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models with random effects and autocorrelated errors

Giorgio Calzolari∗ Laura Magazzini†‡

February 10, 2009

Abstract

A dramatically large number of corner solutions occur when estimating by (Gaussian)
maximum likelihood a simple model for panel data with random effects and autocorrelated
errors. This can invalidate results of applications to panel data with a short time dimension,
even in a correctly specified model. We explain this unpleasant effect (usually underesti-
mated, almost ignored in the literature) showing that the expected log-likelihood is nearly
flat, thus rising problems of poor identification.

1 Introduction

In a standard linear model for panel data, the residual is decomposed into two terms: an individ-
ual specific component, constant over time, and a disturbance term assumed to be homoschedastic
and uncorrelated over time and among individuals. This structure generates equal correlation
between the error terms of the same unit at different points in time, that does not wipe out as
the time lag between the two observations increases. This assumption might not be appropriate
in case of economic relationship, where an unobserved shock likely prolongs its effect at subse-
quent times, causing different patterns of autocorrelation. Ignoring it leads to estimates of the
regression coefficient that are consistent but inefficient, and estimated standard errors are biased.
In order to take into account this phenomenon, the disturbance can be assumed to follow an AR
or MA process, where the difference is in the persistency of the unobserved shocks over time.
We show in this paper the unpleasant behavior of the Gaussian maximum likelihood estimates
for a linear panel data model with random effects and AR(1) idiosyncratic noise. The problem,
neglected in the literature, can easily invalidate results of applications. We deal with a “correctly
specified” Gaussian framework, with various combinations of the three error terms parameters
(the variance of the individual random effect, the variance of the idiosyncratic noise, the au-
toregression parameter). Monte Carlo simulation of the data, followed by maximum likelihood
estimation, very often produces a zero estimate of the variance of the individual random effect
parameter (corner solution). Correspondingly, there is a shift of the other parameters, whose
distrubutions are no more scattered only around their “true” values. Bi-modal distributions
become the rule, rather than an exception.
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The problem occurs in a dramatically large number of cases when the time dimension is very
small, no matter what combination of parameters is adopted (balanced or completely unbalanced
values of the two variances, small or large value of the autoregression parameter). Only enor-
mously large numbers (unreasonable) of individuals can compensate very small time dimensions.
For moderately small time dimensions (T ) the problem is still relevant when the autoregression
parameter is large, for any combination of the two variance parameters. For a large value of
the autoregression parameter and a variance of the individual random effect smaller than the
idiosyncratic variance, the problem still occurs even for moderately large values of T .
For any combination of parameters, the problem becomes less important when the time dimension
enlarges, and in practice it always disappears for large T . It is quite relevant for the N and T
dimensions used in practical applications.

2 Notation and related literature

The data generating process on the dependent variable yit is expressed as a linear function of a
set of independent variables, xit, and an error term, νit:

yit = x′itβ + νit (1)

where i denotes the unit (individual, household, firm, country, ...), and the index t denotes the
time, with i = 1, ..., N ; t = 1, ..., T .
When analysing panel data, the error structure can be decomposed into three independent terms:

νit = αi + λt + eit (2)

where αi is the individual effect, representing all the time-invariant (unobserved or unobservable)
characteristics of unit i, λt is the time effect, representing all the characteristics of time t, invariant
across all the cross-sectional units in the sample, and eit is a random term that varies over time
and individuals. The error term λt is not considered in the analysis, since it can be easily
accounted for in a typical (short-T ) panel setting by inserting time-dummies in the regression.
Thus, we are considering

νit = αi + eit (3)

In standard settings, the error term eit is assumed to be serially uncorrelated. This assumption
is not suited to situations where the effect of unobserved variables vary sistematically over time,
as in the case of serially correlated omitted variables or transitory variables whose effect lasts
more than one period. In order to take into account these variables and provide a more general
autocorrelation scheme, autocorrelation can be considered among eit for the same individual1.
In this paper we will consider disturbances that are correlated over time, generated by an AR(1)
process2:

eit = ρeit−1 + wit (4)

with wit homoschedastic, uncorrelated, and with mean zero. Gaussianity of all the error terms
is assumed.
As a result of these assumptions, the variance-covariance matrix of the error term νit has the
following structure:

E[νitνjs] =







σ2

α + σ2

e if i = j, t = s
σ2

α + ρ|t−s|σ2

e if i = j, t 6= s
0 if i 6= j

(5)

1Recent research in linear models with random effects is considering serial correlation in the time dimension
(Karlsson and Skoglund 2004).

