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Abstract

We consider one-to-one matching markets in which agents can either be matched as pairs or
remain single. In these so-called roommate markets agents are consumers and resources at
the same time. We investigate two new properties that capture the effect newcomers have on
incumbent agents. Competition sensitivity focuses on newcomers as additional consumers and
requires that some incumbents will suffer if competition is caused by newcomers. Resource
sensitivity focuses on newcomers as additional resources and requires that this is beneficial for
some incumbents. For solvable roommate markets, we provide the first characterizations of the
core using either competition or resource sensitivity. On the domain of all roommate markets,
we obtain two associated impossibility results.
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1 Introduction

We consider one-to-one matching markets in which agents can either be matched as pairs or remain
single. These markets are known as roommate markets and they include, as special cases, the well-
known marriage markets (Gale and Shapley, 1962; Roth and Sotomayor, 1990). As simple as the
roommate model may be, it is of conceptual importance as it lies in the intersection of network and
coalition formation models1 (for surveys and current research of network and coalition formation
see Demange and Wooders, 2004; Jackson, 2008).

Loosely speaking, in these discrete markets the commodities to be traded are the agents them-
selves. Thus, agents are consumers and resources at the same time. We investigate two new
properties that capture the effect newcomers have on incumbent agents: competition and resource
sensitivity. Competition sensitivity focuses on newcomers as additional consumers and requires that
some incumbents will suffer if competition is caused because newcomers initiate new trades. Re-
source sensitivity focuses on newcomers as additional resources and requires that some incumbents
will benefit if there are new trades, i.e., the extra resources are consumed. The corresponding weak
population sensitivity properties only consider situations when newcomers join one by one.

For marriage markets, both properties are closely related to population monotonicity, a solidar-
ity property that requires that additional agents affect the incumbents in a similar way (either all
incumbents are weakly better off or all incumbents are weakly worse off). Because of the polariza-
tion of interests that occurs in marriage markets, two specific versions of population monotonicity
exist: own-side and other-side population monotonicity (Toda, 2006, indroduced the first of these
specifications).2 We show that in marriage markets, essentially own-side population monotonicity
implies weak competition sensitivity (Lemma 1) and other-side population monotonicity implies
weak resource sensitivity (Lemma 2). Our main results are two characterizations of the core by weak
unanimity3, Maskin monotonicity4, and either (weak) competition or (weak) resource sensitivity
for marriage markets and solvable roommate markets (Theorem 1) and two associated impossibility
results on the general domain (Theorem 2).

Theorem 1 presents the first characterizations of the core for solvable roommate markets. One
of Toda’s (2006, Theorem 3.1) results can be interpreted as a corollary (Corollary 1) of our results.
More importantly, Theorem 1 demonstrates that it is not really a solidarity property (population
monotonicity) that is at work in Toda’s (2006, Theorem 3.1) characterization of the core for mar-
riage markets, but that it is the competition sensitivity aspect that is captured as well. Our results
also imply a new characterization of the core for marriage markets (Corollary 3): a solution ϕ
satisfies individual rationality, weak unanimity, Maskin monotonicity, and other-side population
monotonicity if and only if it equals the core.5

1In a “roommate network” situation each agent is allowed or able to form only one link and in a “roommate
coalition” situation only coalitions of size one or two can be formed.

2Own-side population monotonicity : if additional men (women) enter the market, then all incumbent men (women)
are weakly worse off.

Other-side population monotonicity : if additional men (women) enter the market, then all incumbent women (men)
are weakly better off.

3Weak unanimity : if a complete unanimously best matching exists, then it is chosen.
4Maskin monotonicity : if a matching is chosen in one market, then it is also chosen in a market that results from a

Maskin monotonic transformation (which essentially means that the matching improved in the ranking of all agents).
5Can and Klaus (2010) consider the population sensitivity properties introduced here together with consistency.

They show that some of Toda’s “consistency results” do not extend to the domain of solvable roommate markets.
Hence, the analysis of consistency together with the population sensitivity properties introduced here is not a simple
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2 Roommate Markets

2.1 The Model

Gale and Shapley (1962, Example 3) introduced the very simple and appealing roommate markets
as follows: “An even number of boys wish to divide up into pairs of roommates.” A very common
extension of this problem is to allow also for odd numbers of agents and to consider the formation
of pairs and singletons (rooms can be occupied either by one or by two agents). In addition, we
will extend the problem to variable sets of agents, e.g., because the allocation of dormitory rooms
at a university occurs every year for different sets of students.

Let N be the set of potential agents6 and N be the set of all non-empty finite subsets of N, i.e.,
N = {N ⊆ N | ∞ > |N | > 0}. For N ∈ N , L(N) denotes the set of all linear orders over N .7 For
i ∈ N , we interpret Ri ∈ L(N) as agent i’s preferences over sharing a room with any of the agents
in N \ {i} and having a room for himself; e.g., Ri : j, k, i, l means that i would first like to share a
room with j, then with k, and then i would prefer to stay alone rather than sharing the room with
l. If j Pi i then agent i finds agent j acceptable and if i Pi j then agent i finds agent j unacceptable.
RN =

∏
N L(N) denotes the set of all preference profiles of agents in N (over agents in N). A

roommate market consists of a set of agents N ∈ N and their preferences R ∈ RN and is denoted
by (N,R). A marriage market (Gale and Shapley, 1962) is a roommate market (N,R) such that
N is the union of two disjoint sets M and W and each agent in M (respectively W ) prefers being
single to being matched with any other agent in M (respectively W ).

A matching µ for roommate market (N,R) is a function µ : N → N of order two, i.e., for
all i ∈ N , µ(µ(i)) = i. Thus, at any matching µ, the set of agents is partitioned into pairs of
agents who share a room and singletons (agents who do not share a room). Agent µ(i) is agent
i’s match (if µ(i) = i then i is matched to himself or single). For notational convenience, we often
denote matchings as ordered lists, e.g., for N = {1, 2, 3, 4, 5} and matching µ such that µ(1) = 3,
µ(2) = 2 and µ(4) = 5 we write µ = (3, 2, 1, 5, 4). For S ⊆ N , we denote by µ(S) the set of
agents that are matched to agents in S, i.e., µ(S) = {i ∈ N | µ−1(i) ∈ S}. We denote the set
of matchings for roommate market (N,R) by M(N,R) (even though this set does not depend on
preferences R). If it is clear which roommate market (N,R) we refer to, matchings are assumed to
be elements ofM(N,R). Since agents only care about their own matches, we use the same notation
for preferences over agents and matchings: for all agents i ∈ N and matchings µ, µ′, µ Ri µ

′ if and
only if µ(i)Ri µ

′(i).

In the sequel, we consider three domains of roommate problems: the domain of all roommate
markets, the domain of so-called solvable roommate markets (Definition 5), and the domain of
marriage markets. To avoid notational complexity when introducing solutions and their properties,
we use the generic domain of roommate markets D.

