive, remain non-defective (they approach 1 as

T goes to infinity) under both Q and P as long as jump-like default has a

non-zero chance to occur (λ and λP are positive).

Table 3: The probability of default under Q and P (%)

The input values are S = $1, r = 5%, q = 2%, σ = 35%, λ = 1
10
, and θ and φ such that

the risk premia θσ and [exp (φ (e− 1))− 1]λP are 8% and 4%, respectively. This implies

that µP = 15% and λP = 1
16.67

.

V Q (S, T, 0) T = 1
2

T = 2 T = 5 V P (S, T, 0) T = 1
2

T = 2 T = 5

ρ− 1 = −0.75 04.88 18.56 42.51 02.96 11.58 27.89

ρ− 1 = −2.00 05.97 25.45 47.51 03.85 16.87 32.05
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In summary, we achieve analytical objective probabilities of default by

augmenting the original parameter set {r, q, σ, ρ, λ} with two risk-pricing
parameters only, θ for the diffusive risk and φ for the jump-like default risk.

5 Conclusions

We present an equity-based credit risk model that, by taking as primitive

the most liquid and observable part of a firm’s capital structure, overcomes

many of the problems suffered by structural models in pricing and hedging

applications. Our parsimonious model avoids any assumption on the firm’s

liabilities. It empowers the analytical pricing of CBs and CDSs and it can

match non-zero short-maturity spreads. Cross-asset hedging is viable and

easy to implement. A careful specification of the state price density enables

analytical credit-risk management in the presence of systematic jump-to-

default risk.
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6 Appendix

Proof of Proposition 1

We have that

EQ0
£
{τ∧ξ>s}

¤
= EQ0

£
1{τ>s}1{ξ>s}

¤
= EQ0 [1{τ>s}E

Q
0

£
1{ξ>s}|Nu = 0, u ≤ s

¤
]

= EQ0 [1{τ>s}E
Q
0

£
1{ξc>s}|Nu = 0, u ≤ s

¤
]

= EQ0
£
1{τ>s}

¤
EQ0

£
1{ξc>s}

¤
,

where the last equality follows from the independence between ξc and τ .

Hence, the time-s-evaluated Q-p.d.f. of the stopping time τ ∧ ξ is

fτ∧ξ (s) = − d

ds
EQ0

£
1{τ∧ξ>s}

¤
= − d

ds

³
EQ0

£
1{τ>s}

¤
EQ0

£
1{ξc>s}

¤´
= fτ (s)E

Q
0

£
1{ξc>s}

¤
+ fξc (s)E

Q
0

£
1{τ>s}

¤
= λ exp (−λs)EQ0

£
1{ξc>s}

¤
+ fξc (s) exp (−λs) .

The T -truncated Laplace transform of τ ∧ ξ’s Q-p.d.f. with Laplace
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parameter y is

V Q (S, T, y) = EQ0
£
exp (−y(τ ∧ ξ))1{τ∧ξ≤T}

¤
=

Z T

0
exp (−ys) fτ∧ξc (s) ds

= λY1 + Y2,

Y1 =

Z T

0
exp (− (y + λ) s)EQ0

£
1{ξc>s}

¤
ds,

Y2 =

Z T

0
exp (− (y + λ) s) fξc (s) ds.

Y2 is the T -truncated Laplace transform of ξc’s Q-p.d.f. with Laplace pa-

rameter y + λ,

Y2 = EQ0
£
exp (− (y + λ) ξc)1{ξc≤T}

¤
.

Its closed form has been derived by Campi and Sbuelz (2004) and it can be

found below after this proof. An integration by parts gives

Y1 =
−1
y + λ

exp (− (y + λ) s)EQ0
£
1{ξc>s}

¤¯̄̄̄T
0

−
Z T

0

−1
y + λ

exp (− (y + λ) s)
¡−fξc (s)¢ ds

=
1

y + λ

h
1− exp (− (y + λ)T )EQ0

£
1{ξc>T}

¤i− 1

y + λ
Y2.
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This completes the proof.
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Proof of Proposition 5

We will use the following auxiliary result:

Lemma 7 Let ρ < 1, so possibly taking negative values, Sc be the continu-

ous part of S as previously defined and let ηt be defined as follows:

ηt ≡ E
µ
−θ
Z ·

0
(Sc

u)
ρ−1dzPu

¶
t

, t ≥ 0.

Then, for any 0 < T < ∞, {η} is a true P-martingale over [0, T ]. In

particular, EP0 [ηT ] = 1.

