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Abstract

The well-known Klein-Monti model of bank behavior considers a monop-
olistic bank. We demonstrate that this model’s results on the comparative
static effects of a change in the exogenous interbank market interest rate do
not necessarily hold in oligopolistic Cournot or Stackelberg generalizations.
Introducing asymmetries in the cost functions of the banks, or in their way
of conduct, may imply counterintuitive effects on the individual banks’ vol-
umes of loans and deposits.
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1. Introduction

This paper investigates extensions of the well-known Klein-Monti model of a repre-
sentative, profit-maximizing bank, originally introduced by Klein (1971) and Monti
(1972). The Klein-Monti model is a prototype model of the so-called Industrial Or-
ganization approach to banking, in which banks are considered as profit-maximizing
firms that offer services to agents; see e.g. the recent book by Freixas and Rochet
(1997). These services are described by the securities that banks buy from agents
(i.e. loans) and sell to agents (i.e. deposits). The difference between the volume of
deposits and the volume of loans is the bank’s (net) position on the interbank market.

The Klein-Monti model is described and compared to alternative models of banking
in surveys by Baltensperger (1980) and Santomero (1984). It has been generalized
and extended by many authors, for example by Dermine (1986) and Prisman et al.
(1986). Hannan (1991) shows that the model can be used to derive various empirical
predictions. For that reason, it has been the (implicit) starting point for a number of
empirical studies, for instance in Molyneux et al. (1994), Neuberger and Zimmerman
(1990), and Suominen (1994). The model is also discussed in detail by Freixas and
Rochet (1997).

Although the original Klein-Monti model concentrates on the case of a single, mo-
nopolistic bank, which might apply in countries with only one (state) bank, the situ-
ation of several banks is more interesting. In fact, as Molyneux et al. (1994) observe
for the case of Europe, in many countries the banking industry is very concentrated,
which suggests that oligopoly models are relevant for banking. In order to extend
the Klein-Monti model to the case of more than one bank, the standard oligopoly
models from the theory of Industrial Organization (Martin, 1993) can be used as a
starting point. In particular, the extension towards a symmetric Cournot oligopoly,
in which all banks are assumed to have the same linear management-cost function,
is straightforward, as shown by Freixas and Rochet (1997). These authors examine
some comparative static properties of both the original model and the symmetric
Cournot version with respect to changes in the exogenous interbank market interest
rate. Such changes can be made by the central bank in order to influence the volumes
of loans and deposits of banks and the corresponding interest rates. We extend their
analysis to other forms of market structure.

Intuitively, one would expect an increase in the interbank market rate to lead to a
decrease in a bank’s volume of loans, an increase in its volume of deposits, and in-
creases in the interest rates on loans and deposits. This is exactly what occurs both in
the original, monopolistic Klein-Monti model and in the symmetric Cournot version
of Freixas and Rochet (1997). In this paper we demonstrate that this result does not
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necessarily hold in asymmetric oligopolistic generalizations of the model. In order
to show this we introduce asymmetries either in the management-cost functions of
the banks or in their way of conduct. For simplicity, we concentrate on the situa-
tion with two banks. In particular, we investigate the Cournot case with asymmetric
management-cost functions and, as an example of asymmetric conduct, the Stackel-
berg case. It turns out that in both cases we can obtain counterintuitive comparative
static effects of a change in the interbank market interest rate on individual banks’
volumes of loans (deposits).

The observation that comparative static effects in oligopolistic markets might be
counterintuitive is also made in some related studies. In particular, Dixit (1986) in-
vestigates a general quantity-setting conjectural variations oligopoly. The conjectural
variations, as well as the cost functions, may be different for different firms. The
Cournot case and the Stackelberg case can be obtained as special cases by choos-
ing the conjectural variations in an appropriate way. However, Dixit focuses mainly
on the general methodology of comparative statics and on the effects of parameter
changes on the profits of the firms, whereas we focus on the output (loan and de-
posit volumes) and price (interest rate) effects as these are more relevant in our con-
text. Moreover, Dixit only mentions the Stackelberg case in passing, without further
analysing it. Katz and Rosen (1985) consider a similar kind of oligopoly in which
the conjectural variations as well as the cost functions are identical for all firms. As a
result, our analysis does not fit within their framework. Kimmel (1992) investigates
the effects of common cost changes in a Cournot oligopoly. However, Kimmel fo-
cuses the attention on the effects of these changes on the profits and market shares
of the firms, i.e. not on the absolute size of the output of each firm as we do. Fi-
nally, Caputo (1996) discusses comparative static properties of Nash equilibria by
using a so-called dual methodology which is based on the Envelope Theorem. Using
the same methodology, Caputo (1998) analyses comparative statics of a Stackelberg
equilibrium. However, these papers focus mainly on the general methodology, and
our results do not readily follow from them.

