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Abstract

The marketing literature suggests several phenomena that may contribute to the shape
of the relationship between sales and price discounts. These phenomena can produce
severe nonlinearities and interactions in the curves, and we argue that those are best
captured with a flexible approach. Since a fully nonparametric regression model
suffers from the “curse of dimensionality,” we propose a semiparametric regression
model. Store-level sales over time is modeled as a nonparametric function of own-
and cross-item price discounts, and a parametric function of other predictors (all
indicator variables).

We compare the predictive validity of the semiparametric model with that of two
parametric benchmark models and obtain better performance on average. The results
for three product categories indicate a.o. threshold- and saturation effects for both
own- and cross-item temporary price cuts. We also show how the own-item curve
depends on other items’ price discounts (flexible interaction effects). In a separate
analysis, we show how the shape of the deal effect curve depends on own-item
promotion signals. Our results indicate that prevailing methods for the estimation
of deal effects on sales are inadequate.
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1. Introduction

One of the key issues with limited empirical results in sales promotion research is
the shape of the deal effect curve (Blattberg and Neslin 1990, pp. 350-351; Blattberg,
Briesch, and Fox 1995). The deal effect curve shows how sales responds to temporary
price discounts. Little is known about the shape of the deal effect curve. For example,
Blattberg, Briesch, and Fox (1995, p. G127) ask whether the curve is linear, concave,
convex, or S-shaped. The shape is important because if it is convex, the firm will run
deeper deals than if the effect is concave.

Wisniewski and Blattberg (1983) found the deal shape fits an S-shaped function.
However, their result is based on an analysis of promotion effects across multiple
product categories. Consequently this finding may be confounded by category
differences. Blattberg and Wisniewski (1987) compared alternative specifications of
deal effects within product categories and found the the curve to be convex. However,
since their data covered a limited range of deal discounts, we cannot be sure about
the absence of a saturation point.

Given the multitude of effects that can shape the deal effect curve it is appropriate
to explore this shape flexibly. Therefore, we propose a semiparametric regression
model for the deal effect curve, based on store-level scanner data. Our model is
semiparametric in the sense that there is both a nonparametric and a parametric
part. An important advantage of a nonparametric model is the flexibility in
modeling both main- and interaction effects. However, a fully nonparametric model
suffers from the curse of dimensionality: as the number of dimensions (number
of predictors) increases, the required number of observations explodes. Given the
available sample sizes and the number of predictors, we cannot include all predictors
nonparametrically. We therefore focus on the flexible estimation of deal effects only:
sales is modeled as a nonparametric function of own- and cross-item price discounts.
We include the remaining predictors (indicator variables for all but one data set)
parametrically.

The nonparametric part of the model allows us to explore the shape of the deal effect
curve separately for each of the own-item effects as well as for cross-item effects.
The flexibility in interaction effects allows us to determine how the own-effect curve
changes at different discount levels for other items. Importantly, the nonparametric
part accommodates three-dimensional functions, compared to only two-dimensional
ones in the current literature. Empirically, the curves have a considerable amount of
similarity across product categories and across countries (USA and the Netherlands).
This is notable because the promotional intensity in the Netherlands is far less than it
is in the USA.

2



This paper is organized as follows. In section 2 we review the literature on the deal
effect curve. In section 3 we propose our modeling approach. We describe the data
in section 4, provide empirical results in section 5, and present our conclusions in
section 6.

2. The deal effect curve

The literature suggests the following four phenomena relevant to the shape of the deal
effect curve:

• Threshold effects (Gupta and Cooper 1992);
• Saturation effects (Blattberg, Briesch, and Fox 1995; Gupta and Cooper

1992);
• Promotion signal effects (Inman, McAlister, and Hoyer 1990); Mayhew and

Winer 1992);
• Cross-item price effects (Sethuraman 1996).

2.1 Threshold effects

Although many managers believe that the minimum value of a price promotion
required to change consumers’ purchases is 15 percent (Della Bitta and Monroe
1980), there is little empirical support for this claim. An exception is an experiment
by Gupta and Cooper (1992) which shows that consumers do not change their
intentions unless the promotional discount exceeds a threshold level of 15 percent.
Bucklin and Gupta (2000) conclude that price thresholds remain one of the key
questions in pricing research.

2.2 Saturation effects

Two mechanisms may cause saturation effects in the deal effect curve. One is a limit
on the amount consumers can stockpile (Blattberg, Briesch, and Fox 1995) and/or
consume in response to a price discount. The other is a “discounting of discounts”
effect. Consumers evaluate and encode information provided to them, and it is their
perception of the information and not the information itself that affects their behavior.
It has been shown that consumers’ perceptions of discounts are typically less than the
real discounts (see, e.g., Blair and Landon 1981; Mobley, Bearden, and Teel 1988).
Gupta and Cooper (1992) suggest that consumers discount the discounts. Based on
experimental data they estimated saturation levels to occur at a 20-30 percent discount
level for aerobic shoes.
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2.3 Promotion signal effects

Inman, McAlister, and Hoyer (1990) and Mayhew and Winer (1992) suggest that
“low need for cognition” consumers react to the simple presence of a promotion
signal whether or not the price of the promoted item is reduced. We consider this issue
separately, when we examine the deal effect curve shape across promotion signals.

2.4 Cross-item deal effects

Cross-item deal effects may show nonlinearities as well. For example, Sethuraman
(1996) analyzed the effect of price discounts by high-priced items on the sales of
low-priced items. Graphically, his model implies a linearly increasing cross-item deal
effect with a step at the price of the focal item (Sethuraman 1996, Figure 2).

2.5 Contributions of this research

Given the multitude of effects suggested by the four phenomena described above,
it is important to explore the form of the deal effect curve flexibly. Consequently,
we employnonparametrictechniques. The term nonparametric refers to the flexible
functional form of the regression curve (H¨ardle 1990), but this flexibility pertains also
to interaction effects.

This research makes the following contributions:

• Substantively, previous studies considered the effects of only one or two of the
phenomena on the shape of the deal effect curve. Gupta and Cooper (1992)
studied promotion threshold effects and discounting of discounts effects,
whereas Sethuraman (1996) examined cross-item effects. Our research
explores the nature of the deal effect curve more generally: we let the data
determine the shape of the entire response curve;

• Methodologically, we provide an application of nonparametric regression
techniques. These techniques have seen few applications in marketing
because of the “curse of dimensionality”. To manage this problem we use
a semiparametric(semilinear) regression model. To our knowledge this is
the first application of a semiparametricregressionmodel in marketing (i.e.,
the criterion variable has an interval scale at minimum). Both Abe (1995)
and Bult and Wansbeek (1995) applied a semiparametricdiscrete choice
model in a marketing context, and Hruschka (1998) presents a semiparametric
regression (market share) model, but his model was developed later than ours;

• We estimate all deal effect curves withstore-level scanner data, whereas
previous research used experimental data to estimate own-item deal effect
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curves (Gupta and Cooper 1992), or used store-level scanner data to estimate
cross-item deal effect curves only (Sethuraman 1996). Gupta and Cooper
(1992) mention that “finding promotion threshold- and saturation effects in
choice data (e.g., scanner data) will therefore be a useful next step”. A basic
data requirement for estimating the deal effect curve is that the deal sizes
have sufficient variation. We employ three store-level scanner data sets with
different amounts of deal size variation;

• We estimate bothown-itemand cross-item deal effect curves. Sethuraman
(1996) only focuses on cross-item deal effects, while Gupta and Cooper
(1992) consider just own-item deal effects.