A solution ϕ on D is a correspondence that associates with each roommate market (N,R) ∈ D
a nonempty subset of matchings, i.e., for all (N,R) ∈ D, ϕ(N,R) ⊆M(N,R) and ϕ(N,R) 6= ∅.

addition or extension of this work.
6Most results remain valid for a finite set of potential agents. We will explain throughout the article, which results

depend on the set of potential agents to be infinite.
7A linear order over N is a binary relation R̄ that satisfies antisymmetry (for all i, j ∈ N , if i R̄ j and j R̄ i, then

i = j), transitivity (for all i, j, k ∈ N , if i R̄ j and j R̄ k, then i R̄ k), and comparability (for all i, j ∈ N , i R̄ j or j R̄ i).
By P̄ we denote the asymmetric part of R̄. Hence, given i, j ∈ N , i P̄ j means that i is strictly preferred to j; i R̄ j
means that i P̄ j or i = j and that i is weakly preferred to j.
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2.2 Basic Properties and the Core

We first introduce a voluntary participation condition based on the idea that no agent can be forced
to share a room.

Definition 1. Individual Rationality
A matching µ is individually rational for roommate market (N,R) if for all i ∈ N , µ(i) Ri i.
IR(N,R) denotes the set of all these matchings. A solution ϕ on D is individually rational if it
only assigns individually rational matchings, i.e., for all (N,R) ∈ D, ϕ(N,R) ⊆ IR(N,R).

Remark 1. Individual Rationality and Marriage Markets
An individually rational matching for a marriage market respects the partition of agents into two
types and never matches two men or two women. Hence, we embed marriage markets into our
roommate market framework by an assumption on preferences (same gender agents are unaccept-
able) and individual rationality to ensure that no two agents of the same gender are matched. We
refer to a marriage market for which matching agents of the same gender is not feasible as a classical
marriage market.

Next, we introduce the well-known condition of Pareto optimality and the weaker conditions of
unanimity and weak unanimity.

Definition 2. Pareto Optimality
A matching µ is Pareto optimal for roommate market (N,R) if there is no other matching µ′ ∈
M(N,R) such that for all i ∈ N , µ′ Ri µ and for some j ∈ N , µ′ Pj µ. PO(N,R) denotes the
set of all these matchings. A solution ϕ on D is Pareto optimal if it only assigns Pareto optimal
matchings, i.e., for all (N,R) ∈ D, ϕ(N,R) ⊆ PO(N,R).

Definition 3. (Weak) Unanimity
A matching µ is the unanimously best matching for (N,R) if it is such that for all i, j ∈ N , µ(i)Ri j.
A solution ϕ on D is unanimous if it assigns the unanimously best matching whenever it exists,
i.e., for all roommate markets (N,R) ∈ D with a unanimously best matching µ, ϕ(N,R) = {µ}.
A solution ϕ on D is weakly unanimous if it assigns the unanimously best matching whenever it
exists and is complete (no agent is single).

Note that Pareto optimality implies unanimity and that unanimity implies weak unanimity.

The next property requires that two agents who are “mutually best agents” are always matched
with each others.

Definition 4. Mutually Best
Let (N,R) be a roommate market and i, j ∈ N [possibly i = j] such that for all k ∈ N , i Rj k
and j Ri k. Then, i and j are mutually best agents for (N,R). A solution ϕ on D is mutually best
if it only assigns matchings at which all mutually best agents are matched, i.e., for all roommate
markets (N,R) ∈ D, for all mutually best agents i and j, and for all µ ∈ ϕ(N,R), µ(i) = j.

Note that our notion of mutually best is slightly stronger than that used in Toda (2006, because
he consider mutually best man-woman pairs, he does not allow for a single mutually best agent
i = j). Furthermore, mutually best implies unanimity and Pareto optimality and mutually best
are logically unrelated.
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Examples of solutions are immediately implied by two of the properties: define IR (respectively
PO) as correspondences that assign to each roommate market the set of individually rational
(respectively Pareto optimal) matchings.

Next, we define stability for roommate markets. A matching µ for roommate market (N,R) is
blocked by a pair {i, j} ⊆ N [possibly i = j] if j Pi µ(i) and i Pj µ(j). If {i, j} blocks µ, then {i, j}
is called a blocking pair for µ. Note that a matching is individually rational if there is no blocking
pair {i, j} with i = j.

Definition 5. Stability and Solvability
A matching µ is stable for roommate market (N,R) if there is no blocking pair for µ. S(N,R)
denotes the set of all these matchings. A roommate market is solvable if stable matchings exist, i.e.,
(N,R) is solvable if and only if S(N,R) 6= ∅. Furthermore, on the domain of solvable roommate
markets, a solution ϕ is stable if it only assigns stable matchings, i.e., for all (N,R) such that
S(N,R) 6= ∅, ϕ(N,R) ⊆ S(N,R).

Another well-known concept for matching problems is the core.

Definition 6. Core
A matching is in the (strict or strong) core if no coalition of agents can improve their wel-
fare by rematching among themselves. For roommate market (N,R), core(N,R) = {µ ∈
M(N,R) | there exists no S ⊆ N and no µ′ ∈M(N,R) such that µ′(S) = S, for all i ∈ S, µ′(i)Ri

µ(i), and for some j ∈ S, µ′(j) Pj µ(j)}.

Similarly as in other matching models (e.g., marriage markets and college admissions markets),
the core equals the set of stable matchings, i.e., for all (N,R), core(N,R) = S(N,R). Hence,
the core is a solution on the domain of solvable roommate markets, but not on the domain of all
roommate markets. Gale and Shapley (1962) showed that all marriage markets are solvable and
gave an example of an unsolvable roommate market (Gale and Shapley, 1962, Example 3).

Finally, we introduce Maskin monotonicity (Maskin, 1999): if a matching is chosen in one room-
mate market, then it is also chosen in a roommate market that results from a Maskin monotonic
transformation, which essentially means that the matching (weakly) improved in the preference
ranking of all agents.

Let (N,R) be a roommate market. Then, for any agent i ∈ N and matching µ ∈ M(N,R),
the lower contour set of Ri at µ is Li(Ri, µ) := {µ′ ∈M(N,R) | µ Ri µ

′}. For preference profiles
R,R′ ∈ RN and matching µ ∈M(N,R), R′ is a Maskin monotonic transformation of R at µ if for
all i ∈ N , Li(Ri, µ) ⊆ Li(R

′
i, µ).

Definition 7. Maskin Monotonicity
A solution ϕ on D is Maskin monotonic if for all roommate markets (N,R), (N,R′) ∈ D, and all
µ ∈ ϕ(N,R) such that R′ is a Maskin monotonic transformation of R at µ, µ ∈ ϕ(N,R′).

Maskin monotonicity is one of the key concepts in implementation theory. However, here we
focus on Maskin monotonicity as a desirable property in itself.

