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Abstract

While the stochastic volatility (SV) generalization has been shown to
improve the explanatory power over the Black-Scholes model, empirical
implications of SV models on option pricing have not yet been adequately
tested. The purpose of this paper is to first estimate a multivariate SV
model using the efficient method of moments (EMM) technique from
observations of underlying state variables and then investigate the respective
effect of stochastic interest rates, systematic volatility and idiosyncratic
volatility on option prices. We compute option prices using reprojected
underlying historical volatilities and implied stochastic volatility risk to
gauge each model’s performance through direct comparison with observed
market option prices. Our major empirical findings are summarized as
follows. First, while theory predicts that the short-term interest rates are
strongly related to the systematic volatility of the consumption process,
our estimation results suggest that the short-term interest rate fails to be
a good proxy of the systematic volatility factor; Second, while allowing
for stochastic volatility can reduce the pricing errors and allowing for
asymmetric volatility or “leverage effect” does help to explain the skewness
of the volatility “smile”, allowing for stochastic interest rates has minimal
impact on option prices in our case; Third, similar to Melino and Turnbull
(1990), our empirical findings strongly suggest the existence of a non-zero
risk premium for stochastic volatility of stock returns. Based on implied
volatility risk, the SV models can largely reduce the option pricing errors,
suggesting the importance of incorporating the information in the options
market in pricing options; Finally, both the model diagnostics and option
pricing errors in our study suggest that the Gaussian SV model is not
sufficient in modeling short-term kurtosis of asset returns, a SV model with
fatter-tailed noise or jump component may have better explanatory power.

Keywords:Stochastic Volatility, Efficient Method of Moments (EMM), Re-
projection, Option Pricing.

JEL classification: C10;G13
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1. Introduction

Acknowledging the fact that volatility is changing over time in time series of as-
set returns as well as in the empirical variances implied from option prices through
the Black-Scholes (1973) model, there have been numerous recent studies on op-
tion pricing with time-varying volatility. Many authors have proposed to model asset
return dynamics using the so-calledstochastic volatility(SV) models. Examples of
these models in continuous-time include Hull and White (1987), Johnson and Shanno
(1987), Wiggins (1987), Scott (1987, 1991, 1997), Bailey and Stulz (1989), Chesney
and Scott (1989), Melino and Turnbull (1990), Stein and Stein (1991), Heston (1993),
Bates (1996a,b), and Bakshi, Cao and Chen (1997), and examples in discrete-time
include Taylor (1986), Amin and Ng (1993), Harvey, Ruiz and Shephard (1994),
and Kim, Shephard and Chib (1998). Review articles on SV models are provided
by Ghysels, Harvey and Renault (1996) and Shephard (1996). Due to intractable
likelihood functions and hence the lack of available efficient estimation procedures,
the SV processes were viewed as an unattractive class of models in comparison to
other time-varying volatility processes, such as ARCH/GARCH models. Over the
past few years, however, remarkable progress has been made in the field of statis-
tics and econometrics regarding the estimation of nonlinear latent variable models
in general and SV models in particular. Various estimation methods for SV models
have been proposed, we mention Quasi Maximum Likelihood (QML) by Harvey,
Ruiz and Shephard (1994), the Monte Carlo Maximum Likelihood by Sandmann and
Koopman (1997), the Generalized Method of Moments (GMM) technique by An-
dersen and Sørensen (1996), the Markov Chain Monte Carlo (MCMC) methods by
Jacquier, Polson and Rossi (1994) and Kim, Shephard and Chib (1998) to name a
few, and the Efficient Method of Moments (EMM) by Gallant and Tauchen (1996).

While the stochastic volatility generalization has been shown to improve over the
Black-Scholes model in terms of the explanatory power for asset return dynamics, its
empirical implications on option pricing have not yet been adequately tested due to
the aforementioned difficulty involved in the estimation. Can such generalization help
resolve well-known systematic empirical biases associated with the Black-Scholes
model, such as the volatility smiles (e.g. Rubinstein, 1985), asymmetry of such smiles
(e.g. Stein, 1989, Clewlow and Xu, 1993, and Taylor and Xu, 1993, 1994)? How sub-
stantial is the gain, if any, from such generalization compared to relatively simpler
models? The purpose of this paper is to answer the above questions by studying the
empirical performance of SV models in pricing stock options, and investigating the
respective effect of stochastic interest rates, systematic volatility and idiosyncratic
volatility on option prices in a multivariate SV model framework. We specify and
implement a dynamic equilibrium model for asset returns extended in the line of Ru-
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binstein (1976), Brennan (1979), and Amin and Ng (1993). Our model incorporates
both the effects of idiosyncratic volatility and systematic volatility of the underlying
stock returns into option valuation and at the same time allows interest rates to be
stochastic. In addition, we model the short-term interest rate dynamics and stock re-
turn dynamics simultaneously and allow for asymmetry of conditional volatility in
both stock return and interest rate dynamics.

The first objective of this paper is to estimate the parameters of a multivariate SV
model. Instead of implying parameter values from market option prices through op-
tion pricing formulas, we directly estimate the model specified under the objective
measure from the observations of underlying state variables. By doing so, the under-
lying model specification can be tested in the first hand for how well it represents
the true data generating process (DGP), and various risk factors, such as systematic
volatility risk, interest rate risk, are identified from historical movements of underly-
ing state variables. We employ the EMM estimation technique of Gallant and Tauchen
(1996) to estimate some candidate multivariate SV models for daily stock returns and
daily short-term interest rates. The EMM technique shares the advantage of being
valid for a whole class of models with other moment-based estimation techniques,
and at the same time it achieves the first-order asymptotic efficiency of likelihood-
based methods. In addition, the method provides information for the diagnostics of
the underlying model specification.

The second objective of this paper is to examine the effects of different elements con-
sidered in the model on stock option prices through direct comparison with observed
market option prices. Inclusion of both a systematic component and an idiosyncratic
component in the model provides information for whether extra predictability or un-
certainty is more helpful for pricing options. In gauging the empirical performance
of alternative option pricing models, we use both the relative difference and the im-
plied Black-Scholes volatility to measure option pricing errors as the latter is less
sensitive to the maturity and moneyness of options. Our model setup contains many
option pricing models in the literature as special cases, for instance: (i) the SV model
of stock returns (without systematic volatility risk) with stochastic interest rates; (ii)
the SV model of stock returns with non-stochastic risk-free interest rates; (iii) the
stochastic interest rate model with constant conditional stock return volatility; and
(iv) the Black-Scholes model with both constant interest rate and constant condi-
tional stock return volatility. We focus our comparison of the general model setup
with the above four submodels.

Note that every option pricing model has to make at least two fundamental assump-
tions: the stochastic processes of underlying asset prices and efficiency of the mar-
kets. While the former assumption identifies the risk factors associated with the un-
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derlying asset returns, the latter ensures the existence of market price of risk for each
factor that leads to a “risk-neutral” specification. The joint hypothesis we aim to test
in this paper isthe underlying model specification is correct and option markets are
efficient. If the joint hypothesis holds, the option pricing formula derived from the
underlying model under equilibrium should be able to correctly predict option prices.
Obviously such a joint hypothesis is testable by comparing the model predicted op-
tion prices with market observed option prices. The advantage of our framework is
that we estimate the underlying model specified in its objective measure, and more
importantly, EMM lends us the ability to test whether the model specification is ac-
ceptable or not. Test of such a hypothesis, combined with the test of the above joint
hypothesis, can lead us to infer whether the option markets are efficient or not, which
is one of the most interesting issues to both practitioners and academics.

The framework in this paper is different in spirit from the implied methodology often
used in the finance literature. First, only the risk-neutral specification of the under-
lying model is implied in the option prices, thus only a subset of the parameters can
be estimated (or backed-out) from the option prices; Second, as Bates (1996b) points
out, the major problem of the implied estimation method is the lack of associated
statistical theory, thus the implied methodology based on solely the information con-
tained in option prices is purely objective driven, it is rather a test of stability of
certain relationship (the option pricing formula) between different input factors (the
implied parameter values) and the output (the option prices); Third, as a result, the
implied methodology can at best offer a test of the joint hypotheses, it fails going any
further to test the model specification or the efficiency of the market.

Our methodology is also different from other research based on observations of un-
derlying state variables. First, different from the method of moments or GMM used
in Wiggins (1987), Scott (1987), Chesney and Scott (1989), Jorion (1995), Melino
and Turnbull (1990), the efficient method of moments (EMM) used in our paper has
been shown by Monte Carlo to yield efficient estimates of SV models in finite sam-
ples, see Andersen, Chung and Sørensen (1997) and van der Sluis (1998), and the
parameter estimates are not sensitive to the choice of particular moments; Second,
our model allows for a richer structure for the state variable dynamics, for instance
the simultaneous modeling of stock returns and interest rate dynamics, the systematic
effect considered in this paper, and asymmetry of conditional volatility for both stock
return and interest rate dynamics.

In judging the empirical performance of alternative models in pricing options, we
perform two tests. First, we assume, as in Hull and White (1987) among others, that
stochastic volatility is diversifiable and therefore has zero risk premium. Based on
the historical volatility obtained throughreprojection, we calculate option prices with
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given maturities and moneyness. The model predicted option prices are compared to
the observed market option prices in terms of relative percentage differences and im-
plied Black-Scholes volatility. Second, we assume, following Melino and Turnbull
(1990), a non-zero risk premium for stochastic volatility, which is estimated from
observed option prices in the previous day. The estimates are used in the following
day’s volatility process to calculate option prices, which again are compared to the
observed market option prices. Throughout the comparison, all our models only rely
on information available at given time, thus the study can be viewed as out-of-sample
comparison. In particular, in the first comparison, all models rely only on information
contained in the underlying state variables (i.e. theprimitive information), while in
the second comparison, the models use information contained in both the underly-
ing state variables and the observed (previous day’s) market option prices (i.e. the
derivativeinformation).

The structure of this paper is as follows. Section 2 outlines the general multivariate
SV model; Section 3 describes the EMM estimation technique and the volatility re-
projection method; Section 4 reports the estimation results of the general model and
various submodels; Section 5 compares among different models the performance in
pricing options and analyzes the effect of each individual factor; Section 6 concludes.

2. The Model

The uncertainty in the economy presented in Amin and Ng (1993) is driven by a
set of random variables at each discrete date. Among them are a random shock to
the consumption process, a random shock to the individual stock price process, a
set of systematic state variables that determine the time-varying “mean”, “variance”,
and “covariance” of the consumption process and stock returns, and finally a set of
stock-specific state variables that determine the idiosyncratic part of the stock return
“volatility”. The investors’ information set at timet is represented by theσ -algebraFt

which consists of all available information up tot . Thus the stochastic consumption
process is driven by, in addition to a random noise, its mean rate of return and variance
which are determined by the systematic state variables. The stochastic stock price
process is driven by, in addition to a random noise, its mean rate of return and variance
which are determined by both the systematic state variables and idiosyncratic state
variables. In other words, the stock return variance can have a systematic component
that is correlated and changes with the consumption variance.

An important key relationship derived under the equilibrium condition is that the
variance of consumption growth is negatively related to the interest rate, or interest
rate is a proxy of the systematic volatility factor in the economy. Therefore a larger
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proportion of systematic volatility implies a stronger negative relationship between
the individual stock return variance and interest rate. Given that the variance and the
interest rate are two important inputs in the determination of option prices and that
they have the opposite effects on call option values, the correlation between volatility
and interest rate will therefore be important in determining the net effect of these two
inputs. In this paper, we specify and implement a multivariate SV model of interest
rate and stock returns for the purpose of pricing individual stock options.