• We exploreinteraction effectsbetween own- and cross-item price discounts,
and in a separate analysis between own-item price discounts and own-item
promotion signals;

• We compare the semiparametric model with two parametric benchmark
models based on fit and predictive validity, and contrast the flexible deal effect
curves with standard ones.

It is also useful to contrast our study with Kalyanam and Shively (1998) who use a
spline regression approach to relate sales and price. We use a more flexible Kernel
regression approach (explained in section 2.3.3) which also differs from theirs in the
following respects. One, they do not distinguish between regular and promotional
prices. We isolate deal effects which have been reported to be different from regular
price effects (Blattberg, Briesch, and Fox 1995). Two, the flexibility of our approach
allows us to model own-brand, cross-brand, as well as interaction effects. Three, we
demonstrate superior predictive validation for our semiparametric approach relative
to two traditional models. Kalyanam and Shively do not allow for flexible interaction
effects, and they do not consider predictive validities.1

3. Models

3.1 Rationale for regression-type approach

We use a regression-type approach for the deal effect curve based on store-level
scanner data. Household-level purchase data are potentially richer for describing
consumer purchase behavior. As we have already indicated in section 1.6, we think

1 Wedel and Leeflang (1998) present a study that is related to Kalyanam and Shively (1998). Whereas
Wedel and Leeflang propose a spline model for psychologic price effects based onsurveydata, the
model by Kalyanam and Shively is calibrated withscannerdata.
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it is important for researchers to also develop and use methods for the estimation of
models based on store data.

Since we cannot relate the empirical shapes of the deal effect curves to individual
consumer behavior, our research deals with the question “what is the shape of the
deal effect curve?” and not with the question “why is the shape of the deal effect
curve the way it is?” Bucklin and Gupta (2000) indicate that the regression approach
applied to (pooled) store-level scanner data is the typical approach used in practice
(IRI, AC Nielsen) for estimating constant deal elasticities. We relax the assumption
of constant elasticities.

3.2 Parametric approach

Studies of promotional effects typically use parametric regression models that relate
sales to own- and other items’ promotional instruments. Blattberg and Wisniewski
(1989) use a semilog functional form, whereas Wittink et al. (1988) propose a log-log
model. The parametric modeling strategy has a number of optimality properties
(Powell 1994, pp. 2445-6). However, the model specification is subject to uncertainty
such that the estimates may be biased and/or inconsistent. One can consider
alternative parametric specifications and perform standard specification tests, but
there is no guarantee that any of the parametric specifications considered will be the
true one. In fact, there is no guarantee that the true functions belong to any parametric
family (Briesch, Chintagunta, and Matzkin 1997). Thus, the cost of imposing the
strong restrictions required for parametric estimation can be considerable (H¨ardle
and Linton 1994).

3.3 Nonparametric approach

A nonparametric regression model does not project the observed data into a
Procrustean bed2 of a fixed parameterization (H¨ardle 1990). Nonparametric modeling
imposes few restrictions on the form of the joint distribution of the data, so there is
little room for (functional form) misspecification, and consistency of the estimator
of the regression curve is established under much more general conditions than is
the case for parametric modeling. Rust (1988) introducednonparametricregression
models to marketing research. He emphasizes that nonlinearity, non-normal errors,
and heteroscedasticity are automatically accommodated. We believe that the primary
benefits consist of the relaxation of functional form constraints and the allowance for
flexible interactions.

2 Procrustes is a figure in Greek mythology. He was a robber who took his victims home to cut or
stretch them so that they fit in his bed.
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Greater flexibility does impose a cost: the convergence rate of a nonparametric
estimator is usually slower3 than it is for parametric estimators (Powell 1994, p.
2448). Thus, the precise estimation of a nonparametric multidimensional regression
surface requires very large sample sizes. Yet, as is true for parametric models, the
statistical precision is a function of the variances and covariances of the predictors,
and not of the sample size.4 Nevertheless, Silverman (1986, p. 94) and Scott (1992,
pp. 198-200) show how the “required” sample size increases with the number of
predictors. For example, Scott’s formulas suggest that if the required sample size is
10 for a one-predictor variable model, it is 1,000+ for a model with three predictors.
However, for a model of one item’s sales as a function of three continuous variables
for each of three items, the required sample size would be more than 7.5 million!
The reason for this “curse of dimensionality” is the flexible accommodation of all
possible interaction effects.

A widely used nonparametric regression estimator is the Kernel method. It is
straightforward to implement and it is easy to understand (H¨ardle 1990). The intuition
behind the Kernel method is that it computes a local weighted average of the criterion
variable given the values of the predictors. The weights are inversely related to the
“distances” between (a) the values of the predictor variables for which one wants
to estimate the criterion variable and (b) the values of the same variables that lie
in the proximity. The dependence of the weight on these distances is described by
the Kernel function which tends to be symmetric around zero where it reaches its
maximum. The Kernel method also includes a bandwidth parameter which controls
the peakedness of this function. The smaller this parameter, the more peaked the
function, and the more weight is placed on the nearest observations. A bandwidth
parameter of (almost) zero leads to a response curve that connects the observations,
resulting in no bias but maximal variance. An infinite bandwidth parameter leads
to a horizontal response curve: maximal bias and minimal variance. Thus, the
choice of the bandwidth parameter involves a trade-off between bias and variance.
Most bandwidth selection techniques minimize a mean squared error criterion. In
Appendix 1 we describe nonparametric regression in general terms and we provide
formulas for the Kernel method.

Härdle (1990), Hastie and Tibshirani (1990), and Scott (1992) provide other

3 For further discussion of parametric versus nonparametric regression models, see H¨ardle (1990,
pp. 3-6), and Powell (1994, pp. 2444-7).

4 In parametric estimation, one desires maximum variance and minimum covariances for the
predictors, under the implicit assumption that the functional form is known. For nonparametric
estimation, assuming that one is equally interested in the effects of all possible combinations of values,
one desires uniformly distributed values for the predictors, not maximum variances.
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nonparametric estimators, such as thek-nearest neighbor estimator, cubic smoothing
splines and orthogonal series estimators. H¨ardle (1990, pp. 77-88) shows that
based on a finite-sample simulation, different methods yield essentially the same
curves. Importantly, the semiparametric model we propose below requires the Kernel
method.

3.4 Semiparametric approach

Our primary interest is in own- and cross-item deal effects, so we use a
semiparametric approach that has the advantage of nonparametric regression
(flexibility) for the deal variables, and the advantage of parametric regression
(efficiency) for all other variables. We employ the semiparametric (semilinear) model
proposed by Robinson (1988). We express sales as the sum of a nonparametric
function of discount variables and a linear function of other predictors (almost all
indicator variables). The indicator variables represent feature and display activities,
special pack promotions, weekly effects and store effects.

The specification of the semiparametric regression model for the estimation of the
deal effect curve is based on the well-known Scan*Pro model (Blattberg and Neslin
1990, pp. 369-70; Foekens, Leeflang, and Wittink 1994). In Scan*Pro, the criterion
variable is log unit sales (instead of unit sales) to accommodate multiplicative
effects for the predictor variables (which applies to the semiparametric model in its
parametric part). The price variables are log price indices. The price index is the
ratio of actual price for an item relative to its regular price. Price indices less than
one represent temporary price cuts. The usage of price indices allows us to isolate
the deal effects and it enhances the comparability of (deal) effects across items and
product categories.

We do not include regular prices as predictors in our model. The regular prices tend
to be collinear with store indicator variables, because they vary especially across
stores. Over time, almost all changes in regular prices occur in the same week(s)
in all stores within each chain we use for analysis. Therefore, the weekly indicator
variables capture such effects adequately, and there is no missing variable bias5 due
to the exclusion of regular prices.

