
Heterogeneity and Option Pricing 
 

Simon Benninga 
Tel-Aviv University and University of Groningen 

benninga@post.tau.ac.il 

Joram Mayshar 
Hebrew University, Jerusalem, Israel 

msjoram@pluto.mscc.huji.ac.il 

 
SOM-theme E:  Financial markets and institutions 

 
ABSTRACT 

An economy with agents having constant yet heterogeneous degrees of relative risk aversion 
prices assets as though there were a single decreasing relative risk aversion “pricing 
representative” agent.  The pricing kernel has fat tails and option prices do not conform to the 
Black-Scholes formula.  Implied volatility exhibits a “smile.”  Heterogeneous beliefs about 
distribution parameters also implies non-lognormal pricing kernels with fatter tails and “over-
pricing” of out-of-the-money options.  Heterogeneity as the source of non-stationary pricing 
fits Rubinstein’s (1994) interpretation of the “over-pricing” as an indication of “crash-o-
phobia”.  Rubinstein’s term suggests that those who hold out-of-the-money put options have 
relatively high risk aversion or relatively high subjective probability assessments of low market 
outcomes.  The essence of this explanation is heterogeneity in investor attitudes towards risks 
and probability beliefs. 
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Heterogeneity and Option Pricing 
I.  Introduction 

In this paper we investigate the pricing of assets in an economy in which there are 
multiple agents with heterogeneous tastes.  The Arrow-Debreu model of general 
equilibrium under uncertainty does not restrict the heterogeneity of either the 
probability beliefs or the preferences of investors.  In contrast, in the theories of asset 
pricing that followed Lucas (1978) there typically exists a representative consumer-
investor whose preferences and  probability assessments of the economy’s stochastic 
endowment price all assets.  This representative investor is almost always assumed to 
have time additive preferences with constant relative risk aversion.  It is now well-
known that the equilibrium framework necessary to derive the Black-Scholes formula 
for options, given a proportional Brownian diffusion of the underlying payout, 
requires the existence of such a representative consumer with constant relative risk 
aversion (see Rubinstein (1976), Breeden and Litzenberger (1978),Brennan (1979), 
Stapleton and Subrahmanyam (1984), Bick (1987, 1990), and He and Leland (1993) 
).   

The assumption that all investors have identical homothetic tastes and 
identical expectations seems particularly unreasonable.1  It is well known that this 
assumption implies that all investors have identical wealth composition.  The 
empirical evidence seems to contradict this assumption:  Mankiw and Zeldes (1991), 
for example, report that families that do not own any stock account for 62% of 
disposable income.  Another a recent study finds that in 1989 the top one percent of 
wealth holders held 36.2% of the total non-human worth of United States households 
and 62.5% of the business assets and corporate stock held by households (Kennickell 
and Woodburn 1992).  In addition, while a representative-agent framework may price 
all assets, it does not explain why there exists open interest in assets with  zero net 
supply, such as the options, with investors  on both sides (short or long) of the 
market.  Some heterogeneity among investors, in either endowments, tastes or 

                                                 
1 For a recent criticism of the practice of postulating a single Αrepresentative” agent see 
Kirman (1992).  A number of recent studies have considered the case of heterogeneity of a 
different kind: agents who are ex-ante identical end up heterogeneous ex-post, due to the 
existence of idiosyncratic endowment shocks and due to market imperfections that impede 
insurance against such shocks (see Mankiw (1986) and the many studies surveyed by Heaton 
and Lucas (1995) ). We should further note that there are articles within the representative-
agent framework where the preferences of  the representative agent are not of the constant 
elasticity type. 
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opinions seems necessary to explain why such assets will exist at all.2  
The formal analysis of the equilibrium underpinnings of the Black-Scholes 

option pricing formula (for example Bick (1987, 1990) and He and Leland (1993)) 
retains the presumption of a representative agent.  Yet heterogeneity among investors 
is embedded in most informal discussions of options markets.  For example, Cox and 
Rubinstein (1985, p. 54) give the “use of certain kinds of special knowledge” as one 
reason for the existence of trade in options.  According to such popular views, agents 
with bullish expectations (perhaps based on “special knowledge”) will be attracted to 
out-of-the-money calls (written, presumably, by others with more bearish 
expectations).  On the other hand, out-of-the-money put options are considered to be 
bought by bearish investors or by investors who are particularly concerned about 
down-side risk.3 

We believe that heterogeneity among agents may also be the key for 
resolving the empirical non-congruence of the Black-Scholes formula which has 
attracted a sizeable literature in recent years.  In an essentially a-theoretical 
framework, Rubinstein (1994) and others have  attempted to derive a pattern of 
Arrow-Debreu pricing that is implied by observed option prices (and is inconsistent 
with the Black-Scholes framework).  Franke et. al. (1996) attempt to reconcile this 
observed pattern within an equilibrium framework where the representative agent 
displays declining relative risk aversion.  In this paper we seek, instead, to examine 
the case of the pricing of assets and options when all agents have the standard 
constant-elasticity tastes, but when agents’ tastes, and possibly also their probability 
assessments, differ.  