Proposition 1. On the domains of marriage markets and of solvable roommate markets, the core
satisfies individual rationality, Pareto optimality, unanimity, mutually best, stability, and Maskin
monotonicity.
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Proof. It is easily checked that the core satisfies individual rationality, Pareto optimality, unanimity,
mutually best, and stability. Sönmez’s (1996) Proposition 1 applies to the domains of marriage
markets and of solvable roommate markets and it therefore shows that the core is Maskin monotonic.

2.3 Variable Population Properties

The next properties we consider concern population changes. More specifically, consider the change
of a roommate market (N,R) when a finite set of agents or newcomers N̂ ⊆ N\N shows up. Then,
the new set of agents is N ′ = N ∪ N̂ and (N ′, R′), R′ ∈ RN ′ , is an extension of (N,R) if agents in
N extend their preferences to include the newcomers in N̂ , i.e.,

(i) for all i ∈ N ′, R′i ∈ L(N ′) and

(ii) for all j, k, l ∈ N , j Rl k if and only if j R′l k.

Note that R ∈ RN is the restriction of R′ ∈ RN ′ to N . We also denote the restriction of R′ to N
by R′N .

Adding a set of newcomers N̂ might be a positive or a negative change for any of the incumbents
in N because it might mean

a negative change with more competition or

a positive change with more resources.

Before we capture both effects in two new properties called competition and resource sensitivity,
we make a short excursion to the definition of population monotonicity for marriage markets. This
property goes back to Thomson (1983), who also presents a survey of population monotonicity in
various economic models (Thomson, 1995).

Population Monotonicity: When a change in the population is exogenous, it would be unfair
if the agents who were not responsible for this change were treated unequally. Population mono-
tonicity represents this idea of solidarity. However, for marriage markets this would mean that if a
newcomer enters (e.g., a man) men and women are all affected in the same way (all weakly better
off or all weakly worse off).

This might not be a natural condition for marriage markets because of a certain polarization
imbedded in the market: a man might be considered good news for women (more choice), but
bad news for men (more competition). Therefore, for marriage markets we can formulate two
population monotonicity conditions that take the polarization aspect into account. The first one
was introduced by Toda (2006) and we will refer to it as own-side population monotonicity: a
solution ϕ is own-side population monotonic if for any marriage market (M ∪W,R), if additional
men [women] enter the market such that the new marriage market equals (M ′∪W,R′) [(M∪W ′, R′)],
then – because of the possible negative effect of the extra competition – all men in M [women in
W ] weakly prefer ϕ(M ∪W,R) to ϕ(M ′ ∪W,R′) [ϕ(M ∪W ′, R′)].

We formalize own-side population monotonicity for marriage markets by restricting population
changes to either a set of men or a set of women. Consistent with Toda’s (2006) choice of extending
preferences over matchings to sets of matchings, we apply the pessimistic view of comparing sets
of matchings throughout this article.8

8Agents are pessimistic and always assume that the worst matching will be realized, i.e., given two sets of matchings
A and B, an agent will compare the worst matching in A to the worst matching in B. Thus, if agent i weakly prefers
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Definition 8. Own-Side Population Monotonicity for Marriage Markets
On the domain of marriage markets, a solution ϕ is own-side population monotonic if the following
holds. Let (N,R) be a marriage market and assume that (N ′, R′), N ′ = N ∪ N̂ , is an extension of
(N,R) and all newcomers N̂ are men [women]. Then, for all µ ∈ ϕ(N,R) there exists µ′ ∈ ϕ(N ′, R′)
such that (∗) for all men m ∈ N , µ(m)R′m µ′(m) [for all women w ∈ N , µ(w)R′w µ

′(w)].9

By the strictness of preferences, (∗) means that if all newcomers are men [women], then every
man [woman] who is matched differently is strictly worse off, i.e., for all men m ∈ N , either
µ(m) = µ′(m) or µ(m) P ′m µ′(m) [for all women w ∈ N , either µ(w) = µ′(w) or µ(w) P ′w µ

′(w)].
Hence, if a man m [woman w] has a new match at µ′, then he [she] is worse off. Without specifying
whether the set of newcomers consists of men or women, own-side population monotonicity implies
that if m,w ∈ N are newly matched at µ′, then at least one of them is worse off (if newcomers
are men, then man m is worse off and if newcomers are women, then woman w is worse off). This
latter requirement that if two incumbents are newly matched at µ′, then one of them suffers from
the increased competition by the newcomers and is worse off, can be formulated as a new property,
namely competition sensitivity. This property requires that the solution is sensitive to competition,
which is a different requirement than the solidarity aspect that own-side population monotonicity
reflects.

Definition 9. (Weak) Competition Sensitivity
A solution ϕ on D is competition sensitive if the following holds. Let (N,R) ∈ D be a roommate
market and assume that (N ′, R′) ∈ D, N ′ = N ∪ N̂ , is an extension of (N,R). Then, for all
µ ∈ ϕ(N,R) there exists µ′ ∈ ϕ(N ′, R′) such that for all i, j ∈ N [possibly i = j] that are newly
matched at µ′, at least one is worse off, i.e., if i, j ∈ N , µ(i) 6= j, and µ′(i) = j, then µ(i) P ′i µ

′(i)
or µ(j) P ′j µ

′(j).10 A solution ϕ on D is weakly competition sensitive if we require competition

sensitivity only when adding one newcomer at a time, i.e., N̂ = {n}. Note that the competition
sensitivity defined in Klaus (2008, Definition 9) equals the weak competition sensitivity here.

On the domain of marriage markets, weak competition sensitivity is essentially a weaker prop-
erty than own-side population monotonicity (individual rationality is added to ensure that no two
agents of the same gender are matched, see Remark 1). The only reason why full competition
sensitivity is not implied is that own-side population monotonicity only addresses the addition of
same-gender newcomers. In the following lemma, we can slightly strengthen weak competition sen-
sitivity by allowing for sets of same-gender newcomers (the proof is for this somewhat more general
version of weak competition sensitivity).

Lemma 1. Own-Side Population Monotonicity ⇒ Weak Competition Sensitivity
On the domain of marriage markets, individual rationality and own-side population monotonicity
imply weak competition sensitivity.

Proof. Let ϕ be a solution on the domain of marriage markets that is individually rational and
own-side population monotonic. Let (N,R) be a marriage market and assume that marriage market

A to B, then for all µ ∈ A there exists µ′ ∈ B such that µRiµ
′. As already noted by Toda (2006), using an optimistic

set comparison, i.e., comparing the best matchings, will not give the same results and using a standard set comparison
that compares best to best and worst to worst matchings (see Barberà et al., 2004) will not change the results.

9Equivalently (Toda, 2006): (∗) for all men m ∈ N , µ(m)Rm µ′(m) [for all women w ∈ N , µ(w)Rw µ
′(w)].