5 To study this conjecture we also included regular price effects in all three models for all three
product categories. The estimation results showed that there were no noticeable changes in the shapes
of the deal effect curves. The fit- and predictive validity statistics improved slightly, but the relative
performances of the models stayed the same. The estimated regular price elasticities, however, had
wrong signs and unexpected magnitudes in some cases as a result of a high degree of multicollinearity.
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For itemk, k = 1, . . . , J , the specification for the semiparametric model is:

ln Sik,t = m(ln(PIi1,t ), ln(PIi2,t ), . . . , ln(PIiJ,t )) +∑
j

∑
l

γjklIij l,tαikSi + ξtkWt + uik,t (1)

where: Sik,t is unit sales of itemk in storei, i = 1, . . . , n, in weekt,

t = 1, . . . , T ;
m(.) is a nonparametric function;

PIij,t is the the price index (ratio of actual to regular price) of

item j in storei in weekt; j = 1, . . . , J ;
Iij l,t is an indicator variable capturing usage (=1) or nonusage

(=0) of feature-only(l=1), display-only(l=2), feature and

display(l=3) and bonus packs(l=4) of itemj in storei

in weekt, if applicable;
Si is a store indicator variable; = 1 if observation is from storei,

= 0 otherwise;

Wt is a weekly indicator variable; = 1 if observation is from

weekt, = 0 otherwise;
γjkl is the effect of promotionl for item j on the sales of itemk;
αik andξtk are store intercepts for storei, item k, and week

intercepts for weekt, item k, respectively;

uik,t is a disturbance term for itemk in storei in weekt.

Equation (1) is fully flexible as far as the main effects of the predictors are concerned,
since the continuous predictors (price indices) are modeled nonparametrically. It also
includes flexible interaction effects between the price index variables of different
items. We discuss the three-step estimation of model (1) in Appendix 2. We describe
the specific choices of the Kernel and the bandwidth parameter in Appendix 3, where
we also explain the construction of confidence intervals for the estimated deal effect
curves.

3.5 Benchmark parametric models

One parametric benchmark we use is AC Nielsen’s Scan*Pro model for promotional
effects. Wittink et al. (1988) developed this model for commercial purposes, and it
and its variants have been used by AC Nielsen in over 2000 different commercial
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applications in North America, Europe and Asia. We use the following specification:

ln Sik,t =
J∑

j=1

βjk ln(PIij,t ) +
∑

j

∑
l

γ ′
jklIij l,t + α′

ikSi + ξ ′
tkWt + u′

ik,t (2)

for t = 1, . . . , T andi = 1, . . . , n. The variables have the same definitions as in (1).
The only difference from model (1) is the specification of deal effects. In (2)βjk is
the (constant) elasticity of the sales of itemk with respect to a price discount of item
j . For further details see Blattberg and Neslin (1990, pp. 369-70); Foekens, Leeflang,
and Wittink (1994); and Gupta et al. (1996).

The second parametric benchmark model we use is based on Blattberg and
Wisniewski’s (1989, equation (5.1)) model. We adapt their model by excluding
regular prices. The Blattberg and Wisniewski model (B&W model) differs from
Scan*Pro in the type of nonlinearities assumed for own- and cross-brand deal effects:

ln Sik,t = ηkk(1 − PIkk,t ) +
J∑

j 6=k

ηjk/PIij,t +
∑

j

∑
l

γ ′′
jklIij l,t + α′′

ikSi + ξ ′′
tkWt + u′′

ik,t . (3)

We estimate equations (2) and (3) by ordinary least squares.

4. Data description

We apply the models to two American and one Dutch weekly store-level scanner
data sets. The data sets are described in Tables 4.1-4.3. All data sets are from stores
belonging to one chain. It is worth noting that the percent of observations with a price
promotion is very high in the American data (more than 29 percent for each item).
The Dutch data show no price promotions for two items, and less than ten percent of
the observations for the other two items.

We pool data across stores of a given chain, and use the first half of the weekly
observations for estimation, leaving an equal number for validation. Importantly,
promotional and other market conditions can change systematically over time, and
such changes allow the predictive validities to show which model truly captures the
deal effect curves best.

The first American data set, which is from AC Nielsen, contains the three largest
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national brands in the 6.5 oz. canned tuna fish product category (Table 4.1). All items
have a substantial amount of variation in the price discount levels. We have 104 weeks
of data for each of the 28 stores of one supermarket chain in a metropolitan area
which generates an estimation sample of 1456 observations. Each item is discounted
in more than 400 observations in the estimation samples.

Table 4.1: Description of American tuna data set
Number of stores 28
Weeks per store 104
Pooled sample size 2912
Estimation sample size 1456
Validation sample size 1456
Unit measure 6.5 oz.
Percentage of total category 74%
Item number 1 2 3
Brand name A B C

Average regular unit price (US$) 0.86 0.87 0.86
Purchase share (%) 41 37 22
Price promotion obs. (%) 42 31 31
Average price discount (%) 26 25 26

The second American data set is from an unnamed source (third party). We have data
on three beverage items for each of the largest two brands (Table 4.2). To reduce the
curse of dimensionality we specify for each item’s sales the three own-item effects
nonparametrically, and the three cross-item effects parametrically.6 We have 117
weekly observations at maximum for 151 stores. Since some items were unavailable
in the first part of the data, we use only the store-week observations in which all
six items were available. The minimum number of times an item is discounted in
estimation is 800.

The Dutch data set (from AC Nielsen) is on the four largest items of a packaged
food product (Table 4.3). Only items 3 and 4 (both brandB) have been offered at
a discount. Therefore, only the price indices of these two items are included in the
nonparametric part of the semiparametric model for all four items. For this product
category we have 144 weekly observations for almost all 48 stores in a national
sample from one large supermarket chain. The estimation sample contains 3440
observations, including 274 with a discount for item 3, and 238 with a discount for
item 4.

6 This split is based on a preliminary parametric analysis which showed that the average cross-deal
elasticity is far greater within than across brands.
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Table 4.2: Description of American beverage product data set
Number of stores 151
Weeks per store 117
Pooled sample size 5718
Estimation sample size 2890
Validation sample size 2828
Unit measure 12 oz.
Percentage of total category 46%
Item number 1 2 3 4 5 6
Brand name A A A B B B

Average regular unit price (US$) 0.60 0.58 0.61 0.59 0.58 0.61
Purchase share (%) 14 26 12 13 23 13
Price promotion obs. (%) 37 29 30 30 36 35
Average price discount (%) 12 10 9 13 9 9

We focus on one item at a time using both cross sectional and time series variation.
To see whether the time series variation is similar across stores, we checked the
variation in magnitudes of price discountswithin stores. For every item in each
product category, we split the observations with own-item price indices less than
one into three equally sized intervals: lowest, medium, and highest. For each of
these intervals, we computed the percentage of stores that offered price discounts.
For tuna the average percentage across intervals and across items is 95 percent. For
the American beverage product it is 76 percent. For the Dutch food category all stores
offered price discounts in all three intervals for items 3 and 4 (100 percent). Thus, the
nonparametric estimation of deal effect curves will not just reflect average differences
in deal magnitudes between stores.

5. Results

In this section we first report fit- and predictive validity statistics for the
semiparametric model (1) and the parametric models (2) and (3).7 We then show
the nature of the deal effect curves.

7 A complete overview of the estimation results is available from the first author on request.
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Table 4.3: Description of Dutch food product data set
Number of stores 48
Weeks per store 144
Pooled sample size 6884
Estimation sample size 3440
Validation sample size 3444
Unit measure 1 kg.
Percentage of total category 72%
Item number 1a 2a 3 4
Brand name A A B B

Average regular unit price (Dfl.) 7.15 7.07 6.26 6.13
Purchase share (%) 27 26 21 26
Price promotion obs. (%) 0.0 0.0 7.1 6.8
Average price discount (%) − − 13 18
a This item’s deal effect is not modeled at all, because of the absence of discounts for this item.

