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Abstract

Vector AutoRegressive (VAR) models have become popular in analyzing the behavior of
competitive marketing systems. However, an important drawback of VAR models is that the
number of parameters to be estimated can become very large. This may cause estimation
problems, due to a lack of degrees of freedom. In this paper, we consider a solution to these
problems. Instead of using a single time series, we develop pooled models that combine time
series data for multiple units (e.g. stores). These approaches increase the number of available
observations to a great extent and thereby the ef�ciency of the parameter estimates. We present a
small simulation study that demonstrates this gain in ef�ciency. An important issue in estimating
pooled dynamic models is the heterogeneity among cross sections, since the mean parameter
estimates that are obtained by pooling heterogenous cross sections may be biased. In order
to avoid these biases, the model should accommodate a suf�cient degree of heterogeneity.
At the same time, a model that needlessly allows for heterogeneity requires the estimation
of extra parameters and hence, reduces ef�ciency of the parameter estimates. So, a thorough
investigation of heterogeneity should precede the choice of the �nal model. We discuss pooling
approaches that accommodate for parameter heterogeneity in different ways and we introduce
several tests for investigating cross-sectional heterogeneity that may facilitate this choice. We
provide an empirical application using data of the Chicago market of the three largest national
brands in the U.S. in the 6.5 oz. tuna �sh product category. We determine the appropriate level
of pooling and calibrate the pooled VAR model using these data.
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1 Introduction

The increased availability of accurate and detailed marketing data has been an important
facet in the development and implementation of marketing models. This encourages
researchers to propose more complex models with a large(r) number of variables
because these models potentially offer better explanations of market phenomena as
well as better solutions to economic problems (Lee�ang et al. 2000, Lee�ang and
Wittink 2000).

Vector Autoregressive (VAR) models have been adopted by economists all over
the world since the seminal work of Sims (1980) because they are capable of
capturing complex dynamic relationships. Recently, with an increasing interest in
identifying competitive structures and measuring relationships between marketing
variables, VAR models became recognized as effective modelling techniques in
marketing. VAR models (i) incorporate all structural relationships in a competitive
marketing environment1 (Dekimpe and Hanssens 1995, Dekimpe et al. 1999, Srinivasan
et al. 2001, and Takada and Bass 1998), (ii) treat several variables endogenously
(Enders 1995 and Franses 1998), (iii) do not to require �rm prior knowledge on the
nature of the different relationships (Horváth et al. 2002 and Kornelis 2002), (iv) capture
both short- and long-run inter-relationships (Dekimpe and Hanssens 1995, Dekimpe et
al. 1999, Horváth et al. 2003, and Kornelis 2002), and (v) outperform univariate time
series models in parameter ef�ciency, goodness-of-�t measures as well as in forecasting
performance (Moriarty 1980, Takada and Bass 1998).

However, a major drawback of VAR models is that the number of parameters to be
estimated can be very large, depending on the dimension of the system and the order of
the model. This may cause problems, due to lack of degrees of freedom available for
estimation. The common practise in the marketing literature up until now is to specify
VAR models on market-level data and to apply some restrictions on the model, so that
the number of parameters to be estimated is reduced.

In this paper we provide a different approach. We specify models at a more
disaggregate level and combine the information that is contained in the time series data
for multiple units (e.g. supermarket chains, stores, households, or countries) in order to
obtain more ef�cient parameter estimates. We apply four different levels of pooling: we

1Parsons and Schultz (1976) identify four key elements that need to be incorporated in a parsimonious
model for competitive markets: simultaneous relationships, interactions, carryover, and competitive
effects. Hanssens (1980) mentions in this respect: sales response effects, competitive reactions, and
feedback effects.
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consider the Constant Coef�cient Model (CCM), the Fixed Effects Model (FEM), the
Random Coef�cients Model (RCM), and the unit-by-unit approach2.

The idea of combining the time series and the cross sectional dimensions of the data
to arrive at better estimates of a VAR model is not new. In the �rst Panel VAR (PVAR)
model by Holtz-Eakin, Newey and Rosen (1988) the authors formulate a coherent set
of procedures for estimating and testing VAR models for panel data. The model is
applied to study the dynamic relationships between wages and hours worked in a sample
of American males. Another application of this method is a study by Holtz-Eakin et
al. (1989) that considers the dynamic relationships between local government revenues
and expenditures. Lehr (1999) applies the Holtz-Eakin approach to show that �nancial
intermediation can in�uence fertility and labor decisions by raising market wages.
Binder et al. (2002) suggest a latent variable framework for the analysis of �xed effects
PVARs. Several applications build a VAR model from single-equation dynamic panel
models. Rousseau and Wachtel (2000) for example, apply the approach of Arellano
and Bond (1991) to study dynamic interactions between stock markets and economic
performance in individual countries. Canova and Ciccarelli (2000) provide Bayesian
methods for forecasting variables and predicting turning points in panel Bayesian VARs.

The references listed above apply models that are developed for panel data, i.e. for
data with �nite T (time span) and large N (number of cross sections). However, many
available data sets in marketing have different characteristics, and should be considered
in a different setting. In scanner data, for example, the number of cross-sectional units,
i.e. stores or products in a category, is usually �nite and rather limited while the time
span is often quite large (i.e. several weeks). In addition, scanner data is usually only
available for speci�c cross sections (i.e. for a particular store-chain), that cannot be
considered as a representative sample of the total population. Hence, one should be
reluctant to generalize results of a VAR model that is calibrated on some subset of
cross-sectional units to the entire population of all cross-sectional units (e.g. all stores in
the Netherlands) but rather interpret the parameter estimates conditional on the observed
units. For these reasons, estimation methods that are consistent for large T may be
more suitable than PVAR models for marketing applications. Papers that discuss this
different setting for estimating pooled univariate time series models are Beck and Katz
(1995), Beck (2001), Beck, Epstein, Jackman and O’Halloran (2001), and Beck and
Katz (2001). We extend their approach to the case of multiple time series models (i.e.
VAR models). In line with the terminology of the above mentioned papers we refer to
these estimation procedures as Time Series Cross Sectional (TSCS) methods.

2Despite the fact that in the unit-by-unit approach, a separate model is speci�ed for each cross-sectional
unit, we call it a pooling approach: the unit-by-unit models may be considered as one extreme of the
pooling-spectrum.
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An additional advantage of estimating VAR models using TSCS procedures is that
they do not face the incidental parameter problem that is associated with PVAR models
(Neymann and Scott 1948). Moreover, the estimation procedures in a TSCS setting are
simpler than the estimation procedures in a PVAR setting.

It may be questionable whether the parameters of economic relationships are
stable across cross-sectional units, i.e. there may be heterogeneity in the slope
parameters. Hsiao (1986) and Hsiao and Sun (2000) point out that neglecting parameter
heterogeneity can be quite serious: “it could lead to inconsistent or meaningless
estimates of interesting parameters” (Hsiao 1986, p. 5). Haque, Pesaran and Sharma
(2000), Pesaran and Smith (1995), and Robertson and Symons (1992) �nd that the
neglect of slope heterogeneity is yet more serious in dynamic panel data models.
The problem arises because in these models the regressors contain lagged endogenous
variables. These variables are serially correlated. Therefore, incorrectly ignoring
coef�cient heterogeneity induces serial correlation in the disturbance term. This
generates biased estimates even if T ��. We illustrate these conclusions with a small
Monte Carlo simulation study. Our results con�rm the �ndings of the aforementioned
authors. Therefore, we argue that it is essential to use a model that accommodates
enough heterogeneity so that unbiased estimates of the pooled parameters can be
obtained. On the other hand, a model that allows for an unnecessary high degree
of heterogeneity requires the estimation of extra parameters and hence, reduces
ef�ciency compared to a model with homogenous parameters. We list and provide a
brief discussion of several pooling approaches that accommodate different degrees of
heterogeneity and we discuss several pooling tests that facilitate the determination of
the appropriate level of cross-sectional heterogeneity.

