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Abstract

The Data Correcting Algorithm is a branch and bound algorithm in which the
data of a given problem instance is ‘corrected’ at each branching in such a way
that the new instance will be as close as possible to a polynomially solvable
instance and the result satisfies an acceptable accuracy (the difference between
optimal and current solution). In this paper the data correcting algorithm is
applied to determining exact and approximate optimal solutions to the sim-
ple plant location problem. Implementations of the algorithm are based on a
pseudo-Boolean representation of the goal function of the SPLP and a new
reduction rule. We study the efficiency of the data correcting approach using
two different bounds, the combinatorial bound and the Erlenkotter bound. We
present computational results on several benchmark instances of the simple
plant location problem, which confirm the efficiency of the data-correcting ap-
proach.
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1. Introduction

The Simple Plant Location Problem (SPLP) takes a setI = {1, 2, . . . , m} of sites in
which plants can be located, a setJ = {1, 2, . . . , n} of clients, each having a unit
demand, a vectorF = (fi) of fixed costs for setting up plants at sitesi ∈ I , and a
matrix C = [cij ] of transportation costs fromi ∈ I to j ∈ J as input. It computes a
setP ?, ∅ ⊂ P ?

⊆ I , at which plants can be located so that the total cost of satisfy-
ing all client demands is minimal. The costs involved in meeting the client demands
include the fixed costs of setting up plants, and the transportation cost of supplying
clients from the plants that are set up. A detailed introduction to this problem has
appeared in Cornuejolset al. [14]. The SPLP forms the underlying model in several
combinatorial problems, like set covering, set partitioning, information retrieval, sim-
plification of logical Boolean expressions, airline crew scheduling, vehicle despatching
(Christofides [10]), assortment (Beresnevet al. [6], Goldengorin [19], Joneset al. [25],
Pentico [32,33], Tripathyet al. [36]), and is a subproblem for various location analysis
problems (Revelle and Laporte [34]).

The SPLP isNP-hard (Cornuejolset al. [14]), and several exact and heuristic algo-
rithms for solving it have been discussed in the literature. Most of the exact algorithms
are based on a mathematical programming formulation of the SPLP (see for exam-
ple, Schrage [35], Morris [30], Heldet al. [24], Cornuejolset al. [12], Cornuejols
and Thizy [13], and Garfinkelet al. [17]). Polyhedral results for the SPLP polytope
have been reported in Trubin [37], Balas and Padberg [1], Mukendi [31], Cornuejolset

al. [11], Krarup and Pruzan [28], Choet al. [8], and Choet al. [9]. In theory, these re-
sults allow us to solve the SPLP by applying the simplex algorithm to the strong linear
programming relaxation, with the additional stipulation that a pivot to a new extreme
point is allowed only when this new extreme point is integral. However, efficient im-
plementations of this pivot rule are not available. Beasley [2] reported computational
experiments with Lagrangian heuristics for SPLP instances. Körkel [27] proposed al-
gorithms based on refinements to a dual-ascent heuristic procedure to solve the dual
of a linear programming relaxation of the SPLP (Körkel [27]), combined with the use
of the complementary slackness conditions to construct primal solutions (Erlenkot-
ter [15]). An annotated bibliography is available in Labbé and Louveaux [29]. An exact
algorithm based on a pseudo-Boolean representation of the problem has been reported
in Goldengorinet al. [22]. This algorithm uses a preprocessing rule to reduce the size
of its input. The preprocessing rule is due to Khumawala [26].
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It is common knowledge that exact algorithms forNP-hard problems in general, and
for the SPLP in particular, spend only about 10% of the execution time to find an opti-
mal solution. The remaining time is spent proving the optimality of the solution. In this
paper, our aim is to reduce the amount of time spent proving the optimality of the solu-
tion obtained. We propose a data correcting algorithm for the SPLP that is designed to
output solutions with a pre-specifiedacceptable accuracy α. This means that the differ-
ence between the cost of the solution output by the algorithm is no more thanα more
than the cost of an optimal solution. (Note thatα = 0 results in an exact algorithm
for the SPLP, whileα = ∞ results in a fast greedy algorithm.) The objective function
of the SPLP is supermodular (see Cornuejolset al. [14]) and so, the data correcting
algorithm described in Goldengorinet al. [20] can be used to solve the SPLP. In fact,
Goldengorinet al. [20] contains an example to that effect. However, it can be made
much more efficient; for example, by using SPLP-specific bounds (used in Erlenkot-
ter [15]) and preprocessing rules (used in Khumawala [26]). The algorithm described
here uses a pseudo-Boolean representation of the SPLP, due originally to Beresnev [5].
It uses a new reduction procedure based on data correcting, which is stronger than the
preprocessing rules used in Khumawala [26] to reduce the original instance to a smaller
‘core’ instance, and then solves it using a procedure based on preliminary preservation
and data correcting (see Goldengorinet al. [20]). Computational experiments with this
algorithm on benchmark instances of the SPLP are also described in the paper. We
show how the use of preprocessing and bounds specific to the SPLP enhance the per-
formance of the data-correcting algorithm. This algorithm is based on three concepts
found in the literature, a pseudo-Boolean representation of the SPLP, data-correcting,
and the preliminary preservation procedure. The next section of this paper therefore
contains a brief exposure to these concepts. We describe the new algorithm in Sec-
tion 3 and present the results of our computational experiments with it in Section 4. We
finally conclude the paper in Section 5 with a summary of the work presented here and
discussions.

2. Preliminaries from the Literature

In this section we describe a pseudo-Boolean representation of the SPLP that we use
in our algorithm (Subsection 2.1), an introduction to data correcting (Subsection 2.2),
and a description of the preliminary preservation procedure (Subsection 2.3). The last
two are described using the SPLP as an example.
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2.1 A Pseudo-Boolean Representation of the SPLP

The pseudo-Boolean approach to solving the SPLP (Hammer [23], Beresnev [5]) is
a penalty-based approach that relies on the fact that any instance of the SPLP has an
optimal solution in which each client is supplied by exactly one plant. This implies,
that in an optimal solution, each client will be served fully by the plant located closest
to it. Therefore, it is sufficient to determine the sites where plants are to be located, and
then use a minimum weight matching algorithm to assign clients to plants.

An instance of the SPLP can be described by am-vectorF = (fi), and am× n matrix
C = [cij ]; m, n ≥ 1. We will use them × (n + 1) augmented matrix [F |C] as a
shorthand for describing an instance of the SPLP. The total costf[F |C](P ) associated
with a subsetP of I consists of two components, namely the fixed costs

∑
i∈P fi and

the transportation costs
∑

j∈J min{cij |i ∈ P }; i.e.

f[F |C](P ) =
∑
i∈P

fi +

∑
j∈J

min{cij |i ∈ P },

and the SPLP is the problem of finding

P ?
∈ arg min{f[F |C](P ) : ∅ ⊂ P ⊆ I }. (1)

In the remainder of this subsection we describe the pseudo-Boolean formulation of the
SPLP due to Beresnev [5].

