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Abstract

The first purpose of this paper is to make an old (Russian) theoretical results
about the structure of local and global maxima of submodular functions,
Cherenin’s excluding rules and his Dichotomy Algorithm more accessible
for Western community. The second purpose of this paper is to present our
main result which can be stated as follows. For any pair of embedded subsets,
the difference of their function values is a lower bound for the difference be-
tween the unknown(!) optimal values of the corresponding partition defined
by these subsets. A simple justification of Cherenin’s rules, the Dichotomy
Algorithm and its generalization with the new branching rules from our main
result are presented. The usefulness of our new branching rules is illustrated
by means of a numerical example.
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1. Introduction

We will follow to the Western tradition and discuss the maximization of a submod-
ular set function (see Frank[7]); Lee et al.[20], Lovasz[21], and Nemhauser and
Wolsey[24]) instead of the minimization of a supermodular set function as originally
was done by Cherenin[5] (see also Khachaturov[16], Goldengorin[13] and Golden-
gorin et al.[14]). Many combinatorial optimization problems have as an underly-
ing model the minimization of a supermodular (or, equivalently, maximization of
a submodular) function, among them being the simple plant location (SPL) problem,
generalized transportation problems, the max-cut problem with nonnegative edge
weights, set covering and other well known problems involving the minimization
of Boolean functions; see Nemhauser et al.[23], Lovasz[21] and Barahona et al.[3].
Submodular functions play an important role not only as a general presentation of the
goal function for the above mentioned classes of combinatorial optimization prob-
lems but also in matroid theory (see Frank[7]). For example, the rank function of a
matroid is submodular and for two distinct matroids the rank functions are distinct.
So, we may obtain information about the structure of the matroid by investigating the
properties of rank function (see also J. Edmonds[6]).

Although the general problem of the maximization of a submodular function is known
to be NP-hard, there has a sustained research effort aimed at developing practical
procedures for solving medium and large-scale problems in this class. Often the ap-
proach taken has been problem specific, and submodularity of the underlying objec-
tive function has been only implicit to the analysis. For example, Barahona et al.[3]
have addressed the max-cut problem from the point of view of polyhedral combina-
torics and developed a branch and cut algorithm, suitable for applications in statistical
physics and circuit layout design. Beasley[4] applies Lagrangean heuristics to several
classes of location problems including SPL problem and reports results of extensive
experiments on a Cray supercomputer. Recently, Lee et al.[20] have made a study
of the quadratic cost partition problem of which max-cut with non-negative edge
weights is a special case, again from the standpoint of polyhedral combinatorics.

There have been fewer published attempts to develop algorithms for maximization of
a general submodular function. We believe that the earliest attempt to exploit super-
modularity in an operations research context is the work of Petrov and Cherenin[25],
who identified a supermodular structure in their study of railway timetabling. Their
procedure was subsequently published by Cherenin in 1962 as the so called “method
of successive calculations”. Their Preliminary Preservation (Dichotomy) algorithm
however is not widely known in the West (see Babayev[1] and Frieze[8]) where, as
far we are aware, the only general procedure to have been studied in depth is the
greedy algorithm (see Nemhauser et al.[23]) and the algorithm for the maximization
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of submodular functions subject to linear constraints by Nemhauser and Wolsey[24].
Another greedy approach, can be found in Minoux[22], where an efficient implemen-
tation is proposed, known as the “accelerated greedy algorithm” (see Robertazzi and
Schwartz[26]); it uses a bound already formulated in Khachaturov[16] (see also Gold-
engorin et al.[14]). For solving the so called experimental optimal design problem,
in Robertazzi and Schwartz[26] an accelerated greedy algorithm is applied, while in
Ko et al.[18] an exact branch and bound type algorithm is developed, which is later
improved in Lee[19]. In Genkin and Muchnik[9] an optimal algorithm is constructed
with exponential time complexity for the well-known Shannon max-min problem.
This algorithm is applied to the maximization of submodular functions subject to a
convex set of feasible solutions, and to the problem of – what is called – decoding
monotonic Boolean functions.

The Dichotomy Algorithm has been successfully used for constructing branch and
bound type algorithms, and is applied in Petrov and Cherenin[25], Cherenin[5], Kha-
chaturov[16, 17], Frieze[8], Goldengorin[10, 13], and Goldengorin et al.[14] for solv-
ing a number of NP-hard problems.

The main purpose of this paper is to present a generalization and a simple proof for
the Cherenin-Khachaturov’s results, and in particularly, for their Preliminary Preser-
vation (Dichotomy) Algorithm in English, so it will be more accessible for the West-
ern community.

The article is organized as follows. In Section 2 we describe the structure of local and
global maxima of a submodular function and present Cherenin’s theorem about the
quasiconcavity of a submodular function on every chain which contains a local max-
imum. The Excluding (Cherenin’s) Rules and an old (Khachaturov’s) proof of their
correctness with nonstrict inequalities are presented in Section 3. We give also the
proof of the so called prime rules (see Theorem 3.3) without using Theorem 2.2. The
main result of this paper is Theorem 4.1 which gives a generalization of Cherenin’s
rules (see Section 4). We extend the preservation rules in the case where the condi-
tions of Corollary 4.2 are violated. Corollary 4.3 is an attempt to explain what we
can do in the case when the preservation rules are not applicable. In Section 5 we de-
scribe the Dichotomy (Preliminary Preservation) algorithm. We use the Dichotomy
algorithm for determining a relevant polynomial solvable class of a submodular func-
tions (PP-functions). We show that PP-functions have exactly one component of local
maxima on their domain. In Corollary 5.2 we present a tertiary partitioning (branch-
ing) for a subset of the domain which can easily be generalized to am-ary branching.
Section 6 gives a number of concluding remarks.
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2. The Structure of Local and Global Maxima of Submodular Set
Functions

In this section we present Cherenin-Khachaturov’s (see Cherenin[5] and Khachatu-
rov[16]) results which are hardly known in the Western literature (see Babayev[1]).