In summary, the contributions of this paper are:

� we propose to overcome the degrees-of-freedom problem by pooling�

� we provide several pooling approaches that allow for a trade-off between the level
of pooling and the degree of heterogeneity�

� we compare the ef�ciency gains of the different pooling approaches by a small
simulation study�

� we propose to estimate the pooled VAR models in a TSCS setting and extend
existing univariate TSCS estimation procedures to a multivariate setting�

� we provide guidance on selecting the appropriate level of cross-sectional
heterogeneity using pooling tests�

� we illustrate the proposed approaches by an empirical application.
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This paper is organized as follows. In Section 2 we specify VAR models for the
analysis of pooled data. In Section 3 we discuss four different models that combine the
cross-sectional and the time series dimensions of the data. These models accommodate
different levels of cross-sectional heterogeneity. The estimation of these models is
presented in Section 4. Section 5 compares the small-sample behavior of four main
approaches to obtain mean parameter estimates over cross sections in a small Monte
Carlo simulation. Guidance on the selection of the appropriate level of heterogeneity is
provided Section 6. The proposed approaches are illustrated by an empirical application
in Section 7. Finally, we present our conclusions in Section 8.

2 Introduction to VAR models for disaggregate data

The VAR applications in marketing that were referenced in the previous section use a
market-level model speci�cation. In this paper, we assume that the available data allow
for a model speci�cation on a more disaggregate (store) level. For example, the model
that we discuss in Section 7 is speci�ed at the store-level. Furthermore, we assume that
T (the time-span) is fairly large.

A general VAR model of order P for cross section i �i � 1� � � � � N� has the
following structure:

Ai�0Yi�t � �i �
P�

t��1

Ai�t�Yi�t�t� � ui�t , (1)

where Yi�t is a k-dimensional vector of endogenous variables of cross section i at time t ,
Ai�t� is a k�k matrix that contains the immediate reaction parameters for t� � 0, and the
delayed reaction parameters for t� � 	1� 2� � � � � P
 for cross-sectional unit i . The vector
�i is a cross-section-speci�c intercept, and ui�t is a disturbance term, ui�t

i.i.d.
� N �0� �i�,

where �i is usually assumed to be diagonal. This is the structural representation of the
VAR model for cross section i .

Multiplication of Equation (1) with any nonsingular k � k matrix results in an
equivalent representation of the process. The reduced form of the model is obtained
by pre-multiplying Equation (1) with A�1

i�0 , which gives:

Yi�t � �i �
P�

t��1

Ci�t�Yi�t�t� � �i�t � (2)

where �i � A�1
i�0�i , Ci�t� � A�1

i�0 Ai�t� for t� � 1� � � � � P, and �i�t � A�1
i�0 ui�t , with

�i�t
i.i.d.
� N �0��i�, where �i � A�1

i�0�i A�1
i�0

�
.
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The model in Equation (2) contains k2 P�k parameters. In the empirical application
that we discuss in Section 7 we have k � 9 and P � 2 so that the model contains
171 VAR-parameters. This large number of parameters puts a rather high demand
on the number of available observations for estimation. In addition, VAR estimation
procedures rely on asymptotics in T for consistency of the parameter estimates, so
that even more observations are needed relative to estimation of the same number
of parameters in a standard econometric model. Therefore, a typical problem in
applications of VAR models is the shortage of degrees of freedom, and consequently,
inef�cient estimation results.

Usually, this problem is resolved in marketing applications by simplifying the model
in order to allow for more ef�cient estimation. This has been accomplished by (a)
estimating separate models for each brand (Dekimpe et al. 1999, Srinivasan et al. 2000,
and Srinivasan and Bass 2001), (b) imposing restrictions on the model based on theory
(Horváth et al. 2003), (c) treating some variables as exogenous (Horváth et al. 2003,
Nijs et al. 2001, Srinivasan et al. 2000, and Srinivasan and Bass 2001). These solutions
impose a priori restrictions on the model. This is not in line with the approach of
Sims (1980) who suggests to build a general VAR model where all variables are treated
exogenously and use this model to test for exogeneity or for causality. In this paper, we
propose to gain degrees of freedom, not by eliminating parameters, but rather by gaining
observations through pooling cross-sectional units. In the next section, we discuss four
modelling approaches with different degrees of pooling.

3 Four pooling approaches

In this section, we discuss the following four modelling approaches

1. unit-by-unit modelling�

2. constant coef�cient modelling�

3. �xed effects modelling�

4. random coef�cients modelling.

Ad 1.) The �rst modelling approach is the collection of models that were discussed
in the previous paragraph. Equation (2) speci�es separate VAR models for each
cross-sectional unit. These models are useful to consider in the ideal situation where
the time span of the data is long enough to ensure ef�cient and reliable estimation of all
cross-sectional models, so that there is no need to combine the information across cross
sections for better estimation.
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In our empirical application the cross sections are stores, so that cross-sectional
heterogeneity may result from differences in store pro�les (e.g. size of store, shelf
space allocated to brands), in consumer pro�les (e.g. income, family life cycle), and in
competitive pro�les (e.g. distance to other stores, number, size, and type of competitive
stores).

We refer to the models in Equation (2) as the unit-by-unit models. This
modelling approach assumes that the cross sections are not related at all and fully
accommodates cross-sectional heterogeneity. It can be considered as one extreme of
the pooling-spectrum.

Ad 2.) The second modelling approach is at the other extreme, viz. it assumes complete
homogeneity across cross sections. We refer to such a model as the Constant Coef�cient
Model (CCM). A CCM version of Equation (2) is:

Yi�t � � �
P�

t��1

Ct�Yi�t�t� � �i�t � (3)

with �i�t
i.i.d.
� N�0��i�. The unit-by-unit model and the CCM can be estimated using

Feasible Generalized Least Squares (FGLS). Details concerning the estimation of these
models can be found in the next section. Relative to the unit-by-unit models, the CCM
has more degrees of freedom available for estimation. However, it is at the cost of the
often untenable assumption of complete cross-sectional homogeneity.

The third and the fourth modelling approaches can be used to strike a balance
between the ef�ciency of the estimates and the level of heterogeneity that is
accommodated by the model.

Ad 3.) For the third modelling approach we assume that the cross-sectional
heterogeneity can be captured by cross-section speci�c intercepts. Speci�cally, we
consider Fixed Effect Models (FEMs)3, where the intercept is cross-section speci�c, but
the other parameters are fully pooled. We specify the FEM analog of the unit-by-unit
models in Equation (2) as:

Yi�t � �i �
P�

t��1

Ct�Yi�t�t� � �i�t � (4)

3One might also contemplate to consider Random Effect Models (REMs). However, as T grows large,
the REM converges to the FEM (see, for example, Beck 2001 or Pesaran and Smith 1995). In addition, the
REM can be considered as a special case of RCM. Consequently, here we focus on the FEM and expect
similar results for the REM.
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where �i�t
i.i.d.
� N �0���. In Section 7 we present a VAR model that contains sales

response functions, speci�ed in log-log form. For these equations, a store-speci�c
intercept may accommodate sales differences that are due to e.g. store size. If it
is reasonable to assume that the customers of the different stores react with the
same elasticity to promotional activities, the FEM may capture enough cross-sectional
heterogeneity, while preserving a high number of degrees-of-freedom.

Estimation of the parameters of a FEM with FGLS with Dummy Variables
(FGLSDV) provides a consistent estimator that are asymptotically ef�cient for T ��
under standard regularity conditions (Bun 2001). This estimation procedure for FEMs
is outlined in Section 4.