One may wonder however whether consumer heterogeneity per se could 
matter.  The early formulators of the CAPM were concerned about the effects of the 
assumption of homogeneity of opinion.  As Sharpe (1970) wrote (p. 104):  “Even the 
most casual empiricism suggests that this [homogeneous opinions] is not the case.  
People often hold passionately to beliefs that are far from universal.”  His conclusion, 
however, was that heterogeneity of opinion is by and large irrelevant since (p. 291) 
“in a somewhat superficial sense, the equilibrium relationships derived for a world of 

                                                 
2 As summarized by Hirshleifer and Riley (1979), with regard to futures trading:  ΑAmong the 
possible determinants of speculative activity, John Maynard Keynes and John Hicks . . . have 
emphasized differential risk aversion .  . . .  In contrast to these views, Holbrook Working has 
denied that there is any systematic difference as to risk-tolerance between those conventionally 
called speculators and hedgers.  Working emphasizes, instead, differences of beliefs (optimism 
or pessimism) as motivating futures trading.” 
3 This point was forcefully made by Leland (1980) in his discussion of portfolio insurance. 
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complete agreement can be said to apply to a world in which there is disagreement, if 
certain values are considered to be averages.”  In a similar vein, Constantinides 
(1982) established that the asset prices that arise in an economy with heterogeneous 
agents could be rationalized as if originating from the preferences of a single pricing-
representative agent.4  

In Mayshar (1977), one of us argued for the pricing relevance of 
heterogeneity of opinion, claiming that when some investors are in a corner solution 
(e.g. all those potential investors in the world who do not hold any particular asset), 
the sources of the heterogeneity that explain the corner solutions are relevant for the 
determination of what are the relevant “averages” and thus also for the pricing of 
assets.  Corner solutions, and the identity of actual versus potential  investors, are 
relevant also for the case of heterogeneity in tastes.   

In this paper we advance a different argument against the practice of 
assuming a “representative” investor.  As is common in the related literature, we 
assume that markets are Arrow-Debreu complete, and that all the heterogeneous 
consumer-investors have “reasonable” time-separable, constant elasticity utility 
functions with constant time-discount factors, so that  no corner solutions exist.  We 
demonstrate that within this framework, when consumers differ with respect to their 
risk aversion, the induced preferences of Constantinides’s pricing-representative 
agent are considerably more complicated than those of the actual agents in the 
economy, and in particular do not belong to the same class of “reasonable” 
preferences as theirs.  In particular, we show that when consumers have different 
constant risk aversions, the pricing-representative agent’s preferences exhibit 
declining relative risk aversion.  The pricing representative consumer’s preferences 
are thus not of the same class as those of the consumers he “represents.”  We 
demonstrate the significance of this result, and of other sources of investor 
heterogeneity, for the pricing of options.  We show that investor heterogeneity 
provides a  simple and intuitive explanation for the empirical puzzle concerning the 
non-congruity of the Black-Scholes formula for option pricing with reality.  These 
results cast considerable doubt on the standard practice in the literature of endowing 
the “representative” agent with “reasonable” (i.e., constant relative risk aversion) 

                                                 
4 Constantinides’s representative agent is “representative” only for a given set of endowments 
and will not price assets correctly if there is a change in the stochastic endowment.  We thus 
identify the Constantinides representative agent as “pricing-representative.”  As Rubinstein 
(1974) has shown, conditions under which there exists a consumer who is universally 
representative are extremely restrictive (see also the survey by Shafer and Sonnenschein 
(1982)).  
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preferences.  
The structure of the paper is as follows:  In the following section we set out 

the equilibrium model, in which all heterogeneous consumers live for two dates.  In 
Section III we characterize the preferences of the “pricing-representative” agent in 
the model.  In Sections IV to VI we illustrate the significance of our findings for the 
pricing of options in this economy. 

 
 

II.  A two-period Arrow-Debreu economy with heterogeneous agents 

We assume a one-good, two-date exchange economy.  The aggregate consumption at 
date 1 (“tomorrow”) is uncertain.  We normalize the scale of consumption so that 
total consumption at date 0 (“today”), Y0 , equals to unity.  We denote by Ys the 
strictly positive total endowment of future consumption in state s, s = 1, ... S.  

Each agent i is assumed to have a fixed initial fraction of ownership wi of the 
economy’s endowment today and in each state of nature tomorrow.  We denote i’s 
initial-period consumption by yi0 , and denote by yis  the second-period consumption 
by agent i in state s.   Each of the H agents has time-separable, expected utility 
preferences that take the form: 

(1) ( ) ( ) ( ) ( )U y u y f u y where u y y
i i i i i is i is i

s

S

i

i

= + =
−=

−

∑0
1

1

1
β

γ

γ
,  

and where fis is agent i’s strictly positive probability assessment of state s,  ßi is her 
subjective rate of time discount and γi her constant degree of relative risk aversion.  
Each agent is thus characterized by the subjective parameters {ßi, γi, fis } and the 
fraction of ownership in the aggregate endowment at dates 0 and 1, wi; we note that 
wi  is also individual’s i’s fraction of total wealth.  We assume ßi > 0, γi > 0, and wi > 
0. 

We assume the existence of a full initial set of Arrow-Debreu markets, so 
that in equilibrium there are no potential benefits to trade.  Let ps denote the Arrow-
Debreu equilibrium price of contingent consumption in state s.  Each agent i selects a 
consumption program which maximizes Ui(yi ) in (1) given her budget constraint, 

(2) y p y w Y p Yi s is i s s
s

S

s

S

0 0
11

+ = +








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==
∑∑  

Let { }{ y  y y y , i = 1, ... , H}i i i iS
~ , , ,= 0 1  be the equilibrium allocation in 

the economy.  As is well-known, given the particular preferences assumed here, there 
will be no corner solutions and all ~yi  will be strictly positive.  In equilibrium, all 
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consumers’ marginal rates of substitution equal the state prices: 

(3) 
( )
( )

p f
u y
u y

f y
y

for all i ss i is
i is

i i
i is

is

i

i

= =









−

β β
γ'

' ,
0 0

 

The prices ps are determined in a Walrasian equilibrium so as to equate the demand 
and supply for all the state-contingent goods.5 

(4) y Y for all sis S
i

H
=

=
∑

1
,  

Given the particular pattern of tastes in this economy, it is clear that no 
generality is lost by normalizing Y0 = 1.  Let ωi i iy Y y= =0 0 0/  denote agent i’s date 
0 share of consumption.  The equilibrium prices are, of course, a function of the 
agents’ characteristics {βi, γi, fis, wi }, and of market quantities {Ys}.  By combining 
(3) and (4), we can view ps as determined by: 