Let z be a real-valued function defined on the power set 2N ofN = {1,2, . . . , n};n ≥
1. For eachS, T ∈ 2N with S ⊆ T , define

[S, T ] = {I ∈ 2N | S ⊆ I ⊆ T }.
Note that [∅, N ] = 2N . Any interval [S, T ] is, in fact, asubintervalof [∅, N ] if ∅ ⊆
S ⊆ T ⊆ N ; notation [S, T ] ⊆ [∅, N ]. In this paper we mean by an interval always
a subinterval of [∅, N ]. Throughout this paper, it is assumed thatz attains a finite
maximum value on [∅, N ]. The functionz is calledsubmodularon [S, T ] if for each
I, J ∈ [S, T ] it holds that

z(I )+ z(J ) ≥ z(I ∪ J )+ z(I ∩ J ).
Expressions of the formS \ {k} andS ∪{k} will shortly be written asS−k andS+k.
Let k ∈ T \ S and [S, T ] be an interval.

A subsetL ∈ [∅, N ] is called alocal maximumof z if for eachi ∈ N
z(L) ≥ max{z(L− i), z(L+ i)}.

A subsetS ∈ [∅, N ] is called aglobal maximumof z if z(S) ≥ z(I ) for eachI ∈
[∅, N ]. We will use the Hasse diagram (see e.g., Grimaldi[15]) as the ground graph
G = (V ,E) in which V = [∅, N ] and a pair(I, J ) is an edge iff eitherI ⊂ J or
J ⊂ I , and|I \ J | + |J \ I | = 1. The graphG = (V ,E) is calledz-weightedif the
weight of each vertexI ∈ V is equal toz(I ); notationG = (V ,E, z).
A sequence of subsetsI t ∈ 2N such that|I t | = t and

∅ = I 0 ⊂ I 1 ⊂ I 2 ⊂ . . . ⊂ I t ⊂ . . . ⊂ I n−1 ⊂ I n = N
will be called achainand be denoted by0. A submodular functionz is nondecreasing
(nonincreasing)on the chain0 if z(I l) ≤ z(Im) ( z(I l) ≥ z(Im) ) for all l,m such that
0≤ l ≤ m ≤ n; concepts ofincreasing, decreasing and constant(signs, respectively,
<,>,=) are defined in an obvious manner.

A local maximumL ∈ 2N (L ∈ 2N ) is called alower (respectively,upper) maximum
if there is no another local maximumL such thatL ⊂ L ( respectively,L ⊂ L ).

The following Cherenin’s theorem shows the quasiconcavity property of a submodu-
lar function for which a maximal chain includes a local maximum.
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Theorem 2.1 Letz be a submodular function on2N and letL be a local maximum
which belongs to a chain∅ ⊆ . . . ⊆ L ⊆ . . . ⊆ N . Thenz is nondecreasing on each
subchain∅ ⊆ . . . ⊆ L of [∅, L], and nonincreasing on each subchainL ⊆ . . . ⊆ N
of [L,N ].

PROOF. We show thatz is nondecreasing on [∅, L]. The proof of nonincreasing
case is similar and left to the reader. If eitherL = ∅ (we obtain the nonincreasing
case) or|L| = 1, the assertion is true, sinceL is a local maximum ofz. So, let|L| > 1
andI, J ∈ [∅, L] such thatJ = I + k, k ∈ N \ I .

Note that∅ ⊆ ... ⊆ I ⊂ J ⊆ ... ⊂ L. The submodularity ofz implies z(J ) +
z(L − k) ≥ z(I ) + z(L), or z(J ) − z(I ) ≥ z(L) − z(L − k). SinceL is a local
maximum,z(L)− z(L− k) ≥ 0. Hencez(J ) ≥ z(I ), and we have finished the proof
of nondecreasing case. 2

Corollary 2.1 Let z be a submodular function on2N and letL1 andL2 be local
maxima withL1 ⊆ L2. Thenz is constant on[L1, L2].

PROOF. Let us use Theorem 2.1 to a chain∅ ⊆ . . . ⊆ L1 ⊆ L2 ⊆ . . . ⊆ N ,
first with the single local maximumL2 and second with the single local maximum
L1. For the first case we obtainz(∅) ≤ . . . ≤ z(L1) ≤ . . . ≤ z(I ) ≤ z(L2). For any
subchain of the interval [L1, L2] we havez(L1) ≤ . . . ≤ z(L2). By the same reasons
for the second case we havez(L1) ≥ . . . ≥ z(L2). Combining both sequences of
inequalities we have finished the proof of corollary 2.1. 2

The following Khachaturov’s theorem is an application of Cherenin’s theorem on
case of a nontrivial STC.

Theorem 2.2 Let z be a submodular function on2N and letL andL be lower
and upper maxima withL ⊆ L, both located in an STC. Thenz is increasing on each
subchain∅ ⊆ ... ⊆ L of [∅, L] , constant on[L,L], and decreasing on each subchain
L ⊆ ... ⊆ N of [L,N ]. Moreover, everyL ∈ [L,L] is a local maximum ofz.