A m × n ordering matrix 5 = [πij ] is a matrix each of whose columns5j =

(π1j , . . . , πmj )
T define a permutation of 1, . . . , m. Given a transportation matrixC, the

set of all ordering matrices5 such thatcπ1j j ≤ cπ2j j ≤ · · · ≤ cπmj j for j = 1, . . . , n,

is denoted byperm(C).

Defining

yi =

{
0 if i ∈ P

1 otherwise,
for eachi = 1, . . . , m (2)

we can indicate any solutionP by a vectory = (y1, y2, . . . , ym). The fixed cost com-
ponent of the total cost can be written as

FF (y) =

m∑
i=1

fi(1− yi). (3)
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Given a transportation cost matrixC, and an ordering matrix5 ∈ perm(C), we can
denote differences between the transportation costs for eachj ∈ J as

1c[0, j ] = cπ1j j , and

1c[l, j ] = cπ(l+1)j j − cπlj j , l = 1, . . . , m− 1.

Note that1c[l, j ] ≥ 0, even if the transportation cost matrixC contains negative
entries. The transportation costs of supplying any clientj ∈ J from any open plant can
be expressed in terms of the1c[·, j ] values. It is clear that we have to spend at least
1c[0, j ] in order to satisfyj ’s demand since this is the cheapest cost of satisfyingj .
If no plant is located at the site closest toj , i.e.yπ1j

= 1, we try to satisfy the demand
from the next closest site. In that case, we spend an additional1c[1, j ]. Continuing in
this manner, the transportation cost of supplyingj ∈ J is

min{ci,j |i ∈ S} = 1c[0, j ] +1c[1, j ] · yπ1j
+1c[2, j ] · yπ1j

· yπ2j

+ · · · +1c[m− 1, j ] · yπ1j
· · · yπ(m−1)j

= 1c[0, j ] +

m−1∑
k=1

1c[k, j ] ·

k∏
r=1

yπrj
,

so that the transportation cost component of the cost of a solutiony corresponding to
an ordering matrix5 ∈ perm(C) is

TC,5(y) =

n∑
j=1

{
1c[0, j ] +

m−1∑
k=1

1c[k, j ] ·

k∏
r=1

yπrj

}
. (4)

Combining (3) and (4), the total cost of a solutiony to the instance[F |C] corresponding
to an ordering matrix5 ∈ perm(C) is given by the pseudo-Boolean polynomial

f[F |C],5(y) = FF (y)+ TC,5(y)

=

m∑
i=1

fi(1− yi)+

n∑
j=1

{
1c[0, j ] +

m−1∑
k=1

1c[k, j ] ·

k∏
r=1

yπrj

}
. (5)

It can be shown (Goldengorinet al. [21]) that the total cost functionf[F |C],5(·) is iden-
tical for all 5 ∈ perm(C). We call this pseudo-Boolean polynomial theBeresnev
function B[F |C](y) corresponding to the SPLP instance[F |C] and5 ∈ perm(C). In
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other words
B[F |C](y) = f[F |C],5(y) where5 ∈ perm(C). (6)

We can formulate (1) in terms of Beresnev functions as

y?
∈ arg min{B[F |C](y) : y ∈ {0, 1}m, y 6= 1}. (7)

Notice that if for clientsp andq, {π1p, π2p, . . . , πkp} = {π1q, π2q, . . . , πkq} for k ≤ n,

then thekth order terms in the Beresnev function corresponding to these two clients
can be aggregated. This implies that in general, the Beresnev function will be a more
space-efficient representation of the SPLP than the conventional[F |C] matrix. This
representation also makes it easier to construct data structures that allow efficient up-
dating operations in the algorithm presented below.

2.2 Fundamentals of Data Correcting

Data correcting is a method in which we alter the data in a problem instance to con-
vert it to an instance that is easily solvable. This methodology was first introduced in
Goldengorin [18]. In this subsection we illustrate the method for the SPLP when the
instance data is represented by the fixed cost vector and the transportation cost matrix.
However it can be applied to a wide variety of optimization problems, and in particular,
to the SPLP represented as a Beresnev function.

Consider an instance[F |C] of the SPLP. The objective of the problem is to compute
a setP , ∅ ⊂ P ⊆ I , that minimizesf[F |C](P ). Also consider a SPLP instance[S|D]
that is known to be polynomially solvable. LetP ?

[F |C] andP ?
[S|D] be optimal solutions to

[F |C] and[S|D], respectively. Let us define the proximity measureρ([F |C], [S|D])

between the two instances as

ρ([F |C], [S|D]) =
∑
i∈I

|fi − si | +

∑
j∈J

max{|cij − dij | : i ∈ I }. (8)

We use max{|cij − dij | : i ∈ I } in (8) instead of the more intuitive
∑

i∈I {|cij − dij |}

since, in an optimal solution, the demand of each client is satisfied by a single facility,
only one element in each column in the transportation matrix will contribute to the cost
of the optimal solution.

Notice thatρ([F |C], [S|D]) is defined only when instances[F |C] and [S|D] are of
the same size. Also note that it can be computed in time polynomial in the size of the
two instances. The following theorem, which forms the basis of data correcting, shows
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thatρ([F |C], [S|D]) is an upper bound to the difference between theunknown optimal
costs for the SPLP instances[F |C] and[S|D].

Theorem 2.1 Let [F |C] and[S|D] be two SPLP instances of the same size, and let
P ?
[F |C] andP ?

[S|D] be optimal solutions to[F |C] and[S|D] respectively. Then

|f[F |C](P
?
[F |C])− f[S|D](P

?
[S|D])| ≤ ρ([F |C], [S|D]).

PROOF. There are two cases to consider.
Case 1:f[F |C](P ?

[F |C]) ≤ f[S|D](P
?
P [S|D]), and

Case 2:f[F |C](P ?
[F |C]) > f[S|D](P

?
[S|D]). We prove the Case 1 here. The proof of Case 2

is similar to the proof of Case 1.

f[F |C](P
?
[F |C])− f[S|D](P

?
[S|D])

≤ f[F |C](P
?
[S|D])− f[S|D](P

?
[S|D])

=

∑
i∈P ?
[S|D]

[fi − si] +

∑
j∈J

(min{cij : i ∈ P ?
[S|D]} −min{dij : i ∈ P ?

[S|D]}).

Let cic(j)j = min{cij : i ∈ P ?
[S|D]} anddid (j)j = min{dij : i ∈ P ?

