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Abstract: This paper develops a methodology for the valuation of the taste for 
diversity. The concerns about the contribution of diversity in the valuation of 
consumer goods typically arise when it is believed that the total value is 
greater than the value of its parts. 
The methodology we propose infers the economic value of diversity through 
fish market price by using a system of inverse demands to model the nature of 
this particular commodity. We develop our analysis of the consumer value of 
diversity using Luenberger’s benefit function (Luenberger, 1992). In this 
context, we show that the benefit function provides a conceptual framework to 
conduct a welfare analysis of the value of diversity in a system framework.  

                                                 
 
1 Respectively, Department of Economics, University of Verona, Verona, Italy, and Research Assistant, 
Department of Agricultural and Resource Economics, University of Maryland, College Park, MD 20742 
(mbaggio@arec.umd.edu); and Professor, Department of Agricultural and Applied Economics, Taylor Hall, 
University of Wisconsin, Madison 53706. We want to thank Federico Perali for useful comments on an earlier 
draft of the paper.  
∗ This paper comprises the third chapter of my dissertation written in fulfillment of PhD requirements. 



 2

1 Introduction 

The question about how to measure biodiversity value has been widely discussed in the 

literature. One concern has been represented by which method to use to design the 

biodiversity index. Some researchers have approached the problem using a diversity function 

that considers the genetic distance as a measure of the difference between species. Others 

have proposed indexes describing abundance, richness, and evenness intended respectively as 

number and distribution of species (Shannon or Simpson index). 

Brock and Xepapadeas (2003) developed a measure which is not based on genetic 

distance, but on the value of the services that biodiversity provides or enhance, such as 

ecosystem productivity, insurance, knowledge, or ecosystem services. Their analysis stems 

from the principle that “the economic value of the […] system with one of the species extinct 

is less than the economic value of the […] system with both species present.” 

In the same spirit, we are interested in valuing the services that environmental diversity 

provides to consumers. Measuring the value of resources based on consumers’ willingness to 

pay is standard in economic and welfare analysis. What is not clear is how to apply such 

measurements to the valuation of diversity. This paper develops a methodology for such a 

measurement. Intuitively, the value of diversity arises when the willingness to pay for a set of 

goods is “greater than the sum of its parts”. This means that the value of diversity goes 

beyond the valuation of each good. It must involve some complementarity relationships 

across goods. This paper develops a methodology for such a measurement to show that the 

value of diversity goes beyond the valuation of each good by analyzing some 

complementarity relationships across goods. In this paper, we develop a general approach to 

the valuation of these complementarities. And we illustrate the approach in an application to 

the consumer value of diversity with respect to fish.  



 3

As a starting point, the methodology we propose is based on a standard welfare 

investigation of marginal willingness to pay. The main challenge to value diversity is that we 

need to know more than just the value of particular goods. Indeed, to evaluate 

complementarity relationships, we need to know how the marginal value of a good can be 

influenced by other goods. Obtaining this information requires a joint evaluation of 

willingness to pay across goods. This creates three specific challenges. First, the scope of 

analysis requires a system approach to consumer valuation. Second, evaluating possible 

complementarities across goods in a system requires assessing the value of the “sum of the 

parts”. This suggests relying on welfare measures that can be easily aggregated. Third, the 

approach must be empirical tractable.  

The objective of this paper is to address these three challenges to the consumer value of 

diversity. The methodology we propose infers the economic value of diversity through fish 

market price. The value of environmental diversity is endogenously determined. This 

approach follows Gorman’s statement, reinforced later in Barten and Bettendorf (1989), that 

price of fish depends on the shadow price of fish characteristics. This suggests a system of 

inverse demands as a natural way to model the nature of this particular commodity. This is 

the case when prices adjust to the quantity of the good on the market. Given the perishable 

nature of the commodity, in the short run supply is inelastic, prices are adjusted to clear the 

market, and producers are typically price takers (Barten and Bettendorf, 1989). Note that 

using a system approach to value marginal willingness to pay has been in the literature for 

decades. It can be based in the distance function first proposed by Shephard and analyzed by 

Deaton in the context of evaluating consumer welfare. The distance function also provides a 

convenient framework to conduct empirical analysis. Following the early work of Barten and 

Bettendorf (1989), it has been applied by Eales and Unnevehr (1994), Holt and Bishop 

(2002), Moro and Sckokai (2002), and Wong and McLaren (2005). This provides a 
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framework to analyze empirically cosnumer’s marginal willingness to pay for particular 

commodities in a way that is consistent with consumer theory. However, Shephard distance 

function is based on a proportional rescaling of quantities consumed. While it is convenient 

to evaluate index numbers (see Deaton), the Shephard distance function does not have “nice” 

aggregation properties (e.g., it is not meaningful to add proportions across scenarios when the 

evaluation point changes). Yet, the evaluation of diversity of a system requires the evaluation 

of the “sum of its parts.” This suggests that the Shephard distance function is not well suited 

to this task. What is needed is a welfare measure that has “nice” aggregation properties so 

that it can provide a direct evaluation of the “sum of the parts”. A welfare measure with this 

property is Luenberger’s benefit function (Luenberger, 1992). On that basis, we develop our 

analysis of the consumer value of diversity using Luenberger’s benefit function. The benefit 

function has the convenient feature of providing a measure of willingness to pay for goods, 

starting from a utility level U. Furthermore, the benefit function approach appears superior 

over the distance function because it aggregates easily across consumers and across 

scenarios. This makes it particularly attractive in the analysis of consumption activities for 

heterogeneous consumers, since the distance function approach is only applicable to a single 

representative consumer (Deaton, Barten, and Bettendorf). In this context, we show that the 

benefit function provides a conceptual framework to conduct a welfare analysis of the value 

of diversity in a system framework. And to show that it is empirically tractable and to 

illustrate its usefulness, we present an econometric application to fish consumption.   

The paper is organized as follows. Section 2 presents a brief introduction of the benefit 

function, and its linkages with welfare analysis in a system framework. Section 3 presents the 

results of an application for the Italian fishing markets. The theoretical development of the 

welfare measure for environmental diversity, from the consumer perspective, is presented in 
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section 4 together with the estimated welfare measures. Finally, section 5 presents concluding 

remarks. 

 

2 The Model 

In this section, we present an adaptation to the household level of the model we introduced in 

chapter 2. Consider a set of N households facing a vector of M goods. The i-th household 

faces xi = (xi1, …, xiM)T ∈ R M
+ , where the superscript T denotes the transpose, and has 

preferences represented by the utility function ui(xi), i = 1, …, N. We assume that the utility 

function ui(xi) is continuous, i = 1, …, N. Let g = (g1, …, gM)T ∈ R M
+  be some reference 

bundle satisfying g ≥ 0 and g ≠ 0. Following Luenberger (1992), define the benefit function 

for the i-th household by 

 ( ) ( ) ( ){ }M
i i i β i i i i +b , U , max β :u β U , β R= − ≥ − ∈x g x g x g , (1.1) 

if there is a β satisfying ( )i iu Ui β− ≥x g  and ( ) M
i +Rβ− ∈x g , 

 = -∞ otherwise.  

i = 1, …, N. The benefit function bi(xi, Ui) in (1) measures the largest number of units of the 

bundle g the i-th household is willing to give up to move from the utility level Ui to the point 

xi. In the case where the bundle g has a unit price, this provides a measure of household 

willingness-to-pay for xi. And when bi(xi, Ui) is differentiable in xi, it follows that the 

marginal benefit ∂bi(xi, Ui)/∂xi is a measure of the marginal willingness to pay for xi.. 