Proof. Following the proof of Theorem 2.3 in Delbaen and Shirakawa

(2002), the crucial argument for ηt to be a true P-martingale is that the

integral
R T
0 (S

c
u)
2(1−ρ)du is finite a.s.. Delbaen and Shirakawa (2002) show

that this is the case for ρ ∈ (0, 1). We notice that the integral R T0 (Sc
u)
2(1−ρ)du

remains finite a.s. even for ρ ≤ 0. Indeed, Sc has continuous trajectories so

that the integral cannot explode.

To simplify the notation, we set eπt := ertπt. From the dynamics of πt

follows that

deπt = eπt−[−θS1−ρt− dzPt + ((e
ζ − 1)dNP

t −EP0[e
ζ − 1]λP)dt], t < τ ∧ ξ

and eπt = eπτ∧ξ for t ≥ τ ∧ ξ. The initial condition is of course eπ0 = 1. We
can write the process eπt as a Doléans-Dade stochastic exponential (see, e.g.,
Protter (1990), p. 78) in the following way:

eπt = E µ−Z ·

0
θS1−ρu− dzPu

¶
t∧τ∧ξ

Yt∧τ∧ξ,

24



where we set

Yt ≡ exp

½Z t

0
(eζ − 1)dNP

u −
Z t

0
EP0 [e

ζ − 1]λPdu
¾

×
Y
u≤t
(1 + (eζ − 1)∆NP

u )e
−(eζ−1)∆NP

u

= exp

X
u≤t

ln (1 + (eζ − 1)∆NP
u )−

Z t

0
EP0 [e

ζ − 1]λPdu
.

Fix a finite time horizon T > 0. We first prove that the process

E
µ
−
Z ·

0
θS1−ρu− dzPu

¶
t∧τ∧T

Yt∧τ∧T , t ≥ 0, (1)

is a P-martingale. To do so, we observe that, being (1) a strictly positive

local P-martingale, it is a P-supermartingale too17. To show that it is a

P-martingale, it suffices to prove that EP0 [E(−
R
θS1−ρu− dzPu)τ∧TYτ∧T ] = 118.

17This comes from the following well-known fact from martingale theory: let

M = (Mt)t≥0 be a local martingale defined on a given filtered probability space

(Ω, (Ft)t≥0,F , P ) and bounded from below by a constant a > 0, i.e. Mt ≥ −a for each t.

Then, M is a supermartingale. Indeed, let τn be a localizing sequence of stopping times

for Mt, i.e. τn ↑ +∞ a.s. and every stopped process (Mt∧τn)t≥0 is a true martingale, for

each n. Fix two instants s ≤ t. Fatou’s lemma gives

E[Mt|Fs] = E[lim inf
n→∞

Mt∧τn |Fs] ≤ lim inf
n→∞

E[Mt∧τn |Fs] =Ms.

18 Indeed, let 0 < T < ∞ and let M = (Mt)t∈[0,T ] be a supermartingale defined on a

given filtered probability space (Ω, (Ft)t∈[0,T ],F, P ) where F0 is trivial, such that E[MT ] =

M0. Then M is a martingale. To prove this, observe that, since E[MT ] ≤ E[Mt] ≤M0 for

each t ∈ [0, T ], the condition E[MT ] = M0 is equivalent to E[Mt] = M0 for all t ∈ [0, T ].
This implies that

E[Ms −E[Mt|Fs]] = E[Ms]−E[Mt] = 0,

for every couple of instants s ≤ t ≤ T . Since the supermartingale property gives that

Ms −E[Mt|Fs] ≥ 0, we have E[Mt|Fs] =Ms.
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Indeed, note that, in the stochastic exponential, we can replace the process

S with its continuous part Sc, which is independent of NP and ζ by con-

struction. Conditioning with respect to τ and ζ gives

EP0

·
E
µ
−
Z ·

0
θS1−ρu− dzPu

¶
τ∧T

Yτ∧T
¸
= EP0

·
EP0

·
E
µ
−
Z ·

0
θ(Sc

u−)
1−ρdzPu

¶
τ∧T

|τ , ζ
¸
Yτ∧T

¸
= EP0

"
EP0

·
E
µ
−
Z ·

0
θ(Sc

u−)
1−ρdzPu

¶
t

¸
|t=τ∧T

Yτ∧T

#

= EP0 [Yτ∧T ].

The first equality is due to the fact that

Yτ∧T = exp
n
ln
³
1 + (eζ − 1)1{τ≤T}

´
−EP0 [e

ζ − 1]λP(τ ∧ T )
o

= (1 + (eζ − 1)1{τ≤T})e−E
P
0 [e

ζ−1]λP(τ∧T ),

so that it depends only on τ and ζ. The second equality follows from the

independence of τ , ζ and Sc and the third one from Proposition 7, stating

in particular that EP0 [E
¡− R ·0 θ(Sc

u−)1−ρdzPu
¢
t∧T ] = 1.