Ad 4.) The fourth modelling approach allows for cross-sectional heterogeneity in all
parameters. However, the restriction is that the parameters vary jointly in a random
manner, speci�ed by a certain multivariate distribution. Thus, the parameters of a
cross-sectional model are considered as a drawing from some multivariate distribution.
These models are referred to as Random Coef�cient Models (RCMs)4.

We specify the RCM-analog of Equation (2) as follows5:

Yi�t � �i �
P�

t��1

Ci�t�Yi�t�t� � �i�t ,

where Hi �
�
�i �Ci�1� � � � �Ci�P

�
, the matrix containing the parameters of the model,

satis�es the following restrictions:

vec�Hi� � N�vec�H�� 	�

E�Hi � H �Yi�t�1�Yi�t�2� � � � � Yi�t�P� � 0 (5)

E��i�t �Yi�t�1�Yi�t�2� � � � � Yi�t�P� � 0

E��i�t�
�
j�t� �

�
�i if i � j
0 if i � j


To get some intuitive understanding of the RCM, it is useful to think of it as a shrinkage
estimator. If the individual Hi s are completely shrunk back to their mean H , then
RCM hardly provides more heterogeneity than the CCM does. On the other hand, if
there is almost no shrinkage, then using RCM provides no ef�ciency gain relative to
the GLS estimates of the unit-by-unit models. The degree of shrinkage is a function

4These models are also often referred to as Random Coef�cient Regression Models. The terminology
we use is also used by Beck, Epstein, Jackman and O’Halloran (2001) and Beck and Katz (2001).

5The methodology described here can be considered as a multiple equation extension of the work of
Beck and Katz (2001) and Swamy (1971).
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of the heterogeneity in the unit-by-unit estimates and the information that is contained
in these estimates. The RCM can be estimated by a modi�ed Swamy estimator. The
estimation of RCM, based on the work of Beck and Katz (2001) and Swamy (1971), is
also explained in detail in the next section.

4 Estimation

In this section we provide details on the procedures for the estimation of the CCM,
the FEM, and the RCM. The unit-by-unit models can be estimated using Feasible
Generalized Least Squares (FGLS). FGLS is well-documented in the literature on
multiple time series analysis, so that we do not provide details on the estimation of
these models here but refer the reader to Lütkepohl (1993) or Hamilton (1994).

4.1 Estimation of the CCM

The relationships in Equation (3) can be rewritten as follows:

Yt � �Xt ��1Yt�1 ��2Yt�2 � � � � ��PYt�P � �t � (6)

where Yt is an Nk-dimensional vector that results from stacking the Yit vectors (there
are N of them):

Yt �
�
Y �

1t � Y
�
2t � � � � �Y �

Nt

��



Furthermore,� � IN�B, where B � diag���6, Xt � Nk , with Nk an Nk-dimensional
vector of ones7, � j � IN � C j is a block diagonal Nk � Nk-matrix, and �t is an
Nk-dimensional disturbance vector:

�t �
�
��1t � �

�
2t � � � � � ��Nt

��
�

6Where we use the notation

diag��� �
��� ��1� 0


 
 


0 ��k�

�	
 �
where �� j� denotes the j th element of �.

7The estimation procedures that are outlined in this section are easily extended to the case of VARX
modelling by including exogenous variables in the Xt vector. However, in that case B does not equal
diag���, see also footnote 9.
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that is normally distributed with expectation 0 and variance-covariance matrix��� �1 0

 
 


0 �N

�	
 

Let us rewrite Equation (6) in the following way8:

Yt � vec�Yt�

� vec
�
�IN � B�Xt � �IN � C1�Yt�1 � � � � � �IN � CP�Yt�P � �t

�
� vec

�
B X�

t

�� vec
�
C1Y �

t�1

�� � � � � vec
�
CpY �

t�P

�� �t

� vec

�����L�
�����

X�
t

Y �
t�1





Y �
t�P

�			

������ �t

�
�
�X��

t �Y
��

t�1� � � � �Y ��

t�P� � Ik

�
vec �L�� �t

9 (7)

where

Y �
t � �Y1t �Y2t � � � � �YNt� �

X�
t � �X1t � X2t � � � � � X Nt� � and

L � �B�C1� � � � �CP�


From Equation (7), it follows that we can estimate the CCM-VAR model by a simple
reparameterization. De�ne

Y � �
Y ��

p�1�Y
��
p�2� � � � �Y ��

T

��
�

8We use the following property of the vec-operator several times: vec�ABC� � �C �� A�vec�B�, which
holds for matrices A� B and C that are of such dimensions that the matrix product ABC is de�ned (see
Magnus and Neudecker (1988) page 31, Equation (7).

9Note that Equation (7) can be simpli�ed by noticing that�
X�

�

t � Ik

�
vec �diag���� � vec

�
diag���k 

�
N
�

� vec
�
��N

�
� �N � Ik� �


Hence, in Equation (7), X�
�

t can be replaced by N , and the �rst k2 elements of vec�L� by � . We opt
for this notation because the formulas above are also valid for estimating a VARX model. In that case,
observations of the eXogenous variables are added to the Xi�t vector, so that its length increases, and the
number of columns of B increases accordingly. Note that in the VARX case, the simpli�cation in this
footnote also holds, but then only for that part of the X�

�

t -matrix that deals with the intercepts.
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and

W �

�����
�X��

p�1�Y
��

p � � � � � Y ��

1 � � Ik

�X��

p�2�Y
��

p�1�� � � � Y ��

2 � � Ik





�X��

T � Y ��

T�1�� � � � Y ��

T�p� � Ik

�			
 �
�����

Wp

Wp�1





WT�1

�			
 � (8)

and �nally,
� � �

��p�1� �
�
p�2� � � � � ��T

��



In this notation, the model is
Y � Wvec�L�� �
 (9)

The OLS estimate for the parameter vector vec�L� is obtained by

�vec�L� � �W �W ��1W �Y
 (10)

The disturbances of the reduced VAR system are, in general, contemporaneously
correlated. Hence, a system estimator is applicable. Zellner’s (1962) Estimated
Generalized Least Squares (EGLS) estimator can be used to gain ef�ciency from the
cross-equation correlations of the OLS disturbances10:

�vec�L� � �W ����1W ��1W ����1Y , (11)

10In case of panel homoscedasticity the GLS estimator of an unrestricted VAR system reduces to the
OLS estimator. This can be proven as follows. Rewrite Equation (8) in the following way:

W � D � Ik � where D �

�������
X�

�

p�1 Y �
�

p � � � Y �
�

1

X�
�

p�2 Y �
�

p�1 � � � Y �
�

2














X�
�

T Y �
�

T�1 � � � Y �
�

T�p

�					
 

The OLS estimator of vec�L� is

�vec�L�OLS �
�
�D � Ik�

��D � Ik�
��1

�D � Ik�
�vec�Y �


The GLS estimator of vec�L� is

�vec�L�GLS �
�
�D � Ik�

�
�
IN�T�p� � �

��1
�D � Ik�

��1
�D � Ik�

�
�
IN�T�p� � �

��1 vec�Y �

�
�

D�D � ��1
��1 �

D� � ��1
�

vec�Y �

�
��

Ik�p�1�D�D
�� �

��1 Ik

���1 �
Ik�p�1�D�

�� �
��1 Ik

�
vec�Y �

� �
D�D � Ik

��1
�

Ik�p�1� � ��1
��1 �

Ik�p�1� � ��1
� �

D� � Ik
�

vec�Y �

� �
�D � Ik�

��D � Ik�
��1

�D � Ik�
� vec�Y �


�
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where

� � I�T�p� �
��� �1 0


 
 


0 �N

�	
 


4.2 Estimation of the FEM

For estimating the FEM, we use FGLS with Dummy Variables (FGLSDV). The
estimation procedure proceeds analogously to that of the CCM11. The differences are
that in Equation (6), we now de�ne � as:

� �
��� B1 0


 
 


0 BN

�	

where Bi � diag��i�. After applying the simpli�cation of footnote 9, we have in
Equation (7) that X�

t � IN and the �rst kN elements of vec�L� are
�
��1� �

�
2� � � � � ��N

��
.