10Equivalently, if agents in N̂ are leaving: for all i, j ∈ N [possibly i = j] that are not matched at µ anymore, at
least one is better off, i.e., if i, j ∈ N , µ′(i) = j, and µ(i) 6= j, then µ(i) P ′i µ

′(i) or µ(j) P ′j µ
′(j).
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(N ′, R′), N ′ = N ∪ N̂ , is an extension of (N,R) such that all newcomers in N̂ are men. By own-
side population monotonicity, for all µ ∈ ϕ(N,R) there exists µ′ ∈ ϕ(N ′, R′) such that for all men
m ∈ N , either µ(m) = µ′(m) or µ(m) P ′m µ′(m). Let i, j ∈ N , µ(i) 6= j, and µ′(i) = j. If i 6= j,
then the pair {i, j} consists of one man and one woman. Without loss of generality assume that i
is the man and j the woman. Thus, by own-side population monotonicity, µ(i) P ′i µ

′(i). If i = j,
then, by individual rationality, µ(i) P ′i µ

′(i).11 Hence, ϕ is weakly competition sensitive.

In the following example we demonstrate that for marriage markets, competition sensitivity
does not imply own-side population monotonicity.

Example 1. Solution ϕ̄ uses two important stable matchings that always exist for marriage mar-
kets: the man- and the woman-optimal stable matching (obtainable by applying Gale and Shapley’s,
1962, deferred acceptance algorithm). We define ϕ̄ as follows. For all marriage markets (N,R), if
there are more men than women, then ϕ̄ assigns the man-optimal stable matching and otherwise
ϕ̄ assigns the woman-optimal stable matching. Solution ϕ̄ is individually rational and competition
sensitive (Proposition 2), but it violates own-side population-monotonicity (see Appendix A). �

Next we introduce other-side population monotonicity for marriage markets: a solution ϕ is
other-side population monotonic if for any marriage market (M ∪W,R), if additional men [women]
enter the market such that the new marriage market equals (M ′ ∪W,R′) [(M ∪W ′, R′)], then –
because of the possible positive effect of the extra matching opportunities or resources – all women
in W [men in M ] weakly prefer ϕ(M ′ ∪W,R′) [ϕ(M ∪W ′, R′)] to ϕ(M ∪W,R).

Definition 10. Other-Side Population Monotonicity for Marriage Markets
On the domain of marriage markets, a solution ϕ is other-side population monotonic if the following
holds. Let (N,R) be a marriage market and assume that (N ′, R′), N ′ = N ∪ N̂ , is an extension of
(N,R) and all newcomers N̂ are men [women]. Then, for all µ′ ∈ ϕ(N ′, R′) there exists µ ∈ ϕ(N,R)
such that (∗∗) for all women w ∈ N , µ′(w)R′w µ(w) [for all men m ∈ N , µ′(m)R′m µ(m)].

By the strictness of preferences, (∗∗) means that if newcomers are men [women], then every
woman [man] who is matched differently is strictly better off, i.e., for all women w ∈ N , either
µ′(w) = µ(w) or µ′(w) P ′w µ(w) [for all men m ∈ N , either µ′(m) = µ(m) or µ′(m) P ′m µ(m)].
Hence, if a woman w [man m] is unmatched from her match at µ, then she [he] is better off.
Without specifying whether the set of newcomers consists of men or women, other-side population
monotonicity implies that if m,w ∈ N are not matched anymore at µ′, then at least one of them
is better off (if newcomers are men, then woman w is better off and if newcomers are women, then
man m is better off). This latter requirement that if two incumbents were unmatched at µ′, then
one of them benefits from the increase of resources by the newcomers and is better off, can be
formulated as a new property, namely resource sensitivity. This property requires that the solution
is sensitive to an increase in resources, which is a different requirement than the solidarity aspect
that other-side population monotonicity reflects.

Definition 11. (Weak) Resource Sensitivity
A solution ϕ on D is resource sensitive if the following holds. Let (N,R) ∈ D be a roommate market
and assume that (N ′, R′) ∈ D, N ′ = N ∪ N̂ , is an extension of (N,R). Then, for all µ′ ∈ ϕ(N ′, R′)

11If i is a man, this latter implication would also be implied by own-side population monotonicity. However, if i is
a woman, this concluding argument cannot be made solely by using own-side population monotonicity.
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there exists µ ∈ ϕ(N,R) such that for all i, j ∈ N [possibly i = j] that are not matched at µ′

anymore, at least one is better off, i.e., if i, j ∈ N , µ(i) = j, and µ′(i) 6= j, then µ′(i) P ′i µ(i) or
µ′(j)P ′j µ(j).12 A solution ϕ on D is weakly resource sensitive if we require resource sensitivity only

when adding one newcomer at a time, i.e., N̂ = {n}. Note that the resource sensitivity defined in
Klaus (2008, Definition 9) equals the weak resource sensitivity here.

On the domain of marriage markets, weak resource sensitivity is essentially a weaker property
than other-side population monotonicity (individual rationality is added to ensure that no two
agents of the same gender are matched, see Remark 1). The only reason why full resource sensitivity
is not implied is that other-side population monotonicity only addresses the addition of same-gender
newcomers. In the following lemma, we can slightly strengthen weak resource sensitivity by allowing
for sets of same-gender newcomers (the proof is for this somewhat more general version of weak
resource sensitivity).

Lemma 2. Other-Side Population Monotonicity ⇒ Weak Resource Sensitivity
On the domain of marriage markets, individual rationality and other-side population monotonicity
imply weak resource sensitivity.

Proof. Let ϕ be a solution on the domain of marriage markets that is individually rational and
other-side population monotonic. Let (N,R) be a marriage market and assume that marriage
market (N ′, R′), N ′ = N ∪ N̂ , is an extension of (N,R) such that all newcomers in N̂ are men. By
other-side population monotonicity, for all µ′ ∈ ϕ(N ′, R′) there exists µ ∈ ϕ(N,R) such that for
all women w ∈ N , either µ′(w) = µ(w) or µ′(w) P ′w µ(w). Let i, j ∈ N , µ(i) = j, and µ′(i) 6= j. If
i 6= j, then the pair {i, j} consists of one man and one woman. Without loss of generality assume
that i is the man and j the woman. Thus, by other-side population monotonicity, µ′(j) P ′j µ(j). If

i = j , then by individual rationality, µ′(i) P ′i µ(i).13 Hence, ϕ is weakly resource sensitive.

Solution ϕ̄ (Example 1) also demonstrates that for marriage markets, resource sensitivity does
not imply other-side population monotonicity: solution ϕ̄ is individually rational and resource
sensitive (see Proposition 2), but it violates other-side population monotonicity (see Appendix A).

Proposition 2. On the domains of marriage markets and of solvable roommate markets, any stable
solution satisfies competition and resource sensitivity. In particular, the core satisfies competition
and resource sensitivity.

Proof. Let ϕ be a stable solution on the domain of solvable roommate markets [marriage markets].
Let (N,R) be a solvable roommate market [marriage market] and assume that (N ′, R′), N ′ = N∪N̂ ,
is an extension of (N,R) that is solvable [a marriage market].