2A general error structure has been considered by MaCurdy (1982).

2



If the explanatory variables xit are stricly exogenous, there is no effect of the xit on the problems
we are considering in this paper. We can therefore focus on the error terms parameters only:
σ2

α, σ2

e , ρ.
Assuming Gaussianity, the likelihood depends only on the variance-covariance matrix, thus only
on the three parameters σ2

α, σ2

e , ρ.
Autocorrelated disturbances in panel data linear models have been considered for the first time
in longitudinal studies of wages and earnings (David 1971, Hause 1973, Lillard and Willis 1978,
Lillard and Weiss 1979, MaCurdy 1982, Bhargava, Franzini and Narendranathan 1982).
Lillard and Willis (1978) estimate an earning function with permanent and serially correlated
transitory components due to both measured and unmeasured variables. As transitory effects
and permanent effects have different economic implications, it is important to separate the per-
manent and transitory elements of earnings development. In order to estimate model parameters,
the authors first apply OLS to the data pooled over individuals and years, and then estimate
the variance components and the autocorrelation parameter by applying maximum likelihood
to the OLS residuals. A maximum likelihood approach to estimation of the components of the
variance matrix is also exploited in Lillard and Weiss (1979). This two-step approach is asymp-
totically equivalent to full quasi-maximum likehood procedure, robust to failure of the normality
hypothesis (MaCurdy 1982).
First order serial correlation in the disturbances within a fixed effect framework was considered
by Bhargava et al. (1982), who also proposed a Durbin-Watson type statistics to test the model
for serial independence and random walk hypothesis.
A series of LM statistics for testing the presence of serial correlation and individual effect is
devised by Baltagi and Li (1995). The proposed LM statistics are invariant to the form of first
order serial correlation, i.e. they can be applied both to AR(1) and MA(1) processes. Size and
power of the tests are studied by means of Monte Carlo simulation for various combination of
the autocorrelation parameter and ratio of the individual effect variance over the amount of the
composite error variance. Moreover different sample sizes are considered, changing both N and
T , but all experiments are run with T ≥ 10.
More recently, the one-way error component model with AR(1) disturbances has been applied to
study the impact of plant closing on the mean and variance of log earnings (Berry, Gottschalk
and Wissoker 1988).
If the assumption of spherical disturbances for eit is violated, as it is in our AR(1) setting, the
ordinary formulae for estimating coefficient variances will lead to inconsistent standard errors3.

3 Identifiability and examples of poor identification

If T = 2 the covariance matrix would be

Σ = Cov(νi) =

[

σ2

α + σ2

e σ2

α + σ2

eρ
σ2

α + σ2

eρ σ2

α + σ2

e

]

(6)

thus it contains only two different elements, from which it is impossible to identify separately
the three parameters of the auxiliary model σ2

α, σ2

e and ρ.
T = 3 is the smallest possible time dimension; in this case in fact the covariance matrix would

3Within the GLS framework, an estimator of the variance exits that is robust to the presence of heteroskedas-
ticity and serial correlation of arbitrary form for fixed T and large N (Kiefer 1980). However, robust estimation
can have poor finite sample properties as it requires the estimation of T (T − 1)/2 parameters (Wooldridge 2002).
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be