4.3 Estimation of the RCM

Let us rewrite the VAR-model in a compact form:

Yi � Hi Zi � �i , (12)

where Yi �
�
Yi�1� 


�Yi�T

�
and Hi was de�ned in Section 3. Furthermore, Zi ��

Zi�P�1� 


� Zi�T
�
, with Zi�t �

�
X �

i�t �Y
�
i�t�1�Y

�
i�t�2� � � � �Y �

i�t�P

��
, where Xi�t � 112.

Finally, �i �
�
�i�1� 


� �i�T

�
where �i�t

i.i.d.
� N�0��i�.

Next, we de�ne:
Gi � Hi � H � (13)

so that vec�Gi� � N�0� 	�. Using this in Equation (12) results in:

Yi � H Zi � ��i � Gi Zi�

Yi � H Zi � �i , (14)

11Analogous to the proof for the CCM it is possible to show that, in case of panel homoscedasticity,
GLS with dummy variables for an unrestricted VAR system reduces to OLS with dummy variables.

12This speci�cation is extended to a VARX model in a straightforward manner by rede�ning Xi�t as
a vector whose �rst element equals one, and the remaining elements are the values of the eXogenous
variables at time t .
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where �i is the new composite error term. The �rst part of this error term ��i� is the
standard stochastic part of the regression model. The second part �Gi Zi� is the error
associated with the deviation of the Hi of a particular cross-sectional unit i from the
overall mean H . Vectorizing Equation (14) gives:

vec�Yi� � �Z �
i � Ik�vec�H�� vec��i�


The covariance matrix of vec��i� is:

E
�
vec��i�vec��i�

�
�

� E

��
vec��i�� �Z �

i � Ik�vec�Gi�
��

vec��i�� �Z �
i � Ik�vec�Gi�

���
� IT � �i � �Z �

i � Ik�	�Zi � Ik� � �i .

Furthermore, we assume that the errors are not correlated across cross sections, so that
�, the covariance matrix of � � ��1� �2� � � � � �N �, has the following structure:

E
�
vec���vec����

� � � �
�����
�1 0 � � � 0
0 �2 � � � 0










 
 







0 0 � � � �N

�			
 

We employ GLS to obtain consistent estimates of H and Hi . In the Appendix we show
that h, the GLS estimator of vec�H�, is a weighted average of hOLS

i , the unit-by-unit
OLS estimates of the vec�Hi�’s:

h �
N�

i�1

Wi hOLS
i � (15)

where the weights can be written as:

Wi �
�

N�
i�1

�Vi � 	��1

��1

�Vi � 	��1 �

with
Vi � �Zi Z �

i�
�1 � �i 


The weights are inversely related to the variance of the unit-by-unit OLS estimates
since:
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Var
�
hOLS

i

� � �Zi Z �
i � Ik�

�1 ��Zi � Ik� �IT � �i� �Z
�
i � Ik�

�
�Zi Z �

i � Ik�
�1

� �Zi Z �
i � Ik�

�1�Zi Z �
i � Ik�	�Zi Z �

i � Ik��Zi Z �
i � Ik�

�1

� Vi � 	

For the variance of h we obtain:

Var�h� �
N�

i�1

Wi Var�hOLS
i �W �

i

�
N�

i�1

Wi [Vi � 	] W �
i .

Let us denote the Best Linear Unbiased Predictor (BLUP) of vec�Hi� that comes from
the GLS framework by hi . For hi we have the following13:

hi � �	�1 � V�1
i ��1�	�1h � V�1

i hOLS
i �

� Ti h � �IQ � Ti�h
OLS
i ,

where Q is the number of regressors in the VAR model14 and Ti �
�
	�1 � V�1

i

��1
	�1.

So hi is the weighted average of the estimates of the most and least pooled model. Its
variance equals:

Var�hi� � Ti Var�h�T �
i � �IQ � Ti�Var�hOLS

i ��IQ � Ti�
� �

�IQ � Ti�Cov�h� hOLS
i �T �

i � Ti Cov�h� hOLS
i ��IQ � Ti�

��

where

Cov�h� hOLS
i � � WiVar�hOLS

i �

�
�

N�
i�1

�Vi � 	��1

��1




13See Judge et al. (1985), pp. 541.
14An important assumption for the calculations of Hi s of Swamy (1971) is that N � Q, i.e. that the

number of cross sections is higher than the number of parameters of the model. This is important because
otherwise 	 will not be of full rank. It will be singular and hence, one cannot take its inverse and Hi s
cannot be calculated. In the case of a VARX model Q may be quite large. Therefore, the assumption may
not hold with the TSCS data where one assumes �nite (few) N and large T . In this case one could save
signi�cant number of parameters, and hence regain non-singularity of 	, by imposing some structure on
it, for example, by restricting it to be diagonal.
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The remaining problem is to estimate Vi and 	. We estimate Vi by:�Vi �
�
�Zi Z �

i�
�1 � ��i

�
,

where ��i � ei e�i
T � Q�k

,

where ei are the standard OLS residuals.
For estimating 	, one would like to observe the individual vec�Hi�s. Instead,

we only have noisy estimates in the form of hOLS
i available. The Swamy estimator

(Swamy 1971) corrects for this extra sampling variability. The problem with this
estimator is that in �nite samples it may not provide a positive de�nite �	. In order
to solve this problem we apply the approach of the so-called ‘Beck-Katz kludge’ (Beck
and Katz (2001)):

�	 � max

�
0�

1
N � 1

�
N�

i�1

hOLS
i hOLS�

i � NhOLS
i hOLS

i

�

�
� 1

N

�
N�

i�1

�Vi

��
,

where hOLS
i is the mean of the hOLS

i s. The resulting estimate for 	 is equal to the Swamy
estimator (right expression in the square brackets) if this is a positive de�nite matrix,
whereas �	 � 0 if the Swamy estimator is not positive de�nite. In that case, the RCM
estimates of vec�Hi� are equal to the CCM estimate.

The modelling approaches that are discussed in this and in the previous section
allow for different levels of cross-sectional heterogeneity. To obtain some insights in the
biases that arise when applying the different approaches to estimate mean parameters
we run a small Monte Carlo simulation study that we present in the next section. In
this study we compare the four most widely used approaches� (1) estimating a VAR
model from aggregate data, (2) averaging disaggregate estimates (unit-by-unit model),
(3) FEM, and (4) RCM. This means that in the simulation study we also consider the
approach that is usually employed in marketing applications, viz. estimating a VAR
model from aggregate data. In addition, we do not discuss the CCM here since it can be
considered as a special case of the FEM and the main arguments that hold for the FEM
are also valid for the CCM.

5 A comparison of four ways to obtain mean
parameter estimates

In this section, we present a small Monte Carlo simulation study to address the
small-sample properties of the the four most widely used approaches that provide
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mean parameter estimates. We generate 1000 data-sets from VAR�1� models with two
endogenous variables and a constant intercept term for 10 cross-sectional units over
100 time periods. We draw the error terms from a multivariate normal distribution with
zero expected value. To induce heterogeneity between the cross sections we split them
into two homogenous groups of 5. We induce different data-generating processes (i.e.
different VAR parameters) for the groups. The original parameter values of the two
models are presented in Table 1 together with other details concerning the setup of
the simulation study15. We apply the four approaches to estimate the mean parameters
of the VAR model that were discussed in the previous section: (1) we aggregate the
data over the 10 cross sections and estimate a VAR model from the aggregated data
(aggregate approach), (2) we build separate VAR models for each cross section and
average the estimated parameters afterwards (averaged unit-by-unit approach), (3) we
estimate mean parameters from a FEM, and (4) we estimate mean parameters using an
RCM.