The next section introduces the original Klein-Monti model of a monopolistic bank,
and summarizes its comparative static properties. This model will be considered as
our benchmark case. Section 3 presents the generalized version of the model and
its comparative static properties in the situation where the two banks are Cournot
oligopolists with asymmetric management-cost functions. Section 4 examines the
Stackelberg case, in which conduct is asymmetric. Section 5 concludes.
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2. The Klein-Monti Model

Assume that there is a single, monopolistic bank, that chooses its outputs in order
to maximize profits. The bank operates on the market for loans as well as on the
market for deposits. The difference between the volume of loansL and the volume
of depositsD of the bank can be borrowed (or lent, if negative) on an interbank
market. Denote the interest rates on the loan market and deposit market byrL andrD,
respectively. The inverse demand function for loans is given byrL(L), with derivative
r ′
L(L) < 0, and the inverse supply function of deposits isrD(D), with derivative

r ′
D(D) > 0. The cost of managing an amountL of loans and an amountD of deposits

is given by the convex management-cost functionC(L,D). The functionsrL(·), rD(·)
andC(L,D) are continuously differentiable up to any order.

Let r denote the exogenous interest rate on the interbank market, andα be the exoge-
nous fraction of deposits that is required as a non-interest bearing reserve (0≤ α <

1). Bothr andα are set by the central bank.

The bank’s decision problem is to maximize its profitsπ(L,D), i.e.

max
(L,D)

π(L,D) = [rL(L) − r]L + [r(1 − α) − rD(D)]D − C(L,D)

We assume thatπ(L,D) is strictly concave. The first-order conditions are

∂π

∂L
= r ′

L(L)L + rL(L) − r − ∂

∂L
C(L,D) = 0 (1)

∂π

∂D
= r(1 − α) − r ′

D(D)D − rD(D) − ∂

∂D
C(L,D) = 0 (2)

From (1) and (2), the unique (positive) solution(L̂, D̂) can be derived. The corre-
sponding interest rates are given byr̂L and r̂D. If the cost function is separable, i.e.
C(L,D) = CL(L) + CD(D), the maximization problem is separable. That is, the
optimal volume of loanŝL (and the corresponding interest rater̂L) is independent of
the properties of the deposit market, and the optimal volume of depositsD̂ (and the
corresponding interest ratêrD) is independent of the properties of the loan market.

Freixas and Rochet (1997, p. 59) discuss the comparative static effects of a change of
the interbank interest rater in the Klein-Monti model, assuming separability. They
show thatdL̂/dr < 0, dD̂/dr > 0, dr̂L/dr > 0, anddr̂D/dr > 0, which we will
refer to as the benchmark case.
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3. Asymmetric Management Costs

Next, we consider the case in which there is Cournot competition with two banks on
both markets. Let the indexi denote banki, i = 1, 2. Define total loan and deposit
volumes byL ≡ L1 + L2 andD ≡ D1 + D2. Bank i maximizes its profit function
πi(Li,Di), which is assumed to be strictly concave. The maximization problem for
banki is

max
(Li,Di )

πi(Li,Di) = [rL(Li + Lj) − r]Li

+[r(1 − α) − rD(Di + Dj)]Di − Ci(Li,Di)

wherei, j = 1, 2, i 6= j . Assume that the cost functionCi(Li,Di) is linear,

Ci(Li,Di) = γL,iLi + γD,iDi (3)

in order to keep the analysis manageable. Note that the cost function (3) is not neces-
sarily equal for the two banks, i.e. we allow for asymmetric costs.