Competition Sensitivity : Assume that ϕ is not competition sensitive, i.e., there exist µ ∈ ϕ(N,R),
µ′ ∈ ϕ(N ′, R′), and i, j ∈ N [possibly i = j] such that µ′(i) = j, µ(i) 6= j, µ′(i) P ′i µ(i), and
µ′(j) P ′j µ(j). Thus, j Pi µ(i) and i Pj µ(j). Hence, {i, j} is a blocking pair for µ; contradicting
µ ∈ ϕ(N,R) ⊆ S(N,R).

Resource Sensitivity : Assume that ϕ is not resource sensitive, i.e., there exist µ ∈ ϕ(N,R), µ′ ∈
ϕ(N ′, R′), and i, j ∈ N [possibly i = j] such that µ(i) = j, µ′(i) 6= j, µ(i)P ′i µ

′(i), and µ(j)P ′j µ
′(j).

12Equivalently, if agents in N̂ are leaving: for all i, j ∈ N [possibly i = j] that are newly matched at µ at least one
is worse off, i.e., if i, j ∈ N , µ′(i) 6= j, and µ(i) = j, then µ′(i) P ′i µ(i) or µ′(j) P ′j µ(j).

13If i is a woman, this latter implication would also be implied by other-side population monotonicity. However, if
i is a man, this concluding argument cannot be made solely by using other-side population monotonicity.
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Thus, j P ′i µ
′(i), and iP ′j µ

′(j). Hence, {i, j} is a blocking pair for µ′; contradicting µ′ ∈ ϕ(N ′, R′) ⊆
S(N ′, R′).

3 Results

3.1 Relations between Properties

Lemma 3.

(a) On the domain of marriage markets,

(b) On the domain of solvable roommate markets,

(c) On the domain of all roommate markets,

weak unanimity and competition sensitivity imply mutually best.

Proof. Let ϕ be a solution on any of the domains in Lemma 3 that satisfies weak unanimity and
competition sensitivity. Let (N,R) be a (marriage, solvable) roommate market such that agents
i, j ∈ N [possibly i = j] are mutually best. To prove that ϕ satisfies mutually best, we show that
for all µ ∈ ϕ(N,R), µ(i) = j.

Without loss of generality assume that N \ {i, j} = {1, . . . , l}. Let N̂ = {k1, . . . , kl} be a set
of newcomers and assume that (N ′, R′), N ′ = N ∪ N̂ , is an extension of (N,R) such that agents 1
and k1 are mutually best, agents 2 and k2 are mutually best, . . ., and agents l and kl are mutually
best [if (N,R) is a marriage market, then the gender of newcomers and preferences can be chosen
such that (N ′, R′) is also a marriage market]. For the solvable roommate market (N ′, R′) there
exists the complete and unanimously best matching ν ′ that matches agent i with agent j, agent 1
with agent k1, agent 2 with agent k2, . . ., and agent l with agent kl. Hence, by weak unanimity,
ϕ(N ′, R′) = {ν ′}. By competition sensitivity, for all µ ∈ ϕ(N,R), if agents i and j are newly
matched at ν ′, then at least one is worse off. Since at ν ′ agents i and j are mutually best matched,
for all µ ∈ ϕ(N,R), µ(i) = j.

On the domain of marriage markets, Toda (2006, Lemma 3.1) proves that weak unanimity and
own-side population monotonicity imply mutually best. The proof of our Lemma 3 follows similar
arguments as Toda’s (2006, Lemma 3.1) proof for the corresponding marriage market result.

In Appendix B we prove a stronger version of Lemma 3 – Lemma 3’ – using weak competition
sensitivity instead of competition sensitivity. The proof of Lemma 3’ (b) is more elaborate because
when adding newcomers one by one, the resulting roommate markets have to always be solvable.

Finally, with Example 3 in Appendix B we illustrate why Lemmas 3 and 3’ might not hold if
the set of potential agents is finite.

Lemma 4.

(a) On the domain of marriage markets,

(b) On the domain of solvable roommate markets,

(c) On the domain of all roommate markets,

weak unanimity and resource sensitivity imply mutually best.
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Proof. Let ϕ be a solution on any of the domains in Lemma 4 that satisfies unanimity and resource
sensitivity. Let (N,R) be a (marriage, solvable) roommate market such that agents i, j ∈ N
[possibly i = j] are mutually best. To prove that ϕ satisfies mutually best, we show that for all
µ ∈ ϕ(N,R), µ(i) = j.

Let N̄ = {i, j} and consider the reduced preferences R̄ = RN̄ , i.e., i R̄j j and j R̄i i completely
describe R̄. There exists a unanimously best complete matching ν̄ for (marriage, solvable) room-
mate market (N̄ , R̄): ν̄ matches agent i with agent j. Hence, by weak unanimity, ϕ(N̄ , R̄) = {ν̄}
and ν̄(i) = j.

Without loss of generality assume that N = N̄ ∪ {1, . . . , l}. Consider the extension (N,R)
of (N̄ , R̄) that is obtained by adding newcomers N̂ = {1, . . . , l}. By resource sensitivity, for all
µ ∈ ϕ(N,R), if agents i and j are not matched at µ anymore, then at least one is better off. Since
at ν̄ agents i and j are already mutually best matched, for all µ ∈ ϕ(N,R), µ(i) = j.

Lemma 4 establishes a corresponding result to Lemma 3 by using resource sensitivity instead
of competition sensitivity. In Appendix B we prove a stronger version of Lemma 4 (a) and (c) –
Lemma 4’ (a) and (c) – using weak resource sensitivity instead of resource sensitivity. In Lemma 4’
(b) we weaken resource sensitivity, but add Maskin monotonicity. The proof of Lemma 4’ is more
elaborate because newcomers have to be added one by one.

In Corollary 2 (see Section 3.3) we establish a result that complements Toda’s (2006) Lemma 3.1:
on the domain of marriage markets, individual rationality, weak unanimity, and other-side popu-
lation monotonicity imply mutually best. We show in Lemma 8 (Section 3.3) that indeed in our
roommate market framework we use individual rationality only to ensure that same gender agents
are not matched (Remark 1).

Finally, we prove in Appendix B that Lemma 4 (b) cannot be strengthened by only using
weak resource sensitivity instead of resource sensitivity (without adding Maskin monotonicity); we
define a solution on the domain of solvable roommate markets that satisfies weak unanimity and
weak resource sensitivity, but neither mutually best nor Maskin monotonicity (see Example 4 in
Appendix B).

Lemma 5.

(a) On the domain of marriage markets,

(b) On the domain of solvable roommate markets,

(c) On the domain of all roommate markets,

mutually best and Maskin monotonicity imply individual rationality.

Proof. Let ϕ be a solution on any of the domains in Lemma 5 that satisfies mutually best and
Maskin monotonicity, but not individual rationality. Thus, there exists a (marriage, solvable)
roommate market (N,R), a matching µ ∈ ϕ(N,R), and an agent i ∈ N such that i Pi µ(i).