The properties of the benefit functions have been investigated by Luenberger (1992). They 

are briefly summarized. First, if preferences satisfy ui(xi + α g) > u(xi) for all xi ∈ R M
+  for 

some α > 0, then ui (xi) = Ui implies bi(xi, Ui) = 0. Second, if xi ∈ int(X), then bi(xi, Ui) = 0 

implies ui (xi) = Ui. This shows that bi(xi, Ui) = 0 is an implicit representation of the i-th 

household’s preferences where Ui = ui (xi), i = 1, …, N. Third, bi(xi, Ui) is non-increasing in 
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Ui. Fourth, bi(xi + α g, Ui) = α + bi(xi, Ui). When bi(xi, Ui) is differentiable in xi, this implies 

(∂bi/∂xi) g = 1. Finally, if ui(xi) is quasi-concave in xi, then bi(xi, Ui) is concave in xi. In the 

case where bi(xi, Ui) is twice-continuously differentiable in xi, this implies that (∂2bi/∂xi
2) is a 

symmetric, negative semi-definite matrix which satisfies (∂2bi/∂xi
2) g = 0. 

The benefit function complements the standard expenditure function Ei(p, Ui) = minx{ pT 

x: ui(x) ≥ Ui, x ∈ R M
+ }, where p = (p1, …, pM) ∈ R M

++  is the vector of prices for x. Luenberger 

(19920 has shown that the functions Ei(pi, Ui) and bi(xi, Ui) are closely related. First, when 

pi
T g > 0, the expenditure function Ei(pi, Ui) can be alternatively written as 

 ( ) ( )( ){ }i

T T M
i i i x i i i i i i i +E , U min b , U : R= − ∈p p x x p g x , (1.2) 

Second, define the hyper-benefit function 

 ( ) ( ) ( ){ }i

T T M
i i i i i i i i i i +b , U min E , U / : R⎡ ⎤= − ∈⎣ ⎦px p x p p g p  (1.3) 

When the utility function ui(xi) is quasi-concave, Luenberger (1992) has shown that b i(xi, Ui) 

= bi(xi, Ui). This establishes that, under quasi-concave preferences, the benefit function bi(xi, 

Ui) and the expenditure function Ei(pi, Ui) are dual to each other. Since the expenditure 

function Ei(pi, Ui) is commonly used in welfare analysis involving price  changes, this means 

that the benefit function bi(xi, Ui) provides a convenient basis for conducting welfare analysis 

involving quantity changes (see Luenberger, 1996). To exploit the duality, let xi
c(pi, Ui) ∈ 

argminxi {pi
T xi - bi(xi, Ui): xi ∈ X} be the quantity-dependent Hicksian demands obtained as 

a solution to the expenditure minimization problem in (1.2). Similarly, let pi
c(x, Ui) ∈ 

argminp {[pT xi - bi(xi, Ui)]/(pT g)} be a price-dependent Hicksian demands obtained as a 

solution of the minimization problem in (1.3). If Ei(pi, Ui) is differentiable in pi, then the 

envelope theorem applied to (1.3) gives Shephard’s lemma: 

 c
i i i i ii E ( , U )  = ( , U ). ∂ ∂p p x p  (1.4) 
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Similarly, if b i(xi, Ui) is differentiable in xi, then applying the envelope theorem to (1.3) 

gives 

 ( ) ( ) ( )
i

c T
i i i i i i ib , U , U⎡ ⎤∂ ∂ = ⎣ ⎦x x p x p g . (1.5) 

When prices are normalized such that pi
 T g = 1, equation (1.5) becomes ∂ b i/∂xi = pi

c(xi, Ui). 

In addition, when preferences are quasi-concave, then b i(xi, Ui) = bi(xi, Ui), implying that the 

price dependent Hicksian demands pi
c(xi, Ui) can be interpreted as the i-th household’s 

marginal willingness-to-pay for x, i = 1, …, N. Finally, the associated price-dependent 

Marshallian demands are defined as follows: pi
*(x) = pi

c(xi, ui(xi)), i = 1, …, N (recall 

corollary 1 and proposition 2 from chapter 2).   

We take the reference bundle g to be private goods. Then, as long as the reference bundle 

g remains constant, the benefit function bi(xi, Ui) in (1.1) can be conveniently added across 

households. The aggregate benefit function is defined as  

 ( ) ( )N
i i ii 1

B , b , U
=

=∑x U x  (1.6) 

where x = (x1, …, xN) ∈ XN and U = (U1, …, UN) ∈ RN. The aggregate benefit B(x, U) in 

(1.6) measures the largest number of units of the fix bundle g the N households are willing to 

give up to move from the utility levels U to point x. It provides a convenient aggregate 

welfare measure in the quantity space (see Luenberger, 1995, 1996). 

 

3 The Consumer Value of Environmental Diversity 

Denote by I = {1, …, n} the index set of n goods. Consider the partitions I = {IA, IB} where IA 

is the index set of environmental goods facing the N households, and IB is the set of other 

goods. Also, consider partitioning the set IA into K subsets: IA = {IA1, …, IAK}, where IAk 

denotes the k-th subset of environmental goods, k = 1, …, K. We are interested in measuring 

the value of environmental services. 
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Consider the i-th household facing xi = (xiA, xiB), where xiA = {xij: j ∈ IA} denotes the 

environmental goods and xiB = {xij: j ∈ IB} are the other goods. For simplicity, assume that 

pTg=1. Given some reference utility Ui, the i-th household total value for the environmental 

goods xiA is 

 ( ) ( ) ( )iA i i i iA iB i i iB iV , U b , , U b 0, , U .= −x x x x  (1.7) 

The value ViA(xi, Ui) in (1.7) provides a welfare measure of the total value of the goods 

xiA. However, it can be useful to try to decompose this total value into some of its 

components. One of its components is the value of diversity associated with the goods in xiA. 

To investigate this issue, let xi,Ak = {xij: j ∈ IAk} denote the environmental goods in the subset 

IAk, k = 1, …, K. And let xi,A-Ak = {(yi1, …, yin): yij = xij if j ∈ IA-IAk; yij = 0 if j ∈ IAk}. Given 

some reference utility Ui, the i-th household incremental value for the environmental goods 

xi,Ak is defined as  

 ( ) ( ) ( )i,Ak i i i iA iB i i i,A-Ak iB iV , U b , , U b , , U .= −x x x x x  (1.8) 

k = 1, …, K. Of special interest is the sum of the incremental values across the K sets of 

environmental goods: ∑ K
1k=  Vi,Ak(xi, Ui). In general, this sum will not be the same as the total 

value ViA(xi, Ui) in (1.7). The reason that (1.8) values the environmental goods one group at a 

time, while (1.7) values them jointly. This suggests defining the i-th household’s value of 

environmental diversity as 

 ( ) ( ) ( )K
i i i i,Ak i i i,A i ik 1

W , U V , U V , U .
=

= −∑x x x  (1.9) 