[S|D]}. Then

f[F |C](P
?
[F |C])− f[S|D](P

?
[S|D])

≤

∑
i∈P ?
[S|D]

[fi − si] +

∑
j∈J

[cic(j)j − did (j)j ]

≤

∑
i∈P ?
[S|D]

[fi − si] +

∑
j∈J

[cid (j)j − did (j)j ]

≤

∑
i∈P ?
[S|D]

[fi − si] +

∑
j∈J

[max{cij − dij : i ∈ P ?
[S|D]}]

≤

∑
i∈P ?
[S|D]

|fi − si | +

∑
j∈J

[max{|cij − dij | : i ∈ I }]

≤

∑
i∈I

|fi − si | +

∑
j∈J

[max{|cij − dij | : i ∈ I }]

= ρ([F |C], [S|D]).
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Theorem 2.1 implies that if we have an optimal solution to a SPLP instance[S|D],
then we have an upper bound forall SPLP instances[F |C] of the same size. This up-
per bound is actually the distance between the two instances, distances being defined
by the accuracy measure (8). Also if the solution to[S|D] can be computed in polyno-
mial time, (i.e.[S|D] belongs to a polynomially solvable special case) then an upper
bound to the cost of anas yet unknown optimal solution to[F |C] can be obtained in
polynomial time. If the distance between the instances is not more than a prescribed
accuracyα, then the optimal solution of[S|D] is, in fact, a solution to[F |C] within the
prescribed accuracy. This theorem forms the basis of data correcting.

In general, the data correcting procedure works as follows. It assumes that we know a
class of polynomially solvable instances of the problem. It starts by choosing a polyno-
mially solvable SPLP instance[S|D] from that class of instances, preferably as close
as possible to the original instance[F |C]. If ρ([F |C], [S|D]) ≤ α, the procedure ter-
minates and returns an optimal solution to[S|D] as an approximation of an optimal
solution to[F |C]. The instance[F |C] is said to be ‘corrected’ to the instance[S|D],
which is solved polynomially to generate the solution output by the procedure. Other-
wise, the set of feasible solutions for the problem is partitioned into two subsets. For
the SPLP, one of these subsets comprises of solutions that locate a plant at a given site,
and the other comprises of solutions that do not. The two new instances thus formed
are perturbed in a way that they both change into instances that are within a distance
α from a polynomially solvable instance. The procedure is continued until an instance
with a proximity measure not more thanα is obtained for all the subsets generated.

2.3 The Preliminary Preservation Procedure

The preliminary preservation procedure is one that tries to reduce the set of solutions
in which to search for optimal solutions to a given instance. It applies to the minimiza-
tion of supermodular (and maximization of submodular) functions. Since the objective
function of the SPLP is supermodular, we can apply the procedure to this problem.

Consider the SPLP instance[F |C], and subsetsPL andPU of I , such that∅ ⊂ PL ⊆

PU ⊆ I . We can considerPL as the set of sites where plants will definitely be located
in an optimal solution, andPU as the set of all candidate locations for locating plants
in optimal solutions. In other words, plants will definitelynot be located in any site be-
longing toI \PU an optimal solution. Letf ?

[F |C][PL, PU ] = min{f[F |C](P ) : PL ⊆ P ⊆

PU }. The following result is a straightforward application of Theorem 1 in Goldengorin
et al. [20] to the SPLP.
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Theorem 2.2 ConsiderPL, PU ⊆ I , such that∅ ⊂ PL ⊆ PU ⊆ I , and letk ∈
PU \ PL. Then the following assertions hold:

a. f ?
[F |C][PL, PU \ {k}] − f ?

[F |C][PL ∪ {k}, PU ] ≤ f[F |C](PL)− f[F |C](PL ∪ {k});
b. f ?

[F |C][PL ∪ {k}, PU ] − f ?
[F |C][PL, PU \ {k}] ≤ f[F |C](PU )− f[F |C](PU \ {k}).

An immediate corollary to Theorem 2.2 is the following.

Corollary 2.1 ConsiderPL, PU ⊆ I , such that∅ ⊂ PL ⊆ PU ⊆ I , and letk ∈
PU \ PL. Then the following preservation rules are valid:

Preservation Rule 1: Iff[F |C](PU \ {k}) ≥ f[F |C](PU ), then
f ?
[F |C][PL, PU ] = f ?

[F |C][PL ∪ {k}, PU ] ≤ f ?
[F |C][PL, PU \ {k}].

Preservation Rule 2: Iff[F |C](PL ∪ {k}) ≥ f[F |C](PL), then
f ?
[F |C][PL, PU ] = f ?

[F |C][PL, PU \ {k}] ≤ f ?
[F |C][PL ∪ {k}, PU ].

Using the preservation rules from Corollary 2.1, we can considerably reduce the search
space for any given problem instance. This is done by the preliminary preservation
procedure (PP) described in Figure 2.1. For a given instance[F |C] of the SPLP, the
procedure takes two setsP i

L andP i
U (P i

L ⊆ P i
U ) as input, and outputs two setsP o

L and
P o

U (P i
L ⊆ P o

L ⊆ P o
U ⊆ P i

U ), such thatf ?
[F |C][P

i
L, P i

U ] = f ?
[F |C][P

o
L, P o

U ]. The running
time of the procedure isO(m2) (Theorem 2, Goldengorinet al. [20]).

3. The Data Correcting Algorithm

The Data Correcting Algorithm (DCA) that we propose in this paper is one that uses
a strong reduction procedure (RP, see Subsection 3.1) to reduce the original instance
into a smaller ‘core’ instance, and then uses a data correcting procedure (DCP, see
Subsection 3.2) to obtain a solution to the original instance, whose cost is not more
than a pre-specified amountα more than the cost of an optimal solution.

3.1 The Reduction Procedure

The first preprocessing rules involving both fixed costs and transportation costs ap-
peared in Khumawala [26]. In terms of Beresnev functions, these rules are stated as
follows. We assume (without loss of generality) that we cannot partitionI into setsI1

andI2, andJ into setsJ1 andJ2, such that the transportation costs from sites inI1 to
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ProcedurePP (P i
L, P i

U )
begin

P o
L ← P i

L; P o
U ← P i

U ;

if P o
L = P o

U then
return (P o

U , P o
U );

Computeδ+← mink∈P o
U \P

o
L
{f[F |C](P

o
U )− f[F |C](P

o
U \ {k})};

Computeδ−← mink∈P o
U \P

o
L
{f[F |C](P

o
L)− f[F |C](P

o
L ∪ {k})};

if δ+ ≤ 0 then { Preservation Rule 1 }

begin
Computer+← min{k : f[F |C](P o

U )− f[F |C](P
o
U \ {k}) = δ+};

call PP(P o
L ∪ {r

+
}, P o

U );
end
else ifδ− ≤ 0 then { Preservation Rule 2 }

begin
Computer−← min{k : f[F |C](P o

L)− f[F |C](P
o
L ∪ {k}) = δ−};

call PP(P o
L, P o

U \ {r
−
});

end
else return (P o

L, P o
U );

end;

Figure 2.1: The Preliminary Preservation Procedure

clients inJ2, and from sites inI2 to clients inJ1 are not finite. We assume too, that the
site indices are arranged in non-increasing order offi +

∑
j∈J cij values.

Preprocessing Rule 1 LetB[F |C](y) be the Beresnev function corresponding to the
SPLP instance[F |C] in which like terms have been aggregated. For each site indexk,
let ak be the coefficient of the linear term corresponding toyk and let tk be the sum
of the coefficients of all non-linear terms containingyk. Then the following assertion
holds.