Table 1: Summary statistics of the simulation study
Number of draws 1000
Number of data points (T ) 100
Number of cross sections (N ) 10

Slope Parameters Constants
Original 1 (5 units) -0.3 0.1 0.1 -0.4 2 3
Original 2 (5 units) 0.7 -0.5 0.3 0.5 2 3
Original mean values 0.2 -0.2 0.2 0.05 2 3

Var-cov matrix of the residuals 1 0.3 0.3 0.7

The simulated distributions of the VAR parameter estimates for each of the different
estimation techniques are visualized in the box-plots of Figure 1. The dashed line
indicates the original (mean) parameters. Each subplot in the �gure shows the box-plots
of the simulated parameter estimates for the four approaches of one of the four

15The parameter matrices of the VAR system are vectorized and transposed in Table 1. Hence, the VAR
model for the second group is:

Yt �
�

2
3

�
�

�
0
7 0
3
�0
5 0
5

�
Yt�1 � �t �with Cov��t � �

�
1 0
3

0
3 0
7

�
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parameters. The upper-left subplot shows, for example, the box-plots of the simulation
results for the �rst parameter in Table 1. The upper-right subplot corresponds to the
second, the lower left to the third, and the lower right to the fourth parameter. The

Figure 1: Box-plots of the simulated parameter estimates
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The dashed lines indicate the original (mean) parameters.

box-plots clearly indicate that (for the setup of the simulation study) aggregation and
the FEM approach (i.e. the approaches that do not allow for heterogeneity in the slope
coef�cients) lead to biased estimates of the mean parameters. The RCM performs quite
well (its mean and median are the closest to the original mean and it has relatively low
standard deviation of the parameter estimates) despite the fact that the distribution of
the parameters over the cross sections is far from normal. The disaggregate approach
also performs well: its results are comparable to the RCM. To gain further insight
into the small sample behavior of the different approaches we compute the Average
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Squared Prediction Error (ASPE), also known as the Mean Squared Error (MSE), for
each approach. The ASPE captures both the bias and the variance of the parameter
estimates. We decompose it according to Lee�ang et al. (2000, p. 507) into Average
Prediction Error (APE) that captures bias and into a variance component that captures
unreliability (variance), see Table 2. We see that the RCM and the disaggregate

Table 2: Monte Carlo experiment results - experiment 1
Slope Parameters Constants

ASPE (MSE)
Aggregate 0.0462 0.0132 0.0542 0.1091 0.2805 0.5379
FEM 0.0233 0.0050 0.0371 0.0654 1.4581 0.5835
Disaggregate 0.0008 0.0010 0.0006 0.0007 0.0178 0.0108
RCM 0.0008 0.0006 0.0010 0.0007 0.0163 0.0102

APE
Aggregate 0.1943 -0.0811 -0.2244 0.3229 0.3246 -0.6798
FEM 0.1471 -0.0606 -0.1910 0.2534 -1.2006 -0.7564
Disaggregate -0.0076 0.0017 -0.0061 -0.0019 0.0577 0.0296
RCM -0.0041 -0.0066 -0.0006 -0.0002 0.0449 0.0220

Variance
Aggregate 0.0085 0.0066 0.0039 0.0048 0.1751 0.0758
FEM 0.0017 0.0013 0.0006 0.0012 0.0166 0.0113
Disaggregate 0.0008 0.0010 0.0005 0.0007 0.0145 0.0099
RCM 0.0008 0.0005 0.0010 0.0007 0.0143 0.0097

approach outperform the aggregate approach and the FEM both in terms of variability
and unbiasedness. RCM performs slightly better than the disaggregate approach
especially with respect to variance. This lower variance is due to the ef�ciency gain
from combining cross-sectional units. For the slope parameters, the aggregate approach
is the worst according to all measures. For the constants, the disaggregate approach and
the RCM approach perform better than the aggregate approach and the FEM approach.
The poor performance of the aggregate approach is due to both larger bias and larger
variability, whereas the poor performance of FEM is due to larger bias only.

To examine the relative performance of the approaches when the number of
observations is smaller, we run new Monte Carlo experiments with a smaller number
of time points (T � 10). We decompose the ASPE analogously to Table 2. The
results are presented in Table 3. We see that all methods perform worse than in the
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Table 3: Monte Carlo experiment results - experiment 2
Slope Parameters Constants

ASPE (MSE)
Aggregate 0.1545 0.0482 0.1081 0.1689 1.2335 0.8694
FEM 0.0388 0.0217 0.1024 0.1014 1.5770 0.6120
Disaggregate 0.0136 0.0182 0.0132 0.0108 0.3259 0.2105
RCM 0.0108 0.0163 0.0115 0.0095 0.2753 0.1801

APE
Aggregate 0.3337 -0.0635 -0.2893 0.3780 -0.2041 -0.4514
FEM 0.1679 -0.0932 -0.3123 0.3058 -1.1796 -0.6944
Disaggregate -0.0598 -0.0290 -0.0578 -0.0411 0.3916 0.3218
RCM -0.0359 -0.0333 -0.0560 -0.0293 0.3303 0.2735

Variance
Aggregate 0.0432 0.0442 0.0244 0.0261 1.1918 0.6656
FEM 0.0106 0.0130 0.0049 0.0079 0.1857 0.1298
Disaggregate 0.0101 0.0174 0.0099 0.0091 0.1725 0.1070
RCM 0.0095 0.0152 0.0084 0.0086 0.1662 0.1053

previous case due to the small sample bias that gets more serious for short time series
and due to the reduced number of degrees of freedom. Again, the approaches that allow
for heterogeneity in the slope parameters outperform the other two. The aggregate
method has the highest ASPE values and the highest variance. The variances of the
parameters using the other three estimators increase as the sample size gets smaller but
they all stay relatively small. The FEM estimates have in general the smallest variance.
This is probably due to the fact that this model applies the strongest assumption about
cross-sectional heterogeneity and hence, has the largest number of degrees of freedom.
This becomes essential when the number of available longitudinal observations is small.
However, the estimates are signi�cantly more biased than those of the unit-by-unit
model or the RCM. The last two approaches perform very similarly with respect to
bias but the RCM parameters have smaller variation due to the ef�ciency gain from
combining the cross sections. This results in lower ASPE values, too.

Our �ndings are in line with those of Pesaran and Smith (1995) who examine
the consistency of several approaches to estimate the average coef�cients in dynamic
models. They �nd that “when the coef�cients differ across groups (cross sections),
pooling and aggregating give inconsistent and potentially highly misleading estimates
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of the coef�cients ... in dynamic models, even for large N and T ”
Bartels (1996) argues that “we are always in the position of deciding how much we

should pool some observations with others, and we always have a choice ranging from
complete pooling to assuming that the data have nothing to do with each other”. He
proposes that one should estimate a model allowing for varying degrees of pooling and
then take a scienti�c decision after examining the locus of all such estimates. In the
next section we discuss several test that facilitate such a decision.

6 Testing poolability

Despite the widespread application of panel and TSCS data models in practise, testing
of the so-called poolability hypothesis of constant slope coef�cients is often neglected
in empirical analysis. However, in the previous section we demonstrated that, when
estimating a regression relationship, poor inference may be drawn if the true slope
coef�cients vary across units and we do not accommodate for this heterogeneity,
especially when dynamics are present (see also Bun 2001, Pesaran and Smith 1995,
and Robertson and Symons 1992). As we explained before, the problem arises
because in a dynamic model the regressors are serially correlated. Incorrectly ignoring
coef�cient heterogeneity induces serial correlation in the disturbance term. This
generates inconsistent estimates in models with lagged endogenous variables.