We define R̃ ∈ RN by moving i on top of agent i’s preferences and, for any j 6= i, by moving
µ(j) on top of agent j’s preferences [if (N,R) is a marriage market, then (N, R̃) is also a marriage
market]. Note that (N, R̃) is solvable14 and that R̃ is a Maskin monotonic transformation of R
at µ. Hence, by Maskin monotonicity, µ ∈ ϕ(N, R̃). Let µ̃ be the matching obtained from µ by
unmatching agents i and µ(i). By mutually best, ϕ(N, R̃) = {µ̃}. Since µ̃ 6= µ this is a contradiction
to µ ∈ ϕ(N, R̃).

14Roommate market (N, R̃) has a unique core allocation that matches all agents in N \ {i, µ(i)} according to µ –
agents i and µ(i) are single.
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Toda (2006, Lemma 3.2) presents a different result to obtain individual rationality for marriage
markets: own-side population monotonicity and mutually best imply individual rationality. Note
that we prove in Lemma 8 (Section 3.3) that for the standard marriage market model where agents of
the same gender are never matched, other-side population monotonicity (without requiring mutually
best) implies individual rationality. We show that mutually best and either competition or resource
sensitivity imply individual rationality in Appendix B (Lemmas 9 and 10).

3.2 Two Characterizations of the Core and two Impossibilities

Lemma 6.

(a) On the domain of marriage markets,

(b) On the domain of solvable roommate markets,

if a solution ϕ is mutually best and Maskin monotonic, then it is a subsolution of the core,
i.e., on the domains of marriage markets and of solvable roommate markets, for all (N,R),
ϕ(N,R) ⊆ core(N,R).

(c) On the domain of all roommate markets,

no solution ϕ is mutually best and Maskin monotonic.

Proof. Let ϕ be a solution on any of the domains in Lemma 6 that satisfies mutually best and
Maskin monotonicity. By Lemma 5, ϕ satisfies individual rationality.

To prove (a) and (b), let (N,R) be a solvable roommate market [marriage market] such that
ϕ(N,R) * core(N,R). To prove (c), let (N,R) be an unsolvable roommate market. In both cases
there exists a matching µ ∈ ϕ(N,R) with a blocking pair {i, j} for µ. By individual rationality,
i 6= j.

We define R̃ ∈ RN by moving j on top of agent i’s preferences, by moving i on top of agent j’s
preferences and, for any k ∈ N \ {i, j}, by moving µ(k) on top of agent k’s preferences. Note that
(N, R̃) is solvable15 and that R̃ is a Maskin monotonic transformation of R at µ. Hence, by Maskin
monotonicity, µ ∈ ϕ(N, R̃). By mutually best, for all µ̃ ∈ ϕ(N, R̃), µ̃(i) = j. Since µ(i) 6= j this is
a contradiction to µ ∈ ϕ(N, R̃).

For (a) and (b) this proves that ϕ(N,R) ⊆ core(N,R) and for (c) this proves that mutually
best and Maskin monotonicity are not compatible on the general domain of roommate markets.

Lemma 7. On the domains of marriage markets and of solvable roommate markets, there exists
no Maskin monotonic strict subsolution of the core.

Proof. Sönmez’s (1996) Theorem 1 applies to the domains of marriage markets and of solvable
roommate markets and it therefore shows that if a rule ϕ is Pareto optimal, individually rational,
and Maskin monotonic, then it is a supersolution of the core, i.e., for all marriage markets and all
solvable roommate markets (N,R), ϕ(N,R) ⊇ core(N,R).

Thus, since any subsolution of the core satisfies Pareto optimality and individual rationality,
there exists no Maskin monotonic strict subsolution of the core on the domains of marriage markets
and of solvable roommate markets.

15Roommate market (N, R̃) has a unique core allocation that matches agent i with agent j and all agents in
N \ {i, j, µ(i), µ(j)} according to µ – agent(s) µ(i) and µ(j) are either single or, if mutually acceptable, matched with
each other.

12



Theorem 1. Two Characterizations of the Core
On the domains of marriage markets and of solvable roommate markets, a solution ϕ satisfies

(1) weak competition sensitivity,

(2) weak resource sensitivity,

weak unanimity, and Maskin monotonicity if and only if it equals the core.

Proof. Let ϕ be a solution on any of the domains in Theorem 1. By Propositions 1 and 2, the core
satisfies all properties listed in the theorem. Let ϕ satisfy weak unanimity, Maskin monotonicity,

(1) and weak competition sensitivity. Then, by Lemma 3’ (a) and (b), ϕ satisfies mutually best.

(2) and weak resource sensitivity. Then, by Lemma 4’ (a) and (b), ϕ satisfies mutually best.

Thus, ϕ satisfies Maskin monotonicity and mutually best. Hence, by Lemma 6 (a) and (b), ϕ
is a subsolution of the core. Then, by Lemma 7, ϕ = core.

Theorem 2. Two Impossibility Results
On the domain of all roommate markets, no solution ϕ satisfies

(1) weak competition sensitivity,

(2) weak resource sensitivity,

weak unanimity, and Maskin monotonicity.

Proof. Let ϕ be a solution on the domain of all roommate markets. Let ϕ satisfy weak unanimity,
Maskin monotonicity,

(1) and weak competition sensitivity. Then, by Lemma 3’ (c), ϕ satisfies mutually best.

(2) and weak resource sensitivity. Then, by Lemma 4’ (c), ϕ satisfies mutually best.

Thus, ϕ satisfies Maskin monotonicity and mutually best; contradicting Lemma 6 (c).

With Example 3 in Appendix B we illustrate why Theorems 1 (1) and 2 (1) might not hold if
the set of potential agents is finite.

We next show the independence of properties in Theorems 1 and 2.

The solution ϕs on the domains in Theorems 1 and 2 that always assigns the matching at
which all agents are single satisfies Maskin monotonicity, (weak) competition and (weak) resource
sensitivity, but not weak unanimity.

On the domains of marriage markets and of solvable roommate markets, any strict subsolution
of the core satisfies (weak) unanimity, (weak) competition and (weak) resource sensitivity (Proposi-
tion 2), but not Maskin monotonicity (Lemma 7). For the domain of all roommate markets, solution
ϕmbs that always assigns the matching where all mutually best agents are matched and everybody
else is single satisfies (weak) unanimity, (weak) competition and (weak) resource sensitivity, but
not Maskin monotonicity.

The Pareto solution PO on the domains in Theorems 1 and 2 satisfies (weak) unanimity and
Maskin monotonicity, but – as the following two examples demonstrate – neither weak competition
nor weak resource sensitivity.
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Example 2. The Pareto Solution is neither Competition nor Resource Sensitive
Competition Sensitivity : Consider the solvable roommate markets (N,R) and (N ′, R′) such that

N = {1, 2} N ′ = {1, 2, 3}
R1 : 1, 2 R′1 : 1, 2, 3
R2 : 1, 2 R′2 : 3, 1, 2

R′3 : 2, 3, 1
core(N,R) = {µ̄} core(N ′, R′) = {µ′}
µ̄ = (1, 2) µ′ = (1, 3, 2)

Note that (N,R) and (N ′, R′) are marriage markets such that agents 1 and 3 have the same gender.
Let µ = (2, 1). Then, PO(N,R) = {µ, µ̄} and PO(N ′, R′) = {µ′}. Thus, for µ ∈ PO(N,R) there
exists µ′ ∈ PO(N ′, R′) such that agent 1 is newly self-matched at µ′ and better off. Hence, PO
violates competition sensitivity.