We assume that a unique (positive) Nash-Cournot equilibrium,(L∗
i , D

∗
i ), i = 1, 2,

exists, with corresponding interest ratesr∗
L and r∗

D. It is given by the simultaneous
solution of the first-order conditions

∂πi

∂Li

= r ′
L(Li + Lj)Li + rL(Li + Lj) − r − γL,i = 0 (4)

∂πi

∂Di

= r(1 − α) − r ′
D(Di + Dj)Di − rD(Di + Dj) − γD,i = 0 (5)

with i, j = 1, 2, i 6= j . In case the two banks have the same cost function, the solution
is symmetric, i.e.L∗

1 = L∗
2 andD∗

1 = D∗
2. On the other hand, in the asymmetric costs

case we haveL∗
i > L∗

j if and only if γL,i < γL,j , andD∗
i > D∗

j if and only if
γD,i < γD,j .

Proceeding, we observe that (4) and (5) implicitly define the reaction functionsL1 =
f1(L2), L2 = f2(L1), D1 = g1(D2) andD2 = g2(D1). Let us consider the derivatives
of the reaction functions, and concentrate on bank 2. For the loan side we obtain:

f ′
2(L1) = − r ′

L(·) + r ′′
L(·)f2(L1)

2r ′
L(·) + r ′′

L(·)f2(L1)
(6)

where the first-order and second-order derivatives ofrL(·) are evaluated in the point
(L1 + f2(L1)). The denominator is identical to the second-order derivative of bank
2’s (strictly concave) profit function with respect toL2 and therefore is negative. This
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shows thatf ′
2(L1) > −1. We assume thatr ′′

L(·) < −r ′
L(·)/f2(L1), i.e. the inverse

demand function for loans is not too convex. Consequently,

−1 < f ′
2(L1) < 0 (7)

Similarly, for the deposit side we assumer ′′
D(·) > −r ′

D(·)/g2(D1) i.e. the inverse
supply function of deposits is not too concave, which implies that

−1 < g′
2(D1) < 0 (8)

For bank 1, a similar result holds. Decreasing reaction functions can be considered as
the normal case with quantity strategies (Shapiro, 1989). Note that with linear inverse
loan demand, we havef ′

i (Lj ) = −1
2, and with linear inverse deposit supply, we have

g′
i (Dj ) = −1

2, i, j = 1, 2, i 6= j .

Now let us turn to the comparative static effects of a change in the interbank in-
terest rater in this Cournot version of the Klein-Monti model. This question is
also considered by Freixas and Rochet (1997, p. 60), who assume symmetric, linear
management-cost functions. Also, for simplicity, they assume constant elasticities of
demand of loans and supply of deposits. We do not use the latter assumption. We
remark that we will only discuss the details here for the loan side. Details for the
deposit side are similar.

By totally differentiating (4) with respect tor for i = 1, 2, and next solving the
resulting two equations, we obtain

dL∗
i

dr
= r ′

L(L∗) + r ′′
L(L∗)[L∗

j − L∗
i ]

r ′
L(L∗)[3r ′

L(L∗) + r ′′
L(L∗)L∗]

i, j = 1, 2, i 6= j (9)

dL∗

dr
= 2

3r ′
L(L∗) + r ′′

L(L∗)L∗ (10)

dr∗
L

dr
= 2r ′

L(L∗)
3r ′

L(L∗) + r ′′
L(L∗)L∗ (11)

whereL∗ ≡ L∗
1 + L∗

2. A similar result can be obtained for deposits. Next, letεL(Li)

be the elasticity ofr ′
L(Li + Lj) with respect toLi , i.e. εL(Li) = r ′′

L(L)Li/r ′
L(L).

Similarly, εD(Di) is the elasticity ofr ′
D(Di + Dj) with respect toDi. Using this, we

can present Proposition 3.1.

Proposition 3.1 In the Cournot version of the model the following holds:

(a) dL∗
dr

< 0 and
dr∗

L

dr
> 0.
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(b) Letr ′′
L(L∗) ≥ 0 and/or the marginal management costs of loans be identical

for both firms, i.e.γL,1 = γL,2. Then
dL∗

i

dr
< 0, i = 1, 2.