RO: If ak ≥ 0, then there is an optimal solutiony? in whichy?
k = 0, else

RC: if ak + tk ≤ 0, then there is an optimal solutiony? in whichy?
k = 1, provided that

y?
i 6= 1 for somei 6= k.
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Notice that Preprocessing Rule 1 primarily tries to either open or close sites. If it suc-
ceeds, it also changes the Beresnev function for the instance, reducing the number of
non-linear terms therein. In the remaining portion of this subsection, we describe a
completely new reduction procedure (RP), whose primary aim is to reduce the coeffi-
cients of terms in the Beresnev function, and if we can reduce it to zero, to eliminate
the term from the Beresnev function. This procedure is based on fathoming rules of
branch and bound algorithms and data correcting principles.

Let us assume that we have an upper bound (UB) on the cost of an optimal solution for
the given SPLP instance. This can be obtained by running a heuristic on the problem
data. Now consider a non-linear term1c[k, j ] ·

∏k
r=1 yπrj

in the Beresnev function.
This term will contribute to the cost of a solution, only if facilities are not located in
sitesπ1j , . . . , πkj . Let LB be a lower bound on the cost of solutions in which facilities
are not located in sitesπ1j , . . . , πkj . If LB > UB, then the non-linear term can be re-
moved from the Beresnev function, thereby reducing the size of the Beresnev function.
Note that a good upper bound yields a large reduction in the size of the Beresnev func-
tion. Otherwise ifLB ≤ UB, the coefficient of the term can be reduced by an amount
UB −LB − ε, (ε ≥ 0, small) without compromising the optimality of any optimal so-
lution to the instance. Such changes in the Beresnev function alter the values oftk, and
can possibly allow us to use Preprocessing Rule 1 (assertion RC) to close certain sites.
Once some sites are closed, some of the linear terms in the Beresnev function change
into constant terms, and some of the quadratic terms change into linear ones. These
changes cause changes in both theak and thetk values, and can make further applica-
tion of Preprocessing Rule 1 (both assertions RO and RC) possible, thus preprocessing
some other sites, and making further changes in the Beresnev function. Using a good
lower bound (for example, the bound in Erlenkotter [15]) it is often possible to discard
a substantial portion of the nonlinear terms in the Beresnev function (see, for example,
Table 4.2 in Section 4, in which more than 99% of the non-zero nonlinear terms are
discarded). This reduction is time consuming (although polynomial), but in the prepro-
cessing phase it can reduce large SPLP instances to much smaller core problems. A
pseudocode of the reduction procedure (RP) is presented in Figure 3.1.

3.2 The Data Correcting Procedure

Let us suppose that the preliminary preservation procedure (PP) is applied to the SPLP
instance[F |C]. On termination, it outputs two subsetsP o

L andP o
U , ∅ ⊂ P o

L ⊆ P o
U ⊆ I .

If P o
L = P o

U , then the instance is said to have been solved by this procedure, and the set
P o

L is an optimal solution. Since the preliminary preservation procedure is a polynomial
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ProcedureRP (B[F |C](y))
begin

repeat
Compute an upper boundUB for the current subproblem;
for each nonlinear term1c[k, j ] ·

∏k
r=1 yπrj

in B[F |C](y) do
begin

Compute lower boundLB on the cost of solutions in which facilities are
not located

in sitesπ1j , . . . , πkj ;
if LB > UB then

Remove the term fromB[F |C](y);
else

Reduce the coefficient of the term byUB − LB − ε;
end
Apply Preprocessing Rule 1 until no further sites could be preprocessed;
Recompute the Beresnev functionB[F |C](y);

until no further preprocessing of sites was achieved in the current iteration;
end;

Figure 3.1: The Reduction Procedure

time algorithm, instances that it solves to optimality constitute a class of algorithmically
defined polynomially solvable instances. We call such instancesPP-solvable. We use
this class of polynomially solvable instances in our algorithm, since it is one of the best
among the polynomially solvable cases discussed in Goldengorin [19].

Next suppose that the given instance is not PP-solvable. In that case we try to extend
the idea of the preliminary preservation procedure to obtain a solution, the difference
between whose cost and the cost of the optimal solution is bounded by a pre-defined
valueα. This is the basic idea behind the data correcting procedure.

We will introduce a few notations to improve the readability of this subsection. Con-
sider the SPLP instance[F |C] and two setsPL, PU ⊆ I such thatPL ⊂ PU . Let
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δ−k = f[F |C](PL)− f[F |C](PL ∪ {k}) for eachk ∈ PU \ PL,

δ− = min{δ−k : k ∈ PU \ PL}

r− = min{k : δ−k = δ−, k ∈ PU \ PL}

δ+k = f[F |C](PU )− f[F |C](PU \ {k}) for eachk ∈ PU \ PL,

δ+ = min{δ+k : k ∈ PU \ PL}

r+ = min{k : δ+k = δ+, k ∈ PU \ PL}.

Note thatδ−k = −ak andδ+k = ak + tk (see Goldengorin [19]). Therefore, these quanti-
ties can be calculated very efficiently when one uses a Beresnev function representation
of the SPLP. Lemma 3.1 is a restatement of the preservation rules in Corollary 2.1.

Lemma 3.1 ConsiderPL, PU ⊆ I , such that∅ ⊂ PL ⊂ PU ⊆ I , let k ∈ PU \ PL,
and letPA be an arbitrary subset ofI . Then the following holds.

a. If δ−k ≤ 0 andf[F |C](PA)− f ?
[F |C][PL, PU \ {k}] ≤ γ ≤ α, then

f[F |C](PA)− f ?
[F |C][PL, PU ] ≤ γ ≤ α; and

b. if δ+k ≤ 0 andf[F |C](PA)− f ?
[F |C][PL ∪ {k}, PU ] ≤ γ ≤ α, then

f[F |C](PA)− f ?
[F |C][PL, PU ] ≤ γ ≤ α.

In case bothδ− andδ+ are strictly positive, then Lemma 3.1 is no longer applicable, and
the preliminary preservation procedure (PP) terminates. Ifδ = min(δ−, δ+) ≤ α, we
could however correct the data of the instance so that either the costs of all solutionsP ,
PL ⊆ P ⊆ PU \ {k} increase byδ−, or the costs of all solutionsP , PL∪{k} ⊆ P ⊆ PU

increase byδ+, and Lemma 3.1 becomes applicable again. The solution that we hope
to obtain by this correcting procedure will have an accuracy ofδ according to the main
theorem of data correcting (Theorem 2.1). Instead of changing the data in the instance,
the same effect is achievable by decreasing the allowable accuracy value fromα to
α − δ. This gives rise to Lemma 3.2.