In general, Wi(xi, Ui) in (1.9) can be positive, zero, or negative. It can be zero if the value 

of the environmental goods in each group is independent of environmental goods in other 

groups. It is positive when the consumer values environmental diversity.   
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To illustrate, consider the simple case where environmental goods are partitioned into two 

groups: K = 2. Then, for the i-th household, xi = (xi,A1, xi,A2, xiB), and equations (1.7), (1.8) 

and (1.9) take the form 

 ( ) ( ) ( )iA i i i i,A1 i,A2 iB i i iB iV , U b , , , U b 0,0, , U ,= −x x x x x  (1.7') 

 ( ) ( ) ( )i,A1 i i i i,A1 i,A2 iB i i i,A2 iB iV , U b , , , U b 0, , , U ,= −x x x x x x  (1.8a') 

 ( ) ( ) ( )i,A2 i i i i,A1 i,A2 iB i i i,A1 iB iV , U b , , , U b ,0, , U ,= −x x x x x x  (1.8b') 

and 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

i i i i,A1 i i i,A2 i i i,A i i

i i,A1 i,A2 iB i i i,A2 iB i i i,A1 iB i i iB i

W , U V , U V , U V , U

b , , , U b 0, , , U b ,0, , U b 0,0, , U .

= + −

= − − +

x x x x

x x x x x x x x
(1.9') 

In the case where bi(xiA, xiB, Ui) is twice differentiable in xiA, this gives 

 ( ) ( )i, A2 i, A1 2
i i i i 1 2 iB i 1 2 1 20 0

W , U b a ,a , , U a a da da .⎡ ⎤= ∂ ∂ ∂⎣ ⎦∫ ∫
x x

x x  (1.9'') 

This generates the following results. 

Proposition 1: Let xiA = (xi,A1, xi,A2) ≥ 0 where xiA ≠ 0 and xiB ≠ 0. Assume that the i-th 

household benefit function bi(xiA, xiB, Ui) is twice differentiable in (xiA, xiB). The i-th 

household value of environmental diversity Wi(xi, Ui) satisfies 

a) Wi(xi, Ui) = 0 if ∂2bi(xi,A1, xi,A2, xiB, Ui)/∂xi,A1∂xi,A2 = 0 for all (xiA, xiB) ≥ 0, 

b) Wi(xi, Ui) < 0 if ∂2bi(xi,A1, xi,A2, xiB, Ui)/∂xi,A1∂xi,A2 < 0 for all (xiA, xiB) ≥ 0, 

c) Wi(xi, Ui) > 0 if ∂2bi(xi,A1, xi,A2, xiB, Ui)/∂xi,A1∂xi,A2 > 0 for all (xiA, xiB) ≥ 0, 

The proposition shows how the sign of the value of environmental diversity Wi(xi, Ui) is 

determined. From a), a sufficient condition for a zero value of Wi is that the marginal benefit 

of xi,A1 is independent of xi,A2. From b), a sufficient condition for Wi < 0 is that the marginal 

benefit of xi,A1 decreases with xi,A2. In this case, the incremental benefit of xi,A1 is smaller 

when xi,A2 is positive (compared to xi,A2 = 0). This means that the environment goods behave 

as substitutes across groups. Finally, from c), a sufficient condition for Wi > 0 is that the 
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marginal benefit of xi,A1 increases with xi,A2. Then, the incremental benefit of xi,A1 is higher 

when xi,A2 is positive. This identifies the presence of synergy or complementarity across 

environmental groups, yielding a positive consumer value for environmental diversity. 

 

4 Empirical Specification 

For the analysis in this paper, we consider the following specification for the benefit 

function developed in Chapter 2 for the i-th household 

 ( ) ( ) ( ) ( )i i i i i i i i i i ib , U α U β 1 U γ= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦x x x x , (1.10) 

where βi(xi) > 0, [1 - Ui γi(xi)] > 0. We have seen that (∂bi/∂xi) g = 1 holds for all xi and Ui. 

This implies (∂αi/∂xi) g = 1, (∂βi/∂xi) g = 0, and (∂γi/∂xi) g = 0. From (1.10), assuming that 

(pi
T g) = 1, the i-th household’s price-dependent Hicksian demands are 

 ( ) ( )( ) ( ) ( ) ( )( )
i i

2c 2
i i i i i i i i i i i i i i i i ip , U α β U 1 U γ γ β U 1 U γ ,⎡ ⎤= ∂ ∂ − ∂ ∂ − − ∂ ∂ −⎣ ⎦x x x x x x x  

i = 1, …, N.  

Solving bi(xi, Ui) = 0 yields Ui = ui(xi). Thus, Ui/[1 - Ui γi(xi)] = αi(xi)/βi(xi). Using pi
*(xi) 

≡ pi
c(xi, ui(xi)), we obtain the price-dependent Marshallian demands 

 ( ) ( ) ( ) ( ) ( ) ( )2*
i i i i i i i i i i i i i i i ip α β α β γ α β .⎡ ⎤=∂ ∂ − ∂ ∂ − ∂ ∂⎡ ⎤⎣ ⎦ ⎣ ⎦x x x x x x x x  

Let 

αi(xi) = α0 + ∑ M
j 1=  αj xij + ∑ M

j 1= ∑ M
k 1=  ½ αjk xij xik, with αjk = αj’k’ for all j ≠ j’ and k ≠ k’, 

βi(xi) = exp(β0 + ∑ M
j 1=  βj xij), 

γi(xi) = ∑ M
j 1=  γj xij,  

with  

 jk j'k'α =α ,  for all j ≠ j’ and k ≠ k’, (1.11) 



 11

as symmetry restrictions. Then, with (∂αi/∂xi) g = 1, (∂βi/∂xi) g = 0, and (∂γi/∂xi) g = 0 

holding for all xi imply the additional restrictions 

 M
j jj=1

α g =1,∑  (1.12) 

 M
jk jj=1

α g = 0,∑  k = 1, ..., M, (using the symmetry restrictions), (1.13) 

 M
j jj=1

β g = 0,∑  (1.14) 

and 

 M
j jj=1
γ g = 0.∑  (1.15) 

It follows that the i-th household’s price-dependent Marshallian demands for the j-th good is 

 ( ) ( ) ( ) ( )M 2*
ij i j jk ik j i i j i i i ik=1

p α α x β α γ α β ,⎡ ⎤= + − − ⎣ ⎦∑x x x x  (1.16) 

j = 1, …, M, k = 1, …, M, and i = 1, …, N.  

 

Further considerations on Heterogeneity and Extension to a Panel Data Analysis 

The benefit function is measured in terms of the number of units of the reference bundle g 

the consumer is willing to give up starting from utility U to obtain goods x. In our analysis, 

we consider the case where g involves market goods. For aggregation purpose, we want g to 

be the same for all consumers (Ch. 2). However, if the "law of one price" does not hold 

(because of transaction costs, etc.), each consumer can face different prices. This means that, 

even if the reference bundle g is constant, its unit value at a particular point of time can vary 

across consumers. In the application that follows, only aggregate consumption data is 

available. To address this issue, we group consumers into R regions. We define the regions 

such that all consumers in each region face the same prices at a given time. 

In the r-th region at a given time, let the observed prices for x be pr, r = 1, …, R.  This 

implies that the unit value of g can vary across regions, i.e. that pr
T g = kr, where kr is the unit 
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value of g in region r. Below, we make the assumption that actual prices are proportional to 

the marginal willingness to pay for x, i.e., that pr
T = kr (∂bi/∂xi). We know that the benefit 

function satisfies (∂bi/∂xi) g = 1. This implies that pr
T g = kr (∂bi/∂xi) g = kr, r = 1, …, R, as 

expected. 