(c) Letr ′′
L(L∗) < 0 and the marginal management costs of loans be different for

both banks, withγL,1 < γL,2 say. Then
dL∗

2
dr

< 0. Moreover,
dL∗

1
dr

≶ 0 if and
only if 1 + εL(L∗

2) ≷ εL(L∗
1).

(d) dD∗
dr

> 0 and
dr∗

D

dr
> 0.

(e) Letr ′′
D(D∗) ≤ 0 and/or the marginal management costs of deposits be identi-

cal for both firms, i.e.γD,1 = γD,2. Then
dD∗

i

dr
> 0, i = 1, 2.

(f) Let r ′′
D(D∗) > 0 and the marginal management costs of deposits be different

for both banks, withγD,1 < γD,2 say. Then
dD∗

2
dr

> 0. Moreover,
dD∗

1
dr

≷ 0 if
and only if1 + εD(D∗

2) ≷ εD(D∗
1).

PROOF. Recall that the profit functionπi(·) is strictly concave, and notice that
r ′
L(L∗) + r ′′

L(L∗)L∗
j < 0, as the reaction functionfj (Li) is downward sloping,i, j =

1, 2, j 6= i. Using this, part (a) easily follows from (10) and (11). Next, we see that
dL∗

i /dr ≥ 0 if and only if the numerator of (9) is nonnegative. In turn, sincer ′
L(L∗)+

r ′′
L(L∗)L∗

j < 0, the latter condition implies that−r ′′
L(L∗)L∗

i > 0, which cannot hold
if r ′′

L(L∗) ≥ 0. This proves part (b). Part (c) follows from (9), the fact thatL∗
1 > L∗

2 if
and only ifγL,1 < γL,2, and the observation thatr ′

L(L∗)+r ′′
L(L∗)[L∗

2−L∗
1] ≷ 0 if and

only if 1 + εL(L∗
2) ≶ εL(L∗

1). The parts (d), (e) and (f) can be proven similarly.

We remark first that parts (a) and (d) of Propostion 3.1 also follow easily from Kim-
mel (1992, Proposition 1). Second, from parts (a) and (b) of Proposition 3.1 we con-
clude that in the symmetric case with identical management-cost functions, the com-
parative static effects of a change inr onL∗

1, L∗
2 andL∗ all have the ‘normal’ negative

sign, directly comparable to the result of the original Klein-Monti model. Moreover,
it appears that this also holds for asymmetric cost functions as long as the inverse
loan demand function is convex in the Nash-Cournot equilibrium (note that a linear
inverse loan demand function satisfies this requirement).

On the contrary, part (c) learns that if the marginal costs of the banks are different, and
moreover the inverse loan demand is strictly concave in the Nash-Cournot equilib-
rium, then the sign of the effect of a change inr on the loan volume of the bank with
the smallest marginal loan costs depends on the relative sizes ofεL(L1) andεL(L2).
In particular, if bank 1 has the smallest marginal loan costs, then the loan volume of
bank 1 changes in thesamedirection as the interbank market rate, i.e.dL∗

1/dr > 0,
if and only if 1+ εL(L∗

2) < εL(L∗
1), i.e. if the elasticityεL(L∗

1) is ‘large’ as compared
to the elasticityεL(L∗

2). This stands in contrast to the intuitive, benchmark result of
the monopolistic Klein-Monti model and the symmetric Cournot version.
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We make two remarks here. First, recalling thatL∗
1 > L∗

2 asγL,1 < γL,2, we see that
the counterintuitivedL∗

1/dr > 0 change applies to the bank with the largest volume
of loans. Second,dL∗

1/dr > 0 implies thatr ′′
L(L∗)[L∗

2−L∗
1] > 0. It can be verified by

using (6) thatr ′′
L(L∗)[L∗

2 −L∗
1] > 0 if and only iff ′

2(L
∗
1) < f ′

1(L
∗
2), i.e. the derivative

of the reaction function of bank 2 is in the equilibrium smaller than the derivative of
the reaction function of bank 1. Finally, the deposit side can be discussed in a similar
way.

4. Asymmetric Conduct

Now consider the Stackelberg model of quantity leadership. Suppose that bank 1 is
the leader (i.e., it can set its quantitiesL1 andD1 first), and bank 2 is the follower. As
in the previous section, assume that the management-cost functions of the banks are
linear, but now also assume that they are equal. That is, the only asymmetry is now
caused by the way of conduct.