Lemma 3.2 ConsiderPL, PU ⊆ I , such that∅ ⊂ PL ⊂ PU ⊆ I , let k ∈ PU \ PL,
and letPA be an arbitrary subset ofI . Then the following holds.

a. If 0≤ δ−k ≤ α andf[F |C](PA)− f ?
[F |C][PL, PU \ {k}] ≤ γ ≤ α − δ−k , then

f[F |C](PA)− f ?
[F |C][PL, PU ] ≤ γ + δ−k ≤ α; and
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b. if 0≤ δ+k ≤ α andf[F |C](PA)− f ?
[F |C][PL ∪ {k}, PU ] ≤ γ ≤ α − δ+k , then

f[F |C](PA)− f ?
[F |C][PL, PU ] ≤ γ + δ+k ≤ α.

PROOF. We prove the first part of the lemma. The proof of the second part is similar.
There are two cases to consider.
Case 1:f ?

[F |C][PL, PU ] = f ?
[F |C][PL, PU \ {k}]. In this case, the result follows trivially.

Case 2:f ?
[F |C][PL, PU ] = f ?

[F |C][PL ∪ {k}, PU ]. From Theorem 2.2a,

f ?
[F |C][PL, PU \ {k}] − f ?

[F |C][PL ∪ {k}, PU ] ≤ δ−k

⇐⇒ f ?
[F |C][PL, PU \ {k}] ≤ f ?

[F |C][PL, PU ] + δ−k .

The result follows.

In caseδ = min(δ−, δ+) > α then data correction cannot guarantee a solution within
the prescribed allowable accuracy, and hence we need to use a branching procedure.

The data correcting procedure (DCP, see Figure 3.2) in our algorithm takes two sets
PL, PU ⊆ I (∅ ⊂ PL ⊂ PU ⊆ I ) and α as input. It outputs a solutionP γ and
a boundγ , such thatf[F |C](P γ ) − f[F |C](P

?) ≤ γ ≤ α, whereP ? is an optimal
solution to[F |C]. It is a recursive procedure, that first tries to reduce the setPU \PL by
applying Lemma 3.1. If Lemma 3.1 cannot be applied, then it tries to apply Lemma 3.2
to reduce it. We do not use the reduction procedure at this stage since it increases
the computational times substantially without reducing the core problem appreciably.
If even this lemma cannot be applied, then the procedure branches on a memberk ∈

PU \PL and invokes two instances of DCP, one with setsPL∪{k} andPU , and the other
with setsPL andPU \ {k}. Notice that the solutions searched by the two invocations of
DCP are mutually exclusive and exhaustive. A bound is used to remove unpromising
subproblems from the solution tree. The choice of the branching variablek ∈ PU \ PL

in DCP is motivated by the observation thatak < 0 andtk + ak > 0 for each of these
indices. (These are the preconditions of the branching rule.) A plant would have been
located in this site in an optimal solution if the coefficient of linear term involvingyk in
the Beresnev function would have been increased by−ak. We could have predicted that
a plant would not be located there if the same coefficient would have been decreased
by tk + ak. Therefore we could useφk = average(−ak, tk + ak) =

tk
2 as a measure

of the chance that we willnot be able to predict the fate of sitek in any subproblem
of the current subproblem. If we want to reduce the size of the branch and bound tree
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by assigning values to such variables, then we can think of a branching function that
branches on the indexk ∈ PU \ PL with the largestφi value.

4. Computational Experiments

The execution of the DCA can be divided into two stages, apreprocessing stage in
which the given instance is reduced to a core instance by using the RP; and asolution

stage in which the core instance is solved using the DCP.

In the preprocessing stage we experimented with three procedures of reduction,

(a) using the “delta” and “omega” rules from Khumawala [26],
(b) using the RP with a combinatorial bound to obtain a lower bound, and
(c) using the RP with the Erlenkotter bound to obtain a lower bound.

The combinatorial bound (see Goldengorinet al. [20]) is a bound for general super-
modular functions adapted for the SPLP.

We also experimented with the combinatorial bound and the Erlenkotter bound in the
implementation of the DCP.

The effectiveness of the reduction procedure can be measured either by computing the
number of free locations in the core instance, or by computing the number of non-
zero nonlinear terms present in the Beresnev function of the core instance. Note that
the number of non-zero nonlinear terms present in the Beresnev function is an upper
bound on the number of unassigned customers in the core instance. Tables 4.1 and 4.2
shows how the various methods of reduction perform on the benchmark SPLP instances
in the OR-Library [3]. The existing preprocessing rules due to Khumawala [26] and
Goldengorinet al. [21] (i.e. procedure (a), which was used in the SPLP example in
Goldengorinet al. [20]) cannot solve any of the OR-Library instances to optimality.
However, the variants of the new reduction procedure (i.e. procedures (b) and (c)) solve
a large number of these instances to optimality. Procedure (c), based on the Erlenkotter
bound is marginally better than procedure (b) in terms of the number of free locations
(Table 4.1), but substantially better in terms of the number of non-zero nonlinear terms
in the Beresnev function (Table 4.2).

The information in Tables 4.1 and 4.2 can be combined to show that some of the prob-
lems that are not solved by these procedures can actually be solved by inspection of
the core instances. For example, consider cap74. We see that the core problem (using
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procedure (a)) has two free variables and one non-linear term. Therefore the Beresnev
function of the core instance looks like

A+ pyu + qyw + ryuyw,

wherep, q < 0, r > 0, min{p + r, p + q} > 0 andA is a constant. The minima of
such functions are easy to obtain by inspection.

In addition, Tables 4.1 and 4.2 demonstrate the superiority of the new preprocessing
rule over the “delta” and “omega” rules. Consider for example the problem cap132.
The “delta” and “omega” rules reduce the problem size fromm = 50 and 2389 non-
zero nonlinear variables tom′ = 27 and 112 non-zero nonlinear variables. However,
the new preprocessing rule reduces the same problem to one havingm′ = 5 and 3
non-zero nonlinear variables.

Table 4.1: Number of free locations after preprocessing SPLP instances in the OR-
Library

Problem m n Procedure
a b c

cap71 16 50 4 0 0
cap72 16 50 6 0 0
cap73 16 50 6 3 3
cap74 16 50 2 0 0
cap101 25 50 9 0 0
cap102 25 50 13 3 0
cap103 25 50 14 0 0
cap104 25 50 12 0 0
cap131 50 50 34 32 8
cap132 50 50 27 25 5
cap133 50 50 25 19 10
cap134 50 50 19 0 0

In order to test the effect of the bounds in the DCA, we compared the execution times
of DCA using the two bounds on some difficult problems of the type suggested in
Körkel [27] (see Subsection 4.4 for more details). The problems were divided into
seven sets. Each set consists of five problems, each having 65 sites and 65 clients (see
Subsection 4.4 for more details regarding these problems). From Table 4.3 we see that
the Erlenkotter bound reduces the execution time taken by the combinatorial bound
(that was used in the SPLP example in Goldengorinet al. [20]) by a factor more than
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Table 4.2: Number of non-zero nonlinear terms in the Beresnev function after prepro-
cessing SPLP instances in the OR-Library

Problem Non-zero terms Procedure
before preprocessing a b c

cap71 699 6 0 0
cap72 699 12 0 0
cap73 699 13 2 2
cap74 699 1 0 0
cap101 1147 24 0 0
cap102 1147 33 2 0
cap103 1147 38 0 0
cap104 1147 29 0 0
cap131 2389 163 135 8
cap132 2389 112 92 3
cap133 2389 101 60 11
cap134 2389 62 0 0

100. This is not surprising, since the combinatorial bound is derived for a general su-
permodular function, while the Erlenkotter bound is specific to the SPLP.