Comparison of fit and predictive validity

To obtain fit- and predictive validity statistics, we estimate unit sales, in the estimation
sample, for model (1) as follows:

Ŝik,t = exp(m̂(ln(PIi1,t ), ln(PIi2,t ), . . . , ln(PIiJ,t )) +∑
j

∑
l

γ̂jklIij l,t + α̂ikSi + ξ̂tkWt + 1

2
σ̂ 2

ik,t ) (4)

t = 1, . . . , T andi = 1, . . . , n.

The term1
2σ̂

2
ik,t , whereσ̂ 2

ik,t is the residual variance, is included to minimize the bias
in the conditional mean predictions due to estimation in the log space (Goldberger
1968). We obtainσ̂ 2

ik,t by the nonparametric estimate forE((ln S)2
ik,t |Xik,t ) −

{E(ln Sik,t |Xik,t )}2, whereXik,t captures the values of the predictor variables relevant
for item k in storei in week t . The unit sales estimates for models (2) and (3) are
obtained analogously, except that we use an OLS-based homoscedasticσ̂ 2

k for the
bias reduction. The validation sample estimates are obtained in a similar way.

5.1 Fit

We report the fit of the three models in the estimation sample, as measured by the
weighted average Mean Squared Error in sales (MSE), in Tables 5.1-5.3. For tuna,
the weighted (by squared purchase share) average MSE is 14.5 percent lower for
the semiparametric model than for Scan*Pro, and 12.6 percent lower than the B&W
model (Table 5.1). The beverage product has average gains of 17.6 and 18.6 percent
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(Table 5.2), while the Dutch food product shows average gains of 3.4 and 3.5 percent
respectively (Table 5.3).

Table 5.1: Tuna data: fit and predictive validitya statistics for semiparametric and
parametric models

Difference from
Semiparametric Scan*Pro B&W

Fit statistic model (1) model (2) model (3)
Estimation sample
MSE all observations 27694 –14.5% –12.6%
MSE own-price cut observations 65544 –17.8% –16.7%
Validation sample
MSE all observations 55654 –47.9% –19.0%
Squared bias all observations 398 –82.6% –72.9%
Variance all observations 55256 –47.2% –17.9%
Validation sample
MSE own-price cut observations 112974 –51.9% –22.2%
Squared bias own-price cut observations 890 –88.8% –80.6%
Variance own-price cut observations 112084 –50.6% –20.3%
a The validation sample results for all models are negatively affected by the omission of the weekly indicator variable
effects in the predicted values. We ignored these variables because seasonal effects can change from one week to
another over time (e.g., Easter may occur in a differently sequenced weeks) and missing variable effects are very
unlikely to apply to the same week (e.g., regular price changes) in multiple years. This omission should not, however,
affect the relative performances of alternative models.

Table 5.2: Beverage data: fit and predictive validitya statistics for semiparametric and
parametric models

Difference from
Semiparametric Scan*Pro B&W

Fit statistic model (1) model (2) model (3)
Estimation sample
MSE all observations 1764.0 –17.6% –18.6%
MSE own-price cut observations 4722.1 –20.4% –22.0%
Validation sample
MSE all observations 4967.5 –9.1% –9.8%
Squared bias all observations 536.0 –20.8% –23.8%
Variance all observations 4431.6 –7.4% –7.8%
Validation sample
MSE own-price cut observations 7527.8 –11.6% –10.6%
Squared bias own-price cut observations 661.7 –17.8% –24.8%
Variance own-price cut observations 6866.1 –11.0% –9.0%
a See footnote a Table 5.1.
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Table 5.3: Dutch food data: fit and predictive validitya statistics for semiparametric
and parametric models

Difference from
Semiparametric Scan*Pro B&W

Fit statistic model (1) model (2) model (3)
Estimation sample
MSE all observations 28.5 –3.4% –3.5%
MSE own-price cut observations 148.5 –8.4% –8.7%
Validation sample
MSE all observations 54.0 –11.1% –12.0%
Squared bias all observations 7.1 –9.0% –10.3%
Variance all observations 47.0 –11.4% –12.2%
Validation sample
MSE own-price cut observations 378.2 –21.0% –22.4%
Squared bias own-price cut observations 50.0 –40.7% –44.2%
Variance own-price cut observations 328.2 –16.8% –17.5%
a See footnote a Table 5.1.

These results indicate that the greater flexibility in nonlinear- and interaction effects
(for the deal variables) that is the hallmark of nonparametric estimation improves
the fit to the sample data relative to both parametric models. The smaller percentage
improvements for the Dutch food product are consistent with the Dutch data having
fewer observations with temporary discounts.

The benefit of the semiparametric model should be concentrated in observations with
discounts. To examine this, we select the data with own-item discounts. The unit sales
of these observations fitted by the semiparametric model reflect both the flexible
nonlinearity of the own-item deal effect and the interaction with cross-item deals
when other items are discounted at the same time. Indeed, we obtain stronger relative
gains in fit in all three categories for these observations. For tuna the improvement
in MSE for the semiparametric model relative to Scan*Pro is 17.8 percent and
relative to B&W it is 16.7 percent (Table 5.1). For the beverage product the relative
improvements are 20.4 and 22.0 percent (Table 5.2), and for the Dutch food category
these are 8.4 and 8.7 percent (Table 5.3), relative to Scan*Pro and B&W respectively.
We note that the average MSE is much higher for these observations than for
the entire sample. This reflects the much greater variance in sales under promoted
conditions than under non-promoted conditions.
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5.2 Predictive validity

Since improvement in fit is virtually guaranteed with more flexible methods, a
real test consists of a comparison of performances in the validation samples. We
expect a superior description of deal effects from the semiparametric model but these
effects will have greater variance, relative to parametric models. Thus, there is no
guarantee that the reduction in bias (due to greater flexibility) is greater than the
possible increase in variance (due to reduced efficiency). We show MSE results for
the validation sample in the middle panels of Tables 5.1, 5.2, and 5.3. In all cases,
these values are much higher in the validation than in the estimation samples (in
part because the weekly indicator variables’ effects are not used). Importantly, the
weighted improvement for the semiparametric model over the parametric models is
a higher percentage in validation than in estimation for two of the categories. The
most dramatic difference occurs for tuna, relative to Scan*Pro (47.9 percent), and
with a respectable improvement of 19.0 percent relative to B&W (Table 5.1). The
relative differences are 9.1 and 9.8 percent in Table 5.2 and 11.1 and 12.0 percent
in Table 5.3. The improvements in weighted average validation sample MSE values
for the semiparametric model are significant, based on paired t-tests (p < .01 for all
categories).

To examine the trade-off between bias and variance directly, we decomposed the
validation sample mean squared error (MSE) into squared bias and variance. For
tuna, the reduction in MSE relative to the Scan*Pro model consists of a 82.6 percent
reduction in squared bias and a 47.2 percent reduction in variance (middle panel
Table 5.1). Relative to the B&W model the reductions in squared bias and variance
are 72.9 and 17.9 percent. The beverage data also show larger relative improvements
in squared bias than in variance: 20.8 and 7.4 percent versus Scan*Pro and 23.8 and
7.8 percent relative to the B&W model (middle panel Table 5.2). However, in the
Dutch data the reduction relative to Scan*Pro consists of only a 9.0 percent decrease
in squared bias and a higher, 11.4 percent, decrease in variance (middle panel Table
5.3). The percent reductions relative to the B&W model are 10.3 and 12.2.