It remains to compute EP0 [Yτ∧T ]. To do so, recall that τ is exponentially

distributed with parameter λP, so that P[τ > T ] = e−λPT . Then, being ζ

and τ independent by assumption, we have

EP0 [Yτ∧T ] = EP0 [e
ζe−E

P
0 [e

ζ−1]λPτ1{τ≤T}] +EP0 [e
−EP0 [eζ−1]λPT1{τ>T}]

= EP0 [e
ζ ]EP0 [e

−EP0 [eζ−1]λPτ1{τ≤T}] + e−E
P
0 [e

ζ−1]λPTP[τ > T ]

= EP0 [e
ζ ]

Z T

0
λPe

−EP0 [eζ ]λPtdt+ e−E
P
0 [e

ζ ]λPT

= 1− e−E
P
0 [e

ζ ]λPT + e−E
P
0 [e

ζ ]λPT = 1.
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This yields that E(− R θS1−ρu− dzPu)t∧τ∧TYt∧τ∧T is a P-martingale. Doob’s

optional sampling theorem applies (e.g., Theorem 18 in Protter (1990)) and

gives that the process eπt is a P-martingale over the time interval [0, T ]. Being
T arbitrary, the proof is now complete.
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The discounted value of cash at ξc within T

The T -truncated Laplace transform of ξc’s Q-p.d.f. with Laplace param-

eter w (w ≥ 0) has been shown by Campi and Sbuelz (2004) to be

EQ0
£
exp (−w · ξc)1{ξc≤T}

¤
= lim

�&0

∞X
n=0

an (A,B)
³x
2

´n Γ(ν − n, x
2K , x

2�)

Γ(ν)
,

where

Γ(ν) ≡
Z +∞

0
uν−1e−udu (Gamma Function),

Γ
³
ν − n,

x

2K
,
x

2�

´
≡

Z x
2�

x
2K

u−nuν−1e−udu (Generalized Incomplete Gamma Function),

an (A,B) ≡ (−1)nC (B,n)An,

C (B,n) ≡
Qn

k=1 (B − (k − 1))
n!

1{n≥1} + 1{n=0},

x ≡ S2(1−ρ), ν ≡ 1

2(1− ρ)
,

A ≡ 2 (r − q + λ)

σ2(1− ρ)
, K ≡ σ2(1− ρ)

2 (r − q + λ)

³
1− e−2T (r−q+λ)(1−ρ)

´
,

B ≡ w

2 (r − q + λ) (1− ρ)
.
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The Generalized Incomplete Gamma Function, the Incomplete Gamma Func-

tion, and the Gamma function are built-in routines in many computing soft-

ware like MATLAB and Mathematica, which makes the above expressions

fully viable.
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Model-based CB hedging

Full dynamic hedging of a long position in a CB implies being short η

units of stocks as well as being long ξ units of CDSs with given fee f (for

recovery rate Z and notional X), where η and ξ are adapted processes that

satisfy the following system of risk-nullifying equations:

0 =
∂

∂S
PCB − η + ξ

∂

∂S

 V Q (S, T, r) (1− Z)X

−PkT
j=1

1
k exp (−rTj)

£
1− V Q (S, Tj , 0)

¤
f

 ,

0 = R · F − PCB (S, T, r)

−η (0− S)

+ξ (1− Z)X

−ξ
 V Q (S, T, r) (1− Z)X

−PkT
j=1

1
k exp (−rTj)

£
1− V Q (S, Tj , 0)

¤
f

 .

Our model also states that, in the case of a jump to default (τ ∧ ξ = τ),

pure Delta hedging recoups a fraction

∂
∂SPCB (Sτ−, T − τ , r)Sτ−
PCB (Sτ−, T − τ , r)−R · F

of the CB loss suffered at default.

30



The objective probability of default at ξc within T

The replacement of the risk-neutral intensity-added drift r− q + λ with

the objective intensity-added drift µP + λP implies that the T -truncated

Laplace transform of ξc’s P-p.d.f. with Laplace parameter w (w ≥ 0) has
this analytical expression:

EP0
£
exp (−wξc)1{ξc≤T}

¤
= lim

�&0

∞X
n=0

an (AP, BP)
³x
2

´n Γ(ν − n, x
2KP

, x
2�)

Γ(ν)
,

for

AP ≡ 2 (µP + λP)

σ2(1− ρ)
,

KP ≡ σ2(1− ρ)

2 (µP + λP)

³
1− e−2T (µP+λP)(1−ρ)

´
,

BP ≡ w

2 (µP + λP) (1− ρ)
.

The analytical expression of the objective probability of diffusive default

within time T is retrieved by taking w = 0.
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