(5) ω β
γ

i
i is

s
s

i

H f
p

Y for all s
i







 =

=
∑

1

1

/

,  

This equation determines the equilibrium prices ps as a function of the aggregate 
consumption quantities Ys  and the agents’ taste parameters.  However, the prices in 
(5) are dependent on agents’ endogenously-determined shares of initial period 
consumption {ωi}, instead of their exogenous initial shares of total wealth {wi}.  This 
transformation of variables simplifies the presentation below.  The equilibrium 
conditions (3) - (4) and agents’ budget constraints (2) establish a one-to-one relation 
between agents’ initial distribution of wealth {wi} and the distribution of initial 
consumption {ωi}.  Given the latter, and given ps as determined by (5), we can 
consider the initial wealth fractions as if determined by: 

(6) w
p f
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p Y
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5 Market clearing for first-period consumption is guaranteed by Walras’s Law. 
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III.  Identifying preferences for a pricing-representative individual 

In this section we identify the characteristics of a “pricing-representative” agent in 
the above economy.  We define a “pricing-representative” agent as one whose tastes 
are such that if all H agents in the economy had tastes identical to his, then the 
equilibrium state prices in the economy would remain unchanged.  As noted in the 
previous section, it is not possible to find a “representative consumer” who can 
mimic market prices for any possible set of aggregate endowments {Ys }; we therefore 
look for preferences which can mimic the prices in the given economy.  We assume 
that the utility function for the pricing-representative agent takes the separable form: 

(7) ( ) ( ) ( )U Y u Y f u Ys s
s

S
* * * *= +

=
∑0 0

1
β  

The form of the utility function of the pricing-representative agent, (7), assumes 
time-separability and expected utility maximization, but does not impose the 
additional assumption of a constant elasticity temporal utility function assumed in (1) 
above for each individual. 

What we require from this function is that its marginal rates of substitution 
be equal to the equilibrium state prices ps: 

(8) 
( )
( )

β *
*'

*' ,f
u Y
u Y

p for all ss
s

s
0 0












=  

Equation (8) presents a set of conditions from which we can identify 
properties of the preferences of the pricing-representative agent.  Given our 
normalization Y0 = 1, we define the probability normalized prices q(Y), by the 
condition: 

(9) ( ) ( )
( )

q Y
u Y
us =













β *
*'

*'
0 1

. 

The function q(Y) is sufficient to price all state-contingent commodities, since by (8): 

(10) ( )q Y p
f

for all ss
s

s
= , . 

We now propose to identify properties of the pricing representing agent by 
making two assumptions: 

(i) The set of states of nature is sufficiently dense, so that every level of 
non-negative future aggregate consumption is possible.   

(ii) All agents have homogeneous beliefs that coincide with the objective 
probabilities, so that fis = fs for all s and i.  In Section IV below we 
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reconsider the effect of heterogeneous probability assessments. 

Given these two assumptions it follows by comparing (5) and (8) that we 
require the pricing function q(Y) to satisfy the implicit condition: 

(11) ( )

1/

1

1, 0
iH

i i

i
for all Y

Y q Y

γ
ω β

=

 
= ≥ 

 
∑  

The function q(Y) is implicitly defined by equation (11) for every level of aggregate 
consumption Y (or in fact for every rate of consumption growth Y/Y0) by the set of 
investors’ taste parameters, {ßi, γi } and by the initial consumption shares {ωi }, 
which, as shown in equation (6) can be taken as a proxy for the initial endowment 
shares {wi }.  

To simplify notation further we make the normalization:  ( ) ( )u u0 1 1 1*' *'= = . 
 Setting Y = 1 in condition (9) identifies the time-discount factor β * of the pricing-
representative agent: 
(12) ( )β * = q 1 . 
By (11) it then follows that 

(13) ω β
β

γ

i
i

i

H i

*

/








 =

=
∑

1

1
1. 

It can then easily be established that the representative time-discount factor β*  is 
some average of all agents’ time discount factors ßi, and in particular is between Max 

i {bi } and Min i {bi }.  Conditions (9) and (12) then further identify the temporal utility 
function u*(Y) as the solution for the differential equation: 

(14) ( ) ( )
( )u Y

q Y
q

*' =
1

 

Since equation (14) is assumed to hold as an identity for all non-negative 
values of Y, we can, by differentiation, define the temporal degree of relative risk 
aversion of the pricing-representative investor: 

(15) ( ) ( )
( )γ * '

Y
Yq Y
q Y

= . 

Proposition 1: For any Y, γ*(Y) is a harmonic weighted average of individuals’ γi’s.  
Thus, in particular, γ*(Y) is bounded by Max i{γi} from above and by Mini {γi } from 
below. 
Proof: By equation (11), q(Y) is determined as the solution of the implicit condition: 
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(16) ( )F Y q y
Y q
i i
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It follows that: 
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∂
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β α
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where  

(19) ( ) ( )α α ω β
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i i
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This means that: 

(20) ( ) ( )
q Y F Y

F q
q Y Y

i i
i

' /
/

/
/

= =
∑

∂ ∂
∂ ∂ α γ
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By its definition in (15),  

(21) ( )γ
α γ

*

/
Y

i i
i

=
∑

1
 

By equation (3), the weights ai (Y) that were defined in (19), are simply the 
second-period consumption shares of agents, when the aggregate endowment is Y.  
By (11), the αi sum to one. || 
 

Proposition 1 shows that the risk aversion of the pricing representative 
consumer is not a simple average of the risk aversions of the individuals in the 
economy.  As we see in the next proposition, this means that for our model, where all 
the individuals in the economy have constant relative risk aversion, the pricing 
representative consumer has decreasing relative risk aversion. 
 