These �ndings suggest that unbiased estimation of the mean parameters of dynamic
models requires allowing for a suf�ciently high degree of cross-sectional heterogeneity.
At the same time, a model that needlessly allows for heterogeneity requires the
estimation of extra parameters and hence, reduces ef�ciency of the parameter estimates.
So, a thorough investigation of heterogeneity should precede the choice of the �nal
TSCS model. To facilitate this investigation, we brie�y discuss several pooling tests in
this section.

The most popular test for the poolability of TSCS data is the Chow (1960) F-test.
This test can be applied to investigate the null-hypothesis of parameter homogeneity:
Hi � Hj for all i � j16. The statistic that follows an F-distribution with r and d
degrees of freedom is:

F � �RRSS�URSS��r
URSS�d

�

where RRSS is the sum of squared residuals from the restricted (pooled) model, URSS
the sum of squared residuals from the unrestricted (unit-by-unit) model, r is the number

16The Chow test can also be applied on a subset of the model parameters. It can, for example be used to
evaluate the null hypothesis of equal slope coef�cients for the cross sections, but different intercepts.
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of linearly independent restrictions, and d is the number of degrees of freedom for the
unrestricted model. This statistic has a logical extension for the system of equation
context, viz. instead of using sums of squared residuals, we use the trace of the
variance-covariance matrix of residuals.

Swamy (1971), p. 123–124, suggested that a test of the random coef�cient model
can be based on the differences between the unit-by-unit estimates and a weighted
average of these estimates:

�2 �
N�

i�1

�
hOLS

i ��h�� �V�1
i

�
hOLS

i ��h� ,

where �h � �
N�

i�1

�V�1
i

��1 N�
i�1

�V�1
i hOLS

i �

where hOLS
i and �Vi are de�ned as in Section 4. This statistic follows a �2-distribution

with Q�N � 1� degrees of freedom where Q is the number of parameters for one cross
section in the VAR model, and N is the number of cross sections.

Bun (2001b) examines the small sample performance of these classical asymptotic
tests for regression models with both lagged dependent variables and nonspherical
disturbances. His conclusion is that these test procedures perform rather poorly when
using critical values from either the F- or the �2- distribution. He suggests to use the
original Chow F-test statistics with bootstrapped critical values to increase accuracy.

Baltagi, Hidalgo and Li (1996) derive a nonparametric poolability test for panel
data. They �nd that the advantage of this approach over conventional parametric tests
is its robustness to regression functional form misspeci�cation.

Another way of exploring heterogeneity is cross-validation. Beck (2001) suggests
this approach for TSCS data. This procedure involves estimating the model several
times, leaving one cross-sectional unit out at a time. The estimation results are
compared to �nd out whether some cross sections are predicted less well than others.

In the empirical application that we discuss in the next section, we apply the
Chow-test to test the poolability of the parameters. To this end, we start by estimating
the unit-by-unit models. Subsequently, we estimate the three remaining models and test
whether pooling is allowed.

7 Empirical Application

We study the Chicago market of the three largest national brands in the U.S. in the
6.5 oz. tuna �sh product category. We have 104 weeks of observations for each of 28

21



stores of one supermarket chain in the metropolitan area, covering unit sales, actual and
regular prices, features, and displays. This is the data set that was used in the study of
Horváth et al. (2003). We use the data pooled for 26 stores17.

7.1 Model Speci�cation

The variables of interest are the logarithms of unit sales and the logarithms of price
indices (ratio of actual to regular price) of three brands at the store level. We de�ne
two types of price promotion variables: (1) own- and other-brand temporary discounts
without support and (2) own- and other-brand temporary discounts with feature only,
display only, or feature and display support. Van Heerde et al. (2000, 2001) use
this approach to allow for interaction effects between discounts and support. Also,
the promotion variables are minimally correlated by de�nition18. We treat the sales
variables and the price variables of the 3 brands endogenously in the system of
equations. We consider the non-price instruments to be exogenous to the model (hence,
in fact, we build a VARX model). Furthermore, we do not include lagged non-price
instruments but we allow for dynamic effects indirectly through the inclusion of lagged
endogenous variables. For each brand, we include a sales response function, and
two competitive reaction functions (one for supported price and one for non-supported
price). This results in a 9-dimensional VARX model with three sales response functions
and six competitive reaction functions.

In Section 3 we discussed several alternative pooling approaches. In order to
save space, we do not present the four different versions of the VARX model in this
section. We only show the FEM version because, as we will see later in this section,
this is the appropriate pooling approach for our data. The speci�cations of the other
pooling approaches follow from Equations (16) and (17) that are presented below in a
straightforward manner.

We specify the sales response functions for the FEM-VARX model as follows:

17In two stores the brands are not promoted. We exclude these stores from the analysis.
18Van Heerde et al. (2000, 2001) use four different price promotion variables. We use only two variables

to reduce degrees-of-freedom problems.
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ln Sqi�t � �qi �
2�

k�1

P�
t��0

n�
j�1

�PI i jk�t� ln PIqjk�t�t�

�
n�

j�1

P�
t��1

�i j�t� ln Sqj�t�t� �
n�

j�1

�Fi j Fqj�t (16)

�
n�

j�1

�Di j Dqj�t �
n�

j�1

�FDi j FDqj�t � �qi�t

�q � 1� � � � � N� i � 1� � � � � n� and t � 1� � � � � T � �

where

ln Sqi�t is the natural logarithm of sales of brand i in store q in week t�

ln PIqik�t is the log price index (actual to regular price) of brand i in store q in week
t (k � 1 denotes prices that are supported and k � 2 denotes prices that are not
supported)�

Fq j�t is the feature-only dummy variable for non-price promotion of brand j in store
q at time t �

Dq j�t is the display-only dummy variable for non-price promotion of brand j in store
q at time t �

FDqj�t is the feature-and-display dummy variable for non-price promotion of brand j
in store q at time t �

�qi is a store speci�c intercept for the equation corresponding to brand i and store q�

� PI i jk�t� is the pooled elasticity of brand i’s sales with respect to brand j’s price index�

�i j�t� is the pooled elasticity of brand i’s sales with respect to its own sales in week
t � t��

�Fi j , �Di j , and �FDi j are the pooled current-week effects on brand i’s log sales
resulting from brand j’s use of feature-only (F), display-only (D), and feature
and display (FD)�

n is the number of brands in the product category�

N is the number of stores�
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�qi�t are the disturbances.

Note that Equation (16) does not contain cross-sectional unit effects: i.e. we do not
assume that promotions in other stores q � � q� q � � 1� � � � � N , have an effect on Sqi�t .

Using the same notation, we specify the competitive reaction functions for the FEM as
follows:

ln PIqil�t � �qil �
P�

t��1

� il�t� ln PIqil�t�t� �
P�

t��1
k ��l

� ik�t� ln PIqik�t�t�

�
2�

k�1

P�
t��1

n�
j�1
j ��i

� il jk�t� ln PIq jk�t�t� (17)

�
P�

t��0

n�
j�1

�i j�t� ln Sqj�t�t� � �qit

�q � 1� � � � � N� i � 1� � � � � n l � 1� 2 and t � 1� 


� T � �

where all variables are de�ned as in Equation (16).
The VARX model captures several dynamic phenomena� competitive reactions,

own- and cross-feedback, intra�rm effects (relations between different variables for the
same brand), inertia (lagged endogenous effects), purchase reinforcement, immediate
sales response, and delayed response.

7.2 Testing poolability

We �rst consider the FEM calibrated for tuna data. Based on the Schwartz
Criterion (SC) we set the order of the VARX model equal to two19. We test
heterogeneity/homogeneity of the coef�cients across cross-sectional units twice.