PROOF. We first show thatz is increasing on [∅, L]. The proof of decreasing case
is similar and left to the reader. If eitherL = ∅ (we obtain the decreasing case) or
|L| = 1, the assertion is true, sinceL is a local maximum ofz. So, let|L| > 1 and
I, J ∈ [∅, L] such thatJ = I + k, k ∈ N \ I . Note that∅ ⊆ I ⊂ J ⊆ ... ⊆ L.
The submodularity ofz impliesz(J ) + z(L − k) ≥ z(I )+ z(L), or z(J ) − z(I ) ≥
z(L) − z(L − k). SinceL ∈ V j

0 for somej ∈ J1, z(L) − z(L − k) > 0. Hence
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z(J ) > z(I ), and we have finished the proof of increasing case.

The property ofz to be constant on [L,L] follows from corollary 2.1.

For the ‘moreover’ part, assume to the contrary that there exists aL ∈ [L,L] that
is not a local maximum ofz. Then either there is aL − i /∈ [L,L] with z(L) <

z(L − i) or there is aL + i /∈ [L,L] with z(L) < z(L + i). For the first case we
get according the definition of submodularityz(L)+ z(L− i) ≥ z(L− i)+ z(L) or
z(L)− z(L − i) ≥ z(L) − z(L− i) ≥ 0. This contradicts toz(L) < z(L − i). For
the second case a similar argument holds by usingL instead ofL. 2

LetV0 be the subset ofV corresponding to all local maxima ofz. LetH0 = (V0, E0, z)

be the subgraph ofG induced byV0. This subgraph consists of at least one con-
nected component. We denote the connected components byH

j

0 = (V j

0 , E
j

0, z), with
j ∈ J0 = {1, . . . , r}. Note that ifL1 andL2 are vertices in the same component
thenz(L1) = z(L2). We will use the following two types of local maxima; see also
Khachaturov[16] and Goldengorin[13].

A componentHj

0 is called acomponent of strict local maxima(shortly, STC) if for
eachI /∈ V j

0 , for which there is an edge(I, L)withL ∈ V j

0 , it holds thatz(I ) < z(L).
A componentHj

0 is called acomponent of saddle vertices(shortly, SDV) if for some
I /∈ V j

0 , for which there is an edge(I, L) with L ∈ V j

0 , it holds thatz(I ) = z(L).
All vertices in a componentHj

0 are local maxima of the same kind. Therefore, the
indexJ0 set of these components can be split into two subsets:J1 being the index set
of the STCs, andJ2 being the index set of the SDVs.

Lemma 2.1 Let L ∈ V j

0 for somej ∈ J1, and let I satisfyz(I ) = z(L) and
(I, L) ∈ E. ThenI ∈ V j

0 for the samej ∈ J1.

PROOF. LetL ∈ V j

0 for somej ∈ J1. If I /∈ V j

0 , thenz(I ) < z(L), since(I, L) ∈
E andL is a local maximum of the STC. 2

In Khachaturov[16] it has been observed that any global maximum is in an STC.

Theorem 2.3 LetS be a global maximum of the submodular functionz defined on
2N . ThenS ∈ V j

0 for somej ∈ J1.

PROOF. Suppose, to the contrary, thatS ∈ V i
0 with i ∈ J2. Then there exists an

I ∈ V \ V0, adjacent to anJ ∈ V i
0. This I is not a local maximum. Hence,I has

an adjacent vertexM with z(M) > z(I ). Combined we getz(S) = z(J ) = z(I ) <
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z(M), which contradicts thatS is a global maximum ofz. 2

Theorem 2.3 implies that we may restrict ourself to STCs when searching a global
maximum of a submodular functionz. Based on Lemma 2.1 and Corollary 2.1 we
can present each component of local maxima as a maximal connected set of intervals
whose end points are lower and upper maxima.

3. Excluding Rules: an Old Proof

There are two, so-called (see Petrov and Cherenin[25], and Frieze[8]), excluding
rules, that can be used to exclude certain subsets fromV when determining a global
maximum of a submodular function. Babayev [1] has shown that Cherenin’s exclud-
ing rules and Frieze’s tests OP1 and OP2 are the same. By using the definitions of
STC, chain, nondecreasing (nonincreasing) of a submodular functionz, and Lemma
2.1 with Theorem 2.2 Cherenin and Khachaturov have proved the correctness of both
excluding rules.

Theorem 3.1 Let z be a submodular function on[S, T ] ⊆ [∅, N ] and for every
j ∈ J1, V

j

0 ∩ [S, T ] 6= ∅. Then the following assertions hold.
a. First Excluding Rule (FER).
If for someT1 and T2 with S ⊆ T1 ⊂ T2 ⊆ T holds thatz(T1) ≥ z(T2), then
V
j

0 ∩ [T2, T ] = ∅ for all j ∈ J1.
b. Second Excluding Rule (SER).
If for someS1 and S2 with S ⊆ S1 ⊂ S2 ⊆ T holds thatz(S1) ≤ z(S2), then
V
j

0 ∩ [S, S1] = ∅ for all j ∈ J1.