2.1 The General Model Setup

Let St denote the price of the stock at timet and rt the interest rate at timet , we
model the dynamics of daily stock returns and daily interest rate changes simulta-
neously as a multivariate SV process. Supposert is also explanatory to the trend or
conditional mean of stock returns, then the de-trended or the unexplained stock return
yst is defined as

yst := 100× 1 ln St − µS − φSrt−1 (1)

and the de-trended or the unexplained interest rate changeyrt is defined as

yrt := 100× 1 ln rt − µr − 100× φr ln rt−1 (2)

and,yst andyrt are modeled as SV processes

yst = σstεst (3)

yrt = σrtεrt (4)

where

ln σ 2
st+1 = α ln rt + ωs + γs ln σ 2

st + σsηst , |γs| < 1 (5)

ln σ 2
rt+1 = ωr + γr ln σ 2

rt + σrηrt , |γr | < 1 (6)

and [
εst

εrt

]
∼ IIN(

[
0
0

]
,

[
1 λ1

λ1 1

]
) (7)

so thatCor(εst , εrt ) = λ1. HereIIN denotes identically and independently normally
distributed. The asymmetry, i.e. correlation betweenηst andεst and betweenηrt and
εrt , is modeled as follows throughλ2 andλ3

ηst = λ2εst +
√

1 − λ2
2ut (8)

ηrt = λ3εrt +
√

1 − λ2
3vt

whereut andvt are assumed to beIIN(0, 1). Sinceεst andηst are random shocks to
the return and volatility of a specific stock and more importantly both are subject to
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the same information set, it is reasonable to assume thatut is purely idiosyncratic, or
in other words it is independent of other random noises includingvt . This implies

Cor(ηst , εst) = λ2 (9)

Cor(ηrt , εrt ) = λ3

and imposes the following restriction onλ4 = Cor(η1, η2) as

λ4 = λ1λ2λ3 (10)

The SV model specified above offers a flexible distributional structure in which the
correlation between volatility and stock returns serves to control the level of asym-
metry and the volatility variation coefficients serve to control the level of kurtosis.
Specific features of the above model include: First of all, the above model setup is
specified in discrete time and includes continuous-time models as special cases in the
limit; Second, the above model is specified to catch the possible systematic effects
through parametersφS in the trend andα in the conditional volatility. It is only the
systematic state variable that affects the individual stock returns’ volatility, not the
other way around; Third, the model deals with logarithmic interest rates so that the
nominal interest rates are restricted to be positive, as negative nominal interest rates
are ruled out by a simple arbitrage argument. The interest rate model admits mean-
reversion in the drift and allows for stochastic conditional volatility. We could also
incorporate the “level effect” (see e.g. Andersen and Lund, 1997) into conditional
volatility. Since this paper focuses on the pricing of stock options and the specifica-
tion of interest rate process is found relatively less important in such applications, we
do not incorporate the level effect; Fourth, the above model specification allows the
movements of de-trended return processes to be correlated through random noises
εst andεrt via their correlationλ1; Finally, parametersλ2 andλ3 are to measure the
asymmetryof conditional volatility for stock returns and interest rates. Whenεst and
ηst are allowed to be correlated with each other, the model can pick up the kind of
asymmetric behavior which is often observed in stock price changes. In particular,
a negative correlation betweenηst andεst (λ2 < 0) induces theleverage effect(see
Black, 1976). It is noted that the above model specification will be tested against
alternative specifications.

2.2 Statistical Properties and Advantages of the Model

In the above SV model setup, the conditional volatility of both stock return and the
change of logarithmic interest rate are assumed to be AR(1) processes except for
the additional systematic effect in the stock return’s conditional volatility. Statistical
properties of SV models are discussed in Taylor (1994) and summarized in Ghysels,
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Harvey, and Renault (1996), and Shephard (1996). Assumert as given orα = 0 in
the stock return volatility, the main statistical properties of the above model can be
summarized as: (i) if|γs| < 1, |γr | < 1, then both lnσ 2

st and lnσ 2
rt are stationary

Gaussian autoregression withE[ln σ 2
st ] = ωs/(1 − γs), Var[ln σ 2

st ] = σ 2
s /(1 − γ 2

s )

andE[ln σ 2
rt ] = ωr/(1 − γr), Var[ln σ 2

rt ] = σ 2
r /(1 − γ 2

r ); (ii) both yst andyrt are
martingale differences asεst andεrt are iid, i.e.E[yst |Ft−1] = 0, E[yrt |Ft−1] = 0
andVar[yst |Ft−1] = σ 2

st , Var[yrt |Ft−1] = σ 2
rt , and if |γs| < 1, |γr | < 1, bothyst

andyrt are white noise; (iii)yst is stationary if and only if lnσ 2
st is stationary and

yrt is stationary if and only if lnσ 2
rt is stationary; (iv) sinceηst andηrt are assumed

to be normally distributed, then lnσ 2
st and lnσ 2

rt are also normally distributed. The
moments ofyst andyrt are given by

E[yν
st ] = E[εν

st ] exp{νE[ln σ 2
st ]/2 + ν2Var[ln σ 2

st ]/8} (11)

and

E[yν
rt ] = E[εν

rt ] exp{νE[ln σ 2
rt ]/2 + ν2Var[ln σ 2

rt ]/8} (12)

which are zero for oddν. In particular,Var[yst ] = exp{E[ln σ 2
st ] + Var[ln σ 2

st ]/2},
Var[yrt ] = exp{E[ln σ 2

rt ] + Var[ln σ 2
rt ]/2}. More interestingly, the kurtosis ofyst and

yrt are given by 3 exp{Var[ln σ 2
st ]} and 3 exp{Var[ln σ 2

rt ]} which are greater than 3,
so that bothyst andyrt exhibit excess kurtosis and thus fatter tails thanεst andεrt

respectively. This is true even whenγs = γr = 0; (v) whenλ4 = 0, Cor(yst , yrt ) =
λ1; (vi) when λ2 6= 0, λ3 6= 0, i.e. εst andηst , εst andηst are correlated with each
other, lnσ 2

st+1 and lnσ 2
rt+1 conditional on timet are explicitly dependent ofεst andεrt

respectively. In particular, whenλ2 < 0, a negative shockεst to stock return will tend
to increase the volatility of the next period and a positive shock will tend to decrease
the volatility of the next period.

Advantages of the proposed model include: First, the model explicitly incorporates
the effects of a systematic factor on option prices. Empirical evidence shows that the
volatility of stock returns is not only stochastic, but also highly correlated with the
volatility of the market as a whole, see e.g. Conrad, Kaul, and Gultekin (1991), Jarrow
and Rosenfeld (1984), and Ng, Engle, and Rothschild (1992). The empirical evidence
also shows that the biases inherent in the Black-Scholes option prices are different
for options on high and low risk stocks, see, e.g. Black and Scholes (1972), Gultekin,
Rogalski, and Tinic (1982), and Whaley (1982). Inclusion of systematic volatility in
the option prices valuation model thus has the potential contribution to reduce the em-
pirical biases associated with the Black-Scholes formula; Second, since the variance
of consumption growth is negatively related to the interest rate in equilibrium, the
dynamics of consumption process relevant to option valuation are embodied in the
interest rate process. The model thus naturally leads to stochastic interest rates and
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we only need to directly model the dynamics of interest rates. Existing work of ex-
tending the Black-Scholes model has moved away from considering either stochastic
volatility or stochastic interest rates but to considering both, examples include Bailey
and Stulz (1989), Amin and Ng (1993), and Scott (1997). Simulation results show
that there can be a significant impact of stochastic interest rates on option prices (see
e.g. Rabinovitch, 1989); Third, the above proposed model allows the study of the
simultaneous effects of stochastic interest rates and stochastic stock return volatility
on the valuation of options. It is documented in the literature that when the inter-
est rate is stochastic the Black-Scholes option pricing formula tends to underprice
the European call options (Merton, 1973), while in the case that the stock return’s
volatility is stochastic, the Black-Scholes option pricing formula tends to overprice
at-the-money European call options (Hull and White, 1987). The combined effect of
both factors depends on the relative variability of the two processes (Amin and Ng,
1993). Based on simulation, Amin and Ng (1993) show that stochastic interest rates
cause option values to decrease if each of these effects acts by themselves. How-
ever, this combined effect should depend on the relative importance (variability) of
each of these two processes; Finally, when the conditional volatility is symmetric,
i.e. there is no correlation between stock returns and conditional volatility orλ2 = 0,
the closed form solution of option prices is available and preference free under quite
general conditions, i.e., the stochastic mean of the stock return process, the stochastic
mean and variance of the consumption process, as well as the covariance between the
changes of stock returns and consumption are predictable. LetC0 represent the value
of a European call option att = 0 with exercise priceK and expiration dateT , Amin
and Ng (1993) derives that

C0 = E0[S0 · 8(d1) − K exp(−
T −1∑
t=0

rt )8(d2)] (13)

where

d1 = ln(S0/(K exp(
∑T

t=0 rt )) + 1
2

∑T
t=1 σst

(
∑T

t=1 σst)1/2
, d2 = d1 −

T∑
t=1

σst

and8(·) is the CDF of the standard normal distribution, the expectation is taken with
respect to the risk-neutral measure and can be calculated from simulations.

As Amin and Ng (1993) point out, several option-pricing formulas in the available
literature are special cases of the above option formula. These include the Black-
Scholes (1973) formula with both constant conditional volatility and interest rate, the
Hull-White (1987) stochastic volatility option valuation formula with constant inter-
est rate, the Bailey-Stulz (1989) stochastic volatility index option pricing formula,
and the Merton (1973), Amin and Jarrow (1992), and Turnbull and Milne (1991)
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stochastic interest rate option valuation formula with constant conditional volatility.

3. Estimation and Volatility Reprojection

SV models cannot be estimated using standard maximum likelihood method due to
the fact that the time varying volatility is modeled as a latent or unobserved vari-
able which has to be integrated out of the likelihood. This is not a standard prob-
lem since the dimension of this integral equals the number of observations, which
is typically large in financial time series. Standard Kalman filter techniques cannot
be applied due to the fact that either the latent process is non-Gaussian or the result-
ing state-space form does not have a conjugate filter. Therefore, the SV processes
were viewed as an unattractive class of models in comparison to other time-varying
volatility models, such as ARCH/GARCH. Over the past few years, however, remark-
able progress has been made in the field of statistics and econometrics regarding the
estimation of nonlinear latent variable models in general and SV models in particu-
lar. Earlier papers such as Wiggins (1987), Scott (1987), Chesney and Scott (1987),
Melino and Turnbull (1990) and Andersen and Sørensen (1996) applied the ineffi-
cient GMM technique to SV models and Harvey, Ruiz and Shephard (1994) applied
the inefficient QML technique. Recently, more sophisticated estimation techniques
have been proposed: Kalman filter-based techniques of Fridman and Harris (1997)
and Sandmann and Koopman (1997), Bayesian MCMC methods of Jacquier, Polson
and Rossi (1994) and Kim, Shephard and Chib (1998), Simulated Maximum Likeli-
hood (SML) by Danielsson (1994), and EMM of Gallant and Tauchen (1996). These
recent techniques have made tremendous improvements in the estimation of SV mod-
els compared to the early GMM and QML.