Proposition 2: The pricing-representative agent displays decreasing relative risk 
aversion.   
Proof:  By differentiation of (19), and use of (20)-(21): 
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(22) 
∂α
∂

α γ
γ

i i

iY Y
= −
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
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*
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Thus, as Y increases, the weight αi of those investors with relatively low degree of 
risk aversion increases. From (21) and (22),  
(23)
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It follows that∂ ∂* / Y  <   0γ  if and only if  

(24) 
( )

1
2

2

2
γ

α
γ

α
γ*

=








 <∑ ∑i

ii

i

ii
 

Looking at the random variable X that obtains the value 1/γi with the 
probability αi , we see that the right-hand side above is E(X 2) and the left-hand side is 
[E(X)]2. Our claim is now established, since the variance of X, EX 2 - (EX)2, has to be 
positive. || 

As the next proposition shows, in states where the aggregate consumption is 
very high, the “pricing representative” consumer’s RRA looks like the least risk-
averse consumer, and vice-versa: 

 
Proposition 3:   

(i) If Y → ∞ ,  then { }γ γ* → Mini i ;  

(ii) if Y → 0, then { }γ γ* → Maxi i . 
Proof:  (i) Assume that γ j > Mini {γi } = γk.  By (21), it is sufficient to prove that as Y 
→ ∞, αj → 0.  Suppose to the contrary that αj > ε0 > 0, even as Y → ∞.  By (21) 
then, γ*(Y) will be strictly greater than γk, and there has to be ε1 > 0 such that [γ*(Y)/ 
γk - 1] > ε1.  Using (22), ( ) ( )d d Ykln / lnα ε> 1 .  This differential inequality implies 
that as Y → ∞, αj grows to infinity, in contradiction to that it is bounded by 1. The 
proof of (ii) is analogous. || 
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A numerical example 
The above propositions demonstrate the complex nature of the preferences of 

the pricing-representative agent, even in the case where all investor share the same 
probability assessments.  Propositions 2 and 3 imply that the pricing-representative 
agent displays decreasing relative risk aversion, with γ*(Y) declining from the highest 
rate of relative risk aversion to the lowest as consumption rises.  Thus, even though 
all investors display constant relative risk aversion, it is not the case that the pricing-
representative agent will also display constant relative risk aversion, with a 
coefficient that is some average of those of the heterogeneous agents in the economy. 
 As we show in the next section, this result has important implications for option 
pricing. 

A numerical example may give some insight into these propositions.  
Consider a two-date model with 3 possible states at date 1.  Aggregate consumption 
at date 0 is 1, and aggregate date 1 consumption in states 1, 2, and 3 is {0.8, 2, 3}.  
There are two consumers who have equal initial shares in the consumption at date 0 
and in each state of the world at date 1.  Each consumer has a utility function with 
pure time preference β = 0.99; consumer 1 has RRA γ1 = 1 and consumer 2 has RRA 
γ2 = 7. 

An equilibrium solution for the division of aggregate consumption between 
the two consumers is given in Figure 1 below.  Although both consumers consume 
more in states where the aggregate consumption is greater, the more risk averse 
consumer 2 has less variability in her consumption than consumer 1.  The more risk 
averse consumer is “more representative” of the equilibrium in state 1 (a low 
consumption state) and consumer 1 (with low risk aversion) is “more representative” 
of the equilibrium in state 3, in which there is high aggregate consumption.  The 
result is that the “pricing representative” consumer’s RRA in state 1 (a low 
consumption state) is higher than the “pricing representative” consumer’s RRA in 
state 3 (a high consumption state).  Thus, although both consumers have constant 
RRA, the “pricing representative” consumers RRA is decreasing. 
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Aggregate consumption State price nomenclature
0.80 p1

1 2.00 p2

3.00 p3

Consumer 1 consumption Consumer 2 consumption
0.2938 0.5062

0.4603 1.3693 0.5397 0.6307

2.3200 0.6800

State prices "Pricing representative" consumer's RRA
0.5170 2.0118

0.1109 1.5729

0.0655 1.4723  

Figure 1 

 
 
IV. The pricing of options on aggregate consumption: preliminaries. 

In this and the next two sections we apply the results of Section III to the pricing of 
options in a heterogeneous consumer economy.  To simplify the exposition we 
assume that the economy has only two competitive agents, each endowed with 
constant relative risk aversion preferences.  Each agent is also assumed to believe 
(correctly) that the probability distribution of aggregate consumption at date 1 is 
lognormal. 

To understand the intuition behind our claim that the pricing of options 
should be particularly sensitive to heterogeneity among investors, consider the case 
where the two agents differ in their risk aversion.  As shown in the discussion at the 
end of the previous section, the more risk averse agent seeks to guarantee that the 



 

12 

amplitude of her future consumption will be small, and in particular seeks to protect 
herself against downside risk.  As proved formally in Proposition 3, this agent will 
thus dominate both the date 1 consumption in states of low aggregate consumption 
and  the pricing of contingent consumption in these states.  The less risk averse agent, 
less concerned with protection against downside risk, will correspondingly dominate 
in the consumption and the pricing of consumption in high states. 

Since an out-of-the-money call option (on total consumption, in this 
framework) offers the upper tail of the distribution, it follows that its price will be 
influenced primarily by the attitude towards risk of the less risk averse investor.  
Symmetrically, the pricing of out-of-the-money put options will be  particularly 
influenced by the attitude towards risk of the more risk averse investor.  This 
intuition thus suggests that the pricing of contingent commodities by any “average” 
agent, with constant relative risk aversion, will underprice the contingent 
consumption in both tails of the distribution, and also tend to underprice out-of-the-
money options.   