PROOF. We prove the case (a) because a proof of the case (b) is similar. Let us
consider a chain∅ ⊂ ... ⊂ S ⊆ T1 ⊂ T2 ⊆ L ⊆ T ⊂ ... ⊂ N with L ∈ V j

0 ∩
[T2, T ] 6= ∅ for somej ∈ J1. Applying Theorem 2.2 to the subchain∅ ⊂ ... ⊂ S ⊆
T1 ⊂ T2 ⊆ L we havez(∅) < ... < z(S) < z(T1) < z(T2) ≤ z(L) which is a
contradiction toz(T1) ≥ z(T2). 2

Note that, if we use Theorem 2.1 instead of Theorem 2.2 in the proof of Theorem 3.1
we can prove the following statement.

Theorem 3.2 Let z be a submodular function on[S, T ] ⊆ [∅, N ] and V j

0 with
j ∈ J0 be the components of local maxima. Then the following assertions hold.
a. First Strict Excluding Rule (FSER).
If for someT1 and T2 with S ⊆ T1 ⊂ T2 ⊆ T holds thatz(T1) > z(T2), then
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V
j

0 ∩ [T2, T ] = ∅ for all j ∈ J0.
b. Second Strict Excluding Rule (SSER).
If for someS1 and S2 with S ⊆ S1 ⊂ S2 ⊆ T holds thatz(S1) < z(S2), then
V
j

0 ∩ [S, S1] = ∅ for all j ∈ J0.

PROOF. We prove the case (a) because a proof of the case (b) is similar. Let us
consider a chain∅ ⊂ ... ⊂ S ⊆ T1 ⊂ T2 ⊆ L ⊆ T ⊂ ... ⊂ N with L ∈ V j

0 ∩
[T2, T ] 6= ∅ for somej ∈ J0. Applying Theorem 2.1 to the subchain∅ ⊂ ... ⊂
S ⊆ T1 ⊂ T2 ⊆ L we havez(∅) ≤ ... ≤ z(S) ≤ z(T1) ≤ z(T2) ≤ z(L) which is a
contradiction toz(T1) > z(T2). 2

The last theorem shows that by strict excluding rules we can not exclude any local
maximum. In Section 5 we will give an example of the SPL problem in which by
application of an excluding rule we discard the local minimum{2,4} of the corre-
sponding supermodular function. This local minimum is an analogue of the trivial
SDV for the corresponding supermodular function.

By applying Theorem 3.1a (respectively, 3.1b) we can discard 2|T \T2| (respectively,
2|S1\S|) subsets of interval [T2, T ] (respectively, [S, S1]) because this interval does
not include a local maximum of any STC from [S, T ]. If T1 = S andT2 = S + i
then in case of Theorem 3.1a the interval [S + i, T ] can be discarded. IfS1 = T − i
andS2 = T then in case of Theorem 3.1b the interval [S, T − i] can be discarded.
Based on the last special cases of excluding rules it is not difficult to construct the
Dichotomy Algorithm (see Section 5) for the maximization of submodular functions.
Before we present the Dichotomy Algorithm we give in Theorem 3.3 a proof of the
correctness of these special cases of excluding rules which is based only on Lemma
2.1, the definition of a STC, and the property of submodularity of functionz.

Theorem 3.3 Let z be a submodular function on2N . Suppose that for∅ ⊆ S ⊂
T ⊆ N and for everyj ∈ J1, V j

0 ∩ [S, T ] 6= ∅. Then the following assertions hold.
a. First Prime Excluding Rule (FPER).
If for somei ∈ T \ S it holds thatz(S + i) ≤ z(S), then[S, T − i] ∩ V j

0 6= ∅ for all
j ∈ J1.
b. Second Prime Excluding Rule (SPER).
If for somei ∈ T \ S it holds thatz(T − i) ≤ z(T ), then[S + i, T ] ∩ V j

0 6= ∅ for all
j ∈ J1.

PROOF. We prove the part a. The proof of the part b is similar.
a. Letz(S + i) ≤ z(S) for somei ∈ T \ S and letG ∈ V j

0 ∩ [S, T ] for any j ∈ J1.
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ThenS ⊂ G.
Case 1:i ∈ G. From the submodularity forG− i andS + i
z(G− i)+ z(S + i) ≥ z(G ∪ S + i)+ z(S)⇒
z(G− i)− z(G ∪ S + i) ≥ z(S)− z(S + i) ≥ 0⇒
z(G− i) ≥ z(G ∪ S + i) = z(G)⇒ ( G is a local maximum )
z(G− i) = z(G). G ∈ V j

0 ⇒ ( Lemma 1 )G− i ∈ V j

0 ⇒ G− i ∈ V j

0 ∩ [S, T − i] ⇒
V
j

0 ∩ [S, T − i] 6= ∅.
Case 2:i /∈ G.
i /∈ G⇒ G ∈ V j

0 ∩ [S, T − i] ⇒ V
j

0 ∩ [S, T − i] 6= ∅. 2

Theorem 3.3a says that ifz(S + i)− z(S) ≤ 0 for somei ∈ T \ S, then by preserv-
ing the interval [S, T − i] we preserve at least one strict local maximum from each
STC, and hence we preserve at least one global maximum from each STC which
includes a global maximum. Therefore, in this case it is possible to exclude exactly
the whole interval [S + i, T ] of [S, T ] from consideration when we are searching a
global maximum of the submodular functionz on [S, T ] ⊆ [∅, N ].

The justification of both prime rules by Theorem 3.3 is using the following defini-
tions: local maxima, STC of a submodular function with Lemma 2.1. In the next
section we present a generalization and a simple justification of the same rules.