Σ = Cov(νi) =













σ2

α + σ2

e σ2

α + σ2

eρ σ2

α + σ2

eρ
2

σ2

α + σ2

eρ σ2

α + σ2

e σ2

α + σ2

eρ

σ2

α + σ2

eρ
2 σ2

α + σ2

eρ σ2

α + σ2

e













(7)

where the different elements are three, making identification possible. Of course the situation
becomes even better for larger values of T , where the presence of higher powers of ρ increases
the number of different elements in the matrix.
In practice, however, identification can be very poor when ρ is moderately high, even for values
that would not be considered dangerously close to 1 in a time series context. Some numerical
examples could well exemplify the problem.
The following are the covariance matrices produced by different combinations of the three pa-
rameters. They have been computed for T up to 20, but are fully displayed for T up to 6; for
smaller values of T , the covariance matrix would simply be the first (T ×T ) block of each matrix.

σ2

α = 0.5, σ2

e = 0.5, ρ = 0.9





















1.000 0.950 0.905 0.864 0.828 0.795 .....
0.950 1.000 0.950 0.905 0.864 0.828 .....
0.905 0.950 1.000 0.950 0.905 0.864 .....
0.864 0.905 0.950 1.000 0.950 0.905 .....
0.828 0.864 0.905 0.950 1.000 0.950 .....
0.795 0.828 0.864 0.905 0.950 1.000 .....
.... .... .... .... .... .... .....









































log of determinant
(T = 20) − 44.318;

.......
(T = 6) − 11.646;
(T = 5) − 9.3154;
(T = 4) − 6.9856;
(T = 3) − 4.6565;





















σ2

α = 0.4, σ2

e = 0.6, ρ = 0.9175





















1.000 0.950 0.905 0.863 0.825 0.790 .....
0.950 1.000 0.950 0.905 0.863 0.825 .....
0.905 0.950 1.000 0.950 0.905 0.863 .....
0.863 0.905 0.950 1.000 0.950 0.905 .....
0.825 0.863 0.905 0.950 1.000 0.950 .....
0.790 0.825 0.863 0.905 0.950 1.000 .....
.... .... .... .... .... .... .....









































log of determinant
(T = 20) − 44.458;

.......
(T = 6) − 11.691
(T = 5) − 9.3525
(T = 4) − 7.0139
(T = 3) − 4.6757





















σ2

α = 0.1, σ2

e = 0.9, ρ = 0.9450





















1.000 0.950 0.904 0.860 0.818 0.778 .....
0.950 1.000 0.950 0.904 0.860 0.818 .....
0.904 0.950 1.000 0.950 0.904 0.860 .....
0.860 0.904 0.950 1.000 0.950 0.904 .....
0.818 0.860 0.904 0.950 1.000 0.950 .....
0.778 0.818 0.860 0.904 0.950 1.000 .....
.... .... .... .... .... .... .....









































log of determinant
(T = 20) − 44.418;

.......
(T = 6) − 11.689
(T = 5) − 9.3508
(T = 4) − 7.0131
(T = 3) − 4.6754




















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σ2

α = 0.0, σ2

e = 1.0, ρ = 0.9505





















1.000 0.950 0.903 0.859 0.816 0.776 .....
0.950 1.000 0.950 0.903 0.859 0.816 .....
0.903 0.950 1.000 0.950 0.903 0.859 .....
0.859 0.903 0.950 1.000 0.950 0.903 .....
0.816 0.859 0.903 0.950 1.000 0.950 .....
0.776 0.816 0.859 0.903 0.950 1.000 .....
.... .... .... .... .... .... .....









































log of determinant
(T = 20) − 44.416;

.......
(T = 6) − 11.688
(T = 5) − 9.3508
(T = 4) − 7.0131
(T = 3) − 4.6754





















Of course, the matrices and the corresponding determinants (for the same values of T ) are not
exactly equal, but quite close to each other, thus suggesting that “problems” are likeley to occur.
Differences become larger for larger values of T (so that higher powers of ρ could make the
difference), thus suggesting that problems will occur more often when the time dimension is
small.