The intuitive discussion above can be alternatively considered as an 
illustration of  Proposition 2, that an economy with heterogeneous agents with 
constant relative risk aversion will price assets as if it consisted of a single investor 
with declining relative risk aversion.  Another way to present our case is to use 
Ross’s (1976) idea that options can be considered as completing the market structure, 
in the absence of trade in state contingent commodities.  In this case, if there exists a 
stock market, and options can be traded for any strike price, both investors in our 
two-agent economy will hold a long position in the stock.  In addition, the less risk 
averse agent will purchase call options with high strike prices, written by the more 
risk averse agent.  Complementing these transactions, the more risk averse investor 
will purchase the put options with low strike prices that the less risk averse investor 
issues.  In effect, the two agent will thus be able to obtain a Pareto-efficient 
consumption distribution by trading call and put options between themselves.  
Differential tastes thus provide an intuitive explanation both for the existence of an 
open interest in options, and for why a constant-relative risk aversion framework is 
likely to misprice out-of the-money options.   

To set the stage for a more formal  application of this intuitive logic, we have 
first to define the relevant assets in this two period economy, and then consider the 
reference case of asset pricing when the agent are homogeneous.  Let p(Y) denote the 
equilibrium price at date 0 of a unit of date 1 consumption.  The interest rate r is 
determined by the condition that (1+r)-1 is the date 0 price of a unit of consumption 
in every date 1 contingency: 
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(25) ( ) ( )1 1

0

+ =−
∞

∫r p Y dY  

We identify the future payout of the “market” in this economy as consisting 
of the entire date 1 endowment.  The date 0 market price S, is thus: 

(26) ( )S Y p Y dY=
∞

∫
0

 

The price of a call and a put option on the market with a strike price of X is 
therefore: 

(27) ( ) ( ) ( ) ( ) ( ) ( )C X p Y Y X dY P X p Y X Y dY
X

X

= − = −
∞

∫ ∫,
0

 

Denote by ( )α α= Y  consumer 1’s share of aggregate future consumption 
when the aggregate future consumption is Y and denote by ω consumer 1’s 
equilibrium share of date 0 consumption.  By (3), the consumption share ( )α α= Y  
and the equilibrium price p = p(Y) are jointly determined by the condition: 

(28) ( ) ( ) ( )p f Y Y f Y
Y

= ⋅





=
− ⋅
−











− −

β α
ω

β
α
ω

γ γ

1 1 1 2

1 21
1

, 

where the function fi (Y) is i’s subjective probability density. Given our assumption 
that both agents believe that the distribution of aggregate future consumption is 
lognormal: 

(29) ( ) ( ) [ ]f Y f Y
Y

Yi i i
i i

i= = − −








; , exp lnµ σ

σ π σ
µ1

2
1

2 2
2 . 

As a reference for the subsequent analysis of the implications of 
heterogeneity, we now briefly summarize the well-known results for the case where 
the two agents are identical, so that the identifying index i can be dropped.  
 
Proposition 4.  If aggregate date 1 consumption Y is lognormally distributed and if all 
investors share identical time-additive preferences with constant relative risk 
aversion γ, then: 

(i)  The normalized Arrow-Debreu state prices (the “pricing kernel,” or the 
“risk-neutral probabilities”), (1+r)p(Y), can be considered as the probability 
density of a lognormal variable with density f(Y; m - γs2, s). 
(ii)  The pricing of call options is according to the Black-Scholes formula: 
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(30)  ( ) ( ) [ ] [ ]C X BS X S r SN d X
r

N d= ≡ −
+

−; , ,σ σ
1

, 

(31)  
( ) ( )where d
S X r

=
+ + +ln / ln /1 22σ

σ
 

Proof: We do not prove this proposition in detail, since its elements are well known, 
even if not necessarily in this simple two-period framework (see, Rubinstein (1976), 
Brennan (1979), or Stapleton and Subrahmanyam (1984) ).  For this case the state 
prices are given by: 
(32) ( ) ( ) [ ] ( )p Y Y f Y f Y= = − + −−β µ σ β γµ γ σ µ γσ σγ ; , exp / ; ,2 2 22  

where the second equality follows from standard manipulations. Define now the 
tailed moment-generating-function of the lognormal distribution in (29): 

(33) ( ) ( ) ( )[ ]m a x Y f Y dy a a N a xa

x

, ; , exp / ln≡ = + + −









∞

∫ µ σ µ σ µ σ
σ

2
2

2  

where N[z] is the value of the standard normal distribution at z. The two parts of the 
proposition then follow from applying the definitions in (25)-(27): 
(34) ( ) ( ) ( )1 0 1 01+ = − = −−r m S mβ γ β γ, , ,  

(35) ( ) ( ) ( )[ ]C X m X Xm X= − − −β γ γ1 , ,  
and then performing the required substitutions. || 
 

 

V.  The pricing of options with heterogeneous tastes 

With the case of homogeneity as a reference point, we now return to the implications 
of heterogeneity among the two agents in this simple two-period, two-agent 
economy.  Given our assumptions, the subjective preferences and probability 
assessments of each agent will be represented by four parameters: (ßi , γi , µi , σi ) for i 
= 1,2, where agent i believes that Y is lognormally distributed with parameters µi and 
σi .  

To simplify the presentation, we consider here separately the effect of 
heterogeneity in only one of these four parameters at a time. Accordingly, we will 
apply a standard form of notation , where  p(Y; γ1 , γ2 ) will refer, for example, to the 
state price for the case of the given degrees of risk aversion, when this is the only 
subjective parameter in which the two agents differ. 
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Since a closed form solution for the state prices p(Y) does not exist for most 
cases, we will illustrate the implications of several results with a numerical 
simulation.  In the simulations presented below we use a discrete approximation of 
the lognormal distribution.  For our basic homogeneous case:  ß = ß1 = ß2 = 0.9 , 
γ γ1 2 7= = , µ = µ1 = µ2 = 0.15 , σ = σ1 = σ2 = 0.3.  In the heterogeneous risk 
aversion case discussed in Section V.b., γ γ1 21 7= =, ; for this case we set the initial 
consumption shares of the agents so that in equilibrium they have equal wealth 
shares. 
 