Table 4.3: Comparison of bounds used with the DCA on Körkel-type instances with
m = n = 65

Problem Execution time of the DCP (sec)
Set Combinatorial Bound Erlenkotter Bound

Set 1 119.078 0.022
Set 2 290.388 0.040
Set 3 458.370 0.056
Set 4 158.386 0.054
Set 9 428.598 0.588
Set10 542.530 0.998
Set11 479.092 2.280

We report our computational experience with the DCA on several benchmark instances
of the SPLP in the remainder of this section. The performance of the algorithm is com-
pared with that of the algorithms described in the papers that suggested these instances.
We implemented the DCA in PASCAL, compiled it using Prospero Pascal, and ran it
on a 733 MHz Pentium III machine.
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4.1 Bilde and Krarup-type Instances

These are the earliest benchmark problems that we consider here. The exact instance
data is not available, but the process of generating the problem instances is described
in Bilde and Krarup [4]. There are 22 different classes of instances, and Table 4.4 sum-
marizes their characteristics. In our experiments we generated 10 instances for each

Table 4.4: Description of the instances in Bilde and Krarup [4]

Problem Type m n fi cij

B 50 100 Discrete Uniform (1000, 10000) Discrete Uniform (0, 1000)
C 50 100 Discrete Uniform (1000, 2000) Discrete Uniform (0, 1000)

Dq † 30 80 Identical, 1000×q Discrete Uniform (0, 1000)
Eq † 50 100 Identical, 1000×q Discrete Uniform (0, 1000)

† q = 1, . . . , 10.

of the types of problems, and used the mean values of our solutions to evaluate the
performance of our algorithm with the one used in Bilde and Krarup [4]. In our imple-
mentation, we used reduction procedure (b) and the combinatorial bound in the DCP.

The reduction procedure was not useful for these instances, but the DCA could solve
all the instances in reasonable time. The results of our experiments are presented in
Table 4.5. The performance of the algorithm implemented in Bilde and Krarup [4], was
measured in terms of the number of branching operations performed by the algorithm
and its execution time in CPU seconds on a IBM 7094 machine. We estimate the num-
ber of branching operations by our algorithm as the logarithm (to the base 2) of the
number of subproblems it generated. From the table we see that the DCA reduces the
number of subproblems generated by the algorithm in Bilde and Krarup [4] by a factor
of 1000. This is especially interesting because Bilde and Krarup use a bound (discov-
ered in 1967) identical to the Erlenkotter bound in their algorithm (see Körkel [27])
and we use the combinatorial bound. The CPU time required by the DCA to solve
these problems were too low to warrant the use of anyα > 0.

4.2 Galvão and Raggi type Instances

Galvão and Raggi [16] developed a general 0-1 formulation of the SPLP and pre-
sented a 3-stage method to solve it. The benchmark instances suggested in this work are
unique, in that the fixed costs are assumed to come from a Normal distribution rather
than the more commonly used Uniform distribution. The transportation costs for an in-
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Table 4.5: Results from Bilde and Krarup-type instances

DCA Branching CPU time
Problem type Avg. Branching Avg. CPU time (sec) reported in [4] reported in [4]†

B 11.72 0.67 43.3 4.33
C 17.17 14.81 ? >250
D1 13.80 0.65 216 11
D2 12.13 0.38 218 24
D3 10.87 0.19 169 19
D4 10.25 0.15 141 17
D5 9.24 0.07 106 14
D6 8.99 0.09 101 15
D7 8.79 0.09 83 13
D8 8.60 0.09 55 11
D9 8.15 0.07 47 11
D10 7.29 0.03 43 11
E1 18.66 35.28 1271 202
E2 16.14 8.64 1112 172
E3 14.59 3.81 384 82
E4 13.65 2.74 258 65
E5 12.73 2.01 193 53
E6 11.82 0.90 136 43
E7 10.82 0.53 131 42
E8 10.79 0.68 143 48
E9 10.62 0.76 117 44
E10 10.36 0.69 79 37

† IBM 7094 seconds.

? could not be solved in 250 seconds.

stance of sizem× n with m = n are computed as follows. A network, with a given arc
densityδ is first constructed, and the arcs in the network are assigned lengths sampled
from a uniform distribution in the range[1, n] (except forn = 150, where the range is
[1, 500]). The transportation cost fromi to j is the length of the cheapest path fromi
to j . The problem characteristics provided in Galvão and Raggi [16] are summarized
in Table 4.6.

As with the data in Bilde and Krarup [4], the exact data for the instances are not known.
So we generated 10 instances for each problem size, and used the mean values of the
solutions for comparison purposes. In our DCA implementation, we used reduction
procedure (b) and the combinatorial bound in the DCP. The comparative results are

19



Table 4.6: Description of the instances in Galvão and Raggi [16]

Problem Size Density Fixed costs’ parameters
(m = n) δ mean standard deviation

10 0.300 4.3 2.3
20 0.150 9.4 4.8
30 0.100 13.9 7.4
50 0.061 25.1 14.1
70 0.043 42.3 20.7
100 0.025 51.7 28.9
150 0.018 186.1 101.5
200 0.015 149.5 94.4

given in Table 4.7. Since the computers used are different, we cannot make any com-
ments on the relative performance of the solution procedures. However, since the aver-
age number of subproblems generated by the DCA is always less than 10 for each of
these instances, we can conclude that these problems are easy for our algorithm. In fact
they are too easy for the DCA to warrantα > 0.

Table 4.7: Results from Galvão and Raggi-type instances

Problem DCA
Size # solved by Avg. # of Avg. CPU Avg. # of CPU time # of open plants

(m = n) preprocessing subproblems time (sec) open plants reported in [16]† reported in [16]
10 6 2.3 <0.001 4.7 <1 3
20 5 2.4 <0.001 9.0 <1 8
30 7 1.8 0.002 13.6 1 11
50 7 2.6 0.002 20.3 2 20
70 2 3.8 0.004 28.8 6 31
100 3 3.5 0.011 41.1 6 44
150 1 7.8 0.010 64.4 25 74
200 4 2.9 0.158 81.8 63 84

† IBM 4331 seconds.