4. Preservation Rules: Generalizations and a Simple Justification

The maximum value of the functionz on the interval [S, T ] ⊆ [∅, N ] is denoted by
z∗[S, T ]. The following Theorem 4.1 establishes a relationship between the unknown
optimal values ofz on the two parts of the partitioning([S, T ] \ [Q,T ]) and [Q,T ]
of [S, T ] for the FER with someQ such thatS ⊂ Q ⊂ T ; and on the two parts of
the partitioning([S, T ] \ [S,Q]) and [S,Q] of [S, T ] for the SER with someQ such
thatS ⊂ Q ⊂ T .

Theorem 4.1 Let z be a submodular function on the interval[S, T ] ⊆ [∅, N ].
Then the following assertion hold.
For anyQ such thatS ⊂ Q ⊂ T ,
a. z∗([S, T ] \ [Q,T ])− z∗[Q,T ] ≥ z(S)− z(Q).
b. z∗([S, T ] \ [S,Q]) − z∗[S,Q] ≥ z(T )− z(Q).

PROOF. (a) We prove only the case (a) because the proof of case (b) is similar. Let
z∗[Q,T ] = z(Q ∪ J ) with J ⊆ T \Q. DefineI = S ∪ J . ThenI ∈ [S, T ] \ [Q,T ]
sinceQ \ S 6⊆ I . We have thatz∗([S, T ] \ [Q,T ]) − z(S) ≥ z(I )− z(S) = z(S ∪
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J )−z(S). From the submodularity ofz we havez(S∪J )−z(S) ≥ z(Q∪J )−z(Q).
Therefore,z∗([S, T ] \ [Q,T ])− z(S) ≥ z∗[Q,T ] − z(Q). 2

Theorem 4.1 is a generalization of Cherenin-Khachaturov’s rules saying that the dif-
ference of values of a submodular function on any pair of embedded subsets is a
lower bound for the difference between the optimal values ofz on the two parts of
the partition which is defined by this pair of embedded subsets. The theorem can be
used to decide in which part of the partition([S, T ] \ [Q,T ]) and [Q,T ] of [S, T ] a
global maximum ofz is located.

It is easy to present the partition of interval [S, T ] from Theorem 4.1 by means of its
proper subintervals as follows:

(a)[S, T ] \ [Q,T ] =
⋃
i∈Q\S

[S, T − i]

and
(b)[S, T ] \ [S,Q] =

⋃
i∈T \Q

[S + i, T ].

If, in Theorem 4.1, we replaceQ byS+k in part (a), andQ byT−k in part (b), we get
the following Corollary which is related to Theorem 3.3 by means of the Dichotomy
Algorithm (see Section 5)

Corollary 4.1 Letz be a submodular function on the interval[S, T ] ⊆ [∅, N ] and
let k ∈ T \ S. Then the following assertions hold.
a. z∗[S, T − k] − z∗[S + k, T ] ≥ z(S)− z(S + k).
b. z∗[S + k, T ] − z∗[S, T − k] ≥ z(T )− z(T − k).

In fact, Corollary 4.1 as well as Theorem 4.1 are useful equivalent formulations for
the submodularity property of functionz. This can be seen easily, if we substitute in
Corollary 4.1z∗[S, T − k] by z(ST−k) for someST−k ∈ [S, T − k] andz∗[S + k, T ]
by z(TS+k) for someTS+k ∈ [S + k, T ].

Then, Corollary 4.1a can be read as follows:z(ST−k)−z(TS+k) ≥ z(S)−z(S+k)or, in
case of Corollary 4.1b,z(ST−k)+z(S+k)≥ z(TS+k)+z(S)whereTS+k = ST−k∪S+k
andS = ST−k ∩ S + k.
By adding the conditionz(S) − z(S + k) ≥ 0 to part (a) and the conditionz(T ) −
z(T − k) ≥ 0 to part (b) of Corollary 4.1 we obtain another form (see Corollary 4.2)
of two prime rules from Theorem 3.3 for preserving subintervals containing at least
one global maximum ofz on [S, T ].
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Corollary 4.2 Letz be a submodular function on the interval[S, T ] ⊆ [∅, N ] and
k ∈ T \ S. Then the following assertions hold.
a. First Preservation (FP) Rule.
If z(S) ≥ z(S + k), thenz∗[S, T ] = z∗[S, T − k] ≥ z∗[S + k, T ].
b. Second Preservation (SP) Rule.
If z(T ) ≥ z(T − k), thenz∗[S, T ] = z∗[S + k, T ] ≥ z∗[S, T − k].

PROOF. a. From Corollary 4.1a we havez∗[S, T − k] − z∗[S + k, T ] ≥ z(S) −
z(S + k). By assumptionz(S) − z(S + k) ≥ 0. Hence,z∗[S, T ] = z∗[S, T − k] ≥
z∗[S + k, T ].

b. The proof is similar. 2

From calculation point of view these rules are the same as in Theorem 3.1 but in
Theorem 3.3 more has been proven than in Corollary 4.2. In Theorem 3.3 we preserve
at least one strict local maximum from each STC, and hence one global maximum
from each STC that contains global maxima. In Corollary 4.2 we preserve at least one
global maximum. However, we can use Corollary 4.2 for constructing some extension
of the preservation rules and, consequently, excluding rules (see Corollary 4.3).

Forε ≥ 0, the problem ofε−maximizinga submodular functionz on [S, T ] is to find
an elementJ ∈ [S, T ] such thatz∗[S, T ] ≤ z(J )+ ε; J is called anε−maximumof
z on [S, T ]. In the following Corollary 4.3 we present an extension of the rules from
Corollary 4.2, appropriate toε-maximization.