In this paper we employ EMM of Gallant and Tauchen (1996). The main practical
advantage of this technique is its flexibility, a property it inherits of other moment-
based techniques. Once the moments are chosen one may estimate a whole class of
SV models. In addition, the method provides information for the diagnostics of the
underlying model specification. Theoretically this method is first-order asymptoti-
cally efficient. Recent Monte Carlo studies for SV models in Andersen, Chung and
Sørensen (1997) and van der Sluis (1998) confirm the efficiency for SV models for
sample sizes larger than 1,000, which is rather reasonable for financial time-series.
For lower sample sizes there is a small loss of efficiency compared to the likelihood
based techniques such as Kim, Shephard and Chib (1998), Sandmann and Koopman
(1997) and Fridman and Harris (1996). This is mainly due to the imprecise estimate
of the weighting matrix for sample sizes smaller than 1,000. The same phenomenon
occurs in ordinary GMM estimation.
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One of the criticisms on EMM and on moment-based estimation methods in general
has been that the method does not provide a representation of the observables in
terms of their past, which can be obtained from the prediction-error-decomposition
in likelihood-based techniques. In the context of SV models this means that we lack
a representation of the unobserved volatilitiesσst andσrt for t = 1, ..., T . Gallant
and Tauchen (1998) overcome this problem by proposingreprojection. The main
idea is to get a representation of the observed process in terms of observables. In the
same manner one can also get a representation of unobservables in terms of the past
and present observables. This is important in our application where the unobservable
volatility is needed in the option pricing formula. Using reprojection we are able to
get a representation of the unobserved volatility.

3.1 Estimation

The basic idea of EMM is that in case the original structural model has a compli-
cated structure and thus leads to intractable likelihood functions, the model can be
estimated through an auxiliary model. The difference between the indirect inference
method by Gouri´eroux, Monfort and Renault (1993) and the EMM technique by Gal-
lant and Tauchen (1996) is that the former relies onparameter calibration, while
the latter relies onscore calibration. More importantly, EMM requires that the aux-
iliary model embedsthe original model, so that first-order asymptotic efficiency is
achieved. In short the EMM method is as follows1: The sequence of densities for
the structural model, namely in our case the SV model specified in Section 2.1, is
denoted by

{p1(x1 | θ), {p(yt | xt , θ)}∞
t=1} (14)

The sequence of densities for the auxiliary model is denoted by

{f1(w1 | β), {f (yt | wt, β)}∞
t=1} (15)

wherext andwt are observable endogenous variables. In particularxt is a vector of
laggedyt andwt is also a vector of laggedyt . The lag-length may differ, therefore
a different notation is used. We impose assumptions 1 and 2 from Gallant and Long
(1997) on the structural model. These technical assumptions ensure standard proper-
ties of quasi maximum likelihood estimators and properties of estimators based on
Hermite expansions, which will be explained below. Define

m(θ, β) :=
∫ ∫

∂

∂β
ln f (y | w,β)p(y | x, θ)dyp(x | θ)dx (16)

1 We briefly discuss case 2 from Gallant and Tauchen (1996).
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the expected score of the auxiliary model under the dynamic model. The expectation
is written in integral form in anticipation to the approximation of this integral by stan-
dard Monte Carlo techniques. The simulation approach solely consists of calculating
this function as

mN(θ, β) := 1

N

N∑
τ :=1

∂

∂β
ln f (yτ (θ) | wτ(θ), β) (17)

HereN will typically be large. Letn denote the sample size, the EMM estimator is
defined as

θ̂n(In) := arg min
θ∈2

m
′
N(θ, β̂n)(In)

−1mN(θ, β̂n) (18)

whereIn is a weighting matrix and̂βn denotes a consistent estimator for the parame-
ter of the auxiliary model. The optimal weighting matrix here isI0 = lim

n→∞ V0[
1√
n

∑n
t :=1{ ∂

∂β
ln ft(yt |

wt, β
∗)}], whereβ∗ is a (pseudo) true value. A good choice is to use the outer product

gradient as a consistent estimator forI0. One can prove consistency and asymptotic
normality of the estimator of the structural parametersθ̂n:

√
n(θ̂n(I0) − θ0)

d→ N(0, [M′
0(I0)

−1M0]−1) (19)

whereM0 := ∂

∂θ
′ m(θ0, β

∗).

In order to obtainmaximum likelihood efficiency2, it is required that the auxiliary
model embeds the structural model (see Gallant and Tauchen, 1996). The semi-
nonparametric (SNP) density of Gallant and Nychka (1987) is suggested in Gallant
and Tauchen (1996) and Gallant and Long (1997). The auxiliary model is built as
follows. Let yt (θ0) be the process under investigation,νt(β

∗) := Et−1[yt (θ0)], the
conditional mean of the auxiliary model,h2

t (β
∗) := Covt−1[yt (θ0)−νt(β

∗)] the con-
ditional variance matrix of the auxiliary model andzt (β

∗) := R−1
t (θ)[yt (θ0)−νt(β

∗)]
the standardized process derived from the auxiliary model. HereRt is typically a
lower or upper triangular matrix. The SNP density takes the following form

f (yt ; θ) = 1

| det(Rt)|
[PK(zt , xt )]2φ(zt )∫
[PK(u, xt )]2φ(u)du

(20)

whereφ denotes the standard multinormal density,x := (yt−1, ..., yt−L) and the
polynomials are defined as

PK(z, xt) :=
Kz∑

i:=0

ai(xt )z
i :=

Kz∑
i:=0

[
Kx∑

j :=0

aij x
j
t ]zi (21)

2 Maximum likelihood efficiency is used throughout meaning first order asymptotic efficiency.

13



Whenz is a vector the notationzi is as follows: Leti be amulti-index, so that for
the k -vector z = (z1, . . . , zk)

′
we havezi := z

i1
1 · z

i2
2 · · · zik

k under the condition∑k
j=1 ij = i andij ≥ 0 for j ∈ {1, ..., k}. For the polynomials we use the orthogonal

Hermite polynomial (see Gallant, Hsieh and Tauchen, 1991). The parametric model
yt = N(νt (β), h2

t (β)) is labelled theleading termin the Hermite expansion. The
leading term is to relieve some of the Hermite expansion task, which dramatically
improves the small sample properties of EMM.

The problem of picking the right leading term and the right order of the polynomial
Kx andKz remains an issue in EMM estimation. A choice that is advocated in Gallant
and Tauchen (1996) is to use model specification criteria such as the Akaike Infor-
mation Criterion (AIC, Akaike, 1973), the Schwarz Criterion (BIC, Schwarz, 1978)
or the Hannan-Quinn Criterion (HQC, Hannan and Quinn, 1979 and Quinn, 1980).
However, the theory of model selection in the context of SNP models is not very well
developed yet. Results in Eastwood (1991) may lead to believe AIC is optimal in this
case. However, as for multivariate ARMA models, the AIC may overfit the model
to noise in the data so we may be better off by following the BIC or HQC. In this
paper the choice of the leading term and the order of the polynomials will be guided
by Monte Carlo studies of Andersen, Chung and Sørensen (1997) and van der Sluis
(1998). In these Monte Carlo studies it is shown that with a good leading term for
simple SV models there is no reason to employ high order Hermite polynomials, if
at all, for efficiency. We will return to this issue in Section 4.1 where leading term of
the auxiliary model is presented.

Under the null hypothesis that the structural model is true, one may deduce that

n · m
′
N(θ̂n, β̂n)(În)

−1mN(θ̂n, β̂n)
d→ χ2

q−p (22)

This motivates a test similar to the HansenJ -test for overidentifying restrictions that
is well known in the GMM literature. The direction of the misspecification may be
indicated by the quasi-t ratios

T̂n := Ŝ−1
n

√
nmN(θ̂n, β̂n) (23)

HereT̂n is distributed astq−p andŜn := {diag[În − M̂n(M̂′
nÎ−1

n M̂n)
−1M̂′

n]}1/2.

Estimation in this paper was done using EmmPack (van der Sluis 1997), and pro-
cedures used in van der Sluis (1998). The leading term in the SNP expansion is a
multivariate generalization of the EGARCH model of Nelson (1991). The EGARCH
model is a convenient choice since (i) it is an a very good approximation to the
continuous time stochastic volatility model, see Nelson and Foster (1994), (ii) the
EGARCH model is used as a leading term in the auxiliary model of the EMM esti-
mation methodology and (iii) direct maximum likelihood techniques are admitted by
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this class of models.

In principle one should simultaneously estimate all structural parameters, including
the mean parametersµS,µr, φ, ρ1, ..., ρl in (24) and the volatility parameters ofys,t

andyr,t . This is optimal but too cumbersome and not necessary given the low order of
autocorrelation in stock returns. Therefore estimation is carried out in the following
(sub-optimal) way:

(i) EstimateµS andφ, retrieveys,t , Estimateµr, ρ1, ..., ρl, retrieveyr,t . Both
using standard regression techniques;

(ii) Simultaneously estimate parameters of the SV model, includingλ1 via EMM.

As we have mentioned, the EMM estimation of stochastic volatility models is rather
time-consuming. Moreover many of the above stochastic volatility models have never
actually been efficiently estimated. Therefore we use the auxiliary model, i.e. the
multivariate variant of the EGARCH model, as a guidance for which of the above
SV models would be considered for our data set. We can thus view the following
auxiliary multivariate EGARCH (M-EGARCH) model as a pendant to the structural
SV models that are proposed in Section 2.1.[

ys,t

yr,t

]
=

[
σ1,t 0
0 σ2,t

] [
z1,t

z2,t

]
(24)

[
ln h2

s,t

ln h2
r,t

]
=

[
π 0
0 0

] [
rt

rt

]
+

[
α01

α02

]
+

r∑
i=1

Li

[
γ11,i γ12,i

γ21,i γ22,i

] [
ln h2

1,t

ln h2
2,t

]
+

+(1 +
q∑

j=1

Lj

[
α11,1 α12,1

α21,1 α22,1

]
)(

[
κ1,11 κ1,12

κ1,21 κ1,22

][
z1,t−1

z2,t−1

]
+

+
[

κ2,11 κ2,12

κ2,21 κ2,22

] [
(|z1,t−1| − √

2/π)

(|z2,t−1| − √
2/π)

]
)

E[εtε
′
t ] =

[
1 δ

δ 1

]
where some parameters will be restricted, namelyαij,k , κij,1 andκij,2 for i 6= j will
be a priori set as zero in the application.

The parameterδ in the M-EGARCH model corresponds toλ1 in the SV model. The
κ ’s, possibly in combination with some of the parameters of the polynomial, cor-
respond toλ2 andλ3. This latter correspondence is further investigated in a Monte
Carlo study in van der Sluis (1998) with very encouraging results. Furthermore, note
that in (24) we include the interest rate levelrt in the volatility process of the stock re-
turns parallel to the SV model (5). The parameterπ in the auxiliary EGARCH model
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therefore corresponds toα in the SV model. It should be clear that the M-EGARCH
model does not have a counterpart of the correlation parameterλ4 from the SV model.
Asymptotically the cross-terms in the Hermite polynomial should account for this. In
practice, with no counterpart of the parameter in the leading term, we have strong
reasons to believe that the small sample properties of an EMM estimator forλ4 will
not be very satisfactory. Therefore, as argued in Section 2.2, we put restriction (8) on
the SV model.

As in (20) the M-EGARCH model is expanded with a semiparametric density which
allows for nonnormality. In Section 4.1 it is argued how to pick a suitable order
for the Hermite polynomial for a Gaussian SV model. The efficient moments for
the SV model will come initially from the auxiliary model: bi-variate SNP density
with bi-variate EGARCH leading terms. For an extensive evaluation of this bi-variate
EGARCH model and even of higher dimensional EGARCH models, see van der Sluis
(1998). This model will also serve to test the specification of the structural SV model.
Once the SV model is estimated the moments of the M-EGARCH(p, q)-H(Kx,Kz)

model will serve as diagnostics by considering theT̂n test-statistics as in (23).