Resource Sensitivity : Consider the marriage or solvable roommate markets (N,R) and (N ′, R′)
such that

N = {1} N ′ = {1, 2}
R1 : 1 R′1 : 1, 2

R′2 : 1, 2
core(N,R) = {µ} core(N ′, R′) = {µ̄}
µ = (1) µ̄ = (1, 2)

Let µ′ = (2, 1). Then, PO(N,R) = {µ} and PO(N ′, R′) = {µ′, µ̄}. Thus, for µ′ ∈ PO(N ′, R′)
there exists µ ∈ PO(N,R) such that agent 1 was self-matched at µ and is worse off at µ′. Hence,
PO violates resource sensitivity. �

Finally, we briefly discuss the relation between both sensitivity conditions. Proposition 2 im-
plies that (weak) competition and (weak) resource sensitivity are equivalent under stability. The
following two solutions demonstrate that (weak) competition and (weak) resource sensitivity are
logically independent. Recall that ϕmbs is the solution that always assigns the matching where all
mutually best agents are matched and everybody else is single.

The following solution ϕCS on the domain of solvable roommate markets satisfies competition
sensitivity, but not resource sensitivity. For all solvable roommate markets (N,R),

ϕCS(N,R) =

{
S(N,R) if 1 6∈ N,
ϕmbs(N,R) if 1 ∈ N.

The following solution ϕRS on the domain of solvable roommate markets satisfies resource
sensitivity, but not competition sensitivity. For all solvable roommate markets (N,R),

ϕRS(N,R) =

{
ϕmbs(N,R) if 1 6∈ N,
S(N,R) if 1 ∈ N.
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3.3 Marriage Markets and Population Monotonicity

In this section, we present some marriage market results involving one of the population mono-
tonicity properties.

Corollary 1. On the domain of marriage markets, a solution satisfies individual rationality, weak
unanimity, own-side population monotonicity, and Maskin monotonicity if and only if it equals the
core.

Proof. On the domain of marriage markets, let ϕ satisfy individual rationality, weak unanimity,
own-side population monotonicity, and Maskin monotonicity. By Lemma 1, ϕ satisfies weak com-
petition sensitivity. By Theorem 1 (1), ϕ = core.

For the classical domain of marriage markets for which matching agents of the same gender is
not feasible, Toda (2006, Theorem 3.1) established Corollary 1 without individual rationality.

Example 3 in Appendix B can also be used to illustrate why Corollary 1 and Toda’s (2006)
Theorem 3.1 might not hold if the set of potential agents is finite.

The next result establishes a result that complements Toda’s (2006, Lemma 3.1) by using
other-side population monotonicity instead of own-side population monotonicity.

Corollary 2. On the domain of marriage markets, individual rationality, weak unanimity, and
other-side population monotonicity imply mutually best.

Proof. Let ϕ be a solution on the domain of all marriage markets that satisfies individual rationality,
weak unanimity, and other-side population monotonicity. By Lemma 2, ϕ satisfies weak resource
sensitivity. By Lemma 4’ (a), ϕ satisfies mutually best.

Our results also imply a new characterization of the core for marriage markets.

Corollary 3. On the domain of marriage markets, a solution satisfies individual rationality, weak
unanimity, other-side population monotonicity, and Maskin monotonicity if and only if it equals
the core.

Proof. On the domain of marriage markets, let ϕ satisfy individual rationality, weak unanimity,
other-side population monotonicity, and Maskin monotonicity. By Lemma 2, ϕ satisfies weak
resource sensitivity. By Theorem 1 (2), ϕ = core.

With the next lemma, we show that for the classical domain of marriage markets for which
matching agents of the same gender is not feasible, we can drop individual rationality from Corol-
laries 2 and 3.

Lemma 8. On the classical domain of marriage markets, other-side population monotonicity im-
plies individual rationality.

Proof. Let ϕ be a solution on the domain of classical marriage markets that satisfies other-side
population monotonicity. Let (N,R) be a marriage market with N = M ∪W and µ ∈ ϕ(N,R).
Consider marriage market (W,RW ). Since at (W,RW ) only female agents are present, the only
possible matching that can be assigned is matching µs where all women in W are single, i.e.,
ϕ(W,RW ) = {µs}. By other-side population monotonicity, for µ ∈ ϕ(N,R), there exists µ′ ∈
ϕ(W,RW ) such that for all i ∈W , µ(i)Riµ

′(i). Since ϕ(W,RW ) = {µs}, for all i ∈W , µ(i)Riµ
s(i) =

i, which proves individual rationality for women. Individual rationality for men is obtained by
considering (M,RM ) instead of (W,RW ).
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Appendix

A Solution ϕ̄ is not Population Monotonic

Example 1. Solution ϕ̄ defined on the domain of marriage markets
We denote the single-valued solution that assigns to any marriage market its man-optimal [woman-
optimal] stable matching by ϕM [ϕW ]. Then, for all marriage markets (N,R),

ϕ̄(N,R) =

{
ϕM (N,R) if |M | > |W |,
ϕW (N,R) otherwise.

In order to guarantee that ϕ̄ 6= ϕW [ϕM ], we assume that there exist women w1, w2 ∈ N and men
m1,m2 ∈ N. �

Proposition 3. On the domain of marriage markets, solution ϕ̄ is individually rational, competi-
tion and resource sensitive, but neither own-side nor other-side population monotonic.

Proof. Since ϕ̄ is a stable solution on the domain of marriage markets, it satisfies individual ratio-
nality and both sensitivity conditions (Proposition 2). The following examples demonstrate that ϕ̄
is neither own-side nor other-side population monotonic. Assume that agents 1, 2, and 5 are men
and agents 3 and 4 are women and consider roommate markets (N,R) and (N ′, R′) such that

N = {1, 2, 3, 4} N ′ = {1, 2, 3, 4, 5}
R1 : 3, 4, 1, 2 R′1 : 3, 4, 1, 2, 5
R2 : 4, 3, 2, 1 R′2 : 4, 3, 2, 1, 5
R3 : 2, 1, 3, 4 R′3 : 2, 1, 3, 4, 5
R4 : 1, 2, 4, 3 R′4 : 1, 2, 4, 3, 5

R′5 : 5, . . .
ϕ̄(N,R) = {µ̄} ϕ̄(N ′, R′) = {µ′}
µ̄ = (4, 3, 2, 1) µ′ = (3, 4, 1, 2, 5)

At marriage market (N,R) there are two men and two women, the woman-optimal stable matching
is chosen at ϕ̄(N,R), and man 1 is matched to woman 4 – his second choice. At marriage market
(N ′, R′), man 5 causes a switch to the man-optimal stable matching at ϕ̄(N ′, R′) and man 1 is now
matched to woman 3 – his first choice. This is a violation of own-side population monotonicity.
On the other hand, at marriage market (N,R) woman 3 is matched to man 2 – her first choice. At
marriage market (N ′, R′), woman 3 is matched to man 1 – her second choice. This is a violation of
other-side population monotonicity.