4 Expected log-likelihood and identification

Ignoring the exogenous explanatory variables, the log-likelihood of the model (1) is

logL(ν, θ) =

N
∑

i=1

logL(νi, θ) = −
N

2
log(2π) −

N

2
log||B|| −

1

2

N
∑

i=1

(ν′iB
−1νi) (8)

where θ = [σ2

α, σ
2

e , ρ]
′ is the vector of parameters, and B is the (T × T ) covariance matrix of the

vector of error terms νi (3, 4). As from (5), B is therefore the sum of a matrix whose elements
are all σ2

α, say σ2

αιι
′ (where ι is the T × 1 vector whose elements are all = 1) and the covariance

matrix of the AR(1) process (4) with the well known Toepliz structure (let’s call it σ2

eA)

B = σ2

αιι
′ + σ2

eA = σ2

αιι
′ + σ2

e

















1 ρ ρ2 ... ρT−1

ρ 1 ρ ... ρT−2

ρ2 ρ 1 ... ρT−3

... ... ... ... ...

... ... ... ... ...
ρT−1 ρT−2 ρT−3 ... 1

















(9)

Remembering that the particular structure of matrix A leads to a simple expression of the

determinant |A| =
(

1 − ρ2
)T−1

and of the inverse (a tridiagonal matrix)

A−1 =
1

1 − ρ2





















1 −ρ 0 ... 0 0
−ρ 1 + ρ2 −ρ ... 0 0
0 −ρ 1 + ρ2 ... 0 0
... ... ... ... ... ...
... ... ... ... ... ...
0 0 0 ... 1 + ρ2 −ρ
0 0 0 ... −ρ 1





















(10)

the computation of the determinant and inverse of matrix B greatly benefits from the use of
Woodbury (or Sherman-Morrison) matrix inversion lemma, both in terms of computation time
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as well as (more important) computation accuracy. Its application (tedious but straightforward)
gives

|B| =

{

(

1 − ρ2
)T−1

+
σ2

α

(

1 − ρ2
)T−1

σ2
e(1 + ρ)

[T − (T − 2)ρ]

}

(

σ2

e

)T
(11)

B−1 =
1

σ2
e(1 − ρ2)





















1 −ρ 0 ... 0 0
−ρ 1 + ρ2 −ρ ... 0 0
0 −ρ 1 + ρ2 ... 0 0
... ... ... ... ... ...
... ... ... ... ... ...
0 0 0 ... 1 + ρ2 −ρ
0 0 0 ... −ρ 1





















−
σ2

α

σ2
e(1 + ρ) {σ2

e(1 + ρ) + [T − (T − 2)ρ]σ2
α}





















1 (1 − ρ) (1 − ρ) (1 − ρ) ... (1 − ρ) 1
(1 − ρ) (1 − ρ)2 (1 − ρ)2 (1 − ρ)2 ... (1 − ρ)2 (1 − ρ)
(1 − ρ) (1 − ρ)2 (1 − ρ)2 (1 − ρ)2 ... (1 − ρ)2 (1 − ρ)
... ... ... ... ... ... ...

(1 − ρ) (1 − ρ)2 (1 − ρ)2 (1 − ρ)2 ... (1 − ρ)2 (1 − ρ)
(1 − ρ) (1 − ρ)2 (1 − ρ)2 (1 − ρ)2 ... (1 − ρ)2 (1 − ρ)

1 (1 − ρ) (1 − ρ) (1 − ρ) ... (1 − ρ) 1





















(12)

Notice that there is no matrix inversion in the last two equations, so numerical correctness does
not depend on routines that perform numerical inversions. If one is not scared by the complexity
of the equations above, their use guarentees the accuracy that sometimes we need when suspicion
arises about the numerical value of a gradient at the maximum: is it zero or is it not zero? We
shall frequently meet gradients whose norm is less than 10−6, and are not zeroes (not to mention
cases where 10−11 have to be discarded; any “standard” optimization program would achieve
convergence at such points, and this might produce misleading results).
Let the vector νi be produced by a multivariate normal distribution with zero mean and “true”
covariance matrix

R = ψ2

αιι
′ + ψ2

eA = ψ2

αιι
′ + ψ2

e

















1 φ φ2 ... φT−1

φ 1 φ ... φT−2

φ2 φ 1 ... φT−3

... ... ... ... ...