3.2 Volatility Reprojection

After the model is estimated we employreprojectionof Gallant and Tauchen (1998)
to obtain estimates of the unobserved volatility process{σst}n

t=1 and{σrt}n
t=1, as we

need these series in our option pricing formula (13). Gallant and Tauchen (1998) pro-
pose reprojection as a general technique for characterizing the dynamic response of
a partially observed nonlinear system to its observable history. Reprojection can be
viewed as the third step in EMM methodology. First, data is summarized by estimat-
ing the auxiliary model (projecting on the auxiliary model). Next, the structural pa-
rameters are estimated where the criterion is based on this estimated auxiliary model.
Reprojection can now be seen as projecting a long simulated series from the esti-
mated structural model on the auxiliary model. In short reprojection is as follows.
We define the estimator̃β, different fromβ̂, as follows

β̃ := arg max
β

Eθ̂n
f (yt |yt−1, ..., yt−L, β) (25)

noteEθ̂n
f (yt |yt−1, ..., yt−L, β) is calculated using one set of simulationsy(θ̂n) from

the structural model. Doing so, we reproject a long simulation from the estimated
structural model on the auxiliary model. Results in Gallant and Long (1997) show
that

lim
K→∞ f (yt |yt−1, ..., yt−L, β̃K) = p(yt |yt−1, ..., yt−L, θ̂ ) (26)
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whereK is the overall order of the Hermite polynomials and should grow with the
sample sizen, either adaptively as a random variable or deterministic, similarly to
the estimation stage of EMM. Due to (26) the following conditional moments under
the structural model can be calculated using the auxiliary model in the following way

E(yt |yt−1, ..., yt−L) = ∫ ytf (yt |yt−1, ..., yt−L, β̃)dyt

Var(yt |yt−1, ..., yt−L) = ∫(yt − E(yt |yt−1, ..., yt−L))2f (yt |yt−1, ..., yt−L, β̃)dyt

As an estimate of the unobserved volatility we use
√

Var(yt |yt−1, ..., yt−L).

A more common notion of filtration is to use the information on the observabley up
to time t , instead oft − 1, since we want a representation for unobservables in terms
of the pastand presentobservables. Indeed for option pricing it is more natural to
include the present observablesyt , as we have current stock price and interest rate in
the information set. Following Gallant and Tauchen (1998) we can repeat the above
derivation withyt replaced byσt , andyt included in the information set at timet . Do-
ing so we need to specify a different auxiliary model from the one we used in the es-
timation stage. More precisely, we need to specify an auxiliary model for lnσ 2

t using
information up till timet,instead oft − 1, as in the auxiliary EGARCH model. Since
with the sample size in this application projection on pure Hermite polynomials may
not be a good idea due to small sample distortions and issues of non-convergence, we
use the following intuition to build a useful leading term. Omitting the subscriptss

andr, we can write (3) and (4) as

ln y2
t = ln σ 2

t + ln ε2
t (27)

where lnσ 2
t follows some autoregressive process. Observe that this process is a non-

Gaussian ARMA(1, 1) process. We therefore consider the following process

ln σ 2
t = α0 + α1 ln y2

t + α2 ln y2
t−1 + ... + αr ln y2

t−r−1 + error (28)

where the lag-lengthr will be determined by AIC. For model (28), expressions for
ln σ̂ 2

0 = E(ln σ 2
0 |y0, ..., y−L) follow straightforwardly. Formula (28) can be viewed

as the update equation for lnσ 2
t of the Gaussian Kalman filter of Harvey, Ruiz and

Shephard (1994). In this update equation we need extra restrictions on the coefficients
α0 to αr. Since we are able to determine these coefficients with infinite precision by
Monte Carlo simulation there is no need to work out these restrictions. Note that the
Harvey, Ruiz and Shephard (1994) Kalman filter approach is sub-optimal for the SV
models that are considered here. In the exact case we would need a non-Gaussian
Kalman filter approach. In this case the update equation for lnσ 2

t is not a linear func-
tion of lny2

t and lagged lny2
t . It will basically downweight outliers so the weights

are data-dependent. The fact that the restrictions on the coefficients onα0 till αr are
not imposed by the sub-optimal Gaussian Kalman Filter but estimated using the true
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SV model will have the effect that the linear approximation used here is based on the
right model instead of the wrong model as in the Harvey, Ruiz and Shephard (1994)
case. However, multiplying the error term with Hermite polynomials as in the SNP
case should mimic the non-Gaussian Kalman filter approach. In this paper we will not
use an SNP density for the error term in (28). We do this for the following reasons: (i)
Sinceβ̃ in (25) must be determined by ML in case an SNP density is specified with
(28) as a leading term wherer is large, the resulting problem is a very high dimen-
sional optimization problem resulting in all sorts of problems (ii) In a simulation we
investigated the errors ln̂σ 2

t − ln σ 2
t . There is very strong evidence that these errors

are normally distributed. From Figure 6.3 we also find that the errors do not show
any systematic structure, apart from about six outliers bottom left, indicating minor
shortcomings in the method. Further research should be conducted to address these
issues.

For the asymmetric model, we should, as in the EGARCH model, includezt type
terms. Therefore we propose to consider

ln σ 2
t = α0 +

r∑
i=0

αi+1 ln y2
t−i +

s∑
j=1

βi

yt−j

σt−j

+ error (29)

Here there is no known relation between the update formula for lnσ 2
t from the

Kalman Filter. However since the coefficients ofβi are highly significant in the ap-
plications and in simulation studies, this model is believed to be a good leading term
for reprojection. This is backed up by the fact that in a simulation study the same
properties of the errors ln̂σ 2

t − ln σ 2
t were observed as in the symmetric model above.

4. Empirical Results

4.1 Description of the data

Summary statistics of both interest rates and stock returns are reported in Table 6.1, a
time-series plot and salient features of both data sets can be found in Figures 6.1 and
6.2. The interest rates used in this paper as a proxy of the riskless rates are daily U.S.
3-month Treasury bill rates and the underlying stock considered in this paper is 3Com
Corporation which is listed in NASDAQ. Both the stock and its options are actively
traded. The stock claims no dividend and thus theoretically all options on the stock
can be valued as European type options. The data covers the period from March 12,
1986 to August 18, 1997 providing 2,860 observations. From Table 6.1, we can see
that both the first difference of logarithmic interest rates and that of logarithmic stock
prices (i.e. the daily stock returns) are skewed to the left and have positive excess
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kurtosis (>> 3) suggesting skewed and fat-tailed distributions. Similarly, the filtered
interest ratesYrt as well as the filtered stock returnsY1st (with systematic effect) and
Y2st (without systematic effect) are also skewed to the left and have positive excess
kurtosis. However, the logarithmic squared filtered series, as proxy of the logarith-
mic conditional volatility, all have negative excess kurtosis and appear to justify the
Gaussian noise specified in the volatility process. As far as dynamic properties, the
filtered interest rates and stock returns as well as logarithmic squared filtered series
are all temporally correlated. For the logarithmic squared filtered series, the first order
autocorrelations are in general low, but higher order autocorrelations are of similar
magnitudes as the first order autocorrelations. This would suggest that all series are
roughly ARMA(1, 1) or equivalently AR(1) with measurement error, which is con-
sistent with the first order autoregressive SV model specification. Estimates of trend
parameters in the general model are reported in Table 6.2. For stock returns, interest
rate has significant explanatory power, suggesting the presence of systematic effect
or certain predictability of stock returns. For logarithmic interest rates, there is an
insignificant linear mean-reversion, which is consistent with many findings in the
literature.

Since the score-generator should give a good description of the data, we further look
at the data through specification of the score generator or auxiliary model. We use
the score-generator as a guide for the structural model, as there is a clear relationship
between the parameters of the auxiliary model and the structural model. If some aux-
iliary parameters in the score-generator are not significantly different form zero, we
set the corresponding structural parameters in the SV modela priori equal to zero.
Various model selection criteria andt-statistics of individual parameters of a wide
variety of different auxiliary models that were proposed in Section 3 indicate that (i)
Multivariate M-EGARCH(1,1) models are all clearly rejected on basis of the model
selection criteria and thet–values of the parameterδ. We therefore set the correspond-
ing SV parameterλ1 a priori equal to zero. Through (10) this impliesλ4 = 0; (ii) The
parameterπ was marginally significant at a 5% level. On basis of the BIC, however,
inclusion of this parameter is not justified. This rejects that the short-term interest
rate is correlated with conditional volatility of the stock returns. A direct explanation
of this finding is that either the volatility of the stock returns truly does not have a
systematic component or the short-term interest rate serves as a poor proxy of the
systematic factor. We believe the latter conjecture to be true as we re-ran the model
with other stock returns and invariably foundπ insignificantly different from zero.
We therefore set its corresponding parameterα a priori equal to zero; (iii) The cross
termsγ12,1 andγ21,1 were significantly different from zero albeit small, again on ba-
sis of the BIC inclusion of these parameters was not justified. Therefore we included
no cross terms between lnσ 2

st and lnσ 2
rt in (5) and (6); (iv) As far as the choice of a
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suitable order for the Hermite polynomial in the SNP expansion, we observe that for
all modelsKx should be equal to zero, and, more importantly, according to the most
conservative criterion, i.e. the BIC,Kz > 10. This is undesirable. For the choice of
the size ofKz, our argument is as follows. The results in van der Sluis (1998) which
studied the cases with sample sizes 1,000 and 1,500 indicate that, for these sample
sizes,Kz of 4 or 5 was found to be BIC optimal. For our sample which consists of
about 3,000 observations, the BIC is in favor of Hermite polynomials of orderKz

larger than 10. However, recent results in Andersen, Chung and Sørensen (1997) and
van der Sluis (1998) suggest that for sample sizes of 3,000, convergence problems
occur in a substantial number of cases for such high order polynomials and that un-
der the null of aGaussianSV model, settingKz = 0 will yield virtually efficient
EMM estimates, which are not necessarily dominated by settingKz > 0.

Still we can learn something from the fitted SNP densities withKz > 0. Consider
the conditional density implied by the ML estimates forKz = 6 and 10 for both
data sets in Figures 6.4 and 6.5. Clearly, there is evidence in the data that aGaussian
EGARCH model is not good enough as was also indicated by model selection criteria
and a Likelihood Ratio test. It also appears that forKz > 6 the SNP density starts
to put probability mass at outliers. For descriptive purposes such high orders in the
auxiliary model can be desirable, however, since under the null of Gaussian SV we
cannot get such outliers, there is no need to consider these. Therefore we decided for
these sample sizes to set the Hermite polynomial equal to zero. To check the validity
of this argument we performed EMM estimation using the EGARCH-H(6,0) as well
to see whether the results would differ from the ones with EGARCH-H(0,0), and it
turns out that the parameter estimates differ only slightly. However the values of the
individual components of theJ test corresponding to the parameters of the Hermite
polynomial cause rejection of the SV model by theJ test. Further research should
therefore include this fact by using a structural model with fatter-tailed noise or jump
component. However, such a non-Gaussian SV model will make option pricing much
more complicated, and we leave it for future research. The conclusion is that a Gaus-
sian SV model may not be adequate and one should consider a fatter-tailed SV model
or a jump process. This can also be seen by comparing the sample properties of the
data with the sample properties of the SV model in the optimum.