We obtain even more striking reductions in MSE, squared bias and variance when
we isolate the own-item price cut observations in the validation samples (lower
panels of Tables 5.1, 5.2, and 5.3). The reductions in weighted average MSE for
the semiparametric model relative to the Scan*Pro and B&W model are 51.9 and
22.2 percent for tuna, 11.6 and 10.6 percent for the beverage data, and 21.0 and
22.4 percent for the Dutch food category. The decompositions into squared bias and
variance for these MSE’s show in all cases that the squared bias is reduced to a more
substantial extent than the variance is.

From these results it is clear that the semiparametric model outperforms both
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parametric benchmarks in all three product categories. As expected the improvement
is especially noticeable in the observations with own-item discounts. In addition, the
relative improvement tends to be greater in the bias than in the variance component
of MSE. This is consistent with the notion that the semiparametric model captures
complex patterns better. However, since it does this with lower efficiency, one could
imagine that the variance component favors the parametric benchmarks. The reason
this is not the case is that the bias is computed across all price discount observations
and not separately for, say, discount intervals. Thus, the variance component also
reflects some of the advantages in the semiparametric model of capturing complex
deal effect curves. We use graphical representations of the estimated deal effect
curves to demonstrate the nature of systematic differences.

5.3 Deal effect curves

We show deal effects from the semiparametric model, and contrast these curves with
the corresponding ones for the best performing parametric benchmark.

5.3.1 Own-item deal effect curves

We show nonparametrically estimated own-item deal effect curves in Figures 5.1-5.3,
with own-item price indices on the x-axis and predicted sales on the y-axis. For the
x-axis we generated 300 values, equally spaced between the lowest and highest price
indices observed in the estimation sample. For each of these 300 price indices we
estimated the log of the sales (for an average week and an average store) as outlined
in Appendix 2, while fixing the other items’ price indices at one. The transformation
to sales included the error variance adjustment shown in (4).

We show the own-item deal effect curves for the three tuna items in Figure 5.1, for
the six beverage items in Figure 5.2, and for Dutch food items 3 and 4 in Figure 5.3.
The solid lines in these figures represent the nonparametric deal effect curves from
model (1). The dotted lines around the solid line represent the lower and upper 95
percent pointwise confidence bounds (see equation (20) in Appendix 3). The dashed
lines represent deal effect curves for the parametric benchmark model (2) or (3). For
tuna we used the B&W model (see Table 5.1), and we used the the Scan*Pro model
in the other two cases (Tables 5.2 and 5.3)

The differences between the nonparametric- and parametric deal curves in Figures
5.1-5.3 are noteworthy in all product categories. A reverse-S shape is visible in almost
all nonparametric own-item deal effect curves, indicating threshold- and saturation
levels, whereas the parametric model yields exponential deal effect curves. The
parametric curves often overstate the effect for small discounts (by omitting threshold
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Figure 5.1: Tuna data: own-item deal effect curvesa

Item 1 Item 2

Item 3

a solid line = nonparametric estimate, dashed line = parametric B&W estimate, dotted lines = nonparametric
confidence bounds (95%)

effects), understate the effect for intermediate discounts, and overstate the effect
for the largest discounts (by omitting saturation effects). Such differences are best
illustrated for item 3 in the Dutch food category. We note that the deal effect curves
for beverage item 6 indicate a slight decrease in sales toward the lower limit of the
price index range (Figure 5.3). This nonmonotonicity may be due to chance, however,
as indicated by sufficiently wide confidence intervals.

5.3.2 Cross-item deal effect curves

We show selected cross-item deal effect curves in Figures 5.4-5.6. We base our
selection on (1) the representativeness of the selected curve for all cross-item deal
effect curves and (2) the significance of the corresponding cross-item effect in the
parametric benchmark model used in the figures. The cross-item deal effect curves
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Figure 5.2: Beverage data: own-item deal effect curvesa

Item 1 Item 2

Item 3 Item 4

Item 5 Item 6

a solid line = nonparametric estimate, dashed line = parametric B&W estimate, dotted lines = nonparametric
confidence bounds (95%)

were obtained by varying the values of one cross-price index, while setting the
own-item and the other cross-item price indices equal to one.
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Figure 5.3: Dutch food data: own-item deal effect curvesa

Item 3 Item 4

a solid line = nonparametric estimate, dashed line = parametric B&W estimate, dotted lines = nonparametric
confidence bounds (95%)

Figure 5.4: Tuna data: cross-item deal effect curvesa

PD 3b → Sc 1 PD 2→ S 3

a solid line = nonparametric estimate, dashed line = parametric B&W estimate, dotted lines = nonparametric
confidence bounds (95%)
b,c PD = Price Discount, S = Sales
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Figure 5.5: Beverage data: cross-item deal effect curvesa

PDb 3 → Sc 2 PD 4→ S 5

a solid line = nonparametric estimate, dashed line = parametric B&W estimate, dotted lines = nonparametric
confidence bounds (95%)
b,c PD = Price Discount, S = Sales

Figure 5.6: Dutch food data: cross-item deal effect curvesa

PDb 3 → Sc 2 PD 4→ S 3

a solid line = nonparametric estimate, dashed line = parametric B&W estimate, dotted lines = nonparametric
confidence bounds (95%)
b,c PD = Price Discount, S = Sales

The cross-item deal effects tend to show S-shapes in all three product categories.
For most cross effects shown in Figures 5.4-5.6, the nonparametric curve is above
the parametric one for small and large discounts. Interestingly, the largeincreasein
sales of beverage item 3 with own-item price indices of 0.80 and lower (Figure 5.2),
corresponds to a largedecreasein sales of item 2 for item 3 price indices of 0.80 and
lower (Figure 5.5).8

8 We could not test Sethuraman’s (1996) theory in our data sets. For instance, the prices are almost
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5.3.3 Key features

We summarize key characteristics of the nonparametric own- and cross-item deal
effects, for which the parametric model has significant effects, in Tables 5.4-5.6.
For tuna fish, the semiparametric model shows a threshold level for all own- and
cross-item effects at about 10 percent (Table 5.4). The saturation level of the
own-item effect is around 40 percent (although there is little evidence of saturation
effects for items 1 and 3). The cross-item effects show saturation levels varying
from 20 to 45 percent. The beverage items show a mixture of (reverse) S-shaped-
and (reverse-) L-shaped own-item- and cross-item deal effect curves (Table 5.5). For
the Dutch food items, the own-item effect thresholds are 5 and 10 percent, and the
saturation levels are 15 and 25 percent (Table 5.6). The cross-effects show multiple
shapes.