... ... ... ... ...
φT−1 φT−2 φT−3 ... 1

















(13)

Taking expectation of equation (8), the expected value of the log-likelihood computed at any
value of θ = [σ2

α, σ
2

e , ρ]
′ is

E [logL(ν, θ)] = N E [logL(νi, θ)] = −
N

2

[

log(2π) + log||B|| + tr(B−1R)
]

(14)

Some suitable version of the information inequality ensures that, in general, the expression above
has the maximum at B = R. This ensures that, in principle, the model is identified, since the
expected likelihood has a unique maximum at the “true” parameter values: σ2

α = ψ2

α, σ2

e = ψ2

e ,
ρ = φ. However, the particular stucture of the matrices R and B can make this maximum very
hardly identifiable.
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For example, for error terms produced by “true” parameter values ψ2

α = 0.5, ψ2

e = 0.5, φ = 0.5
and a “large” time dimension T = 20, comparing the expected log-likelihood at the “true” values
σ2

α = 0.5, σ2

e = 0.5, ρ = 0.5 with the value at σ2

α = 0.0, σ2

e = 1.0, ρ = 0.75 the difference is
about 50%; so the two points are easily distinguishable. But for T = 5 the difference is 6%, and
for T = 3 (the smallest possible value) the difference is only a bit more than 1%. The risk of
confusing the two points becomes not negligeable. The risk will be much higher in the examples
that will be discussed later.

5 Expected score and Hessian

We now remember that

∂log||B||

∂B
= B−1

∂B−1

∂θj

= −B−1
∂B

∂θj

B−1 (15)

(where θj is one of the three elements of the parameters vector θ = [σ2

α, σ
2

e , ρ]
′). We then

observe that derivative of the matrix A with respect to ρ is the matrix whose h, k-th element is
|h− k|ρ|h−k|−1

D =
∂A

∂ρ
=

















0 1 2ρ 3ρ2 ... (T − 1)ρT−2

1 0 1 2ρ ... (T − 2)ρT−3

2ρ 1 0 1 ... (T − 3)ρT−4

... ... ... ... ... ...
(T − 2)ρT−3 ... ... ... ... 1
(T − 1)ρT−2 ... ... ... ... 0

















The expressions above allow to write in closed form the expected value of the score

E

[

∂logL(ν, θ)

∂θ

]

=
N

2





−ι′(B−1)ι + ι′(B−1RB−1)ι
−tr(B−1A) + tr(B−1AB−1R)

−tr(B−1D)σ2

e + tr(B−1DB−1R)σ2

e



 (16)

We now indicate with F the T × T matrix F = ∂D/∂ρ = ∂2A/∂ρ2, whose h, k-th element is
|h− k|(|h− k| − 1)ρ|h−k|−2

F =
∂D

∂ρ
=
∂2A

∂ρ2
=





















0 0 2 6ρ .. (T − 1)(T − 2)ρT−3

0 0 0 2 .. (T − 2)(T − 3)ρT−4

2 0 0 0 .. (T − 3)(T − 4)ρT−5

6ρ 2 0 0 .. (T − 4)(T − 5)ρT−6

.. .. .. .. .. ..
(T − 2)(T − 3)ρT−4 .. .. .. .. 0
(T − 1)(T − 2)ρT−3 .. .. .. .. 0





















Some tedious but straightforward algebra allows to compute in closed form the second derivatives
of the expected log-likelihood (the 3 × 3 expected Hessian matrix)

H = E

[

∂2logL(ν, θ)

∂θ∂θ′

]

=





h1,1 h1.2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3



 (17)

where

h1,1 = E

[

∂2logL(ν, θ)

∂(σ2
α)2

]

=
N

2

[

ι′B−1ιι′B−1ι− 2ι′B−1RB−1ιι′B−1ι
]

7



h2,1 = h1,2 = E

[

∂2logL(ν, θ)