4.2 Structural models and Estimation Results

The general model: the model specified in Section 2.1 assumes stochastic volatility
for both the stock returns and interest rate dynamics as well as systematic effect on
stock returns. This model nests the Amin and Ng (1993) model as a special case when
λ2 = 0. Following are four alternative model specifications:
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• Submodel 1: No systematic effect, i.e.φs = 0 andα = 0, i.e. a bi-variate
stochastic volatility model;

• Submodel 2: No stochastic interest rates, i.e. interest rate is constant,rt = r,
which is the Hull-White model and the Bailey and Stulz (1989) model;

• Submodel 3: Constant stock return volatility but stochastic interest rate,σst =
σ , which is the Merton (1973), Turnbull and Milne (1991) and Amin and
Jarrow (1992) models;

• Submodel 4: Constant stock return volatility and constant interest rate,σst =
σ, rt = r, which is the Black-Scholes model.

The results reported here are all forKx = 0 andKz = 0. As said in Section 4.1 the
models have also been estimated settingKz = 6 but no substantial differences were
found in the estimation results.

• General model: The estimates for the mean terms are given in Table 6.2.
We obtained the following estimates for the symmetric SV model using the
EGARCH(1,1)-H(0,0) score generator withκ2 = 0,

yt = σtεt

ln σ 2
t+1 = .005 + .955 lnσ 2

t + .218 ηt

(.065) (30.1) (16.2)

for the interest rates and
yt = σtεt

ln σ 2
t+1 = .161 + .940 lnσ 2

t + .161 ηt

(30.8) (66.1) (17.5)

for the stock prices. In order to obtain the filtered series, we used an au-
toregressive model with 34 lags for the interest rate and an autoregressive
model with 29 lags for the stock prices. For the asymmetric model we use the
EGARCH(1,1)-H(0,0) as a score generator to obtain the following estimates

yt = σtεt

ln σ 2
t+1 = .004 + .959 lnσ 2

t + .222 ηt

(.107) (47.4) (31.8)

Cor(εt , ηt ) = −.270
(−156)

for the interest rates and
yt = σtεt

ln σ 2
t+1 = .175 + .935 lnσ 2

t + .161 ηt

(121) (233) (35.2)

Cor(εt , ηt ) = −.424
(−164)
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for the stock prices.

It is noted that similar to other financial time series, the persistence parameter is close
to unity. The asymmetry is moderate for both series and significantly different from
zero. The leverage effect is somewhat higher for the stock returns than for the interest
rate changes. For the purpose of reprojection, we incorporate asymmetry and the AIC
advocates to use 31 lagged lny2

t and 20 laggedzt for interest rates and 28 lagged lny2
t

and 28 laggedzt for stock returns. The filtered series for the stock returns using the
symmetric and asymmetric models are displayed in Figure 6.6. Filtered series for the
interest rates are displayed in Figure 6.7.

• Submodel 1: The mean terms are given in 6.2. We obtained the following
estimates for the symmetric SV model using the EGARCH(1,1)-H(0,0) score
generator withκ2 = 0,

yt = σtεt

ln σ 2
t = .004 + .959 lnσ 2

t−1+ .217 ηt

(0.094) (51.8) (31.3)

for the interest rates and
yt = σtεt

ln σ 2
t = .149 + .944 lnσ 2

t−1+ .148 ηt

(83.5) (192) (31.3)

for the stock prices. In order to obtain the filtered series, we used an autore-
gressive model with 34 lags for the interest rate and an autoregressive model
with 29 lags for the stock prices. For the asymmetric model we used the
EGARCH(1,1)-H(0,0) as a score generator to obtain the following estimates

yt = σtεt

ln σ 2
t+1 = .004 + .959 lnσ 2

t + .223 ηt

(0.110) (47.8) (31.9)

Cor(εt , ηt ) = −.275
(−158)

for the interest rates and
yt = σtεt

ln σ 2
t+1 = .154 + .944 lnσ 2

t + .147 ηt

(86.6) (186) (25.4)

Cor(εt , ηt ) = −.557
(−247)

for the stock prices. The estimates do not differ much from the ones obtained for
the general model. For the reprojection we incorporated the asymmetry and the AIC
advocates to use 31 lagged lny2

t and 20 laggedzt for the interest rates and 28 lagged
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ln y2
t and 28 laggedzt for the stock prices. To save space, the filtered series for the

submodel have not been displayed. The series resemble the series for the general
model very much as displayed in Figures 6.6 and 6.7.

• Other Submodels: Estimation of other submodels is fairly straightforward.
Submodel 2 takes the SV part of the stock returns. Submodel 3 takes the SV
part of the interest rates.

Table 6.3 reports the results of HansenJ -test using EMM. As we see all the models
have been accepted at a 5% level. Although aP -value is a monotone function of the
actual evidence againstH0, it is very dangerous to choose the best model of these
specifications on basis of theP -values (see Berger and Delampady (1987)). A LR
test of the asymmetric SV model versus the symmetric SV model cannot be deduced
from the difference in criterion values, since the criterion values are based on different
moment conditions, i.e. an EGARCH(1,1)-H(0,0) and an EGARCH(1,1)-H(0,0) with
κ2 = 0. However from thet−values corresponding to the asymmetry parameter we
can deduce that the null hypothesis of symmetry will certainly be rejected in favor of
the alternative asymmetric model. For submodel 1 we obtain similar results.

For theJ -test with one degree of freedom it is not useful to consider the individual
components of the test statistic as in (23). In this case the individualt−values are
all about the same. This is a consequence of the fact that the individualt−values are
asymptotically equal with probability one in case of only one degree of freedom in
the test. As noted in Section 4.1 aJ -test from the EGARCH(1,1)-H(6,0) model leads
to rejection of all Gaussian SV models. By inspection of the individual components
of the J test we find that in this case the rejection can completely be attributed to
the Hermite polynomial. This essentially means that the Gaussian SV model cannot
account for the error structure beyond the EGARCH structure that is imposed by
the Hermite polynomials. As noted before, a possible solution is to consider non-
Gaussian SV models or SV models with jump, but this will not be pursued here.

5. Pricing of Stock Options

The effects of SV on option prices have been examined by simulation studies in e.g.
Hull and White (1987), Johnson and Shanno (1987), Bailey and Stulz (1989), Stein
and Stein (1991), Heston (1993) as well as empirical studies in e.g. Scott (1987),
Wiggins (1987), Chesney and Scott (1989), Melino and Turnbull (1990), and Bak-
shi, Cao and Chen (1997). In this paper we will investigate the implications of model
specification on option prices through direct comparison with observed market option
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prices, with the Black-Scholes model as a benchmark. It is documented in the liter-
ature that the Black-Scholes model generates systematic biases in pricing options,
with respect to the call option’s exercise prices, its time to expiration, and the un-
derlying common stock’s volatility. Since there is a one-to-one relationship between
volatility and option price through the Black-Scholes formula, the volatility is of-
ten used to quote the value of an option. An equivalent measure for the mispricing
of Black-Scholes model is thus the implied or implicit volatility, i.e. the volatility
which generates the corresponding option price. The Black-Scholes model imposes a
flat term structure of volatility, i.e. the volatility is constant across both maturity and
strike prices of options. Thus the use of implied volatility as the measure of pricing
errors is less sensitive to the maturity and moneyness of options.

5.1 Description of the Option Data

The sample of market option quotes covers the period of June 19, 1997 through Au-
gust 18, 1997, which overlaps with the last part of the sample of stock returns. Since
we do not rely solely on option prices to obtain the parameter estimates through fit-
ting the option pricing formula, such a sample size is adequate for our comparison
purpose. The intradaily bid-ask quotes for the stock options are extracted from the
CBOE database. To ease computational burden, for each business day in the sample
only one reported bid-ask quote during the last half hour of the trading session (i.e.
between 3:30 – 4:00 PM Eastern standard time) of each option contract is used in
the empirical test. The main considerations for the choice of the particular bid-ask
quote include: i) The movements of stock price is relatively stable around the point
of time so that the option quotes are well adjusted; ii) Option quotes which do not
satisfy arbitrage restrictions are excluded. The stock prices are calculated as average
of bid-ask quotes which are simultaneously observed as the option’s bid-ask quote.
Therefore they are not transaction data and the data set used in this study avoids the
issue of non-synchronous prices.

The sampling properties of the option data set are reported in Table 6.4. The data
only include options with at least 5 days to expiration to reduce biases induced by
liquidity-related issues. We divide the option data into several categories according
to either moneyness or time to expiration. In this paper, we use a slight different
definition of moneyness for options from the conventional one3. Following Ghysels,

3 In practice, it is more common to call an option as at-the-money/in-the-money/out-of-the-money
whenSt = K/St > K/St < K respectively. For American type options with possibility of early
exercise, it is more convenient to compareSt with K , while for European type options and from an
economic point of view, it is more appealing to compareSt with the present value of the strike priceK .
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Harvey and Renault (1996), we define

xt = ln(St/Ke− ∫ T
t rτ dτ ) (30)

Technically ifxt = 0, the current stock priceSt coincides with the present value of
the strike priceK, the option is called at-the-money; ifxt > 0 (respectivelyxt < 0),
the option is called in-the-money (respectively out-of-the-money). In our partition,
a call option is said to beat-the-money(ATM) if −0.03 < x ≤ 0.05; out-of-the-
money(OTM) if x ≤ −0.03; andin-the-money(ITM) if x > 0.05. A finer partition
resulted in six moneyness categories as in Table 6.4. According to the time to expi-
ration, an option contract can be classified as: i) short-term (T − t ≤ 30 days); ii)
medium-term (30< T − t < 180 days); and iii) long-term (T − t ≥ 180 days).
The partition according to moneyness and maturity results in 18 categories as in Ta-
ble 6.4. For each category, the average bid-ask midpoint price and its standard error,
the average effective bid-ask spread (i.e. the ask price minus the bid-ask midpoint)
and its standard deviation, as well as the number of observations in the category are
reported. Note that among 2120 total observations, about 26.56% are OTM options,
12.69% are ATM options, 60.75% are ITM options; 26.23% are short-term options,
49.01% are medium-term options, and 24.76% are long-term options. The average
price ranges from $0.223 for short-term deep out-of-the-money options to $25.93
for long-term deep in-the-money options, and the average effective bid-ask spread
ranges from $0.066 for short-term deep out-of-the-money options to $0.375 for log-
term deep in-the-money options.

Figure 6.8 plots the implied Black-Scholes volatility against moneyness for options
with different terms of maturity. The implied Black-Scholes volatilities are backed
out from each option quote using the corresponding stock price, time to expiration,
and the current yield of U.S. treasury instruments with maturity closest to the ma-
turity of the option. Namely, we use 3-month T-bill rates for options with maturity
less than 4 months, and 6-month T-bill rates for options with maturity longer than 4
months. The yields are hand-collected from theWall Street Journalover the sample
period and the discount rates are converted to annualized compound rates. It is noted
that the Black-Scholes implied volatility exhibits obvious U-shaped patterns (smiles)
as the call option goes from deep OTM to ATM and then to deep ITM, with the deep-
est ITM call option implied volatilities taking the highest values. The volatility smiles
are more pronounced and more sensitive to the term to expiration for short-term op-
tions than for the medium-term and long-term options. Furthermore, the volatility
smiles are obviously skewed to the left, indicating a downside risk anticipated by
option traders. These observations indicate that the short-term options are the mostly
severely mispriced ones by the Black-Scholes model and present perhaps the greatest
challenge to any alternative option pricing model. The asymmetry, however, indicates
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a possible skewness due to such as the leverage effect or a negative random jump
is expected by the option traders on the dynamics of stock returns. These findings
of clear moneyness- and maturity-related biases associated with the Black-Scholes
model are consistent with the findings for many other securities in the literature (see
e.g. Rubinstein (1985), Clewlow and Xu (1993), Taylor and Xu (1993)).