Notice that the average number of opened plants in the optimal solutions to the in-
stances we generated is quite close to the number of opened plants in the optimal solu-
tions reported in Galṽao and Raggi. Also notice that the reduction procedure was quite
effective — it solved 35 of the 80 instances generated.
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4.3 Instances from the OR-Library

The OR-Library [3] has a set of instances of the SPLP. These instances were solved in
Beasley [2] using an algorithm based on the Lagrangian heuristic for the SPLP. Here
too, we used reduction procedure (b) and the combinatorial bound in the DCP. We
solved the problems to optimality using the DCA. The results of the computations are
provided in Table 4.8. The execution times suggest that the DCA is faster than the
Lagrangian heuristic described in Beasley [2]. The reduction procedure was also quite
effective for these instances, solving 4 of the 16 instances to optimality, and reducing
the number of free sites appreciably in the other instances. Once again the use ofα > 0
cannot be justified, considering the execution times of the DCA.

Table 4.8: Results from OR-Library instances

DCA
Problem m after # of sub- CPU time CPU time # of

name m n preprocessing problems generated (sec) reported in [2]† open plants
cap71 16 50 ? 0 <0.01 0.11 11
cap72 16 50 ? 0 <0.01 0.08 9
cap73 16 50 ? 0 <0.01 0.11 5
cap74 16 50 ? 0 <0.01 0.05 4
cap101 25 50 9 6 <0.01 0.18 15
cap102 25 50 13 16 <0.01 0.16 11
cap103 25 50 14 16 <0.01 0.14 8
cap104 25 50 12 7 0.01 0.11 4
cap131 50 50 34 196 0.01 0.31 15
cap132 50 50 27 183 0.02 0.28 11
cap133 50 50 25 71 <0.01 0.29 8
cap134 50 50 19 25 <0.01 0.15 4
? instance solved by preprocessing only.

† Cray-X-MP/28 seconds.

4.4 Körkel-type Instances with 65 sites

Körkel [27] described several relatively large Euclidean SPLP instances (m = n = 100,
andm = n = 400) and used a branch and bound algorithm to solve these problems. The
bound used is an improvement on a bound based on the dual of the linear programming
relaxation of the SPLP due to Erlenkotter [15] and is extremely effective. The bound
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due to Erlenkotter [15] is very effective because, for a large majority of SPLP instances,
the optimal solution to the dual of the linear programming relaxation of the SPLP is
integral. In this subsection, we use instances that have the same cost structure as the
ones in K̈orkel [27] but for whichm = n = 65. Instances of this size were not dealt
with in Körkel [27]. We used reduction procedure (b) for the RP, and the combinatorial
bound in the DCP.

In Körkel [27], 120 instances of each problem size are described. These can be divided
into 28 sets (the first 18 sets contain 5 instances each, and the rest contain 3 instances
each). We solved all the 120 instances we generated, and found out that the instances
in Sets 1, 2, 3, 4, 10, 11, and 12 are more difficult to solve than others. We therefore
used these instances in the experiments in this section. The transportation cost matrix
for a Körkel instance of sizen × n is generated by distributingn points in random
within a rectangular area of size 700× 1300 and calculating the Euclidean distances
between them. The fixed cost are computed as in Table 4.9. The values of the results

Table 4.9: Description of the fixed costs for instances in Körkel [27]

Problem Set # of instances Fixed cost fori th instance
Set 1 5 Identical, set at 141+ 6.6i

Set 2 5 Identical, set at 174+ 6.6i

Set 3 5 Identical, set at 207+ 6.6i

Set 4 5 Identical, set at 174+ 66i
Set10 5 Identical, set at 7170+ 660i
Set11 5 Identical, set at 7120.5+ 333.3i

Set12 5 Identical, set at 8787+ 333.3i

that we present for each set is the average of the values obtained for all the instances
in that set. Interestingly, the preprocessing rules were found to be totally ineffective for
all of these problems. Since the fixed costs are identical for all the sites, the sites are
distributed randomly over a region, and the variable cost matrix is symmetric, no site
presents a distinct advantage over any other. This prevents our reduction procedure to
open or close any site. Table 4.10 shows the variation in the costs of the solution output
by the DCA with changes inα, and Table 4.11 shows the corresponding decrease in
execution times.
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Table 4.10: Costs of solutions output by the DCA on Körkel-type instances with 65
sites

Problem Optimal Acceptable accuracy?

Set 1% 2% 3% 5% 10%
Set 1 6370.0 6404.8 6450.6 6480.6 6569.2 6781.0
Set 2 6920.6 6952.2 6971.4 7028.4 7123.8 7320.2
Set 3 7707.4 7738.0 7770.2 7797.6 7854.6 8053.8
Set 4 9601.2 9642.4 9680.2 9698.4 9786.6 9932.0
Set10 146691.2 146896.6 146909.6 147543.6 148062.0 151542.2
Set11 168598.4 168858.2 169655.0 170341.6 170597.0 173913.8
Set12 186386.3 186729.7 187112.0 188002.7 188854.2 192528.7

? : As a percentage of the optimal cost.

Table 4.11: Execution times for the DCA on Körkel-type instances with 65 sites

Problem Optimal Acceptable accuracy?

Set 1% 2% 3% 5% 10%
Set 1 119.078 90.948 70.758 55.494 43.200 20.426
Set 2 290.388 225.108 172.422 145.828 96.240 36.966
Set 3 458.370 339.420 259.022 203.036 150.216 50.378
Set 4 158.386 129.694 109.754 89.666 65.548 30.058
Set10 428.598 370.120 319.804 283.832 230.078 142.090
Set11 542.530 476.350 418.628 408.594 290.338 160.744
Set12 479.092 416.472 370.832 326.572 261.835 149.038

? : As a percentage of the optimal cost.

The effect of varying the acceptable accuracyα on the cost of the solutions output by
the DCA is also presented graphically in Figure 4.1. We define theachieved accuracy

β as

β =
cost of solution output by the DCA− cost of an optimal solution

cost of optimal solution

and therelative time τ as

τ =
execution time for the DCA on the problem

execution time for the DCA to compute an optimal solution for the problem

Note that the achieved accuracyβ varies almost linearly withα, with a slope close
to 0.5. Also note that the relative timeτ of the DCA reduces with increasingα. The
reduction is slightly better than linear, with an average slope of -8.
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4.5 Körkel Instances with 100 Sites

We solved the benchmark instances in Körkel [27] withm = n = 100 to optimality and
observed that the instances in Sets 10, 11, and 12 required relatively longer execution
times. So we restricted further computations to instances in those sets. The fixed and
transportation costs for these problems are computed in the procedure described in
Subsection 4.4. Tables 4.12 and 4.13 show the results obtained by running the DCA on
these problem instances. In our DCA implementation for solving these instances, we
used reduction procedure (c) and the Erlenkotter bound in the DCP.

Table 4.12: Costs of solutions output by the DCA on Körkel-type instances with 100
sites

Problem Optimal Acceptable accuracy?

Set 1% 2% 3% 5% 10%
Set10 190782.0 191550.8 192755.4 192080.6 195983.2 203934.2
Set11 219583.4 220438.8 222393.6 221947.2 228467.2 235963.4
Set12 240402.4 241609.6 243336.8 244209.4 247417.6 259168.6

? : As a percentage of the optimal cost.