Firstly, we perform a series of Chow tests. To test for overall parameter
homogeneity, we compare the sum of squared residuals (SSR) of the unit-by-unit

19We compute the SC’s for FEMs with order 1 to 12 to determine the optimal order of the model for the
tuna data. We �nd that SC decreases with the inclusion of extra lags. This is probably due to the fact that
with many cross sections additional lags are easy to accommodate. Speci�cally, we �nd that the part that
captures the model �t in SC gets substantially higher weight than the part that penalizes for loss in degrees
of freedom. In addition, we �nd that the model of order 12, for example, suffers from a high amount of
multicollinearity. To overcome this problem, we compute the SC’s on randomly selected sets of 10 stores,
and �nd the order is between 2 and 4. Importantly, the effects are robust across models with orders varying
from 2 to 6.
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model to that of the CCM. To test for slope homogeneity, we perform Chow test for
deciding between the unit-by-unit model and the FEM. Finally, to test for homogeneous
intercepts conditional on the acceptance of homogeneous slopes, we compare the SSR
of the FEM to that of the CCM. We present the test statistics of these three Chow
tests in Table 420. In all cases we accept the null hypothesis of homogeneity for
the slope coef�cients at the 5% signi�cance level while we have to reject it for the
constant terms, even at the 1% level. It is interesting to notice that the equations
for which the slope-homogeneity cannot be accepted at the 10% level are those in
which non-supported prices are the dependant variables. This result may arise form the
relatively low variation in these variables that makes statistical inference less reliable.

Table 4: Chow test results
F-values of the Chow test

Dependent
variables

Overall
homogeneity

Slope
homogeneity

Homogeneity in
the constant terms

ln S�1 0.70 0.57 3.30c

ln PI�s�1 0.56 0.53 1.36c

ln PIns�1 1.14b 1.11a 1.18c

ln S2 0.91 0.69 5.30c

ln PI�s�2 0.62 0.62 0.68
ln PIns�2 1.37c 1.12a 3.19c

ln S3 0.69 0.61 2.37c

ln PI�s�3 0.62 0.61 0.98
ln PIns�3 1.10 1.12a 0.61
aSigni�cant at the 10% level
bSigni�cant at the 5% level
cSigni�cant at the 1% level
�PI�s�i :supported price index of brand i�

PIns�i : non-supported price index of brand i ,
and Si : sales of brand i , i � 1� 2� 3


Secondly, to be more con�dent about our choice of the pooling approach, we
estimate RCMs for our applications and compare the Impulse Response Functions
(IRFs, they are discussed in the next sub-section) with those of the FEMs. We �nd
that the RCM-IRF results are very similar to those of the FEMs. Thus, based on this

20We could only apply the pooling tests on 24 stores since for 2 stores there was not enough variation
in the data to estimate the unit-by-unit model. In addition, we could not include the exogenous variables
either for the same reason.
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comparison and on the Chow test results, we feel con�dent that FEM-based pooling is
meaningful for our application.

The fact that our stores are from the same supermarket chain provides a possible
explanation for the homogeneity in the slope parameters. The stores attract the
same type of people and use marketing instruments in a similar pattern. Hence, the
heterogeneity (due to, for example, store or neighborhood size) can be captured by
different constants.

7.3 Estimation results

For the identi�cation of the immediate effects we apply the SVAR approach, which is
capable of supplementing sample based information with managerial judgement and/or
marketing theory (see Dekimpe and Hanssens 2000 and Horváth et al. 2003). We use
the following assumptions for the identi�cation. We allow the price variables to have
immediate effects on the sales of the brands but do not allow for immediate effects
from sales on the prices (feedback requires time). As competitive reaction also takes
place with a lag, we do not allow prices to be affected immediately by other brand’s
prices. We estimate the immediate price elasticities with Full Information Maximum
Likelihood. We obtain con�dence intervals to determine the 95% con�dence interval of
the immediate price elasticities and the IRFs that we discuss these later in this section
using a bootstrap method21 based on Benkwitz et al. (1999) with 1000 replications. We
show the immediate effects (short-term price elasticities) in Table 5.

Table 5: Price elasticities based on the FEM.

Price elasticities
Effects on: Brand 1 Brand 2 Brand 3
Supported price brand 1 -6.10� 0.49� 1.04�

Non- supported price brand 1 -3.90� -0.03 0.94�

Supported price brand 2 0.46� -3.27� 0.78�

Non- supported price brand 2 0.03 -1.97� 0.69�

Supported price brand 3 0.85� 0.33� -6.89�

Non- supported price brand 3 0.49� 0.35 -4.39�

A � indicates a signi�cant parameter estimate (� � 0
05)

These results provide high face-validity of our model since

21For details on bootstrapping we refer to Benkwitz et al. (1999) or Efron and Tibshirani (1993).
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1. All own-brand price elasticities have the right expected sign and are signi�cant.

2. The own-brand price elasticities are much greater (in absolute value) than the
corresponding cross-brand price elasticities. This is because the own-brand
effects also re�ect stockpiling and category expansion effects. Those primary
demand effects together tend to account for 50 to 70 percent of the own-brand
sales increase due to a temporary price cut for tuna (Van Heerde et al. 2002).

3. All but one of the cross-brand elasticities have the expected sign and most of them
are signi�cant. The single cross-brand elasticity with a negative sign is close to
zero and is not signi�cant at the 5% signi�cance level.

4. All but one of the supported own- and cross-brand elasticities are larger (in
absolute value) than the corresponding non-supported elasticities.

5. Brands with higher own-brand effects usually have higher cross-brand elasticities.
Brands that have high own-brand elasticities are generally more sensitive to
the effects of prices of competitive brands than brands with lower own-brand
elasticities. Brand 3 is the most and brand 2 is the least sensitive in this respect.

Based on the estimated VARX parameters and the identi�cation restrictions that are
applied to the immediate relationships among the endogenous variables we can compute
the Impulse Response Functions (IRFs). An IRF traces out the effect of an exogenous
shock or an innovation in an endogenous variable on all the endogenous variables in the
system over time, to provide an answer to the following question: “What is the effect of
a shock of size � in the system at time t on the state of the system at time t � � , in the
absence of other shocks?22”. In marketing IRFs are often used to estimate the effects
of a marketing action on brand performance over time (Dekimpe and Hanssens 1999 ,
Dekimpe et al. 1999, Horváth et al. 2003, Srinivasan and Bass 2000, and Takada and
Bass 1998). In this paper, we consider the effect of price promotions (both supported
and non-supported) on own sales. We operationalize the price promotions as one-time
deviations from the expected price level. Figure 2 presents for the three different brands
how a shock in the own price variables affects their own sales.

Figure 2 shows the dynamic evolution of the sales after a 1% own-price cut. We
see that the supported and non-supported price cuts induce high and signi�cant increase
in the own sales and we observe some post-promotion dip around the third and/or the
fourth week after a supported price promotion. We also see a dip of the IRFs in case
of non-supported price promotions, but this dip is not signi�cant at the 5% signi�cance

22For further details on the IRFs see, for example, Horváth, Kornelis and Lee�ang (2002), Hamilton
(1994), or Lütkepohl (1993).
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Figure 2: Own sales responses to 1% price cuts based on the FEM-VARX model
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PIwsi refers to supported price index of brand i,
PInsi refers to non-supported price index of brand i,
and Si refers to the sales of brand i, i=1,2,3.

level. For brand 1 the dust-settling period23 is about 10� 12 weeks, both for supported
and non-supported own price promotion. For brand 2 and 3 it lasts somewhat shorter,
about 5 � 7 weeks for their supported own price promotion for brand 2, and for about
3� 4 for the remainder24.