V.a.  The case of heterogeneity in subjective time discounting 
In this case it is assumed that the only subjective parameter in which agents differ is 
their discount factor ßi.  By solving equation (28) for α, it is clear that in this case 
each agent’s share of second-period consumption will be a constant, independent of 
aggregate consumption Y.  In fact, this economy will generate state prices p(Y) like 
the ones in the case of a homogeneous economy, where the representative agent has a 
discount factor: 
(36) ( )β ωβ ω βγ γ* / /= + −1

1
2
11  

As a result, Proposition 4 will apply, and a Black-Scholes formula will price call and 
put options. 

 
V.b. The case of heterogeneity in risk aversion  

This is the main case for which the propositions of Section III should apply.  The 
consumption share of the first agent, ( )α α= Y  is here determined by the condition: 

(37) 
( ) ( )( )α
ω

α
ω

γ γ
Y Y Y Y






 =

−
−











− −
1 21

1
 

There is no analytic solution for the function α(Y) in this case.  However, the 
following proposition is easily seen to be a corollary of Proposition 3: 
 
Proposition 5. If the two agents differ only in their coefficient of relative risk 
aversion and if γ1 < γ2, then α(Y ), the future consumption share of the less risk averse 
first agent, will be monotonically increasing in Y, with 

( ) ( )lim , lim
Y Y

Y Y
→ →∞

= =
0

0 1α α . 

Figure 2  presents the shape of the consumption share function a(Y) for the 
calibration of the model as described above, where in addition γ1 = 1, γ2 = 7.  As 
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suggested by Proposition 5, and as shown in Figure 2 below, this function is indeed 
monotonically increasing. 

0 1 2 3 4

aggregate consumption Y

0

0.2

0.4

0.6

0.8

Consumer 1's Share of Consumption

Figure 2 
As was proved in Proposition 2, as a result of the endogenous non-constant 

sharing of consumption, the pricing function p(Y) in the case of heterogeneous agents 
can be interpreted as displaying declining relative risk aversion.  It follows from this 
implication that the pricing kernel (1+r)p(Y) will no longer be lognormally 
distributed, as in the homogeneous case, and the Black-Scholes formula will no 
longer apply.  The relevant issue, however, is to identify what specifically will 
distinguish option pricing in this heterogeneous economy from the option pricing that 
would apply in a “similar” homogeneous economy.  For this purposes we seek to 
compare the case of the heterogeneous economy with another similar, yet 
homogeneous, economy where both agents share some “average” constant coefficient 
of risk aversion, γ 0.  No matter how this average γ 0 is chosen, the following 
proposition applies. 
 
Proposition 6: For any γ 0, such that γ1 < γ 0 < γ2, there are two positive values Yhigh 
and YRow so that state prices p(Y; γ1, γ2 ) > p(Y; γ 0, γ 0)  if either Y > Yhigh or   0 < Y < 
Ylow.  As a result, 

(i) For sufficiently high X, C(X; γ1, γ2 ) > C(X; γ 0, γ 0), 
(ii) For X sufficiently close to zero, P(X; γ1, γ2 ) > P(X; γ 0, γ 0). 

Proof:  From Proposition 5 it follows that since α(Y) increases monotonically 
towards 1, when Y approaches infinity, 
(38)

( ) ( )[ ] ( ) [ ] ( ) [ ] ( ) ( )p Y Y Y f Y Y f Y Y f Y p Y; , ; ,γ γ β α β β γ γγ γ γ
1 2

0 01 1
0

= → > =− − −  

Similarly, it follows that for γ sufficiently small: 
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(39)

( ) ( )( )[ ] ( ) [ ] ( ) [ ] ( ) ( )p Y Y Y f Y Y f Y Y f Y p Y; , ; ,γ γ β α β β γ γ
γ γ γ

1 2
0 01 2 21

0

= − ⇒ > =
− − −

 
This proves the first part of the proposition and the implications concerning 

the pricing of far out-of-the-money put and call options now follow. || 
Since our concern is to examine the impact of heterogeneity on the pricing of 

options, it is appropriate at this point to illustrate the potential magnitude of the 
impact of Proposition 6, by use of our calibration example.  We compare the option 
price C(X; γ1, γ2), where  γ1 = 1, γ2 = 7,  with the option price C(X; γ 0, γ 0) in a 
comparable homogeneous economy where all the parameters are identical and where 
both investors share the same “average” degree of risk aversion:  γ1 = γ2 = γ 0.  It is 
not obvious how to define this “average” γ0; at this point we choose to define it so 
that the homogeneous economy will have the correct price for an at-the-money call 
option.6  That is, γ 0 was defined to solve 
C(S( , ); , )= C(S( , ); , )1 2 1 2 1 2

o oγ γ γ γ γ γ γ γ . 
Figure 2 compares the prices of this “average” consumer (for whom we 

numerically obtained that γ 0 = 2.53) with the actual prices in the economy.  In the 
graph we show the ratio of these prices  p (Y; , ) / p (Y; , )o o

1 2γ γ γ γ .  
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Figure 3 
In accordance with Propositions 3 and 7, the “average” consumer economy 

generates lower state prices than the actual heterogeneous economy, both for low and 
for very high levels of aggregate consumption.  As a direct result of this key finding, 
it is not surprising that the homogeneous “average” economy will tend to underprice 

                                                 
6 In Section V.d. below we explore the implications of  alternative methods for selecting  γ0. 
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out-of-the-money calls.7  This result is depicted in Figure 4 below, which shows the 
ratio of the actual call option price in the heterogeneous consumer economy C(X; 1, 
7) and the Black-Scholes price C(X; γ 0, γ 0), for that homogeneous economy with the 
“average” constant relative risk aversion γ 0 as defined above. 
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The main finding displayed by Figure 4 is that options that are away from the 
money (whether in or out of the money) are more expensive in this heterogeneous 
consumer economy than in the Black-Scholes case.  The ratio of the call prices 
depicted in Figure 4 depends, of course, on how we determine the “average” γ 0.  
Were we to choose to normalize on a Black-Scholes option with a different strike 
price, we would determine a different “average” γ 0.  We return to this topic in 
Section V.d. below.  However, as proved in Proposition 6, the pattern that emerges 
for out-of-the money options is robust to the selection of the “average” γ 0.  