Table 4.13: Execution times for the DCA on Körkel-type instances with 100 sites

Problem Optimal Acceptable accuracy?

Set 1% 2% 3% 5% 10%
Set10 133.746 91.774 65.99 65.908 44.2 32.074
Set11 81.564 55.356 39.554 38.348 33.628 17.598
Set12 111.272 85.858 65.608 55.928 61.758 33.014

? : As a percentage of the optimal cost.

Figure 4.2 illustrates the effect of varying the acceptable accuracyα on the cost of
the solutions output by the DCA for the instances mentioned above. The nature of the
graphs is similar to those in Figure 4.1. However, in several of the instances we noticed
thatβ reduced whenα is increased, and in some other instancesτ increased whenα
was increased.
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5. Conclusions

In this paper we tailor the general data correcting algorithm (DCA) for supermodular
functions (see Goldengorinet al. [20]) to the simple plant location problem (SPLP).
This algorithm consists of two procedures, a reduction procedure to reduce the original
instance to a smaller ‘core’ instance, and a data correcting procedure to solve the core
instance.

Theorem 2.1 can be considered as the basis of data correcting. It states that for two
different instances of the SPLP of the same size, the difference between the costs of the
unknown optimal solutions for these instances is bounded by a polynomially calculated
distance between these instances. This distance is used tocorrect the data of the original
instance in an implicit way by justcorrecting the value of the acceptable accuracy
parameter in the DCA.

An important contribution of this paper is a new reduction procedure, which when
implemented in the DCA yields to a substantial reduction in the size of the original in-
stance. This reduction procedure is much more powerful than the “delta” and “omega”
reduction rules in Khumawala [26], which it uses as a component procedure. It also
incorporates data correcting and the strong Erlenkotter bound specific to the SPLP (see
Erlenkotter [15]), which is more computationally efficient than the combinatorial bound
used in Goldengorinet al. [20]. The strength of the new reduction procedure based on
the Erlenkotter bound is made obvious by the observation that none of the instances in
the OR-Library [3] could be solved by the delta and omega rules to optimality, but the
new reduction procedure solves 75% of them to optimality, and preprocesses at least
twice the number of sites as the “delta” and “omega” rules for the remaining 25% of
the instances. Another contribution of the paper is the incorporation of the Erlenkotter
bound to the recursive branch and bound type data correcting procedure.

We have compared the performance of the Erlenkotter bound implemented in an usual
branch-and-bound type algorithm (see Bilde and Krarup [4]) and the combinatorial
bound implemented in the DCP for the new reduction rule and for fathoming subprob-
lems created by the DCP. On the instances in Bilde and Krarup [4], the number of
subproblems created by the branch-and-bound type algorithm with Erlenkotter bound
is found to be more than 1000 times the number of subproblems created by the DCP
based on the combinatorial bound.

We have tested the DCA on a broad range of different classes of instances avail-
able in the literature (Bilde and Krarup [4], Galvão and Raggi [16], OR-Library [3],
Körkel [27]). The striking computational result is the ability of the DCA to find exact
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solutions for many relatively large instances within fractions of second. For example,
an exact global optimum of the 200×200 instances from G̃alvao and Raggi [16] was
found within 0.2 seconds on a PC with a 733 MHz processor.

In all of our implementations for the DCA with combinatorial and Erlenkotter bounds
we have used data structures induced by pseudo-Boolean representation of the SPLP
due to Beresnev [5]. These data structures are conducive to efficient updating for the
current subproblems in the DCA and sometimes show that a current subproblem re-
maining after application of the new reduction procedure has relatively small number
of linear and non-linear terms in the corresponding Beresnev function and therefore
can be solved by any branch and bound type algorithm for the SPLP.

We have found that for all instances in Körkel [27] the “delta” and “omega” reduction
rules were totally ineffective since none of the sites present any distinct advantage over
any other (the fixed costs are almost identical for all sites, the sites are distributed ran-
domly over a region, and the transportation costs matrix is symmetric). Anyway, the
DCA has solved to optimality all the instances withm = n = 100 within fractions of
a second except the instances in Sets 10, 11 and 12 which required relatively longer
execution times. On these sets of instances we have studied the behavior of the execu-
tion time and calculated accuracy depending on the values of the acceptable accuracy
α. When the acceptable accuracy parameterα increases, we see that (with a few excep-
tions) the costs of the solutions output by the DCA worsen, but the execution times also
decrease. Atα = 10% of the optimal solution cost, the cost of the solution output by
the DCA is 6% to 8% suboptimal, but the execution time reduces to less than 20% of
that required to obtain the optimal solution. The increase in the solution costs is almost
linear withα, and the rate of decrease in the solution time decreases appreciably when
α > 0.3.

Our computational experience with the DCA on several benchmark instances known in
the literature suggests that the algorithm compares well with other algorithms known
for the problem. However, the DCA, like any other branch and bound algorithm, de-
pends heavily on the quality of the bounds used. In summary, our computations suggest
that the DCA described in this paper is a competitive algorithm to solve SPLP instances.
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ProcedureDCP (PL, PU , α)
begin

if PL = PU then
return (PU , 0);

Computeδ+, δ−, r+, r−;

{ Apply Lemma 3.1 (Preliminary Preservation) }

if δ+ ≤ 0 then { Lemma 3.1(b) }

begin
(P γ , γ )← DCP(PL ∪ {r

+
}, PU , α);

end
else ifδ− ≤ 0 then { Lemma 3.1(a) }

begin
(P γ , γ )← DCP(PL, PU \ {r

−
}, α);

end
{ Apply Lemma 3.2 (Data Correction) }

else if δ+ ≤ α then { Lemma 3.2(b) }

begin
(P γ , γ )← DCP(PL ∪ {r

+
}, PU , α − δ+);

γ ← δ+;
end
else ifδ− ≤ α then { Lemma 3.2(a) }

begin
(P γ , γ )← DCP(PL, PU \ {r

−
}, α − δ−);

γ ← δ−;
end
{ Branch }

else
begin

selectk ∈ P o
U \ P o

L; { Branching Rule }

if the bound obtained using the setsPL ∪ {k} andPU is better than
the best solution found so far,then

(P γ+, γ+)← DCP(PL ∪ {k}, PU , α);
if the bound obtained using the setsPL andPU \ {k} is better than
the best solution found so far,then

(P γ−, γ−)← DCP(PL, PU \ {k}, α);
P γ
← arg min{f[F |C](P γ+), f[F |C](P

γ−) };
γ ← min{f[F |C](P γ+), f[F |C](P

γ−)} −min{f[F |C](P γ+)− γ+, f[F |C](P
γ−)−

γ−};
end

return (P γ , γ );
end;

Figure 3.2: The Data Correcting Procedure
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Figure 4.1: Performance of the DCA for Körkel-type instances with 65 sites

Figure 4.2: Performance of the DCA for Körkel-type instances with 100 sites
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