This two-stage model is solved backwards. In the second stage, bank 2 maximizes
its profits, taking as given the output(L1,D1) of bank 1. This maximization problem
is the same as that of a Cournot bank. The first-order conditions for the follower
are given by (4) and (5), assumingγL,i = γL and γD,i = γD, i = 1, 2. In this
section, it is convenient to write the reaction function related to the loans of firm 2
asL2 = f (L1, r), i.e. we includer explicitly as an argument and omit the subscript
‘2’ of f (·). As a matter of notation, the first-order partial derivatives off (·) with
respect to respectivelyL1 andr will be abbreviated asf ′

L(·) andf ′
r (·). In a similar

way, we write the reaction function for the deposit side of bank 2 asg(D1, r), with
first-order partial derivativesg′

D(·) and g′
r (·). With regard to bank 2 we make the

same assumptions as made in the previous section with respect to the Cournot banks.
In particular, we have−1 < f ′

L(·) < 0 and−1 < g′
D(·) < 0.

Next, look at the first stage of the model. Bank 1 wants to choose the amountsL1 and
D1 such that its profit is maximized, taking into account how bank 2 will respond to
its choice. The problem for bank 1 is therefore

max
(L1,D1)

π1(L1,D1) = [rL(L1 + f (L1, r)) − r]L1

+[r(1 − α) − rD(D1 + g(D1, r))]D1 − C(L1,D1)

where we assume that the profit functionπ1(.) is strictly concave. The first-order
conditions for the leader are

∂π1

∂L1
= r ′

L(L1 + f (L1, r))[1 + f ′
L(·)]L1
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+ rL(L1 + f (L1, r)) − r − γL = 0 (12)
∂π1

∂D1
= r(1 − α) − r ′

D(D1 + g(D1, r))[1 + g′
D(·)]D1

− rD(D1 + g(D1, r)) − γD = 0 (13)

We assume that a unique (positive) Stackelberg equilibrium exists. It is characterized
by the four first-order conditions and denoted byL̃1, L̃2, D̃1 and D̃2. The corre-
sponding total equilibrium volumes arẽL ≡ L̃1 + L̃2 andD̃ ≡ D̃1 + D̃2, and the
corresponding interest rates arer̃L and̃rD.

It follows from (4) and (12) and the assumption that the marginal management costs
of loans of the two banks are equal that

f (·) = L̃2(·) = [1 + f ′
L(·)]L̃1 (14)

As a result,̃L1 > L̃2, i.e. the volume of loans of the leader bank is largest. Similarly,
it can be shown that̃D1 > D̃2.

Now consider the effects of a change in the interbank interest rater. We first observe
that for the follower, the definition off (·) shows that

dL̃2

dr
= f ′

L(·)dL̃1

dr
+ f ′

r (·)

which implies

dL̃

dr
= dL̃1

dr
+ dL̃2

dr
= [1 + f ′

L(·)] dL̃1

dr
+ f ′

r (·) (15)

It is easy to verify thatf ′
r (·) < 0. Thus, we conclude directly that ifdL̃1/dr < 0,

thendL̃2/dr < 0 as well. In a similar way, ifdD̃1/dr > 0, thendD̃2/dr > 0 as
well. Next, we present the following helpful lemma.

Lemma 1 In the Stackelberg version of the model, where bank 1 is the leader and
bank 2 the follower, we havedL̃1

dr
= A1

A2
and dL̃

dr
= A3

A2
, with A2 < 0 the second-order

derivative of the (strictly concave) profit function of bank 1 with respect toL1, and

A1 = −6(f ′
L(·))2 − 6f ′

L(·) − 1 + HL(·)
A3 = −(f ′

L(·))2 + 1 > 0

where

HL(·) = [1 + f ′
L(·)]r ′′′

L (·)(f (·))2

2r ′
L(·) + r ′′

L(·)f (·)
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All expressions are evaluated in the Stackelberg equilibrium.

PROOF. See the appendix.