Consider the hypothetical case where prices had been normalized in the r-th region such 

that pr
T g = 1. In this case, assume that the marginal benefit obtained by the i-th household in 

the r-th region takes the form ∂bi/∂xi = fik(θ, xi, ⋅)T, where fik(θ, xi, ⋅) g = 1. Given pr
T g = kr, it 

follows that the price-dependent equations for the i-th household in the r-th region become 

 ( )i,r r ik θ, ,f= ⋅p x  (1.17) 

where kr can vary across regions. This implies a need to allow for different parameters k’s 

across regions. We treat the parameters k’s as additional parameters that need to be estimated.  

To account for heterogeneous regional preferences, we also introduce regional dummy 

variables in the model. Let Dir = 1 if the i-th household is in the r-th region, and 0 otherwise.  

The dummy variables D’s are introduced to allow the parameters αj to vary across regions, 

with αj becoming [αj + ∑ R 1
r 1

−
= δrj Dir]. As a result, the dummy variables D’s appear as intercept 

shifter in equation (1.16). Since the αj’s must satisfy the theoretical restrictions (1.12), it 

follows that (1.12) becomes 

 M R-1
j r, j i, r jj=1 r = 1

α + δ D  g  = 1⎡ ⎤
⎣ ⎦∑ ∑   (1.18) 

for all r, implying that ∑ =

M

1j
αj gj = 1 and  ∑ =

M

1j
(αj + δrj) gj = 1, r = 1, …, R-1.  

One important issue that remains to be discussed is the choice of the reference bundle g. 

As discussed above, to obtain nice aggregation properties, we want to choose g so that it 

remains constant for all consumers and includes only private goods. In our application, g is 

chosen to be g =⎯x/( x T p ), where x  and p are the sample means. This means that the 
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reference bundle g is the sample average consumption bundle rescaled to have unit value on 

average.  

 

5 An Application 

In this paper the model is applied to estimate a system of price-dependent demands for fish 

landed at Italian regional ports. The main underlining assumption is that fish commodities are 

weakly separable from all other commodities.  

 

Description of the Database  

The raw data was obtained from available publication of the Italian Institute of Statistics 

(ISTAT) and from the Istituto Ricerche Economiche per la Pesca e l’Acquacoltura (IREPA 

onlus)2. It consists of annual landing and average prices of 47 marine species, population, and 

tonnage of fishing vessels for 12 Italian regions3. The sample period covers 1974 through 

2003, for a total of 360 observations. 

Given the large number of species, to make the analysis manageable, we aggregated the species into five m

of species reported in the Italian statistics4. 

Landings have been rescaled accordingly to regional population (demand side) and fleet 

tonnage (production capacity, supply side) to proxy regional consumption of fish species. The 

rescaling is done for each category as follows: X = RL [1 – (1 – RP/TP) ( RTSL/TTSL)], 

where RL is regional landing, RP is regional population, TP is total Italian population, RTSL 

is regional tonnage of fishing fleet, and TTSL is total tonnage of the Italian fleet. This also 

accounts for the unobservable transfers between regions; the fish that is landed is also 

                                                 
2 We thank Ms. Gambino (IREPA) for making available part of the data on tonnage (elaborations on data from 
the Italian Ministry for Agricultural and Forestry Policies-Mipaf). 
3 The dataset includes only Italian regions facing the sea: 1-Abruzzi, 2-Calabria, 3-Campania, 4-Emilia 
Romagna, 5-Friuli V. Giulia, 6-Liguria, 7-Marche, 8-Puglia, 9-Sardegna, 10-Sicilia, 11-Toscana, 12-Veneto. 
Nevertheless, some regions are excluded because no availability of price data, Lazio and Basilicata, or because 
of the large presence of missing values, Molise. 
4 Similar but broader categories were analyzed in Moro and Sckokai (2002). 
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consumed in the regions that do not have direct access to the sea. Adjusting landings for the 

shares of population and fleet tonnage allows our data to be as if for regional markets. A 

region with large population is likely to consume the largest part of its landings, exporting the 

remaining to other regions. It is easy to check that, ceteris paribus, if RP increases also X 

increases. On the other side, a region with high production capacity will export more, 

relatively to other regions. Everything else being equal, when RTSL increases X decreases. 

Finally, quantities are then expressed in per capita5 terms (kg/person) by dividing by regional 

population, and prices for each category are derived by dividing total value of landing 

(calculated before the adjustment), expressed in 2004 euros, by total landing. Descriptive 

statistics are presented in table 1. 

 

Table 1 ABOUT HERE 

 

Estimation and Empirical Results 

Given the availability of aggregated consumption data, the econometric specification is 

written as a system of M regressions where the j-th good is obtained by combining equations 

(1.16) and (1.18), and adding an error term: 

 ( ) ( ) ( ) ( )R 1 M 2*
rtj rt r j rj r jk rtk j rt rt j rt rt rt rt rtjr 1 k=1

p k α δ D α x β α γ α β ε−

=
⎡ ⎤⎡ ⎤= + + − − +⎣ ⎦⎣ ⎦∑ ∑x x x x (1.19) 

 

where xrt represents per capita fish consumption in the r-th region at year t, r = 1, …, R-1 

(R=12), t = 1974, …, 2003 (T=30), and j and k represent respectively the j-th and k-th 

category/species, j,k = 1, …, M (M=5). 

                                                 
5 In the case presented in this paper, only data on aggregated consumption are available. It is important to note 
that this does not undermine the applicability of the theoretical framework developed in chapter 2 to the Italian 
fishery case. This is so because even with aggregate data, the marginal benefit of a private good is just the 
marginal benefit associated with the consumer that consumes it, suggesting that the analysis should be done on a 
per capita basis. 
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Before the estimation, it is important to consider the stochastic properties of the system 

demands. Let prt
*= ( prt1, …, prtM ) be the (1×M) vector of independent variables and f(θ, zrt) 

be the (1×M) vector of quantity variables that represent the right hand side of the demand 

system. Note that zrt contains consumption as well as the regional dummies. We can express 

the whole system of demands derived from (1.19) as 

 ( )*
rt rt rtθ, + ,f=p z ε          r = 1, …, R, and t = 1, …, T, (1.20) 

where the error term εrt is a (1×M) vector and it satisfies E[εrt]=0, E[εrt εrt
T] = Σ, where Σ 

denotes the contemporaneous covariance matrix. Note that the Σ matrix is in general non-

singular (since the dependent variable is represented by price and not expenditure shares). As 

a result, we can proceed with estimating the full set of M equations. Since (1.20) is non-linear 

in the parameters, it requires using nonlinear estimation methods. The system, together with 

restrictions (1.11), (1.13)-(1.15) and (1.18) can be estimated by an Iterative Seemingly 

Unrelated Regression (ITSUR) procedure, allowing for correlation between equations.  