Table 5.4: Tuna data: description of deal effect curvesa

Shape Threshold Saturation
levelb levelb

own-item deal effect curves
PD 1→ S 1 convex / (reverse S) 10% (45%)c

PD 2→ S 2 reverse-S 10% 40%
PD 3→ S 3 convex / (reverse S) 10% (40%)

cross-item deal effect curves
PD 2→ S 1 S + additional decrease from 40% 10% 25%
PD 3→ S 1 S 10% 30%
PD 1→ S 2 S + additional decrease from 40% 10% 35%
PD 3→ S 2 S 10% 40%
PD 1→ S 3 S 10% 45%
PD 2→ S 3 S + additional decrease from 40% 10% 20%
a only those with significant parametric deal effects
b rounded to the nearest multiple of 5%
c numbers in parentheses indicate uncertainty about the existence of a saturation level

5.3.4 Confidence bounds

The width of the confidence bounds varies considerably between items and
categories. This width is determined by at least three factors: (1) the number of
price discount observations, (2) the distribution of price discounts, and (3) the
dimensionality of the nonparametric estimation problem. To illustrate, consider the
own-item deal effect curves for tuna fish items 1 and 3 (Figure 5.1). For these items,
the average discount percent is the same (see Table 4.1), and so is the dimensionality.

equal across items in two of the three data sets (tuna and beverage). In the third data set only the two
items with lower regular prices engage in discounting (Dutch food).
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Table 5.5: Beverage data: description of deal effect curvesa

Shape Threshold Saturation
levelb levelb

own-item deal effect curves
PD 1→ S 1 linear none none
PD 2→ S 2 L (kink at 30%) none 35%
PD 3→ S 3 L (kink at 20%) none 25%
PD 4→ S 4 reverse S 5% 25%
PD 5→ S 5 reverse S 5% 25%
PD 6→ S 6 reverse S 5% 15%

cross-item deal effect curves
PD 2→ S 1 S 5% 25%
PD 1→ S 2 S/linear (5%)c 20%)c

PD 3→ S 2 reverse-L (kink at 20%) none none
PD 1→ S 3 S none 15%
PD 2→ S 3 S 5% 25%
PD 4→ S 5 S 5% 20%
PD 6→ S 5 reverse-L (kink at 15%) none none
PD 4→ S 6 reverse-L (kink at 10% none none
a only those with significant parametric deal effects
b rounded to the nearest multiple of 5%
c numbers in parentheses indicate uncertainty about the existence of a threshold- or saturation level

Item 1, however, has a discount 42 percent of the time versus 31 percent for item 3
(about 610 versus 450 observations). Thus, item 1 has somewhat tighter confidence
bounds for the own-item deal effect curve. The impact of the second factor is apparent
within a given curve. For example, tuna fish item 1 has a widening of the bounds
for its deal effect when the price index goes below 0.70. This reflects the reduced
number of observations at lower price indices for this item in the sample. We do not
have sufficient variation in the dimensionality to show how it affects the confidence
bounds.

5.4 Interaction effects

We illustrate two types of interaction effects for tuna only: between price discounts
of different items, and between own-item price discount and own-item promotion
signals (feature-only, display-only, and feature plus display). For the latter interaction
effects, we use separate analyses.

5.4.1 Interaction effects between price discounts of different items

The nonparametric part of equation (1) accommodates flexible interaction effects
between price discounts of different items, sincem(.) is a function of each item’s
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Table 5.6: Dutch food data: description of deal effect curvesa

Shape Threshold Saturation
levelb levelb

own-item deal effect curves
PD 3→ S 3 reverse S 5% 15%
PD 4→ S 4 reverse S 10% 25%

cross-item deal effect curves
PD 3→ S 1 linear none none
PD 3→ S 2 S 5% 10%
PD 4→ S 3 concave 10% 30%
PD 3→ S 4 S 5% 10%
a only those with significant parametric deal effects
b rounded to the nearest multiple of 5%

price index. Analogous to the two-dimensional own-item and cross-item deal effect
curves (Figures 5.1-5.6), we can construct a three-dimensional deal effect surface. To
obtain a reliable surface we need observations with a price discount for two (or more)
items simultaneously. Out of the 1456 tuna observations, 114 represent situations in
which items 1 and 2 both have price discounts.

We show two deal effect surfaces in Figure 5.7-5.8. In Figure 5.7 the vertical axis
represents the predicted sales volume of item 1. The other two axes represent the
price indices of items 1 and item 2 respectively. The top part of the three-dimensional
surface (the curve A-B) is item 1’s own-item deal effect, also shown in Figure 5.1,
when the other two items both have a price index of one. The figure shows that
this curve tends to decrease in magnitude with a decrease in item 2’s price index.
But, while there is little evidence of saturation when item 2’s index equals one,
saturation is very clear when item 2’s index is about 0.85 or less. Thus, the interaction
effect is highly nonlinear which would be very difficult to model parametrically.
Substantively, if item 1 is promoted with a deep discount (when its price index is
≤ 0.75), item 2 can reduce item 1’s sales gain considerably if it also has a price index
is ≤ 0.75.

We show the interaction effect for the same price indices on item 2’s sales in Figure
5.8. Here, the curve A-B represents item 2’s own-item deal effect, when items 1
and 3 have a price index of one (see Figure 5.1). This curve also tends to decrease
in magnitude when the price index of item 1 decreases, but the decrease is not as
dramatic as it is in Figure 5.7. The own-item deal effect for item 2 appears to be less
sensitive to item 1’s discounting than vice versa. Thus, the interaction effects appear
to be asymmetric.
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Figure 5.7: 3D tuna deal effect surface for item 1

5.4.2 Interaction effects between price discounts and promotion signals

Promotion signals such as feature and display have strong effects on item sales
(Blattberg, Briesch, and Fox 1995, p. G125). However, we know little about
the synergies between feature advertising, displays, and price discounts. Inman,
McAlister, and Hoyer (1990) and Mayhew and Winer (1992) suggest that “low need
for cognition” consumers react to the simple presence of a promotion signal whether
or not the price of the promotion is reduced. If these consumers form a large group,
the deal effect curve for price discounts accompanied by a promotion signal will be
shifted upward from the deal effect curve for price discounts without a promotion
signal, but show less price sensitivity.

The semiparametric model (1) allows for flexible interaction effects between own-
and cross-item price indices (such as those illustrated in Figures 5.7 and 5.8)
but not between own-item price index and own-item promotion signals. However,
the methodology can be adapted to study these interactions flexibly as well.
To accomplish this, we split the sample of 1456 tuna observations into four
subsamples (Lee 1996, p. 158). We report interaction effects between price discounts
and promotion signals for tuna item 1 only, for which the subsample sizes are:
feature-only 73, display-only 103, combined use of feature and display 263, and
neither feature nor display 1017.

We estimate a separate own-item deal effect curve for each subsample, analogous
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Figure 5.8: 3D tuna deal effect surface for item 2

to model (1), except for two differences: (1) the instrument used to construct a
subsample is excluded from the parametric part, and (2) all weekly indicators are
omitted to reduce collinearity.

We show in Figure 5.9 the own-item deal effect curves for item 1 under four
conditions. Figure 5.9.a shows the deal effect when there is no promotion signal
(neither feature, nor display). The shape of this curve is similar to the one in Figure
5.1. A comparison of Figures 5.9.b and 5.9.c suggests that at the rightmost point
(no discount) the effect of feature-only is greater than that of display-only. However,
the curves show greater deal sensitivity with display than with feature. For example,
the two curves intersect at a discount of 20 percent, after which the deal effect with
display exceeds the effect with feature. Thus, feature is more effective (than display)
at no/low discount, while display is more effective at high discount. Such a cross-over
interaction is very difficult to anticipate and almost impossible to diagnose from the
residuals of parametric models.