Observe that the sign ofHL(·) is minus the sign ofr ′′′
L (·), the third-order derivative of

rL(·). Similarly, for the deposit side there holds:

Lemma 2 In the Stackelberg version of the model, where bank 1 is the leader and
bank 2 is the follower, we havedD̃1

dr
= B1

B2
and dD̃

dr
= B3

B2
, withB2 < 0 the second-order

derivative of the (strictly concave) profit function of bank 1 with respect toD1, and

B1 = (1 − α)[−6(g′
D(·))2 − 6g′

D(·) − 1 + HD(·)]
B3 = (1 − α)[−(g′

D(·))2 + 1] > 0

where

HD(·) = [1 + g′
D(·)]r ′′′

D (·)(g(·))2

2r ′
D(·) + r ′′

D(·)g(·)

All expressions are evaluated in the Stackelberg equilibrium.

Observe that the sign ofHD(·) is the same as the sign ofr ′′′
D(·). Using (7), (8), and

Lemma’s 1 and 2, we easily obtain the following proposition on the effects of a
change in the interbank market rater.

Proposition 4.1 In the Stackelberg version of the model, where bank 1 is the
leader and bank 2 is the follower, the following holds:

(a) dL̃
dr

< 0 and dr̃L
dr

> 0.

(b) Letr ′′′
L (L̃1 + L̃2) = 0. ThendL̃1

dr
< 0 if and only ifc1 < f ′

L(L̃1, r) < c2.

(c) Letr ′′′
L (L̃1 + L̃2) < 0. Thenf ′

L(L̃1, r) ∈ (c1, c2) implies dL̃1
dr

< 0.
(d) Let r ′′′

L (L̃1 + L̃2) > 0. Thenf ′
L(L̃1, r) ∈ (−1, c1] or f ′

L(L̃1, r) ∈ [c2, 0)

implies dL̃1
dr

> 0.

(e) dD̃
dr

> 0 and dr̃D
dr

> 0.

(f) Let r ′′′
D(D̃1 + D̃2) = 0. ThendD̃1

dr
> 0 if and only ifc1 < g′

D(D̃1, r) < c2.

(g) Letr ′′′
D(D̃1 + D̃2) > 0. Theng′

D(D̃1, r) ∈ (c1, c2) implies dD̃1
dr

> 0.
(h) Let r ′′′

D(D̃1 + D̃2) < 0. Theng′
D(D̃1, r) ∈ (−1, c1] or g′

D(D̃1, r) ∈ [c2, 0)

implies dD̃1
dr

< 0.

wherec1 = −1
2 − 1

6

√
3 ≈ −0.79 andc2 = 1

2 + 1
6

√
3 ≈ −0.21.
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Part (a) of Proposition 4.1 shows that the comparative static effect on the total vol-
ume of loans̃L has the ‘normal’ negative sign. However, parts (b) and (d) point out
that there are situations where the effect on the volume of loans of the leader bank
1 is positive, i.e.dL̃1/dr > 0. We notice that the critical valuesc1 and c2 are lo-
cated symmetrically around−1

2. Recall that if the inverse loan demand is linear, we
havef ′

L(L̃1, r) = −1
2. Thus, in the situations of parts (b) and (d) withdL̃1/dr > 0,

the value off ′
L(L̃1, r) is sufficiently different from its value in the linear case. In-

tuitively speaking, we can say that counterintuitive effects can occur if we are suffi-
ciently far away from the linear case. We further remark thatdL̃1/dr > 0 implies
thatdL̃2/dr < 0, becausedL̃/dr < 0. Recalling that̃L1 > L̃2, we see that, just as
in the asymmetric Cournot case, the counterintuitive effect applies to the bank with
the largest volume of loans. Finally, we remark again that the results of the deposit
side can be discussed in a similar way.

5. Conclusions

In the original, monopolistic Klein-Monti bank model and the corresponding Cournot
generalization with symmetric management costs, a change in the exogenous inter-
bank market interest rate leads to the intuitive result of a decrease in a bank’s volume
of loans, an increase in its volume of deposits, and increases in the interest rates on
loans and deposits. This paper demonstrates that for the Cournot version with asym-
metric costs as well as for the Stackelberg version of the model, the same results hold
for the total volumes of loans and deposits, and the corresponding interest rates.