∂σ2
α∂σ

2
e

]

=
N

2
tr

[

B−1ιι′B−1A− 2B−1ιι′B−1AB−1R
]

h3,1 = h1,3 = E

[

∂2logL(ν, θ)

∂σ2
α∂ρ

]

=
N

2
tr

[

B−1ιι′B−1D − 2B−1ιι′B−1DB−1R
]

σ2

e

h2,2 = E

[

∂2logL(ν, θ)

∂(σ2
e)2

]

=
N

2
tr

[

B−1AB−1A− 2B−1AB−1AB−1R
]

h3,2 = h2,3 = E

[

∂2logL(ν, θ)

∂σ2
e∂ρ

]

=
N

2
tr

[

B−1DB−1A− 2B−1DB−1AB−1R
]

σ2

e + tr
[

B−1DB−1R−B−1D
]

h3,3 = E

[

∂2logL(ν, θ)

∂ρ2

]

=
N

2
tr

[

B−1DB−1Dσ2

e − 2B−1DB−1DB−1Rσ2

e +B−1FB−1R−B−1F
]

σ2

e

With reference to the numerical example of the previous section, we first compute, for several
values of T (till the smallest possible value which is T = 3), the expected log-likelihood at the
“true” values of the parameters 0.5, 0.5, 0.9, where it attains its maximum. We then “constrain”
σ2

α at different values between the true value (0.5) and 0, and for each of them we maximize
the expected log-likelihood with respect to the other two parameters. In Table 1 we display the
absolute difference between each constrained maximum and the absolute maximum (that might
be relevant for hypotheses testing), as well as the relative difference (that might be relevant
when a poor computational accuracy does not guarantee to discriminate between the two). The

diff. diff. diff.
σ2

α σ2

e ρ T = 20 T = 5 T = 3
0.4 near 0.6 near 0.91 N × .003250 N × .000208 N × .000036
0.2 near 0.8 near 0.93 N × .023391 N × .001072 N × .000185
0.0 1.0 0.95 N × .044034 N × .001909 N × .000329

%diff. %diff. %diff.
σ2

α σ2

e ρ T = 20 T = 5 T = 3
0.4 near 0.6 near 0.91 0.03% 0.01% 0.004%
0.2 near 0.8 near 0.93 0.2% 0.05% 0.02%
0.0 1.0 0.95 0.4% 0.1% 0.04%

Table 1: Constrained maximization at σ2

α versus absolute maximum at the true values ψ2

α =
0.5, ψ2

e = 0.5, φ = 0.90

constrained maxima for σ2

α fixed at 0.4 or 0.2 are at values of the other two parameters always
near the values displayed in the tables, when T varies from 20 to 3. However, when σ2

α is fixed
at zero, always the constrained maximum is attained for a σ2

e equal to the sum of the two “true”
variances, and ρ exactly at the average between the “true” value and 1.0: thus, respectively, 1.0
and 0.95 in the tables, but this last rule is valid also for any other values of the “true” parameters.
Observing each case in greater detail, one would find that, varying σ2

α slowly from the “true”
value to zero, the constrained maximum decreases monotonically: faster, if T is large, very
very slowly if T is small. The difference between the maximum and the value at zero is only

8



N×0.000329 when T = 3, thus one would need a value of N of several thousands to discriminate
between the two maxima with some kind of criterion (e.g. likelihood ratio). Moreover, in relative
terms, the two maxima differ only by 0.04%: an optimization algorithm must be very accurately
applied, to be able to discriminate between the two. And what just described is a comparison
at the two extremes of the interval for σ2

α; differences with respect to intermediate values would
be even more difficult to appreciate (0.004% between the constrained maxima at σ2

α = 0.5 and
σ2

α = 0.4).
A look at first and second derivatives of the expected log-likelihood shows that, starting from
three first derivatives (expected score) equal zero at the maximum, the derivative with respect
to σ2