Since we have panel data, there is a need to explore the time series properties of the 

model. Here, we focus on the serialcorrelation of εrt, possibly reflecting the presence of 

individual specific effects. Neglecting serial correlation would likely bring inefficiency in the 

parameter estimates (Hsiao, 2003). There are several ways to handle serial correlation. We 

follow the suggestions by Hsiao (p. 57) applying them to the multiple equation case. Assume 

that εrt follows an AR(1) process εrt = εr,t-1 RM + urt, where RM is a diagonal M×M matrix 

reflecting serial correlation, and urt is a (1×M) vector of white noise error terms. Given RM, 

we could transform the model (1.20) into 

 ( ) ( )* * M
rt rt r,t-1 r,t-1 rtθ, θ, Rf f⎡ ⎤= + − +⎣ ⎦p z p z u , (1.21) 

and estimate it and obtain efficient estimates of the parameters. Estimate of RM matrix is 

obtained by using the residuals from estimating the model 
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 ( ) ( )* *
rt r rt r rt rθ,f− = − + −p p z z ε ε , (1.22) 

where *
rp , rz , and rε ,  are the individual means from (1.20) that are subtracted to eliminate 

the individual effects. The estimation of the AR process revealed significant serial correlation 

at lag one in the residuals of (1.20): ρ1,1 = 0.6142, ρ2,2 = 0.5847, ρ3,3 = 0.5401, ρ4,4 = 0.5165, 

ρ5,5 = 0.3657. 

Estimation of (1.21) requires a new set of restrictions implied by the presence of serial 

correlation. The new restrictions are 

( ) ( )
11 1

1 r,1 M r,5 1 r,1 5 r,5 r

55 5

0 g
α +δ α +δ α +δ α +δ k

0 g

ρ

ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟− =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

…
" " # % # "

"
 (1.23) 

for the r-th region, and 

 ( ) ( )
11 1

1 5 1 5 12

55 5

0 g
α α α α k

0 g

ρ

ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟− =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

…
" " # % # "

"
 (1.24) 

for the 12th region. Moreover, we have 

 ( ) ( )
11 1

1 5 1 5

55 5

0
0

0
k k k k

g

g

ρ
α α α α

ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟− =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

…
" " # % # #

"
, for k=1,…, 5, (1.25) 

 ( ) ( )
11 1

1 5 1 5

55 5

0
β β β β 0

0

g

g

ρ

ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟− =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

…
" " # % # #

"
, and (1.26) 

 ( ) ( )
11 1

1 5 1 5

55 5

0
γ γ γ γ 0

0

g

g

ρ

ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟− =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

…
" " # % # #

"
. (1.27) 

Equation (1.21) was estimated by ITSUR with restrictions (1.11), and (1.23)-(1.27) 

imposed. Estimates are consistent and asymptotically efficient. Overall, the model presents a 
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good fit, as shown by the single-equation R2 presented in the first part of table 2. The 

estimated parameters are presented in Appendix B. 

 

Table 2 ABOUT HERE 

 

Testing the Theory 

The estimated model was used to investigate the concavity property of the benefit 

function. For the entire sample period, the benefit function was found to be globally concave 

and well behaved. Inspection of the “Luenberger matrix”, defined as the Hessian of the 

benefit function (Ch. 2), and the corresponding eigenvalues calculated at the sample means 

(table 4), reveals that, as expected, the “Luenberger matrix” is singular (Ch. 2). Further 

interpretation of the ‘Luenberger matrix’ follows in the next section. 

Formulae for the price flexibilities are derived in Appendix A. The estimates for 

“Luenberger” (compensated) and uncompensated quantity flexibilities evaluated at the 

sample means are presented in table 5. They express by how much the price of commodity j 

must change due to a marginal change in per capita consumption of commodity j, 

maintaining the same utility level. Own-quantity flexibilities are all negative as expected by 

the curvature property of the benefit function, meaning that the inverse demand functions are 

downward sloping. Their small magnitude6 (in absolute value) is not surprising and it is 

consistent with other findings in the literature (Barten and Bettendorf, 1989; Beach and Holt, 

2001; Holt and Bishop, 2002). However, our estimates are less consistent with those obtained 

by Moro and Sckokai (2002) using annual fish landing in Italy. The largest own-quantity 

compensated flexibility is for category 2 (other fish), while the smallest for category 5 

(crustaceans). Most of the fish categories are net q-complements. The largest cross-quantity 

                                                 
6 Since we are dealing with a price-dependent demand system, small quantity flexibilities correspond to high 
price elasticities. 
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compensated flexibility is for category 3 (cephalopods) with respect to category 2 (other 

fish), the largest (net) q-complements. The opposite case is represented by anchovies, 

mackerels, and sardines with respect to other fish, with which are (net) q-substitutes. 

Uncompensated quantity flexibilities are in general smaller in absolute term. This is a sign 

that the substitution effect, measured by fjk
c dominates the income/utility effect. Price-

dependent uncompensated demands are rather price inflexible, i.e. fjj*>-1, implying that 

direct demands are price elastic. Scale flexibilities, which measure the response of each 

commodity price to an increase in quantity of commodities, are also presented in table 5. 

They Scale flexibilities for categories 1 and 3 are positive, suggesting that for these 

categories the complementarity effect dominates, while the remaining three are negative. To 

take one example, scale flexibility for category 3 (cephalopods) is 0.2263, indicating that a 1 

percent increase in the quantity of all commodities will increase the price (or marginal benefit 

for consumers) of cephalopods by 0.2263 percent. Overall, these results are inconsistent with 

findings of the literature (Barten and Bettendorf, 1989; Holt and Bishop, 2002; Beach and 

Holt, 2001; Wong and McLaren, 2005). 

 

Table 4 ABOUT HERE 

 

Table 5 ABOUT HERE 

 

Substitutability, Complementarity, and Value of Environmental Diversity 

The curvature property of the benefit function is important not just for the consistency 

with the theory, but also for the derivation of the welfare measures7, and therefore for the 

applicability of measures of the value of environmental diversity developed here. The benefit 

                                                 
7 Welfare measures obtained by using the benefit function are discussed in Luenberger (1996), and in Paragraph 
2.4. 
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function estimated through the inverse demand system measures the household willingness-

to-pay to reach consumption level x starting from utility level U. Using the empirical results 

we can analyze the relations, in terms of environmental diversity, between fish categories and 

derive the willingness to pay for the expressions (1.7')-(1.9'). 

As shown in proposition 1, the sign of the off-diagonal terms of the “Luenberger matrix” 

is sufficient to establish the sign of the value that consumers assign to environmental 

diversity. By inspecting table 4, we note that small pelagic behave as substitutes only for 

other fish, while they show a complementarity relationship with all the remaining categories 

of species. This means that the i-th household values environmental diversity, intended as 

(1.9), negatively for (x1, x2), while positively for the pairs (x1, x3), (x1, x4), and (x1, x5). The 

category other fishes instead yields positive values to the household when associated only 

with the category cephalopods, through their synergic relationship. The category cephalopods 

have a synergic relationship with all the other categories. Finally, other mussels and 

crustaceans yield positive values when associated with small pelagic and cephalopods, and 

negative values when associated with other fish; though, they behave as substitutes, yielding 

negative consumer value for environmental diversity. 

Table 6 presents the results obtained by applying (1.7')-(1.9') to the Italian fishery data. 