Corollary 4.3 Let z be a submodular function on the interval[S, T ] ⊆ [∅, N ],
andk ∈ T \ S. Then the following assertions hold.
a. First θ-Preservation (θ-FP) Rule.
If z(S)− z(S + k) = θ < 0, thenz∗[S, T ] − z∗[S, T − k] ≤ −θ , which means that
[S, T − k] contains a|θ |-maximum of[S, T ].
b. Secondη-Preservation (η-SP) Rule.
If z(T )− z(T − k) = η < 0, thenz∗[S, T ] − z∗[S + k, T ] ≤ −η, which means that
[S + k, T ] contains a|η|-maximum of[S, T ].

PROOF. The proof of part (a) is as follows. Case 1. Ifz∗[S, T ] = z∗[S, T − k]
thenz∗[S, T − k] − z∗[S, T − k] ≤ −θ or z∗[S, T ] − z∗[S, T − k] ≤ −θ . Case 2. If
z∗[S, T ] = z∗[S+ k, T ], then from Theorem 3.3a follows thatz∗[S, T − k]− z∗[S+
k, T ] ≥ θ or z∗[S, T − k]− z∗[S, T ] ≥ θ . Hencez∗[S, T ]− z∗[S, T − k] ≤ −θ . The
proof of (b) is similar. 2
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5. The Dichotomy (Preliminary Preservation) Algorithm

By means of Corollary 4.2 it is often possible to exclude a large part of [∅, N ] from
consideration when determining a global maximum ofz on [∅, N ]. The so called
Preliminary Preservation (PP) algorithm(see Goldengorin et al.,[14]) determines a
subinterval [S, T ] of [∅, N ] that certainly contains a global maximum ofz, whereas
[S, T ] cannot be made smaller by using the preservation rules of Corollary 4.2.

We call the PP-algorithm thedichotomy algorithmbecause in every successful step it
halves the current domain of a submodular function.

Let [S, T ] be an interval. For eachi ∈ T \ S, defineδ+(S, T , i) = z(T ) − z(T − i)
andδ−(S, T , i) = z(S+ i)− z(S); moreover, defineδ+max(S, T ) = max{δ+(S, T , i) |
i ∈ T \ S}, r+(S, T ) = min{r | δ+(S, T , r) = δmax+(S, T )}. Similarly, for
δ−(S, T , i)) defineδ−max(S, T ) = max{δ−(S, T , i)) | i ∈ T \ S}, r−(S, T ) = min{r |
δ−(S, T , r) = δ−max(S, T )}. If no confusion is likely, we shortly writer−, r+, δ−, δ+
instead ofr−(S, T ), r+(S, T ), δ−max(S, T ), andδ+max(S, T ) respectively.

=======================================================
The Dichotomy (Preliminary Preservation) Algorithm

ProcedurePP(U,W, S, T )
Input: A submodular functionz on the subinterval [U,W ] of [∅, N ]
Output: A subinterval [S, T ] of [U,W ] such thatz∗[S, T ] = z∗[U,W ],

z(S) < z(S + i) andz(T ) < z(T − i) for eachi ∈ T \ S.
begin

S ← U ; T ← W ;
Step 1: if S = T

then gotoStep 4;
Step 2: Calculate δ+ andr+;

if δ+ ≥ 0 (Corollary 4.2b)
then begin callPPA(S + r+, T ;S, T )

goto Step 4
end;

Step 3: Calculate δ− andr−;
if δ− ≤ 0 (Corollary 4.2a)
then begin callPPA(S, T − r−;S, T )

goto Step 4
end;

Step 4:
end;
=======================================================
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Each timeS or T are updated during the execution of the PPA, the conditions of
Corollary 4.2 remain satisfied, and therefore the invariantz∗[S, T ] = z∗[U,W ]
remains valid at each step of the PPA. At the end of the algorithm we have that
max{δ+, δ−} < 0, which shows thatz(S) < z(S + i) andz(T ) < z(T − i) for each
i ∈ T \ S. Hence Corollary 4.2 cannot be applied for further reduction of the inter-
val [S, T ] without violation z∗[S, T ] = z∗[U,W ]. Note that this remark shows the
correctness of the procedure PP(.).

If we replace in the PPA the rules of Corollary 4.2 by rules of Corollary 4.3 we obtain
an ε-maximization variant of the PPA. In this case the output of theε-PPA will be
presented by a subinterval [S, T ] of [U,W ] such thatz∗[U,W ] − z∗[S, T ] ≤ ε with
postconditionsz(S)+ ε < z(S + i) andz(T )+ ε < z(T − i) for eachi ∈ T \ S.

The following theorem can also be found in Goldengorin (1982). It provides an upper
bound for the worst case complexity of the PPA; the complexity function is taken only
dependent of the number of comparisons of values forz(I ).

Theorem 5.1 The time complexity of the PP algorithm procedure is at mostO(n2).

PROOF. In the steps 2 and 3 at most 2m comparisons are made. If the comparisons
do not result in an update of eitherS or T , then the algorithm stops. Each time the
procedure is executed, the number of elements inT \ S is decreased by at least one.
The PP algorithm starts withN = {1,2, .., n}, so that the number of comparisons is
bounded from above by(2)[n + (n − 1) + ... + 1] = (n)(n + 1). Hence the time
complexity of the algorithm is at mostO(n2). 2

Note that if the PP algorithm terminates withS = T , thenS is a global maximum of
z. Any submodular functionz on [U,W ] for which the PP algorithm returns a global
maximum forz is called aPP -function.