α is no more zero at the constrained maxima, but nevertheless it is very small even when
departing far away from the true value, if T is small. For example, still in the case of the previous
tables, when T has the smallest value (T = 3), the norm of the (average) expected score (sum of
the squared first derivatives) quickly grows from zero to a value 5×10−7 as soon as we constrain
σ2

α to a value slightly smaller than the “true” 0.5; then this norm varies very little (say between
5 × 10−7 and 3 × 10−7) when σ2

α is constrained to values smaller and smaller, till σ2

α = 0. A
stopping rule of an optimization algorithm based on such a norm might easily fail and stop at a
false maximum.4

Second order derivatives could be helpful at this point. The three eigenvalues of the Hessian
matrix have the correct sign (negative) when derivatives are computed at the “true” value (or
absolute maximum). But one of them is very small in absolute value. Still for the example above,
still for the most critical case of T = 3, the smallest (in absolute value) eigenvalue is −0.0052
(the largest is −103.8). When σ2

α is constrained to zero, two eigenvalues remain negative, while
the smallest (in absolute value) is positive (+0.00033). Thus, if the numbers were “exact”, we
might conclude that σ2

α = 0 does not provide a maximum, but something close to a saddle
point. But could we really trust in the change of sign of the smallest eigenvalue from −0.0052
to +0.00033 when a matrix is so ill conditioned? Maybe we can trust because all derivatives,
till second order, are supposed to be very accurate, having been computed analytically and
without using any “numerical” routine for matrix inversion, thanks to the use of the Woodbury
(or Sherman-Morrison) matrix inversion lemma; for sure, there would be no warranty of this
kind if derivatives were computed numerically, as it usually happens. Notice, en passing, that
the smallest eigenvalue would remain with the correct negative sign till at some distance from
the absolute maximum: at σ2

α = 0.3 the norm is about 5× 10−7 and all eigenvalues are negative.
Easily, a reasonable stopping rule might incorrectly find this as a satisfactory maximum; only
some “patologically tight” convergence criteria, as we have applied in our computations, can
detect the existence of the problem, with the serious risk of misleading false maxima.
The conclusion of this section seems therefore as follows: the model is identified, but the identi-
fication rules are so close to be violated for small values of T that it seems appropriate to speak
of “poor” identification.

4Playing with numbers, and joking on a problem that might be serious... For the same values of the variances
just considered in the example, but with an autoregression parameter 0.99, if the time dimension is very small
(T = 3), the expected log-likelihoods at the “true” parameter values 0.5, 0.5, 0.99 and false values 0.0, 1.0, 0.995
differ approximately by 0.0001%. Between the “true” parameter values and the false values 0.4, 0.6, 0.99167, the
difference is about 0.00001%; in absolute vale, the difference is N ×3.5×10−7, thus suggesting that discrimination
between “true” and false maxima by means of some criterion (e.g. likelihood ratio) might require a panel with
some 107 individuals! In none of the points the norm (sum of the squared elements of the average expected score)
is greater than 3 × 10−11.
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6 Log-likelihood and Monte Carlo set up

The discussion in the previous section was concerned with “expected” log-likelihoods, as well
as “expected” scores etc. Remarkably small differences have been evidenced for expected log-
likelihoods at quite different parameter values. This suggests that “swaps” might easily occur
when passing from “expected log-likelihoods” (14) to log-likelihoods computed from a sample
(8). It will be enough for the sample log-likelihood around the “true” parameter values to be just
a bit smaller than its expectation, and/or sample log-likelihood computed at parameter values
far away from the “true” to be just a bit higher, and maximum likelihood estimates would fall
in a wrong place. This section aims at showing that, very often, this is indeed the case.
As “poor” identifiability pertains to the estimation of variance components and of the autocor-
relation parameter, we will not consider exogenous variable in the simulations. Moreover, when
using quasi-maximum likelihood method (robust to distributional assumptions) for the estimation
of covariance components, efficient estimation can be achieved by performing a two-step proce-
dure, where on the first step a consistent estimator of regression coefficient is considered, and in
the second step maximum likelihood estimation is performed on estimated residuals (MaCurdy
1982).
The model is set as follows:

yit = αi + eit

where αi ∼ IN(0, σ2

α), and eit = ρei,t−1 + wit with wit ∼ IN(0, σ2

e × (1 − ρ2)).
By means of a wide Monte Carlo experiment, we shall show that, whatever the values of the
two variance parameters, balanced as in the examples above (σ2