 
V.c. Implied volatility:  Smiles and heterogeneous consumers 

Given the difficulties in estimating the volatility σ, the Black-Scholes formula is 
often  presented empirically in terms of the stock volatility that is implied by the 
market pricing of call options with alternative strike prices.  Consistency with the 
Black-Scholes formula should imply a horizontal curve for the implied volatility as a 
function of the strike price, but the empirical pattern that researchers typically find 
displays a “smile”.   

Given the market interest rate, r(γ1, γ2 ), and the stock value S(γ1, γ2 ) in the 
heterogeneous economy we now solve the Black-Scholes formula in (30) for the 
implied volatility.  That is, for the function BS(.)  in (30) and  for each X, we 
                                                 
7 Franke, Stapleton, and Subrahmanyam (1996) claim that the change in sign exhibit by this 
difference is a necessary condition for a volatility “smile.” 
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determine σ = σ(X), such that when γ1 = 1, γ2 = 7, the following identity holds:  
( ) ( )( ) ( )BS X S r C X; , , , , ; ,γ γ γ γ σ γ γ1 2 1 2 1 2≡ . 

Figure 5 shows the implied volatility of the call option in our calibrated 
example (where σ = 0.3).  A smile pattern is evident:  The implied volatility for out-
of-the money options is lower than that for in-the-money options.8  This is the pattern 
that is presented (among others) by Rubinstein (1994).  As the exercise price of the 
options gets large, the implied volatility in this simulated example approaches the 
actual, 30%, volatility of the underlying consumption process from above.  This 
means that for this particular case the implied volatility is everywhere larger than the 
volatility of the underlying consumption process.9 
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ImpliedCallVolatility

Figure 5 

V.d.  Alternative normalizations 
In the example of the previous section, we chose a “representative” consumer by 
determining a risk aversion coefficient γ0 so that the price of an at-the-money call in 
the homogeneous consumer economy equals that of an at-the-money call in the 
heterogeneous consumer economy— C(S( , ); , )= C(S( , ); , )1 2 1 2 1 2γ γ γ γ γ γ γ γ0 0 .  
There are clearly several ways to choose such a normalization: 

Case 1:  We shall refer to the normalization of the previous section as Case 
1: 

C(S( , ); , )= C(S( , ); , )1 2 1 2 1 2γ γ γ γ γ γ γ γ0 0 . 
Case 2:  Instead of normalizing on an at-the-money call in the heterogeneous 

                                                 
8 The “jagged” pattern in the graph is due to computational rounding problems. 
9 Franke, Stapleton, and Subrahmanyam (1996) interpret this as meaning that options are “too 
expensive.”  We have not succeeded in proving that this property will always hold. 
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economy, we could normalize on an at-the-money call in each economy.  
That is, we choose γ 0 so that C(S( , ); , )= C(S( , ); , )1 2 1 2γ γ γ γ γ γ γ γ0 0 0 0 . 
Case 3:  In this case we find the “average” relative risk aversion γ 0 which 
matches the riskless interest rates in both economies:   

( ) ( )
Y

1 2
Y

p Y, ,   dY =  p Y, ,   dY∫ ∫γ γ γ γ0 0  

Case 4:  In this case we find the “average” relative risk aversion γ 0  which 
matches the market values in both economies: 

( ) ( )
Y

1 2
Y

p Y, ,  Y  dY =  p Y, ,  Y  dY∫ ∫γ γ γ γ0 0  

The table below summarizes some relevant results for these four cases, and 
Figure 5 shows the ratios of the actual market price to the homogenous consumer 
market price (i.e., the Black-Scholes price) for a range of exercise prices. 
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TABLE 1:  Comparing Four Normalizations 
Different Methods of Finding the “Average” Relative Risk Aversion γ 0 

 Base Case: 
actual 

heterogenous 
economy 

Case 1: 
normalizing 
on at-money-
call in actual 

economy 

Case 2: 
normalizing 

on at-money-
call in 

“average” 
economy 

Case 3: 
normalizing 
on interest 

rates 

Case 4: 
normalizing 
on market 

values 

“average” γ 0  1.58 2.26 2.78 1.29 
market interest 
rate 

19.07% 25.87% 23.97% 19.07% 25.10% 

market value 0.8651 0.8371 0.8003 0.7968 0.8651 
At-the-money 
Call (x=S) 

0.1844 0.2004 0.1844 0.1649 0.2038 

Call (x=0.5S) 0.5020 0.5046 0.4776 0.4610 0.5194 
Call (x=1.5*S) 0.0409 0.0472 0.0419 0.0338 0.0473 
Notes:  a.  The calibrations assume a lognormal aggregate consumption process with µ = 15%, σ = 
30%.  The original economy has two consumers with equal wealth shares and relative risk aversions γ1 
= 1 and γ2 = 7; each consumer has a pure time discount factor β = 0.9.   

b.  In cases 2,3,4 there is one item in the column which matches a corresponding item for the 
base case.  The exception is case 1, in which we determine the “average gamma” γ 0 by solving 
C(S( , ); , )= C(S( , ); , )1 2 1 2 1 2γ γ γ γ γ γ γ γ0 0 .  In case 1 the option price for an at-the-money option is 

calculated by C(S( , ); , )= C(S( , ); , )1 2 1 2γ γ γ γ γ γ γ γ0 0 0 0 . 