In the following examplez is aPP -function; and we use it for illustrating the working
of the PP algorithm. LetN = {1,2,3}; the values ofz are given in Table 5.1.

I {∅} {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
z(I ) 10 10 12 20 12 8 12 7

Table 5.1: An example of a PP-function.

After the first execution of Step 3, we have that [S, T ] = [{∅}, {2,3}], becauseδ− =
z(∅) − z({1}) = 0, andr− = 1. After the second execution of Step 2 we have that
[S, T ] = [{3}, {2,3}], becauseδ+ = z({2,3})−z({2}) = 0 andr+ = 3. Finally, after
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the third execution we have that [S, T ] = {3}, becauseδ− = z({3})− z({2,3}) = 8,
andr− = 2. So,S = T , and hencez is aPP−function.

In the following Corollary 5.1 we describe in terms of STCs some properties of the
variablesS andT during the iterations of the PP-algorithm. A local maximumLj1 ∈
V
j

0 with j ∈ J1 which will be preserved through all iterations during the execution of
the PP-algorithm by FPER (Lj1 ∈ V j

0 ∩ [S, T − i] 6= ∅ with j ∈ J1) or SPER (Lj1 ∈
V
j

0 ∩ [S + i, T ] 6= ∅ with j ∈ J1) is called arepresentativeof STCHj

0 with j ∈ J1

(see Theorem 3.3).

Corollary 5.1 If z is a submodular PP-function on[U,W ] ⊆ [∅, N ], then at each
iteration of the PP algorithmS ⊆ ∩j∈J1L

j

1 andT ⊇ ∪j∈J1L
j

1.

PROOF. Theorem 3.3a says that ifz(S + i) − z(S) ≤ 0 for somei ∈ T \ S, then
by preserving the interval [S, T − i] we preserve at least one representativeL

j

1 from
each STCHj

0 , and hencei /∈ Lj1. In case of Theorem 3.3b we preserve representatives
L
j

1 such thati ∈ Lj1 for all STCs in [S, T ]. Therefore,i ∈ S ⊆ ∩j∈J1L
j

1 andT ⊇
∪j∈J1L

j

1. 2

The following theorem has been proven in Goldengorin[11] and gives a property of
PP-functions in terms of STCs.

Theorem 5.2 If z is a submodular PP-function on[U,W ] ⊆ [∅, N ], then[U,W ]
contains exactly one STC.

PROOF. From∩j∈J1L
j

1 ⊇ S = T ⊇ ∪j∈J1L
j

1 we obtain∩j∈J1L
j

1 = ∪j∈J1L
j

1 or
L
j

1 = L for all j ∈ J1. 2

Note that not each submodular function with exactly one STC on [∅, N ] is a PP-
function. For example, letN = {1,2,3} and z(I ) = 2 for any I ∈ [∅, {1,2,3}]
\ ({∅} ∪ {1,2,3}) andz(I ) = 1 for I ∈ ({∅} ∪ {1,2,3}). Thus the vertex set of the
unique STC defined by this submodular function can be presented as [{1}, {1,2}] ∪
[{1}, {1,3}] ∪ [{2}, {1,2}] ∪ [{2}, {2,3}] ∪ [{3}, {1,3}] ∪ [{3}, {2,3}], and the PP-
algorithm terminates with [S, T ] = [∅, {1,2,3}]. So,z is not a PP-function.

Usually in branch and bound type algorithms we use abinarybranching rule by which
the original set [S, T ] of feasible solutions will be splitted by elementk into two sub-
sets [S+k, T ] and [S, T−k]. Let us consider an interval [S, T ] for which the postcon-
ditions of the PPA algorithm are satisfied, i.e.,z(S) < z(S + i) andz(T ) < z(T − i)
for eachi ∈ T \ S. Hence the PPA cannot made the interval [S, T ] smaller. By using
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the Corollary 5.2 we can sometimes find two subintervals [S, T − k1] and [S, T − k2]
such that the postconditions of the PPA algorithm for each of these intervals are vio-
lated.

Corollary 5.2 Letz be a submodular function on the interval[S, T ] ⊆ [∅, N ] and
let k1, k2 ∈ T \ S. Then the following assertions hold.
a. max{z∗[S, T − k1], z∗[S, T − k2]} − z∗[S + k1+ k2, T ] ≥
z(S)− z(S + k1 + k2).
b. max{z∗[S + k1, T ], z∗[S + k2, T ]} − z∗[S, T \ {k1, k2}] ≥
z(T )− z(T \ {k1, k2}).

PROOF. We prove only the part (a) and leave the proof of the part (b) to the reader.
Replace in Theorem 4.1aQ by S + k1+ k2. Then,z∗([S, T ] \ [Q,T ])− z∗[Q,T ] =
z∗(
⋃
i∈Q\S[S, T − i])− z∗[Q,T ] =

z∗([S, T − k1] ∪ [S, T − k2])− z∗[S + k1+ k2, T ] =
max{z∗[S, T − k1], z∗[S, T − k2]} − z∗[S + k1+ k2, T ] ≥
z(S)− z(Q) = z(S)− z(S + k1+ k2). 2

In case ofz(S) − z(S + k1 + k2) ≥ 0 we can discard the interval [S + k1 + k2, T ]
and continue the searching for an optimal solution by applying the PPA separately to
each of remaining intervals [S, T −k1] and [S, T −k2], each of which are obtained by
subtraction an elementki from T . The symmetrical case will be obtained ifz(T ) −
z(T \ {k1, k2}) ≥ 0. Corollary 5.2 can easily be generalized to the case ofm-ary
branching by elementsk1, k2, ..., km with m ≤ |T \ S|.
We finish our paper with an example of the SPL problem of which the data are pre-
sented in Table 5.2. This example is borrowed from Boffey[2].