5.2 Testing Option Pricing Models

As Bates (1996b) points out, fundamental to testing option pricing models against
time series data is the issue of identifying the relationship between thetrue process
followed by the underlying state variables in the objective measure and the “risk-
neutral” processes implied through option prices in an artificial measure. Represen-
tative agent equilibrium models such as Rubinstein (1976), Brennan (1979), Bates
(1988, 1991), and Amin and Ng (1993) among others indicate that European options
that pay off only at maturity are priced as if investors priced options at their expected
discounted payoffs under an equivalent “risk-neutral” representation that incorporates
the appropriate compensation for systematic asset, volatility, interest rate, or jump
risk. Thus, the corresponding “risk-neutral” specification of the general model spec-
ified in Section 2 involves compensation for various factor risk. Namely, the “mean”
of stock return in the “risk-neutral” specification will be equal to the risk-free rate,
the “mean” of the interest rate process as well as the “means” of the stochastic con-
ditional volatilities for both interest rate and stock return will be adjusted for the
interest rate risk and systematic volatility risk. Standard approaches for pricing sys-
tematic volatility risk, interest rate risk, and jump risk have typically involved either
assuming the risk is nonsystematic and therefore has zero premium, or by imposing a
tractable functional form on the risk premium (e.g. the factor risk premiums are pro-
portional to the respective factors) with extra (free) parameters to be estimated from
observed options prices or bond prices (for interest rate risk).

Under the “risk-neutral” distribution of the general framework, a European call op-
tion on a non-dividend paying stock that pays off max(ST − X, 0) at maturityT for
exercise priceX is priced as

C0(S0, r0, σr0, σS0;T ,X) = E∗
0[e− ∫ T

0 rt dt max(ST − X, 0)|S0, r0, σr0, σS0] (31)

whereE∗
0 is the expectation with respect to the “risk-neutral” specification for the

state variables conditional on all information att = 0. In particular, whenλ2 = 0
in the general model setup, i.e. Assumption 2 of Amin and Ng (1993) is satisfied,
the option pricing formula can be derived as in (13). The call option price is the
expected Black-Scholes price with the expectation taken with respect to the stochastic
variance over the life of the option, i.e. the European call option prices depend on
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the average expected volatility over the length of the option contract. Furthermore,
if stock volatility is also constant, we obtain the Black-Scholes formula. Since the
underlying stock we consider in this paper claims no dividend, all options on the
stock can be valued as European type options4. Option prices given in the formula
can be computed based on direct simulations. Our analysis for the implications of
model specification on option prices is outlined as follows:

Two different tests are conducted for alternative models. First we assume, as in Hull
and White (1987) among others, that stochastic volatility risk is diversifiable and
therefore has zero risk premium. The underlying volatilities are directly estimated for
submodels 3 and 4 as constants, and are obtained through reprojection methods for
the general model and submodels 1 and 2. Based on the historical volatility, we calcu-
late option prices with given maturities and moneyness. The model-generated option
prices are compared to the observed market option prices in terms of relative percent-
age differences and implied Black-Scholes volatility. Second, we assume a non-zero
risk premium for stochastic volatility, which is estimated from observed option prices
in the previous day. The estimates are used in the following day’s volatility process
to calculate option prices, which again are compared to the observed market option
prices. Throughout the comparison, all the models only rely on information available
at given time, thus the study can be viewed as out-of-sample comparison. In partic-
ular, in the first comparison, all models rely only on information contained in the
underlying state variables, while in the second comparison, the models use both in-
formation contained in the underlying state variables (i.e. theprimitive information)
and in the observed (previous day’s) market option prices (i.e. thederivative infor-
mation). Our study is clearly different from those which use option prices to imply
all parameter values of the “risk-neutral” model, e.g. Bakshi, Cao and Chen (1997).
In their analysis, all the parameters and underlying volatility are estimated through
fitting the option pricing model into observed option prices. Then these implied pa-
rameters and underlying volatility are used to predict the same set of option prices.
Obviously models with more factors (or more parameters) are given extra advantage.
In our comparison, the risk factors are identified from underlying asset return process
and the preference parameters for option traders are inferred from observed market
option prices.

4 For options with early exercise potential, i.e. the American options, one way to approximate its
price is to compute the Barone-Adesi and Whaley (1987) early-exercise premium, treating it as if the
stock volatility and the yield-curve were time-invariant. Adding this early-exercise adjustment compo-
nent to the European option price should result in a reasonable approximations of the corresponding
American option price (e.g. Bates (1996a)).
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5.3 Comparison based on Diversifiable Stochastic Volatility Risk

In this section, we assume that the risk premium in both interest rate and stock return
processes as well as the conditional volatility processes are all zero. The SV option
prices are calculated based on Monte Carlo simulation using (31) for asymmetric
models and both (13) and (31) for symmetric models. The only approximation error
involved is the Monte Carlo error which can be reduced to any desirable level by
increasing the number of simulations. The estimation error involved in our study is
also minimal as we rely on large number of observations over long sampling period to
estimate model parameters. In our simulation, 100,000 sampling paths are simulated
to reduce the Monte Carlo error and to reflect accurately the fat-tail behavior of the
asset return distributions, and the antithetic variable technique is used to reduce the
variation of option prices (see Boyle, Broadie and Glasserman, 1997). The results
show that option prices generated using different methods are almost the same, with
the largest differences less than a penny for even long term deep ITM options. The
accuracy is further reflected in the small standard derivations of the simulated option
prices.

Option pricing biases are compared to the observed market prices based on the mean
relative percentage option pricing error (MRE) and the mean absolute relative option
pricing error (MARE), given by

MRE = 1

n

n∑
i=1

CM
i − Ci

Ci

MARE = 1

n

n∑
i=1

|CM
i − Ci|
Ci

wheren is the number of options used in the comparison,Ci andCM
i represents re-

spectively the observed market option price and the theoretical model option price.
The MRE statistic measures the average relative biases of the model option prices,
while the MARE statistic measures the dispersion of relative biases of the model
prices. The difference between MARE and MRE suggests the direction of the bias
of the model prices, namely when MARE and MRE are of the same absolute values,
it suggests that the model systematically misprices the options to the same direction
as the sign of MRE, while when MARE is much larger than MRE in absolute mag-
nitude, it suggests that the model is inaccurate in pricing options but the mispricing
is less systematic. Since the percentage errors are very sensitive to the magnitude of
option prices which are determined by both moneyness and length of maturity, we
also calculate MRE and MARE for each of the 18 moneyness-maturity categories in

28



Table 6.4.

Table 6.5 reports the relative pricing errors (%) based on underlying volatility for al-
ternative models. In each cell, from top to bottom are the MRE (mean relative error)
and MARE (mean absolute relative error) statistics for: 1. the asymmetric general SV
model withλ2 6= 0, λ3 6= 0; 2. the symmetric general SV model withλ2 = λ3 = 0;
3. the asymmetric submodel I withλ2 6= 0, λ3 6= 0; 4. the symmetric submodel I
with λ2 = λ3 = 0; 5. the asymmetric submodel II withλ3 6= 0; 6. the symmetric
submodel IIλ3 = 0; 7. submodel III; and 8. submodel IV. The conclusions we draw
from the above comparison are summarized as following. First, all models appear to
perform very poorly in pricing options, especially the long-term options. The mod-
els in general over-price medium- and long-term options, and under-price short-term
deep ITM and deep OTM options. For short-term options, our results are consistent
with simulation results in e.g. Hull and White (1987) and others, i.e. the symmetric
SV models tend to predict lower prices than the Black-Scholes model for ATM op-
tions and higher prices than the Black-Scholes model for deep ITM options. Since
the simulation results in the next section suggest the existence of a non-zero risk pre-
mium for the stochastic volatility, the overall overpricing of all SV models may be
due to our assumption of zero risk premium for conditional volatility; Second, the ef-
fect of stochastic interest rates on option prices is minimal in both cases of stochastic
stock return volatility and constant stock return volatility, i.e. the differences between
submodels I and II and those between submodels III and IV; Third, the systematic
effect on the “mean” of stock returns, namely the additional predictability of stock
returns, has a noticeable effect on option prices as evidenced in the simulation results
between the general model and submodel I. This is due to the fact that the reprojected
underlying volatilities are different in magnitude under alternative specifications of
the ”mean” functions. As discussed in Lo and Wang (1995), predictability of asset re-
turns can have significant impact on option prices, even though the exact effect is far
from being clear; Fourth, SV models overall underperform the Black-Scholes model,
even though all the models share similar patterns of mispricing as the Black-Scholes
model, i.e. underpricing of short-term deep ITM and OTM options and overpricing of
long-term and short-term ATM options. While the asymmetric SV models do outper-
form all other models for pricing short-term options, overall they underperform both
the Black-Scholes model and the symmetric SV models, i.e. they tend to have higher
relative option pricing errors; Finally, a further look at the implied Black-Scholes
volatility of the asymmetric model prices, however, reveals that the implied volatility
curve of the asymmetric models against maturity, reported in Figure 6.9, has a curva-
ture closer to the implied volatility from observed market options prices in its shape,
suggesting such pricing biases may be easier to correct.
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5.4 Comparison based on Implied Stochastic Volatility Risk

Since the short-term interest rate fails to be a good proxy of the systematic volatil-
ity of the market, the empirically insignificant correlation between interest rates and
stock return volatility can not lead to conclude that there is no systematic compo-
nent in the stock return volatility. The assumption that the stock return volatility is
diversifiable, post in the previous section, is very likely to be invalid. In this sec-
tion, we assume that there is a non-zero risk for stochastic stock return volatility,
and we use market option prices observed in the previous day (t − 1) to imply
such risk which is then used in the following day’s (t) volatility processes. Since
the estimation only uses option prices at a single point of time, we can assume a
general functional form for the price of stochastic volatility risk, namelyλt (σs) and
λt+τ (σs) = λt(σs),∀τ ≥ 0. For simplicity and for the reason that stochastic interest
rates only have limited effect on option prices on the asset considered in this paper,
we assume that both the stochastic interest rate volatility and stochastic interest rate
have zero risk premium. Thus, for each pricing model, a parameterθt = λt(σs), i.e.
the implied volatility risk for stochastic volatility models orθt = σst , i.e. the implied
volatility for constant volatility models can be obtained by minimizing the sum of
squared error (SSE), i.e.

θ̃t−1 = Argminθt−1

∑
i

(CM
t−1(St−1, rt−1, θt−1;Ti,Xi) − Ct−1(Ti, Xi))

2 (32)

whereCt−1(Ti, Xi) is the option price observed att − 1 with maturity dateTi and
strike priceXi . The implied volatility risk or volatility att − 1 are then used to price
the options att

CM
t (St , rt , σrt , σSt;T ,X) = E∗

t [e− ∫ T
0 rt dt max(ST − X, 0)|St, rt , θ̃t−1] (33)

For the SV models, the implied volatility risk can be interpreted as the option traders’
revealed preference from observed market option prices, while the implied volatility
in the constant conditional volatility model is purelyad hocand inconsistent with the
underlying model setup even though it is a common practice in the literature. To es-
timateθt−1 through (32) is straightforward for constant conditional volatility models
with closed form option pricing formula, but involves two problems for stochastic
conditional volatility models. First, when the closed form solution of option prices
is not available, the optimization involves enormous amount of simulation; Second,
when the theoretical model price is replaced by the average simulated option prices,
the estimate ofθt−1 is biased for finite number of simulations. The bias can be re-
duced by increasing the number of simulations, which induces extra computational
burden. Note that the adjustment of stochastic volatility risk alters only the drift term
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of the SV process in the objective measure to the following risk-neutral specification:

ln σ̃ 2
st+1 = ωs + λt(σs) + γs ln σ̃ 2

st + σsηst , |γs| < 1 (34)

From our discussion on the statistical properties of SV models in Section 2.2, we
notice that, given the value ofλt+τ (σs) = λt(σs) = λs,∀τ ≥ 0 (i.e. once it is
implied from option prices at a particular point of time, the volatility risk is treated as
a constant thereafter),Var[ỹst ] = exp{E[ln σ̃ 2

st ] + Var[ln σ̃ 2
st ]/2} whereE[ln σ̃ 2

st ] =
(ωs + λs)/(1− γs), Var[ln σ̃ 2

st ] = σ 2
s /(1 − γ 2

s ). It suggests that the parameterλt(σs)

can be inferred from the unconditional variance of the SV process. Based on our
simulations, the unconditional volatility of the symmetric SV model is approximately
the same as the average implied Black-Scholes volatility of long-term options (T −
t ≥ 180), and that of the asymmetric SV model with negative correlation is slightly
higher than the average implied Black-Scholes volatility of long-term options (T −
t ≥ 180). Thus, we can simply match the unconditional volatility of the SV model
to the average implied Black-Scholes volatility from observed long-term options at
each day to infer the implied stochastic volatility risk. The downward bias for the
asymmetric model is adjusted based on simulations. Our results suggest that, similar
to the findings in Melino and Turnbull (1990), there exists a non-zero risk premium
for stochastic volatility of stock returns. The price of volatility riskλt(σs) appears
to be consistently negative and rather stable over time. This finding is also consistent
with the conjecture in Lamoureux and Lastrapes (1993) and explains why the implied
volatility is an inefficient forecast of the unbderlying volatility.