The base utility level is chosen to be U = u(xa), and it is defined implicitly from solving b(xa, 

u(xa))=0. Concavity of the benefit function is checked to hold at any evaluation point. Some 

relationships are more interesting than others, so we choose to report only results for five 

pairs of goods. While small pelagic and crustaceans behave as complements, other fish and 

crustaceans behave as substitutes. This relation appears to be induced by the substitutability 

between small pelagic and other fish. Similar example is provided by the pair other fish- 

other mussels which appear to be substitutes and cephalopods-other mussels which 

interestingly behave as complements.  
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The top part of the table reports the per capita regional total value for selected pairs of 

goods averaged over entire time span, as calculated in (1.7'). Those figures represent 

consumer’s benefit for the consumption of two single species one at the time: euros that each 

household, for each region, is willing to pay for its annual consumption of those two species. 

The bottom part of the table reports instead the value of environmental diversity as calculated 

by using (1.9'). The results confirm the theory in the sense that the values of diversity are of 

the signs predicted by proposition 1. The pairs other fish-crustaceans and other fish- other 

mussels have negative signs. This means that the i-th household8 values environmental 

diversity, intended as consumption of one additional species, negatively. Hence, for example, 

the incremental benefit of consumption of other fish is smaller when consumption of 

crustaceans (other mussels) is positive (-0.16 euros for Sardegna region), compared to when 

consumption of crustaceans (other mussels) is zero. Opposite interpretation is for the other 

three pairs of groups of specie, for which the diversity value is positive. The results of table 6 

show that the amount of euros that consumers are willing to pay for environmental diversity 

varies considerably between regions. For example, we can see that the household willingness 

to pay for environmental diversity referred to other fish and cephalopods goes from a 

minimum of 0.10 euros for Campania region to 6.74 euros for Marche region. This highlights 

the strong degree of complementarity that households from Marche region attribute to those 

two species relatively to households from Campania region. 

We can express the results in aggregate terms by multiplying the regional per capita 

welfare measures just discussed by the population of each region. This gives the aggregated 

benefit for each region. The top panel of table 7 reports the average (over time) total value for 

the selected pairs of fish categories. The bottom panel reports the measure for the value of 

environmental diversity relatively to the aggregate regional consumer surplus. It is obtained 

                                                 
8 Again, given data limitation, we assume that consumers are identical within each region, while they are 
different between regions.  
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by multiplying the per capita measures for population and then dividing by the aggregate 

consumer surplus. For the most part, we can notice that the environmental diversity 

component related to consumption represents a small percentage of the total value of the 

consumption of the species. Marche and Sicilia are the regions where that component is more 

relevant for the most of the reported species (x1, x5), (x2, x5), (x2, x3), while Abruzzi is the 

region with the highest value of diversity for (x3, x3) and (x3, x4). Campania and Toscana 

region denote the regions with the lowest appreciation for diversity. Finally, the benefit 

results for the whole group of Italian regions are reported. Table 7 shows the value of 

diversity, as a percentage of consumer value, for the aggregate group of regions.  

 

Table 6 ABOUT HERE 

 

Table 7 ABOUT HERE 

 

6 Concluding Remarks 

The paper addresses the question of how consumers value fish diversity. The question is 

answered by looking at the difference between the benefits of having the availability of a 

more diverse offer of fish species than having a more specialized one. Results are obtained 

from an application to the Italian fishery using a panel data for 12 regions in 30 years. 

The analysis is based on the benefit function developed by Luenberger (1992). The benefit 

function provides a powerful way of conducting welfare analysis, with a special focus on the 

value of fish diversity as perceived by consumers. The framework is general and can address 

questions on the wider concept of biodiversity9. The model presented in this paper is 

                                                 
9 The x’s will include not only quantity of biomass, but also other variables explaining the effect of biodiversity 
on the productivity of the ecosystem. 
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proposed as an alternative to the Inverse AIDS models that are more common in the 

literature.  

This analysis could be extended to address the interest of policy makers facing a situation 

of scarcity of a natural resource which has market value. One example is given by managers 

considering the introduction of a moratorium on particular species. Obtaining a value for fish 

biodiversity is also valuable for cases in which optimal harvesting policies are considered. 

For example, when the fish stock is negatively affected by pollution, the value of diversity 

may be considered in a social welfare problem so to provide incentives for controlling 

pollution, even in the case when there are no incentives at all, i.e. the case of open access, 

when the shadow value of the stock is zero. 
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Appendix A 

Price Flexibilities 

When u(x) is quasi-concave and strictly increasing in x, we have that u(x) = U which implies 

b(x, U) = 0, thus we can write p*(x) ≡ pc(x, u(x)). We can derive price flexibilities deriving 

the latter identity for the j-th commodity with respect to xk which yields 

∂pj
*(x)/∂xk ≡  ∂pj

c(x, u(x))/∂xk + ∂pj
c(x, u(x))/∂U  ∂u(x)/∂xk     (A1) 

where the last term can be derived by differentiating b(x, u(x)) = 0 with respect to xk, yielding  

∂u(x)/∂xk = - ∂b(x, u(x))/∂xk [∂b(x, u(x))/∂U]-1. Rearranging and multiplying by xk/pj gives10 

∂log(pj
*(x))/∂log(xk)  ≡  ∂log(pj

c(x, u(x)))/∂log(xk) - ∂log(pj
c(x, u(x)))/∂U    pk*(x) xk    [∂b(x, 

u(x))/∂U]-1, which represents the j-th uncompensated price flexibility equation. 

Let fjk
c denotes the compensated price flexibility for commodity j with respect to xk, fjk

* the 

compensated price flexibility for commodity j with respect to xk, and sj the scale flexibility of 

commodity j, so to have  

fjk
c = ∂log(pj

c(x, u(x)))/∂log(xk), 

fjk
* =  fjk

c  - ∂log(pj
c(x, u(x)))/∂U    pk*(x) xk    [∂b(x, u(x))/∂U]-1, 

sj  = ∑ K
1k=  fjk

*. 

Given the specification of the benefit function (1.10), it is possible to derive explicit 

formulae for the flexibilities. Let Ut = U/(1 - U γ(x)). The derivative of the price-dependent 

Hicksian demand for the j-th good with respect to the k-th good and U are given by 

∂pj
c(x, U)/∂xk = ∂2α/∂xk

2 – [∂2β/∂xk
2 Ut + ∂β/∂xk ∂Ut/∂xk] - ∂γ/∂xk [∂β/∂xk Ut2 + β(x) 

∂(Ut2)/∂xk], and 

∂pj
c(x, U)/∂U = – ∂β/∂xk ∂Ut/∂ xk – ∂γ/∂xk β(x) ∂(Ut2)/∂xk. 

Then the derivative of the benefit function with respect to the utility level U is 

                                                 
10 Where pj ≡ pj

*(x) ≡ pj
c(x, u(x)), and ∂b(x, u(x))/∂xk = pk*(x). 
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∂b(x, u(x))/∂U = – β(x) ∂Ut/∂ xk. 

Therefore, the explicit expressions for the compensated and uncompensated flexibilities are 

as follows: 

fjk
c = {αjk – βj

2 β(x) Ut – βj
 β(x) Ut2 – γ j [βj

 β(x) Ut2 + β(x) 2Ut3 γ j]} (xk/ pj
c),      

(A2) 

fjk
* =  fjk

c  - {βj [1/(1 – U γ(x))2] + γ j β(x) [2U/(1 - U γ(x))3]} pj
* [β(x)/(1 – U γ(x))2 ] (xk/ pj

c). 