Location Delivery cost to site
i ri j = 1 j = 2 j = 3 j = 4 j = 5
1 7 7 15 10 7 10
2 3 10 17 4 11 22
3 3 16 7 6 18 14
4 6 11 7 6 12 8

Table 5.2: The data of the SPL problem

For solving the SPL problem it suffices to solve the problem min{z(I ) | I ∈ [∅, N ]} =
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z∗[∅, N ] = z(G) with N = {1,2,3,4}, n = 5 and

z(I ) =
∑
i∈I

ri +
n∑
j=1

min
i∈I cij .

As usual for the SPL problem,ri is the fixed cost of opening a plant at location
i, cij is the cost of satisfying the demand of customerj by plant i, andz(I ) is a
supermodular function. We use this example for illustrating that the supermodular
function defined by data from Table 5.2 is not a PP-function. Of course, here we
mean the corresponding definition of PP-function which can be obtained by correct
changing all signs together with definitions of local, global maxima of submodular
function to local, global minima of supermodular function. It is easy to check that
this supermodular function has two trivial analogues of STCs:{1,4}, {1,3} and one
trivial analogue of SDV:{2,4}.
After the first execution of Step 3 of the PP-algorithm, we have that [S, T ] = [{1},
{1,2,3,4}], becauseδ+ = z({1,2,3,4}) − z({2,3,4}) = 0 andr+ = 1. Together
with interval [{∅}, {2,3,4}] the PP-algorithm has discarded the trivial SDV{2,4}.
After the second execution of Steps 2 and 3 the PP-algorithm terminates with inter-
val [S, T ] = [{1}, {1,2,3,4}], because all postconditions of the PP-algorithm are
satisfied. Hence, this function is not a PP-function. A global minimum of this SPL
problem can be found by application the following analogue of the inequality from
Corollary 5.2b:

min{z∗[S + k1, T ], z∗[S + k2, T ]} − z∗[S, T \ {k1, k2}] ≤
z(T )− z(T \ {k1, k2}).
Let us substitute all possible pairs of{k1, k2} to the right side of this inequality with
S = {1} andT = {1,2,3,4}. Then, we have that onlyz({1,2,3,4})−z({1,2,3,4}−
{3,4}) = 52− 53< 0. Hence, we can discard the interval [{1}, {1,2,3,4} − {3,4}]
and we may continue the solving of the problemz∗[{1}, {1,2,3,4}] by solving the
two remained subproblemsz∗[S+k1, T ] = z∗[{1,3}, {1,2,3,4}] andz∗[S+k2, T ] =
z∗[{1,4}, {1,2,3,4}]. Each of these subproblems can be solved by the corresponding
analogue of the PP-algorithm.

6. Conclusions

We presented to the Western community the Cherenin’s theorem about the quasi-
concavity of a submodular function on any maximal chain which passes through a
component of the local maxima. By using this result the structure of a submodular
function can be described in terms of components of graphs of local maxima. Each
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component of the graph of local maxima is a maximal connected set of intervals
whose end points are lower and upper local maxima.

Our theorem 3.3 can be considered as a more easy way for proving the correctness of
the prime excluding rules without using Cherenin’s and Khachaturov’s theorems 2.1
and 2.2, respectively.

Our main result of the paper is Theorem 4.1 which can be stated as follows. For any
pair of embedded subsets, the difference of their function values is a lower bound for
the difference between the unknown (!) optimal values of the corresponding partition
defined by these subsets. We have successfully applied a special case of this theorem
(see Corollary 4.2) for constructing a Data-Correcting algorithm (see Goldengorin et
al.[14]) for more efficient solving of the instances from Lee et al.[20] for the quadratic
cost partition problem. By using the different presentations (a) and (b) of the partition
for any pair of embedded subsets of the domain we have proved the correctness of the
Dichotomy algorithm (see Corollary 4.2) and have given the basis of a generalization
of the Dichotomy algorithm for the case ofε-maximization of submodular functions
(see Corollary 4.3).

In Theorem 5.2 we prove that the functions that belong to an algorithmically defined
(by the Dichotomy algorithm) polynomially solvable class of submodular functions
(the PP-functions) contains exactly one component of local maxima. So, the number
of subproblems created in a branch and bound type algorithm which is based on the
Dichotomy algorithm can be used as an upper bound for the number of the STCs of
local maxima. By the same way, an upper bound for the number of all local max-
ima (STCs and SDVs) by using the strict excluding rules (see Theorem 5) can be
calculated.

Another way for constructing branch and bound type algorithms including the data-
correcting algorithms by a new possibility to split a subset of the domain of a sub-
modular function into more than two parts such that each of which can be obtained
by only subtracting a single elementki from the top of the interval [S, T ] (see Corol-
lary 5.2a) or by only adding a single elementki to the bottom of the interval [S, T ]
(see Corollary 5.2b) is presented. The last possibility of branching can be used for
reducing the values ofδ+ or δ− in the branch and bound type algorithms which are
based on the Dichotomy algorithm. An interesting subject for future research is the
investigation of the computational efficiency ofm-ary branching rules for specific
problems which can be reduced to the maximization of submodular functions.
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