Table 6.6 reports the relative pricing errors (%) based on implied volatility or volatil-
ity risk for alternative models. In each cell, from top to bottom are the MRE (mean
relative error) and MARE (mean absolute relative error) statistics for various mod-
els as listed in Table 6.5. The basic conclusions we draw from the comparison are
summarized as following. First, all models have substantially reduced the pricing er-
rors due to the use of implied volatility or volatility risk. The Black-Scholes model
exhibits similar pattern of mispricing, namely underpricing of short-maturity options
and over-pricing of long-maturity options, and overpricing of deep OTM options and
underpricing deep ITM options. The pricing errors of long-term deep ITM options
are dramatically decreased due to the larger weights put on these options in the min-
imization of the sum of squared option pricing errors; Second, the interest rate still
only has minimal impact on option prices for both the cases of stochastic stock return
volatility and constant stock return volatility; Third, all SV models outperform non-
SV models due to the introduction of non-zero risk premium for conditional volatility.
Compared to the Black-Scholes model, the symmetric SV models have overall lower
pricing errors; Fourth, the asymmetric SV models further outperform the symmetric
SV models significantly, especially for deep OTM and deep ITM and long-term op-

31



tions. Again, measured by the implied volatility the asymmetric SV models exhibit
implied volatility very close to those implied from observed option prices, its plot has
the same curvature as that in Figure 6.9 but with different level; Finally, the asym-
metric models, however, still exhibit systematic pricing errors, namely underpricing
of short-term deep OTM options, overpricing of long-term deep OTM options, and
underpricing of deep ITM options. This is consistent with our diagnostics of the SV
model specification, i.e. the SV models fails to capture the short-term kurtosis of as-
set returns. And recall the salient features of the stock returns reported in Figure 6.1,
the big downside risk anticipated by option traders may be related to the historical
large negative returns. These large negative returns induce a very long but thin left
tail, which the SV models fail to capture. More importantly, such consistent findings
in the diagnostics of the underlying model specification and the performance of op-
tion pricing model only suggest that the option pricing errors of the SV models do
not provide sufficient evidence to reject the hypothesis of market efficiency. It should
be noted that while statistically these pricing errors appear to be large, as high as 20%
for short-term OTM options, its economic implications may not be so significant. For
instance, for short-term deep OTM options, a 20% relative pricing errors correspond
to absolute error of $0.05 on the average, which is smaller than the average effective
bid-ask spread. Furthermore, the MARE statistics, a measure of the dispersion of the
relative pricing errors, are not reduced as much as the MRE statistics.

6. Conclusion

In this paper, we specify a SV process in a multivariate framework to simultaneously
model the dynamics of stock returns and interest rates. The model assumes a sys-
tematic component in the stock return volatility and “leverage effect” for both stock
return and interest rate processes. The proposed model is first estimated using the
EMM technique based on observations of underlying state variables. The estimated
model is then utilized to investigate the respective effect of systematic volatility, id-
iosyncratic volatility, and stochastic interest rates on option prices. The empirical
results are summarized as follows.

While theory predicts that the short-term interest rates are strongly related to the sys-
tematic volatility of the consumption process, our empirical results suggest that the
short-term interest rate fails to be a good proxy of the systematic factor. However, the
short-term interest rate is significantly correlated with the “mean” of the stock returns,
suggesting stock return is predictable to certain extent. Such predictability is shown
to have a noticeable impact on option prices as the reprojected underlying volatili-
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ties are different in magnitude in alternative model specifications. While allowing for
stochastic volatility can reduce the pricing errors and allowing for asymmetric volatil-
ity or “leverage effect” does help to explain the skewness of the volatility “smile”,
allowing for stochastic interest rates has minimal impact on option prices in our case.
Similar to Melino and Turnbull (1990), our empirical findings strongly suggest the
existence of a non-zero risk premium for stochastic volatility of stock returns. Based
on implied volatility risk, the SV models can largely reduce the option pricing errors,
suggesting the importance of incorporating the information in the options market in
pricing options. Both the model diagnostics and option pricing errors in our study
suggest that the Gaussian SV model is not sufficient in modeling short-term kurtosis
of asset returns, a SV model with fatter-tailed noise or jump component may have
better explanatory power. An important implication of the consistent findings in the
diagnostics of the underlying model specification and the performance of option pric-
ing model is that the option pricing errors of the SV models do not provide sufficient
edidence to reject the hypothesis of market efficiency.

Finally, the failure of short-term interest rate as a valid proxy of systematic volatility
component suggests that in the future study, an alternative state variable, say a market
index, should be used to study the impact of systematic volatility on option prices.
Our empirical results also suggest that normality of the stochastic volatility model
may not be adequate for this data set and other data sets as well. We leave it in our
future research to explore a richer structural model, for example the jump-diffusion
and/or the SV model with Student-t disturbances, to describe the dynamics of asset
returns.

33



Table 6.1: Summary Statistics of Interest Rates and Stock Returns
(a) Static Properties of Original Series

(100×) N Mean Std. Dev. Skewness Kurtosis Max Min Corr(·, rt−1)
1ln(rt ) 2835 -9.759 10−3 1.042 -0.549 11.848 6.936 -9.137
1ln(St) 2835 1.051 10−1 3.719 -1.109 14.655 21.48 -36.67 -0.043

(b) Static Properties of Filtered Interest Rates and Stock Returns
N Mean Std. Dev. Skewness Kurtosis Max Min Corr(., rt−1)

Yrt 2834 -6.10 10−10 1.042 -0.556 11.87 6.948 -9.154
ln(Y 2

rt
) 2834 -2.199 2.995 -1.241 1.806 4.429 -20.16

Y1St
2834 3.86 10−4 3.716 -1.107 14.56 21.34 -36.56

ln(Y12
St
) 2834 0.766 2.525 -1.201 2.032 7.198 -14.19 -0.063

Y2St
2834 4.38 10−4 3.719 -1.110 14.65 21.37 -36.77

ln(Y22
St
) 2834 0.794 2.409 -0.850 0.279 7.209 -6.673 -0.046

(c) Dynamic Properties of Filtered Interest Rates and Stock Returns (autocor-
relations (×10−1))

ρ(1) ρ(2) ρ(3) ρ(4) ρ(5) ρ(10) ρ(15) ρ(20)
Yrt 1.270 -0.118 -0.441 0.292 -0.271 0.250 0.837 0.197

ln(Y 2
rt
) 1.120 0.981 0.662 0.795 1.180 0.216 0.199 0.419

Y1St
0.653 -0.469 -0.554 0.050 0.011 -0.316 0.414 -0.233

ln(Y12
St
) 0.644 0.479 -0.064 0.460 0.455 0.219 0.305 0.782

Y2St
0.670 -0.451 -0.537 0.066 0.028 -0.346 0.430 -0.218

ln(Y22
St
) 0.594 0.495 -0.090 0.363 0.285 0.193 0.247 0.653

Note: Y1 represents the filtered series with systematic effects on stock returns, whileY2 without

systematic effects.

Table 6.2: Estimates of “mean” parameters
Model Stock Return ParameterInterest Rate Parameter

µS φS µr φr

With Systematic Effect 0.667 -10.29 -0.215 -6.98 10−4

(2.60) (-2.28) (-1.119) (-1.075)
Without Systematic Effect 0.105 -0.215 -6.98 10−4

(1.505) (-1.119) (-1.075)
Note: The numbers in brackets are t-ratios of the above estimates. The blank cell indicates the

parameter is pre-set as zero in the corresponding model.
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Table 6.3: Test statistics for the SV models. The entries corresponding to the
EGARCH parameters denote the individual t-values of the J-test as given in (23)

(a) Interest rates
Asymmetric

General Model
Symmetric

General Model
Asymmetric
Submodel 1

Symmetric
Submodel 1

J-test .471 2.96 .471 2.96
df 1 1 1 1

P-value .493 .085 .493 .085

(b) Stocks returns
Asymmetric

General Model
Symmetric

General Model
Asymmetric
Submodel 1

Symmetric
Submodel 1

J-test .034 .416 .202 .841
df 1 1 1 1

P-value .854 .519 .653 .359
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Table 6.4: Sample Properties of Stock Call Option Prices
Moneyness Days-to-Expiration

x = ln(S/KB(t, T )) T-t [5, 215]
[−0.68, 1.11] ≤30 30− −180 ≥ 180 Subtotal

0.223 (0.112) 1.760 (0.819) 1.892 (0.911)
OTM x ≤ −0.20 0.066 (0.035) 0.137 (0.033) 0.274 (0.038) 264

{33} {85} {146}
0.817 (0.577) 3.140 (1.364) 5.231 (0.989)

−0.20 < x ≤ −0.03 0.090 (0.040) 0.149 (0.047) 0.173 (0.065) 299
{76} {164} {59}

1.783 (1.023) 4.911 (1.440) 7.042 (0.584)
ATM −0.03 < x ≤ 0.00 0.114 (0.054) 0.183 (0.061) 0.250 (0.000) 151

{47} {48} {46}
2.997 (0.876) 5.843 (1.318) 7.976 (0.559)

0.00 < x ≤ 0.05 0.143 (0.050) 0.195 (0.058) 0.190 (0.060) 118
{32} {65} {21}

9.114 (3.030) 10.61 (2.736) 11.90 (2.178)
ITM 0.05 < x ≤ 0.30 0.264 (0.091) 0.294 (0.089) 0.306 (0.109) 566

{182} {283} {101}
21.23 (5.403) 23.99 (6.004) 25.93 (6.135)

x > 0.30 0.361 (0.053) 0.369 (0.049) 0.375 (0.066) 722
{176} {394} {152}

Subtotal 556 1039 525 2120(total)
Note: In each cell from top to bottm are: the average bid-ask midpoint call option prices with standard

error in parentheses; the average effective bid-ask spread (ask price minus the bid-ask midpoint) with

standard error in parentheses; and the number of option price observations (in curly brackets) for each

moneyness-maturity category. The option price sample covers the period of June 19, 1997 through

August 18, 1997 with total 2120 observations. In calculating the moneyness, we use U.S. 3-month

T-bill rates for options with maturity less than 4 months and 6-month T-bill rates for options with

maturity longer than 4 months.
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Table 6.5: Relative Pricing Errors (%) of Alternative Models with Diversifiable
Stochastic Volatility Risk