However, in the asymmetric-cost Cournot version the changes in theindividual vol-
umes of loans and deposits of the bank with the smallest costs may change direc-
tion. The same holds for theindividual volumes of the leader in the Stackelberg ver-
sion. That is, we have shown that for oligopolistic generalizations of the Klein-Monti
model, when there are asymmetries, either in the cost functions of the banks or in the
way of conduct, a change in the interbank rate may lead to counterintuitive results
for the individual loan and deposit volumes of the banks, even in the case of only two
banks. In both cases, the bank for which the counterintuitive effect occurs is the one
with the largest volume of loans (or deposits).
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Appendix: Proof of Lemma 1

In this appendix we briefly discuss the proof of Lemma 1. In order to provide the
proof, the following equations are useful:

f ′
L(·) = − r ′

L(·) + r ′′
L(·)f (·)

2r ′
L(·) + r ′′

L(·)f (·) (A.1)

1 + f ′
L(·) = r ′

L(·)
2r ′

L(·) + r ′′
L(·)f (·) (A.2)

f ′
r (·) = 1

2r ′
L(·) + r ′′

L(·)f (·) (A.3)

∂2f

∂L1∂r
= −[r ′′′

L (·)f (·) + 2r ′′
L(·)][1 + f ′

L(·)]f ′
r (·) − r ′′

L(·)f ′
L(·)f ′

r (·)
2r ′

L(·) + r ′′
L(·)f (·) (A.4)

∂2f

∂L2
1

= −[r ′′′
L (·)f (·) + r ′′

L(·)][1 + f ′
L(·)]2 − 2r ′′

L(·)f ′
L(·)[1 + f ′

L(·)]
2r ′

L(·) + r ′′
L(·)f (·) (A.5)

where the derivatives off (·) have been computed by differentiating the first-order
condition (4) of the follower.

Let us first concentrate on the leader. Differentiating the first-order condition (12)
with respect tor, and solving fordL1/dr gives the result that in the Stackelberg
equilibrium we havedL̃1/dr = A1/A2, where

A1 = 1 − r ′
L(·)f ′

r (·) − r ′′
L(·)[1 + f ′

L(·)]L̃1f
′
r (·) − r ′

L(·)L̃1
∂2f (·)
∂L1∂r

(A.6)

A2 = 2r ′
L(·)[1 + f ′

L(·)] + r ′′
L(·)[1 + f ′

L(·)]2L̃1 + r ′
L(·)L̃1

∂2f (·)
∂L2

1

< 0 (A.7)

Here, all derivatives ofrL(·) are evaluated in the point(L̃1 +f (L̃1, r)), andf (·) and
its derivatives are evaluated in(L̃1, r). Using (A.1), (A.2), (A.3), and (A.4), it can be
verified that (A.6) can be rewritten as

A1 = −f ′
L(·) − r ′

L(·)r ′′
L(·)[1 + f ′

L(·)]L̃1

[2r ′
L(·) + r ′′

L(·)f (·)]2

−2(r ′′
L(·))2f (·)[1 + f ′

L(·)]L̃1

[2r ′
L(·) + r ′′

L(·)f (·)]2
+ HL(·) (A.8)

where

HL(·) ≡ [1 + f ′
L(·)]r ′′′

L (·)(f (·))2

2r ′
L(·) + r ′′

L(·)f (·)
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Recalling (14), we substitutef (·) = [1+f ′
L(·)]L̃1 into (A.8). Rewriting the resulting

expression using (A.1) and (A.2) shows thatA1 can be written as

A1 = −6(f ′
L(·))2 − 6f ′

L(·) − 1 + HL(·) (A.9)

which proves the part concerningA1 of Lemma 1.

Next, in order to demonstrate the part concerningA3, we observe that it follows from
(15) thatdL̃/dr = A3/A2, where

A3 = (1 + f ′
L(·))A1 + f ′

r (·)A2 (A.10)

By making use of (A.5) and applying the same methods as above,f ′
r (·)A2 can be

shown to satisfy

f ′
r (·)A2 = 6(f ′

L(·))3 + 11(f ′
L(·))2 + 7f ′

L(·) + 2 − [1 + f ′
L(·)]HL(·) (A.11)

Substituting (A.9) and (A.11) into (A.10) gives

A3 = −(f ′
L(·))2 + 1 (A.12)

which completes the proof.
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