The “feature-only” deal effect curve (Figure 5.9.b) is rather flat. This pattern is
consistent with the idea that the response to feature is especially by “need for
cognition” consumers (Inman, McAlister, and Hoyer 1990; Mayhew and Winer 1992)
who do not pay much attention to the actual price. Both in an absolute sense and in a
relative sense all three other deal curves show (much) greater sensitivity to discount
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Figure 5.9: Interaction effects between price discounts and promotion signals for tuna
item 1

(a) (b)

(c) (d)

levels.9 For example, Figure 5.9.b shows that average sales is almost 400 when the
item is featured and the price index equals 1.0. At an index less than 0.55, average
sales is less than 800. On the other hand, Figure 5.9.c has average sales of 200
when the item is displayed and the price index is 1.0. But it is about 1100 when the

9 This pattern suggests also that the semiparametric model (1) for this item is incomplete. For
example, here the display-only sales multiplier estimate is 1.79, the feature-only multiplier is 2.19,
and the multiplier for the combined use of feature and display is 3.53 (not shown). This suggests that
feature provides a greater sales impact than display at all discount levels. Thus, the parametric results
for the multipliers obtained from semiparametric model (1) only represent (weighted) average effects.
Figure 5.9 suggests the display-only effect is often larger than the feature-only effect. The reason why
feature has a higher constant multiplier in equation (1) is due to the distribution of the price indices for
both promotion signals. Of the 103 display-only observations, 44 concern price indices equal to one,
whereas of the 73 feature-only observations, just eight concern price indices equal to one. Figure 5.9
shows that for a price index of one, the curve for display-only is lower than the curve for feature-only,
and this point is weighted far more heavily for display-only in the estimation of model (1).
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index is below 0.55. Thus the display-only deal effect shows both a larger relative
increase (5.5 versus 2.0) and a larger absolute increase (900 versus 400). Figure
5.9 shows there is a substantively meaningful cross-over interaction effect between
these variables. Even Figure 5.9.a shows more price sensitivity than 4b; with neither
feature, nor display, sales increase from 100 (at a price index of 1.0) to 800 (index
below 0.55), for a relative increase of 8.0, and an absolute increase of 700.

6. Conclusions

The key contributions of this research are the following. We provide empirical
support for threshold levels and saturation points: almost all own- and cross-item
deal effect curves indicate the existence of threshold effects, and most curves indicate
saturation effects as well. We obtain this support with a methodology that can be
adapted to flexibly estimate promotion signal effects. Indeed we obtain a cross-over
interaction in the deal effect between display and feature advertising. For the tuna
item, feature has a greater effect at low discounts, while display has the stronger
effect at high discounts.

Our semiparametric model accommodates full flexibility for the deal effect curves
while it incorporates the effects of other predictors parametrically. This approach
addresses Rust’s (1988) call for methods to address the dimensionality issue. It
is easy to use, and it provides users with a multiple-regression-like analysis that
accommodates nonlinearity and interactions in a flexible manner in the nonparametric
part. We accommodate interaction effects, both between price discounts of different
items and between price discounts of one item and the separate or combined use of
feature and display for the same item. The latter interactions were estimated through
a separate data partitioning scheme.

The comparison of our semiparametric model with benchmark parametric models
showed that (1) the parametric model generally overstates the effects of the smallest
and largest discounts and understates the effects of intermediate discounts; (2) the
semiparametric model has a better fit for all items and better average forecast
performance in each of the three categories; and (3) the bias reduction due to the
semiparametric model is relatively more substantial than the variance reduction.

Once a flexible deal effect curve has been identified with our method one could try
to accommodate the specific nonlinearities found by a nonlinear parametric model.
With new data one could also perform standard specification tests. However, this
can be done only if the true (deal) curves belong to a parametric family (Briesch,
Chintagunta, and Matzkin 1997). Our results also show complex interaction effects
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which further decrease the potential for a parametric specification to fit the data. In
addition, as data become more numerous, the flexibility afforded by nonparametric
and semiparametric estimation will become more valuable.

Further research is needed to determine, given the curse of dimensionality, whether
the flexibility should be concentrated in own- and cross-deal effects, as in model
(1), or in separate own-deal effects for alternative promotion signals, as in Figure
5.9. Another fruitful area, we believe, is the decomposition of the promotional sales
effect separately for different price discount levels. Incremental volume for an item
at a given store due to a promotion may come from at least four sources: (1) other
retailers (store switching), (2) other items (item or brand switching), (3) purchase
and/or quantity acceleration (stockpiling), and (4) increased consumption (Blattberg
and Neslin 1990, p. 353). The percentage contribution of each of these sources to
a sales effect may well depend on the discount level. Indeed, the shape of the deal
effect curve should depend on the nature and amount of the contribution of each of
these sources at different price cut levels.
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Appendix 1: Kernel method

10Considerq = p + 1 economic variables(Y,X′) whereY is the criterion variable
andX is ap × 1 vector of predictors. Theseq variables are completely determined
by their unknown joint densityf (y, x(1), x(2), . . . , x(p)) = f (y, x) at the pointsy, x.
Then the nonparametric regression model can be expressed as:

Y = m(x) + U, (5)

wherem(x) = E(Y |X = x) provided E|Y | < ∞, andU represent errors. The term
nonparametric is used becausem(x) has no parametric functional form.

If we have data(yi, x
′
i ) (i = 1, . . . , N), wherexi is ap × 1 vector of variables and

yi is a scalar, then from (5)

yi = m(xi) + ui, (6)

where the error termui has the properties E(ui|xi) = 0 and E(u2
i |xi) = σ 2(xi). We

also assume that theui ’s are independent.

The aim of nonparametric estimation ofm(x) in (6) is to approximatem(x) arbitrarily
close, given a large enough sample. This can be accomplished by noting that the
estimation ofm(x) implies the estimation of the population mean ofY whenX = x.
This is given by a general class of linear nonparametric estimators, essentially the
weighted mean ofyi , as

m̂(x) =
N∑

i=1

wi(x)yi, (7)

wherewi = w(xi, x) represents the weight assigned to thei-th observationyi , which
depends on the distance ofxi from the pointx. Usually, the weight is high if the
distance is small and low if the distance is large.

A large class of nonparametric estimators contains special cases of (7). They differ
mainly with respect to the choice ofwi. For the Nadaraya (1964) and Watson (1964)
estimator the choice ofwi in m̂(·) is

wi(x) = K(
xi − x

h
)/

N∑
j=1

K(
xj − x

h
), (8)

whereK(·) is a “Kernel function”, andh the “bandwidth parameter”. The Kernel
K(·) is a continuous, bounded function which integrates to one,

∫
K(u)du = 1.

Bandwidthh controls the amount of smoothing imposed on the data: the largerh the

10 This appendix is based on Ullah and Vinod (1993).

30



smoother the curve.
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Appendix 2: Estimation procedure for semiparametric model

The estimation procedure we use is described in Lee (1996). The semiparametric
model (1) can be simplified as follows:

y = m(z) + x′β. (9)

Taking E(·|z) on (9), we obtain:

E(y|z) = m(z) + E(x|z)′β. (10)

Subtracting (10) from (9) gives:

y−E(y|z) = {x−E(x|z)}′β+u ⇔ y = E(y|z)+{x−E(x|z)}′β+u,(11)

which excludesm(z). Here the deterministic component ofy is decomposed into two
parts: one is the effect ofz on y, and the other is the effect ofx on y net of z. The
three-step estimation procedure first eliminates the influence ofx ony and determines
next the influence ofz ony:

Step 1Estimate E(y|z) and E(x|z), respectively, as:

EN(y|zi) ≡
N∑

j 6=i

K((zj − zi)/hy,1) · yj /

N∑
j 6=i

K((zj − zi)/hy,1), (12)

and

EN(x|zi) ≡
N∑

j 6=i

K((zj − zi)/hx,1) · xj /

N∑
j 6=i

K((zj − zi)/hx,1). (13)

Step 2Substitute (12) and (13) into (11) to define a new criterion variabley −
EN(y|z) and predictorsx − EN(x|z). Apply Least Squares Estimation (LSE)
to the new modely − EN(y|z) ∼= {x − EN(x|z)}′β + u to get:

bN = [
∑

i

{xi − EN(x|zi)} · {xi − EN(x|zi)}′]−1 ·

[
∑

i

{xi − EN(x|zi)} · {yi − EN(y|zi)}] (14)

The least squares estimatebN has the following asymptotic distribution
(which is used to compute standard errors):√

N(bN − β) =d N(0, A−1BA−1),

A =p AN ≡ 1

N

∑
i

{xi − EN(x|zi)} · {xi − EN(x|zi)}′,

B =p BN ≡ 1

N

∑
i

{xi − EN(x|zi)} · {xi − EN(x|zi)}′ · v2
i ,

vi ≡ {yi − EN(y|zi)} − {xi − eN(x|zi)}′bN.
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The usual intercept term in LSE disappears due to the mean subtraction. Thus
the intercept is not estimable with (14) and is absorbed inm(.). 11

Step 3The estimation ofm(z) is achieved by nonparametric regression ofỹ =
y − x′bN on z, for E(y − x′β|z) = m(z) in (10):

m̂(z) =
N∑

i=1

K(
zi − z

hy,3
)ỹi/

N∑
j=1

K(
xj − x

hy,3
). (15)

The computation time of the model varies, given bandwidth parameters, from 11
seconds (tuna), 39 seconds (Dutch food product), to 52 seconds (beverage) on a
Pentium II 266 Mhz. personal computer. The Gauss code is available from the first
author.