Moneyness Days-to-Expiration
x = ln(S/KB(t, T )) T-t [5, 215]

[−0.68, 1.11] ≤30 30− −180 ≥ 180 Overall
-2.21 40.25 66.49 68.80 91.53 91.53 67.77 79.19
-2.83 39.16 72.92 74.73 99.80 99.80 78.92 84.37
-3.04 34.15 65.56 68.46 91.20 91.20 67.26 77.55

OTM x ≤ −0.20 -3.06 39.19 71.86 73.72 99.75 99.75 77.73 83.34
-3.01 34.18 65.49 68.39 91.01 91.01 67.12 77.43
-3.05 39.19 71.89 73.75 99.78 99.78 77.76 83.37
-19.32 38.66 47.79 49.70 64.31 64.31 48.61 56.07
-19.63 38.73 47.51 49.43 63.96 63.96 48.29 55.80
9.40 29.40 35.85 37.73 44.81 44.81 32.10 36.07
17.94 29.83 34.10 34.56 40.70 40.70 31.41 34.61
9.83 25.16 35.90 36.52 44.37 44.37 31.16 35.22

−0.20 < x ≤ −0.03 17.41 29.82 33.63 34.10 40.27 40.27 30.93 34.20
9.76 25.12 35.85 36.47 44.31 44.31 31.10 35.17
17.42 29.83 33.64 34.11 40.29 40.29 30.94 34.22
18.18 27.16 24.13 24.51 27.73 27.73 23.36 25.57
17.93 26.98 23.98 24.36 27.59 27.59 23.18 25.59
12.87 14.36 23.71 24.77 32.45 32.45 21.82 23.29
12.00 14.60 19.90 20.69 27.53 27.53 18.71 19.91
13.44 15.95 23.68 24.29 32.40 32.40 21.96 23.04

ATM −0.03 < x ≤ 0.00 11.84 14.46 19.65 20.45 27.24 27.24 18.48 19.69
13.40 15.91 23.65 24.26 32.39 32.39 21.94 23.01
11.84 14.46 19.66 20.46 27.24 27.24 18.48 19.70
13.58 15.75 13.49 14.08 18.71 18.71 14.28 15.24
13.47 15.66 13.40 14.00 18.62 18.62 14.18 15.16
12.97 14.89 19.84 19.84 28.58 28.58 20.24 21.46
10.23 12.70 14.95 15.16 23.50 23.50 15.33 16.05
12.62 14.68 19.81 19.93 27.70 27.70 19.47 20.04

0.00 < x ≤ 0.05 10.12 12.62 14.64 14.85 23.16 23.16 15.06 15.79
12.60 14.67 19.79 19.91 27.67 27.67 19.45 20.02
10.12 12.62 14.65 14.85 23.17 23.17 15.07 15.80
11.06 13.01 10.37 10.53 15.67 15.67 11.49 12.05
10.99 12.95 10.36 10.52 15.64 15.64 11.46 12.03
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1.46 3.20 11.42 11.44 17.47 17.47 9.83 10.16
0.24 2.09 6.94 7.08 13.56 13.56 6.17 6.78
1.32 2.51 10.65 10.71 17.27 17.27 9.12 9.50

ITM 0.05 < x ≤ 0.30 0.22 2.08 6.83 6.98 13.45 13.45 6.09 6.71
1.32 2.50 10.64 10.70 17.25 17.25 9.11 9.49
0.22 2.08 6.84 6.99 13.46 13.46 6.09 6.71
0.04 1.83 4.28 4.47 8.81 8.81 3.85 4.47
0.04 1.83 4.23 4.43 8.73 8.73 3.81 4.44
-0.45 0.55 1.67 1.86 3.88 3.90 1.86 2.12
-0.56 0.64 0.51 1.04 2.00 2.34 0.62 1.24
-0.49 0.58 1.66 1.86 3.58 3.65 1.66 2.00

x > 0.30 -0.56 0.65 0.49 1.02 1.95 2.30 0.60 1.22
-0.49 0.58 1.66 1.86 3.58 3.64 1.66 1.99
-0.56 0.65 0.49 1.02 1.95 2.30 0.60 1.22
-0.57 0.65 -0.06 0.74 0.77 1.35 0.02 0.85
-0.56 0.65 -0.06 0.74 0.76 1.34 0.02 0.85
1.12 13.00 19.24 19.75 41.03 41.14 19.91 22.93
3.86 10.16 15.78 16.30 40.49 40.60 19.02 20.72
0.70 10.00 17.27 17.76 39.45 39.47 18.88 21.21

Overall 3.65 10.11 15.55 16.07 39.99 40.10 18.73 20.47
0.67 10.00 17.25 17.74 39.38 39.40 18.85 21.18
3.65 10.11 15.56 16.08 40.01 40.11 18.74 20.48
2.65 9.60 10.46 11.08 25.92 26.10 12.41 14.33
2.57 9.57 10.39 11.01 25.78 25.96 12.32 14.25

Note: In each cell, from top to bottom are the MRE (mean relative error) and MARE (mean absolute

relative error) statistics for: 1. the asymmetric general SV model withλ2 6= 0, λ3 6= 0; 2. the symmetric

general SV model withλ2 = λ3 = 0; 3. the asymmetric submodel I withλ2 6= 0, λ3 6= 0; 4. the

symmetric submodel I withλ2 = λ3 = 0; 5. the asymmetric submodel II withλ3 6= 0; 6. the symmetric

submodel II withλ3 = 0; 7. the submodel III; and 8. The submodel IV.
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Table 6.6: Relative Pricing Errors (%) of Alternative Models with Implied Volatility
or Volatility Risk

Moneyness Days-to-Expiration
x = ln(S/KB(t, T )) T-t [5, 215]

[−0.68, 1.11] ≤30 30− −180 ≥ 180 Overall
-20.18 41.40 6.41 15.76 2.69 13.63 -3.33 19.98
-27.99 46.16 25.80 29.20 23.35 23.89 18.22 28.40
-25.34 45.83 3.90 13.18 -3.15 13.74 -8.97 19.64

OTM x ≤ −0.20 -28.64 46.44 25.16 28.64 22.67 23.28 17.56 27.91
-25.33 45.82 3.90 13.18 -3.26 13.76 -9.04 19.64
-28.64 46.44 25.19 28.68 22.69 23.30 17.58 27.93
-42.12 46.45 17.76 21.48 50.34 50.72 27.85 39.75
-42.12 46.46 17.79 21.51 50.35 50.72 27.87 39.76
-14.21 21.12 3.17 8.64 7.38 7.97 -.26 11.54
-12.42 21.65 10.73 12.68 11.53 11.62 7.87 14.66
-16.74 22.61 1.48 8.18 6.14 7.01 -2.07 11.46

−0.20 < x ≤ −0.03 -12.16 21.61 10.49 12.50 11.26 11.38 7.61 14.50
-16.70 22.61 1.47 8.18 6.08 6.97 -2.08 11.45
-12.16 21.61 10.50 12.51 11.27 11.39 7.62 14.50
-10.07 20.42 11.60 12.78 23.64 23.64 11.27 16.63
-10.07 20.42 11.60 12.78 23.65 23.65 11.28 16.64
1.08 10.45 1.12 5.91 2.93 2.93 1.37 6.80
4.61 10.16 4.19 7.05 4.04 4.04 4.29 7.52
1.06 10.47 0.89 5.73 2.63 2.66 1.19 6.67

ATM −0.03 < x ≤ 0.00 4.57 10.14 4.07 7.01 3.86 3.86 4.18 7.46
1.09 10.51 0.87 5.72 2.60 2.63 1.18 6.66
4.57 10.14 4.08 7.01 3.87 3.87 4.19 7.47
7.58 13.49 10.03 11.58 9.86 9.86 9.29 11.89
7.58 13.49 10.03 11.59 9.86 9.86 9.29 11.89
4.18 9.10 2.48 4.66 4.33 4.92 3.23 5.79
5.41 9.50 3.37 5.20 5.21 5.79 4.20 6.36
4.36 9.20 2.38 4.57 4.11 4.70 3.17 5.73

0.00 < x ≤ 0.05 5.37 9.49 3.21 5.10 5.08 5.67 4.07 6.27
4.38 9.22 2.38 4.85 4.07 4.66 3.17 5.73
5.37 9.49 3.21 5.10 5.09 5.68 4.08 6.28
6.59 9.22 4.92 6.03 13.19 13.40 6.81 8.13
6.59 9.22 4.95 6.06 14.14 14.36 6.99 8.31
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-0.42 1.76 1.52 2.59 3.01 3.17 1.22 2.45
-0.72 1.87 1.00 2.47 2.71 3.07 0.80 2.40
-0.31 1.79 1.73 2.66 3.11 3.22 1.39 2.51

ITM 0.05 < x ≤ 0.30 -0.74 1.87 0.94 2.45 2.64 3.03 0.75 2.38
-0.31 1.79 1.73 2.66 3.08 3.20 1.38 2.50
-0.73 1.87 0.95 2.45 2.65 3.03 0.76 2.38
-0.80 1.91 2.09 3.12 7.63 7.70 2.23 3.58
-0.81 1.92 2.10 3.13 7.40 7.46 2.20 3.54
-0.46 0.59 -0.06 0.68 0.10 0.77 -0.10 0.68
-0.58 0.67 -0.46 0.75 -0.48 0.90 -0.49 0.77
-0.46 0.59 0.04 0.70 0.23 0.80 -0.01 0.70

x > 0.30 -0.59 0.67 -0.47 0.75 -0.50 0.91 -0.50 0.77
-0.46 0.59 0.04 0.70 0.23 0.81 -0.01 0.70
-0.59 0.67 -0.47 0.75 -0.49 0.91 -0.49 0.77
-0.58 0.67 -0.40 0.73 0.52 1.47 -0.24 0.88
-0.58 0.67 -0.40 0.73 0.52 1.47 -0.24 0.88
-1.36 8.18 1.69 4.27 2.59 6.26 0.03 5.96
-1.57 8.83 4.53 6.21 9.19 9.89 4.29 7.67
-1.51 8.37 0.99 3.98 0.70 6.18 -0.96 5.91

Overall -1.67 8.85 4.40 6.12 8.91 9.66 4.13 7.56
-1.50 8.37 0.99 3.98 0.65 6.17 -0.97 5.91
-1.67 8.85 4.41 6.12 8.92 9.66 4.14 7.57
-2.69 8.75 4.50 5.86 20.61 21.05 6.75 10.11
-2.69 8.75 4.51 5.87 20.62 21.05 6.75 10.12

Note: See Table 6.5.
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Figure 6.1: Salient feature of interest rate returns
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Figure 6.2: Salient feature of stock returns
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Figure 6.3: Simulation study on reprojection. On the y-axis are the true lnσ 2
t . On the

x-axis are the errors ln̂σ 2
t − ln σ 2

t .
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Figure 6.4: Estimated conditional density for EGARCH(1,1)-H(6,0) model for inter-
est rate returns
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Figure 6.5: Estimated conditional density for EGARCH(1,1)-H(6,0) model for stock
returns
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Figure 6.6: Filtered stock returns volatility for the SARMAV(1,0) and ASAR-
MAV(1,0) models using reprojection
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Figure 6.7: Filtered interest returns volatility for the SARMAV(1,0) and ASAR-
MAV(1,0) models using reprojection
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Figure 6.8: Implied Black-Scholes Volatility from Observed Option Prices
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Figure 6.9: Implied Black-Scholes Volatility from Model Predicted Option Prices
based on Diversiable Stochastic Volatility
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