(A3) 
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Appendix B 
Parameter Estimates and Standard Errors of the Demand System 

Parameter Coeff.   SE Parameter Coeff.   SE Parameter Coeff.   SE 

α0 11.1546   11.8288 k5 1.9903 ** 0.1225 δ5,4 0.6813   0.6627

α1 0.8499 ** 0.2366 k6 3.7880 ** 0.1227 δ6,1 2.0466 ** 0.2641

α2 3.7806 ** 0.5406 k7 1.9953 ** 0.1181 δ6,2 1.8546 ** 0.4752

α3 6.9550 ** 1.1382 k8 2.3989 ** 0.123 δ6,3 4.8517 ** 0.6146

α4 2.8297 ** 0.4876 k9 2.8360 ** 0.1225 δ6,4 1.6998 * 0.6658

α1,1 -0.0288   0.0155 k10 2.1945 ** 0.1228 δ7,1 0.3477   0.2986

α1,2 -0.0262   0.0182 k11 3.2266 ** 0.1232 δ7,2 0.0432   0.5128

α1,3 0.0531   0.0368 k12 1.8153 ** 0.1232 δ7,3 2.1967 ** 0.6876

α1,4 0.0027   0.0134 δ1,1 0.8754 ** 0.2594 δ7,4 -0.3101   0.7212

α2,2 -0.1831 ** 0.0435 δ1,2 -0.5785   0.4496 δ8,1 0.6338 * 0.2638

α2,3 0.3309 ** 0.0555 δ1,3 0.1502   0.6043 δ8,2 0.0494   0.46

α2,4 -0.0387   0.0261 δ1,4 -0.1558   0.6418 δ8,3 1.9745 ** 0.6282

α3,3 -0.9593 ** 0.2052 δ2,1 0.7956 ** 0.2585 δ8,4 0.5306   0.6626

α3,4 0.1331 ** 0.0445 δ2,2 0.1637   0.4563 δ9,1 1.0456 ** 0.2628

α4,4 -0.0575   0.0333 δ2,3 1.0130   0.5821 δ9,2 0.8094   0.4561

β1 0.0084 ** 0.00565 δ2,4 0.0102   0.6486 δ9,3 2.2844 ** 0.6128

β2 0.0652 ** 0.011 δ3,1 0.5392 * 0.258 δ9,4 0.3950   0.6564

β3 -0.1290   0.0129 δ3,2 0.4910   0.4603 δ10,1 0.7636 ** 0.2743

β4 0.0081   0.00862 δ3,3 1.0121   0.5783 δ10,2 -0.2950   0.4654
γ1 -0.00003   0.00005 δ3,4 2.2302 ** 0.6481 δ10,3 0.7600   0.6768
γ2 -0.0004 * 0.0002 δ4,1 -0.1012   0.2645 δ10,4 0.6940   0.6715
γ3 0.0011 ** 0.0003 δ4,2 -1.0495 * 0.4613 δ11,1 0.3943   0.2566
γ4 -0.0001   0.00012 δ4,3 0.6065   0.6695 δ11,2 0.9274 * 0.455
k1 2.1328 ** 0.1212 δ4,4 -0.9736   0.6445 δ11,3 1.4541 * 0.5769
k2 2.2173 ** 0.1232 δ5,1 0.2431   0.2608 δ11,4 3.3209 ** 0.6483

k3 2.5654 ** 0.1233 δ5,2 -0.5355   0.4726        

k4 1.5965 ** 0.1209 δ5,3 0.4850   0.608        
 
Note: * indicates significance at the 5% level and ** indicates significance at the 1% level. 
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Table 1– Descriptive Statistics for Fish "Consumption" in the Italian Regions. 
 

  Per capita "Consumption" (kg/person)     Prices (euros/kg) 

Fish Category Mean Deviation Min Max   Fish Price Mean Deviation Min Max 

x1 2.19 2.36 0.06 15.64   p1 1.67 0.77 0.40 5.08 
x2 3.52 3.20 0.70 17.5   p2 5.27 1.45 0.98 11.46 
x3 0.66 0.69 0.06 5.42   p3 5.69 1.61 2.26 11.64 
x4 2.28 2.79 0.01 21.88   p4 3.40 1.94 0.21 13.71 
x5 0.50 0.55 0.04 3.33  p5 10.33 5.78 2.76 61.56 

(Note: x1=small pelagic, x2=other fishes, x3=cephalopods, x4=other mussels, and x5=crustaceans) 
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Table 2– Measure of fit and autocorrelation diagnostic. 

 

Single Equation R2     

p1   0.7678

p2   0.7248

p3   0.6880

p4   0.6231

p5   0.7908
Parameters 
Estimated   79
Objective Value   4.7729
N. of observations   348
Violation of 
concavity   0
AR(2) coefficients      

ρ1,1   0.0302

ρ2,2   0.1183

ρ3,3   0.0590

ρ4,4   0.0516

ρ5,5   0.1292
 
 

Table 3– Covariance matrix of the system of equations. 
 

  p1 p2 p3 p4 p5 
            

p1 0.1469 0.0579 0.0673 0.0405 0.1321 
p2 0.0579 0.6096 0.2168 0.1511 0.4921 
p3 0.0673 0.2168 0.8435 0.1814 0.4913 
p4 0.0405 0.1511 0.1814 1.4260 0.3914 
p5 0.1321 0.4921 0.4913 0.3914 5.8082 
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Table 4 – Analytical “Luenberger matrix” evaluated at the sample means. 
 

Fish Category x1 x2 x3 x4 x5 Eigen values 

x1 -0.0311 -0.0401 0.0785 0.0023 0.0597 -1.7464 
x2 -0.0401 -0.2834 0.5241 -0.0483 -0.0634 -0.5553 
x3 0.0785 0.5241 -1.3395 0.1562 0.4336 -0.0369 
x4 0.0023 -0.0483 0.1562 -0.0612 -0.0106 0.0000 
x5 0.0597 -0.0634 0.4336 -0.0106 -0.6891 -0.0657 

(Note: x1=small pelagic, x2=other fishes, x3=cephalopods, x4=other mussels, and x5=crustaceans) 
 
 

Table 5 – Compensated, uncompensated, and scale flexibilities evaluated at the sample means (standard errors in parenthesis). 
 

  Compensated Flexibilities Uncompensated Flexibilities   
Fish Category x1 x2 x3 x4 x5 x1 x2 x3 x4 x5 Scale 

p1 -0.0399 -0.0828 0.0307 0.0031 0.0175 -0.0241 -0.0066 0.0488 0.0349 0.0386 0.0916 
  (0.0194) (0.0515) (0.0185) (0.018) (0.0168) (0.0249) (0.0621) (0.0211) (0.0236) (0.0232) (0.1053) 

p2 -0.0172 -0.1952 0.0685 -0.0216 -0.0062 -0.0049 -0.1362 0.0825 0.0031 0.0102 -0.0454 
  (0.0106) (0.0419) (0.0119) (0.0151) (0.0124) (0.0139) (0.0636) (0.0113) (0.0211) (0.0173) (0.0944) 

p3 0.0269 0.2879 -0.1395 0.0555 0.0338 0.0231 0.2700 -0.1438 0.0481 0.0289 0.2263 
  (0.0156) (0.0379) (0.0267) (0.0231) (0.0232) (0.0201) (0.0738) (0.0309) (0.0312) (0.0291) (0.1352) 

p4 0.0015 -0.0517 0.0316 -0.0423 -0.0016 -0.0136 -0.1242 0.0144 -0.0726 -0.0217 -0.2177 
  (0.0089) (0.0363) (0.0135) (0.0236) (0.01) (0.0165) (0.0731) (0.0182) (0.0335) (0.0209) (0.1366) 

p5 0.0131 -0.0224 0.0290 -0.0024 -0.0346 0.0101 -0.0372 0.0255 -0.0086 -0.0387 -0.049 
  (0.0125) (0.0448) (0.0205) (0.0151) (0.02) (0.0125) (0.0448) (0.021) (0.0151) (0.0201) (0.0923) 
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     Table 6 – Mean per capita regional total value and value of environmental diversity for selected pairs of goods (euros/person). 
 