 
It is clear from Table 1 and Figure 6 that the asset prices and call price ratios 

of the actual and homogeneous-equivalent economies are very sensitive to the 
selected form of normalization. Depending on the normalization, some option prices 
may be found to be “underpriced” relative to the Black-Scholes case, and others to be 
“overpriced.”  Still, as proved in Proposition 6, ultimately (that is, for a high enough 
strike price), the prices of the calls in our heterogeneous consumer economy will be 
larger than the Black-Scholes price in any “equivalent” homogeneous economy.  
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Figure 6:  Four Different Normalizations 

For each normalization, we show the ratio of the actual call prices to the call price in the “equivalent” 
homogeneous-consumer economy (this latter price is the Black-Scholes price). 
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VI.  Option delta with heterogeneous consumers 

In the previous section we proved that when there is consumer heterogeneity in risk 
aversion, the option price for a sufficiently out-of-the money option is always larger 
in a heterogeneous consumer economy than the Black-Scholes price.  In this section 
we explore the properties of the option delta in a heterogeneous consumer model.  
We prove that in a heterogeneous consumer environment, the option delta is always 
(for sufficiently high option exercise price) larger than the Black-Scholes delta. 

The model employed in the previous sections had only two dates, 0 and 1.  In 
order to explore option delta, we require a model which has intermediate periods.  
We build such a model in the most obvious way, assuming that the unit interval—the 
time between today (date 0) and the option’s maturity (assumed to be T = 1)—is 
divided into n subintervals.  Since we have no analytic expression for the option 
delta, we approximate it by showing the sensitivity of the option price to the 
underlying stock price in some intermediate period.10 

The option delta is the sensitivity of the option price to a change in the 
underlying asset price.  In the BS model, ( )δ BS N d= 1 .  Assume that the options are 
written on the market and that the time to maturity is T = 1.  We write the δ in our 
heterogeneous model as ( )δHM S X, , where S is the market value.  We prove the 
following proposition: 
 
Proposition 7:  For X sufficiently large, ( )δ δHM BSS X, > . 
Proof (sketch):  Consider a heterogeneous consumer model in which the consumers 
have relative risk aversions γ1 < γ2 < … < γH.  The Black-Scholes option price is 
essentially an option price for some intermediate (“average”) risk aversion γ1 < γ0 < 
γH.  It follows from Proposition 3 that the state prices in the heterogeneous consumer 
case can be regarded as derived from an “average” consumer whose relative risk 
aversion γA(Y) is a decreasing function of aggregate terminal consumption Y, where 
γA(Y) → min (γh) as Y → ∞.  It follows that the heterogeneous-model state price for Y 
large enough is larger than the state price “Black-Scholes” (risk aversion γ0) case; 
furthermore, the difference between the heterogeneous model and “Black-Scholes” 
state prices is an increasing function of aggregate consumption Y.  Since the out-of- 

                                                 
10 Suppose for example that n = 50.  Then for an intermediate period (say j = 20), our 
numerical model will calculate 21 pairs of option prices and market prices.  Graphing these 
combinations will give the sensitivity of the option price to the underlying market price.   
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the money option prices payoffs only in these extreme states, this proves the 
proposition. || 
 

It is easy to illustrate the proposition, and it is also easy to see the necessity 
of X being large enough.  In the example below, our two consumers are as before 
(risk aversions 1 and 7 and pure time preference δ = 0.99).  The option is highly out-
of-the-money (X = 2).  As predicted by the proposition, the difference between the 
HM option price and the BS price is an increasing function of S.   
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It is also easy to construct counter-examples to ( )δ δHM BSS X, > ; this will 
occur for lower X, as in the example below, in which the option exercise price is X = 
1. 
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The reason for this is clear:  for a lower exercise price X the model prices can 
be considered to come from both low and high relative risk aversions.  State prices in 
the heterogeneous consumer model will not be uniformly higher than the Black-
Scholes state prices, and the resulting option deltas will exhibit behavior deriving 
from this property. 
 
 
VII.  Conclusion 

People are different.  Some are bold and daring, while others are overcautious.  Such 
diversity is indeed one of the main economic rationales for Pareto-improving trade, 
and has been particularly emphasized in relation to speculative markets.  In this paper 
we consider equilibrium option pricing in a simple two-period  economy that is 
characterized by heterogeneity among agents.  We demonstated that an  economy in 
which agents have constant yet heterogeneous degrees of relative risk aversion will 
price assets as though it had a single “pricing representative” agent who displays  
decreasing relative risk aversion.  This result was shown to imply that the pricing 
kernel has fat tails and yields option prices which do not conform to the standard 
Black-Scholes formula.  Solving for the implied volatility of either call or put options 
results in this case  in a “smile” pattern, typical of those derived in practice.  In 
addition we proved that the option delta for sufficiently out-of-the-money options is 
higher than the Black-Scholes delta. 

Our explanation of heterogeneity as the source for this empirically observed 
phenomenon is simple and intuitive. It seems to fit Rubinstein’s (1994) interpretation 
of the “over-pricing” of out-of-the-money put options on the S&P 500 index as an 
indication of “crash-o-phobia”.  Rubinstein’s term suggests that those who seek to 
hold out-of-the-money put options as protection against crashes are characterized by 
relatively high risk aversion or by subjective probability assessments with a relatively 
high (possibly unreasonable) weight on low market outcomes.  If one were to assume 
 that all investors share the same attitude towards risk and probability beliefs with 
regard to market crashes, there would be no explanation why some investors hold 
these extreme put options, while others write them.  In addition, the very complexity 
of  the implied binomial tree that Rubinstein derives suggests to us that it is likely to 
be the equilibrium outcome of a complex interaction among diverse investors, rather 
than to reflect uniform attitudes towards risk shared unanimously by all investors.  
While it is convenient  to portray the economy through the construct of a fictitious 
“representative” investor, this convenience should not blind us to ignore the serious 
aggregation problems that are involved by such a construct, or to regard as innocuous 
the practice of endowing the fictitious “representative” investor with preferences and 
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probability beliefs that may be “reasonable” only for the actual investors in the 
economy. 
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