α = 0.5 and σ2

e = 0.5), or quite
unbalanced in either way (σ2

α = 0.1 and σ2

e = 0.9, or viceversa σ2

α = 0.9 and σ2

e = 0.1),
corner solutions for the maxima can occur, providing an estimate σ̂2

α = 0.0; correspondingly,
the estimate of σ2

e will compensate the zero, giving a value around the sum of the two “true”
variances; the estimate of ρ will be a value close to the average between the “true” value and
one. We consider six different sample sizes, with N = 100 and N = 1000 units, and T = 3, 5, 20.

σ2

α (with σ2

α + σ2

e = 1)
ρ 0.1 0.5 0.9 0.1 0.5 0.9

T = 3 0.0 17.0% 0% 0% 0% 0% 0%
0.5 39.0% 12.0% 2.0% 18.0% 0% 0%
0.9 45.0% 40.0% 34.0% 45.0% 25.0% 5.0%

T = 5 0.0 1.0% 0% 0% 0% 0% 0%
0.5 22.0% 0% 0% 0% 0% 0%
0.9 43.0% 25.0% 16.0% 41.0% 8.0% 0%

T = 20 0.0 0% 0% 0% 0% 0% 0%
0.5 0% 0% 0% 0% 0% 0%
0.9 25.6% 0.4% 0% 2.0% 0% 0%

N = 100 N = 1000

Table 2: Share of corner solutions (σ̂2

α = 0). 10000 Monte Carlo replications

Corner solutions occur more often when ρ is large and T is small. Few cases occur also when the
“true” autoregression parameter is zero (but only if T , N and σ2

α are small). Many cases occur
when the autoregression parameter is large; some cases can be found even with the combination
of large T and large N , (but only when σ2

α is small).
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The typical histograms of the three parameters will show: a probability “mass” at zero, for σ̂2

α

and a partial histogram around the “true” value; a bimodal distribution for each of the other
two parameters. As an example, we report the Monte Carlo distribution of parameters for two
different set ups (Figures 1 and 2). Inference would really be problematic!
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Figure 1: Monte Carlo distribution of estimated parameters: T = 3, N = 1000, σ2

α = σ2

e = 0.5,
and ρ = 0.9
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Figure 2: Monte Carlo distribution of estimated parameters: T = 10, N = 100, σ2

α = σ2

e = 0.5,
and ρ = 0.9
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7 Summary

This paper has shown that a problem of poor identifiability arises in the case of Gaussian likeli-
hood function in the context of random effect panel data model with autocorrelated disturbances.
The standard random effect model is not apt at describing situations where the correlation of
residuals for the same unit over time decreases as the time lag increases. This is likely the
case when studying economic relationship, where the effect of transitory variables typically lasts
more than one period. Ignoring correlation leads to estimates of the regression coefficient that
are consistent but inefficient, and estimated standard errors are biased. In order to take into
account this phenomenon, the disturbance can be assumed to follow an AR or MA process, where
the difference is in the persistency of the unobserved shocks over time.
We show the unpleasant behavior of the Gaussian maximum likelihood estimates for a linear
panel data model with random effects and AR(1) idiosyncratic noise. By means of a wide Monte
Carlo experiment, we show that corner solutions (zero estimate of the variance of the individual
random effect) are encountered in a large fraction of the experiments. When this is the case, the
other parameters of the model shift, and the distributions are no more scattered only around
their “true” values, rather they are bi-modal. Unless the sample involves an (unreasonable)
enormous number of units, the problem is relevant for the time dimensions usually encountered
in panel data analysis. Even if the probability of a corner solution decreases as the time dimension
enlarges, the problem is quite relevant for the N and T dimensions used in practical applications.
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