11 Kernel estimators allow for heteroscedastic errors (Lee 1996, p. 151), i.e. the variance of the error
may depend on the predictors. The Kernel method (like the standard regression model) does not allow
for errors to depend on the predictors due to endogeneity problems.
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Appendix 3: Model operationalizations for semiparametric model

We address three model operationalizations: the choice of the Kernel, the choice of
the bandwidth parameter, and the construction of confidence intervals.

Kernel choice

For a nonparametric model the Kernel functionK(z) must be specified. It turns out
that for large samples it makes very little difference what the Kernel function is
(Silverman 1986). Often it can be chosen on the basis of tractability or convenience.
Like Rust (1988) and Abe (1995) we use the multivariate standard normal distribution
(with independent components):

K(z) = K(z1, . . . , zk) = (2π)− 1
2k

k∏
i=1

e− 1
2z2

i . (16)

Bandwidth parameter choice

The bandwidth parameterh (see equation (8)) determines how fast the value of
K(.) falls as the absolute value of the argument increases (Abe 1995). It affects the
smoothness of the resulting response function, and its value involves the tradeoff
between bias and variance of the estimator. The value ofh can be determined on the
basis of a criterion such as the minimization of the mean squared error.12

We distinguish three different bandwidth selection techniques:

• Lee’s rule of thumb.An approximately mean integrated square error
minimizing h (see Lee 1996, p. 154) is given byh = N−1/(k+4).

• Least squares cross validation (LSXV).Define a criterion variabley and a
predictor (k × 1) variablex, and the nonparametric regression functiony =
m(x) + u. The “leave-one-out” Kernel estimator form(xj ) (j -th observation
of x) is computed for allj = 1, . . . , N by:

m̂j (xj ) ≡
N∑

i 6=j

K((xi − xj )/h)yi/

N∑
i 6=j

K((xi − xj )/h). (17)

Thenh is chosen to minimize the cross-validation (CV) criterion (see H¨ardle
and Marron 1985):

(1/N)

N∑
j=1

{yj − m̂j (xj )}2. (18)

12 See Abe (1995, p. 306-7) for a more elaborate discussion about the choice ofh.
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Note that the “cross-validation sample” here is the estimation sample
excluding observationj .

• Subjective approach.No single value ofh can be universally regarded
as “optimal” (Abe 1995). The problem is akin to the researcher’s task
of specifying a model structure in parametric modeling. In nonparametric
regression the need to pick the bandwidth parameter involves some
arbitrariness. If the dimension ofx is small, the best way to chooseh seems
to be trial and error (Lee 1996, p. 156).

We note that the estimation procedure requires the choice ofh in two different steps.
First in the nonparametric estimation of EN(y|zi) (h defined ashy,1, see (12)) and
EN(x|zi) (h defined ashx,1, see (13)) in Step 1, and next in the nonparametric
regression ofy − x′bN on z (h defined ashy,3), i.e. the estimation ofm(z) in Step 3.

For both first-step bandwidth parameters we employed automated techniques, since
the model results appeared to be relatively insensitive to this bandwidth parameter.
Forhy,1 we applied the LSXV criterion. Forhx,1 we used Lee’s rule of thumb for all
regressors inx.

We varied the third-step bandwidth parameterhy,3 to determine its influence on the
deal effect curve. We first based this bandwidth parameter on the LSXV-criterion. For
some items, the resulting own-item and cross-item deal effect curves had too much
variation. To smooth those curves, we multiplied the LSXV-parameter by 1.5.

In practice, one may usek different bandwidths, sayh1, . . . , hk, because the
k regressors inz have different scales. Although the use of regressor-specific
bandwidths is more advantageous in principle, the task of choosing bandwidths
becomes quite complex (Lee 1996, p. 154). Instead, we standardized the regressors
and used one common bandwidthh for each regressor inz.13

Construction of confidence intervals

The asymptotic distribution of the estimate of the nonparametric regression function
at some pointx0 (m̂(x0)) is given by:

(Nhk)0.5{m̂(x0)−m(x0)} =d N(Asym.Bias, V (u|x0)

∫
K(z)2dz/f (x0)),(19)

where Asym. Bias is the asymptotic bias ofm̂(x0) (see Lee 1996, p. 151),V (u|x0)

is the (heteroscedastic) error variance, andf (x0) is the multivariate density of the
regressors at pointx0. As f (x0) increases, the variance decreases, since more data

13 We also standardized thex predictors for all models.
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are available form̂(x0). The estimated 95 percent (pointwise) confidence interval for
m̂(x0) is given by:

[m̂(x0) − 1.96

√
(Nhk)−1V̂ (u|x0)

̂∫
K(z)2dz/f̂ (x0)),

m̂(x0) + 1.96

√
(Nhk)−1V̂ (u|x0)

̂∫
K(z)2dz/f̂ (x0))]. (20)

In (20), V̂ (u|x0) = V (y|x0) is estimated byEN(y2|x0) − {EN(y|x0)}2, ̂∫
K(z)2dx is

approximated by Monte Carlo integration, andf̂ (x0) is obtained by nonparametric
density estimation (see Lee 1996, p. 152).

The confidence interval (20) for̂m(x0) is asymptotically valid both for the one-step
estimator of nonparametric regression models and for the three-step estimator of our
semiparametric regression model. The convergence rate of step three is much slower
than the convergence rate of steps one and two. Therefore, from an asymptotic point
of view we can consider the parameter estimate forβ as fixed in step three. As
a result, we do not account for the variance ofβ̂ in the confidence interval (20).
Specifically, steps one and two of the semiparametric estimation sequence yield a
N

1
2 consistent estimator of parameter vectorβ (Robinson 1988). Step three yields a

(Nhk)
1
2 consistent estimator form(x0). If we use Lee (1996)’s rule of thumb (p. 154)

for h, h = N−1/(k+4), the convergence rate isN
1
2

4
4+k . For allk, this convergence rate

dominates the convergence rate ofN
1
2 for β̂.
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Wedel, Michel and Peter Leeflang (1998), “A Model for the Effects of Psychological
Pricing in Gabor-Granger Price Studies,”Journal of Economic Psychology19,
237-60.

Wisniewski, Kenneth J. and Robert C. Blattberg (1983), “Response Function
Estimation Using UPC Scanner Data,”Proceedings of ORSA-TIMS Marketing
Science Conference, Zufryden, Fred S. ed.

Wittink, Dick R., Michael J. Addona, William J. Hawkes, and John C. Porter (1988),
“The Estimation, Validation, and Use of Promotional Effects Based on Scanner
Data,” Working Paper, Johnson Graduate School of Management, Cornell
University, Ithaca.

39