The effect of price promotions on competitors’ sales (these IRFs are not presented
here) are somewhat less prominent. The immediate cross-brand effects are much lower
that the corresponding own-brand effects. The dust-settling period for these IRFs lasts

23The time that is needed for the effects to stabilize (see also Nijs et al. 2001).
24Nijs et al. (2001) and Srinivasan et al. (2002) �nd similar lengths of the dust-settling period (on

average).
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for only about 2� 4 weeks.

8 Conclusion, limitations and future research

In this paper we propose a modelling strategy that overcomes one of the main drawbacks
of VAR modelling, viz. the degrees-of-freedom problem. This problem occurs
frequently in practical VAR applications due the fact that the number of parameters
of a VAR model increases quadratically with the dimension of the system of equations.
This requires a large number of data points. In addition, unbiasedness of the estimates
depends on asymptotics: this puts additional demands on the number of observations.
Obviously, the potential danger of this problem lies in obtaining unreliable estimation
results due to a shortage of degrees of freedom.

All applications of VAR modelling in marketing to date use speci�cations on a high
aggregation (market-) level. The usual approach for gaining degrees of freedom is to
reduce the number of parameters by restricting the model. However, in many cases,
the data is also available at a lower aggregation level (e.g. store-level). We propose to
gain degrees of freedom not by eliminating parameters, but by increasing the number of
observations through pooling data for multiple cross-sectional units.

In this paper, we discuss four different pooling approaches. We start with the two
extremes of ‘the pooling spectrum’. First we consider the unit-by-unit approach. In this
approach the cross-sectional units are not pooled at all� a separate model is estimated
for each cross-sectional unit. Secondly, we discuss the Constant Coef�cient Model
(CCM). This model offers the highest possible degree of pooling, since all parameters
in the model are assumed to be constant across all cross-sectional units. The third
and the fourth pooling approach are the Fixed Effects Model (FEM) and the Random
Coef�cients Model (RCM), respectively. These models can be used to strike a balance
between the level of pooling and the amount of parameter heterogeneity that is allowed
for. For each of the four pooling approaches, we provide details on estimation methods.

We discuss the �ndings of other authors who show that, in dynamic models, a
possible negative side-effect of a high degree of pooling is the introduction of a bias
in the parameter estimates, due to not allowing for a suf�cient degree of parameter
heterogeneity. We illustrate these �ndings by a small Monte Carlo simulation study in
which we compare the results of the pooling approaches and the widely used aggregate
approach. The results indicate that the aggregate approach can provide biased and
unreliable results. The RCM outperforms the other pooling approaches in terms of
ef�ciency and unbiasedness of the estimated parameters.

We argue that for a particular application, the highest possible degree of pooling
and the minimal required amount of cross-sectional heterogeneity depend on the
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characteristics of the data. Therefore, we discuss tests that can be used to select the
appropriate pooling approach.

We illustrate the proposed modelling strategy by an empirical application. The
pooling tests suggest to use the FEM approach. We provide details on the speci�cation
and the estimation of this model, and present the empirical results. Both the immediate
price elasticities as well as the dynamic effects of price promotions have high face
validity. We evaluate the statistical validity of our results using bootstrapped con�dence
intervals.

The contributions of this paper are that we (1) propose to overcome the
degrees-of-freedom problem by pooling (2) provide several pooling approaches that
allow for a trade-off between the level of pooling and the degree of heterogeneity (3)
compare the ef�ciency gains of the different pooling approaches by a small simulation
study (4) extend existing univariate estimation procedures to a multivariate setting
(5) propose to use pooling tests to guide the selection of the appropriate pooling
approach (6) use bootstrapped con�dence intervals for evaluating the signi�cance of
the estimation results.

We leave several areas open for further investigation.
Firstly, in this paper we only investigate the implementation of the ‘classical’

pooling approaches in a VAR setting. It might be interesting to study alternative
approaches. We list several possibilities.

� It might be interesting to discover segments among the cross-sectional units
and to estimate a pooled model per segment (using e.g. “fuzzy pooling”, see
Ramaswamy et al. 1993)�

� Another possibility is the Bayesian hierarchical model developed by Western
(1998). This approach allows the time-series coef�cients to vary across cross
sections�

� Bemmaor et al. (1999) suggest to pool the data for some subset of the variables
(“partial pooling”).

� Bartels (1996) suggests to obtain so-called “fractionally pooled” regression
estimators by properly weighting the unit-by-unit estimates based on prior beliefs
about the theoretical relevance of disparate observations. He proposes that one
should estimate a model allowing for varying degrees of pooling and then take a
scienti�c decision after examining the locus of all such estimates.
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Secondly, we assumed a spherical covariance structure for the disturbance term of
the VAR models. Hence, we do not allow for spatial interactions of the cross-sectional
units. It might be interesting to study how to relax these restrictions.

Thirdly, we only focus on stationary variables. Our approach can be extended to
systems with evolving and cointegrated variables.

Fourthly, we do not consider feature, display, and feature and display variables as
endogenous in our model. The main reason for this is that they are indicator variables
and hence, they require different modelling. Beck, Katz and Tucker (1998) and Beck,
Epstein, Jackman and O’Halloran (2001) provide an approach to include a mixture of
continuous and indicator variables that might be extended to a VAR setting.

Fifthly, complications may occur in the interpretation of higher order autoregressive
processes if we assume a normal distribution of the parameters over the cross sections.
Take an AR(2) process for simplicity. Suppose the RC parameter for the AR(1)
parameter is 1
2 with standard deviation 0
2, and for the AR(2) parameter it is �0
4
with standard error 0
2. These two RCs capture AR(2) models with parameters 1
0
and 0
0 (the unit roots case), 0
8 and �0
6, (very short cycles), and 1
2 with �0
1
(explosive data) and 1
2�0
22 (very long cycles). Hence, these RCMs may summarize
data that one would not want to summarize in the �rst place. An approach to overcome
this problem would be to use a truncated distribution. This approach may require some
Bayesian method (Western 1998). Another solution may be to apply the aforementioned
partial pooling approach of Bemmaor et al. (1999), where all parameters are pooled,
except the AR parameters.

Sixthly, concerning the bias arising from ignoring heterogeneity in dynamic models,
there are several issues that still need to be addressed. The small sample properties of the
alternative approaches should be studied more comprehensively through further Monte
Carlo studies. This concerns, for example, the behavior of the approaches for (i) data
sets with different dimensions, (ii) data with different sources of heterogeneity, and (iii)
different VAR models. The small sample behavior of the tests for heterogeneity requires
further examination, too.
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A The proof that Equation (15) is equivalent with the GLS
estimator
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The GLS estimator of vec�H� equals:
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Subsequently, we recall that �i � IT � �i �
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The second part of the expression in Equation (18) is equal to zero as
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where s �� Q�k� is the number of regressors in one equation. This leaves us with only
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the �rst part:
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Finally, we use the above result about ��1
i and use the same property25 once more with

A, B, and C de�ned as A�1 � �Zi � Ik�
�
IT � ��1

i

� �
Z �

i � Ik
�
� B � I and C � 	.

The desired result is then obtained by noting that

�Zi � Ik��
�1
i

�
Z �

i � Ik
� � �Zi � Ik�

�
IT � ��1

i

� �
Z �

i � Ik
�

�
� �Zi � Ik�

�
IT � ��1

i

� �
Z �

i � Ik
�

� �
	�1 � �Zi � Ik�

�
IT � ��1

i

� �
Z �

i � Ik
� �1

� �Zi � Ik�
�
IT � ��1

i

� �
Z �

i � Ik
� ��

� �
�Zi Z �

i � ��1
i �

�1 � 	��1

� �Vi � 	��1 


�

25Note that we could only use this property in the system of equations context because of the
special structure of an (unrestricted) VARX model, the panel homoscedasticity and because of the
block-diagonality of the� matrix.
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