Region Abruzzi Calabria Campania Emilia R. Friuli V.G. Liguria Marche Puglia Sardegna Sicilia Toscana Veneto 

Total value                         

x1, x5 6.92 2.73 2.76 7.62 4.66 10.37 10.92 9.97 5.77 11.77 4.84 3.45 

x2, x5 18.39 9.60 7.45 16.00 8.43 23.18 47.90 32.53 31.56 41.39 12.09 9.27 

x2, x3 16.06 9.26 7.00 15.33 9.73 22.32 55.70 31.12 30.84 35.02 10.63 10.41 

x3, x4 11.34 2.15 2.71 9.54 19.34 15.00 18.62 12.86 11.50 10.34 2.01 6.08 

x2, x4 23.28 8.55 7.51 21.33 23.54 30.61 49.97 32.48 32.62 32.29 10.01 11.20 

Value of diversity                         

x1, x5 0.04 0.01 0.01 0.13 0.03 0.03 0.30 0.09 0.01 0.09 0.02 0.02 

x2, x5 -0.11 -0.02 -0.01 -0.07 -0.02 -0.05 -1.27 -0.23 -0.16 -1.07 -0.01 -0.02 

x2, x3 0.91 0.19 0.10 0.74 0.49 0.63 6.74 2.55 2.44 4.54 0.16 0.48 

x3, x4 0.40 0.01 0.01 0.22 0.52 0.21 0.50 0.29 0.28 0.15 0.00 0.10 

x2, x4 -0.90 -0.02 -0.02 -0.62 -0.35 -0.44 -0.87 -0.46 -0.37 -0.24 -0.01 -0.08 
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Table 7 – Mean regional benefit for total value and percentage of value of environmental diversity for selected pairs of goods (euros). 
 

Region Abruzzi Calabria Campania Emilia R. Friuli V.G. Liguria Marche Puglia Sardegna Sicilia Toscana Veneto Aggregate 

Population 1,234,011 2,054,179 5,548,866 3,928,046 1,206,717 1,717,260 1,424,111 3,941,001 1,612,159 4,935,591 3,533,298 4,372,312 35,507,551 

Total Benefit                           

x1, x5 8,534,609 5,606,267 15,339,943 29,924,687 5,622,127 17,802,472 15,553,491 39,275,956 9,295,608 58,107,364 17,084,072 15,069,873 237,216,469 

x2, x5 22,692,369 19,713,739 41,355,257 62,851,144 10,168,042 39,807,765 68,218,174 128,206,028 50,885,069 204,283,287 42,702,132 40,548,440 731,431,445 

x2, x3 19,819,257 19,029,696 38,817,215 60,209,458 11,745,917 38,325,783 79,320,055 122,658,206 49,712,219 172,853,873 37,570,349 45,521,242 695,583,269 

x3, x4 13,996,672 4,410,052 15,020,361 37,462,026 23,332,131 25,765,204 26,518,029 50,672,871 18,535,000 51,026,277 7,101,789 26,572,448 300,412,860 

x2, x4 28,727,692 17,566,578 41,691,558 83,767,470 28,400,996 52,556,955 71,162,210 127,999,622 52,587,437 159,364,893 35,354,579 48,957,477 748,137,467 

Value of diversity as percentage of Total Benefit                     

x1, x5 0.52 0.27 0.37 1.74 0.65 0.25 2.71 0.94 0.20 0.74 0.36 0.72 0.90 

x2, x5 -0.57 -0.16 -0.12 -0.45 -0.25 -0.24 -2.65 -0.72 -0.51 -2.58 -0.12 -0.18 -1.23 

x2, x3 5.67 2.10 1.38 4.84 4.99 2.83 12.09 8.18 7.93 12.98 1.55 4.57 7.95 

x3, x4 3.50 0.39 0.38 2.33 2.67 1.39 2.68 2.24 2.40 1.45 0.16 1.72 1.97 

x2, x4 -3.88 -0.19 -0.20 -2.90 -1.47 -1.43 -1.75 -1.42 -1.12 -0.76 -0.08 -0.75 -1.35 



 31

References 

Banks, J., R. Blundell, and A. Lewbel. “Quadratic Engel Curves and Consumer Demand” 

Review of Economics and Statistics 79 (1997):527-539.   

Brock W. A. and Xepapadeas A. “Valuing Biodiversity from an Economic Perspective: A 

Unified Economic, Ecological, and Genetic Approach.” The American Economic Review 

93 (2003): 1597-614. 

Barten A. P. and L. Bettendorf. “Price Formation of Fish: an Application of an Inverse Demand 

System” European Economic Review 33 (1989): 1509-1525. 

Beach R. H. and Holt M.T. “Incorporating Quadratic Scale Curves in Inverse Demand Systems.” 

American Journal of Agricultural Economics 83 (2001): 230-45. 

Deaton A. “The Distance Function and Consumer Behaviour with Applications to Index 

Numbers and Optimal Taxation” Review of Economic Studies 46 (1979): 391-405. 

Eales J. S. and Unnevehr L. J. “The inverse almost ideal demand system.” European Economic 

Review 38 (1994): 101-15. 

Hsiao C. Analysis of Panel Data, 2nd edition. Cambridge University Press, Cambridge, 2003.  

Holt M. T. and Bishop R. C. “A semiflexible normalized quadratic inverse demand system: an 

application to the price formation of fish.” Empirical Economics 27 (2002): 23-47. 

ISTAT. Statistiche della caccia e della pesca, Roma-ISTAT, 1987-2003. 

ISTAT. Statistiche della caccia e della pesca e della cooperazione, Roma-ISTAT, 1985-1986. 

ISTAT. Annuario statistico della zootecnia, pesca e caccia, Roma-ISTAT, 1974-1984. 

ISTAT. Statistiche Demografiche, Demo-Geodemo, website: http://demo.istat.it/. 



 32

Luenberger, D.G. “Benefit Functions and Duality” Journal of Mathematical Economics 21 

(1992): 461-481.  

________. Microeconomic Theory. McGraw-Hill Inc., New York, 1995.  

________. “Welfare from a benefit viewpoint.” Economic Theory 7 (1996): 445-62. 

Moro D. and Sckokai P. “Functional separability within a quadratic inverse demand system.” 

Applied Economics 34 (2002): 285-93. 

Wong K.K.G. and McLaren K. R. 2002. “Specification and Estimation of Regular Inverse 

Demand System: A Distance Function Approach” American Journal of Agricultural 

Economics 87 (2005): 823-34. 

 

 

 

 