B Relations between Properties

First, we establish a stronger version of Lemma 3 by using weak competition sensitivity instead of
competition sensitivity.

Lemma 3’.

(a) On the domain of marriage markets,

(b) On the domain of solvable roommate markets,

(c) On the domain of all roommate markets,

weak unanimity and weak competition sensitivity imply mutually best.
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Proof. Let ϕ be a solution on any of the domains in Lemma 3’ that satisfies weak unanimity and
weak competition sensitivity, but not mutually best. Thus, there exists a (marriage, solvable)
roommate market (N,R) and a matching µ ∈ ϕ(N,R) such that for two agents i and j [possibly
i = j] that are mutually best, µ(i) 6= j.

First, if roommate market (N,R) is solvable and not a marriage market, we add newcomers in
order to guarantee solvability in later steps. Thus, if (N,R) is solvable then first go to Step 1 and
otherwise go to Step 2 immediately.

Step 1: Guaranteeing Solvability
Assume that roommate market (N,R) is solvable and let µ′ ∈ S(N,R).

Let k1, k2 be such that k1 6= k2 and µ′(k1) = k2. Consider the extension (N1, R1) of (N,R)
that is obtained by adding a newcomer k′1 such that agent k1 immediately prefers k′1 after k2, agent
k′1 finds only agent k1 acceptable, and k′1 is unacceptable for all other agents k ∈ N \ {k1}, i.e.,
N1 = N ∪ {k′1} and R1 is such that [k2 P

1
k1
k′1 and for no k ∈ N , k2 P

1
k1
k P 1

k1
k′1)] and for all

k ∈ N \ {k1}, k1 P
1
k′1
k′1 P

1
k′1
k and k P 1

k k
′
1. Note that (N1, R1) is solvable.16 By weak competition

sensitivity, for µ ∈ ϕ(N,R), there exists µ1 ∈ ϕ(N1, R1) such that if agents i and j are newly
matched at µ1, then at least one is worse off. Hence, there exists µ1 ∈ ϕ(N1, R1) such that
µ1(i) 6= j (agents i and j are still mutually best at (N1, R1)).

We consider the extension (N2, R2) of (N1, R1) that is obtained by adding a newcomer k′2 such
that agent k2 immediately prefers k′2 after k1, agent k′2 finds only agent k2 acceptable, and k′2 is
unacceptable for all other agents k ∈ N1 \ {k2}. Similarly as before it follows that (N2, R2) is
solvable and there exists µ2 ∈ ϕ(N2, R2) such that µ2(i) 6= j (agents i and j are still mutually best
at (N2, R2)).

Note that we add newcomers as described above for all k1, k2 such that k1 6= k2 and µ′(k1) = k2.
This results in a solvable roommate market that for notational convenience we also denote by (N,R).
For this matching market (N,R) there exists a corresponding stable matching µ′ and a matching
µ ∈ ϕ(N,R) such that for the two mutually best agents i and j, µ(i) 6= j. The difference between
this roommate market (N,R) and the original market is that now a newcomer who is added in the
sequel will not cause instability because an agent k who is unmatched by the newcomer from his
original stable partner at µ′ can now match in a stable way with the “corresponding” added agent
k′ instead of creating a “roommate cycle”.

Step 2: Without loss of generality assume that N \ {i, j} = {1, 2, . . . , l}. First, consider the
extension (N1, R1) of (N,R) that is obtained by adding a newcomer k1 such that agents 1 and k1

are mutually best and k1 is unacceptable for all other agents in {2, . . . , l} [if (N,R) is a marriage
market, then the gender of newcomer k1 and preferences can be chosen such that (N1, R1) is also
a marriage market]. By weak competition sensitivity, for µ ∈ ϕ(N,R), there exists µ1 ∈ ϕ(N1, R1)
such that if agents i and j are newly matched at µ1, then at least one is worse off. Hence, there
exists µ1 ∈ ϕ(N1, R1) such that µ1(i) 6= j. Pairs {i, j} and {1, k1} consist of mutually best agents.

We continue adding newcomers k2, . . . , kl in a similar fashion and end up with a roommate
market (N l, Rl) such that there exists µl ∈ ϕ(N l, Rl) with µl(i) 6= j. At (N l, Rl) we can partition
N l in pairs {i, j}, {1, k1}, . . . , {l, kl} of mutually best agents. For the solvable roommate market
(N l, Rl) there exists the complete and unanimously best matching ν that matches agent i with
agent j, agent 1 with agent k1, agent 2 with agent k2, . . ., and agent l with agent kl. Hence, by
weak unanimity, ϕ(N l, Rl) = {ν}, contradicting µl ∈ ϕ(N l, Rl).

16Roommate market (N1, R1) has at least the stable matching where all agents in N are matched according to µ′

and agent k′1 is single.
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The following three-agent example demonstrates why Lemmas 3 and 3’ might not hold if the
set of potential agents is finite.

Example 3. Assume that the set of potential agents is {1, 2, 3} and denote by µs the matching
where all agents are single.Then, for all (marriage, solvable) roommate markets (N,R),

ϕ̃(N,R) =

{
core(N,R) if |N | < 3,
core(N,R) ∪ {µs} otherwise.

It is easy to check that ϕ̃ satisfies weak unanimity, competition sensitivity, Maskin monotonicity,
but not mutually best. �

Next, we prove that Lemma 4 (a) and (c) can be strengthened by using weak resource sensitivity
instead of resource sensitivity. In order to weaken resource sensitivity in Lemma 4 (b), we add
Maskin monotonicity.

Lemma 4’.

(a) On the domain of marriage markets,

(b) On the domain of solvable roommate markets, Maskin monotonicity,

(c) On the domain of all roommate markets,

weak unanimity and weak resource sensitivity imply mutually best.

Proof. We first give a direct proof for (a) and (c) and conclude with an indirect proof for (b).

Proof of (a) and (c): Let ϕ be a solution on the domain of all roommate markets [marriage
markets] that satisfies weak unanimity and weak resource sensitivity. Let (N,R) be a roommate
market [marriage market] such that agents i, j ∈ N [possibly i = j] are mutually best. To prove
that ϕ satisfies mutually best, we show that for all µ ∈ ϕ(N,R), µ(i) = j.

Let N̄ = {i, j} and consider the reduced preferences R̄ = RN̄ , i.e., i R̄j j and j R̄i i completely
describe R̄. There exists a unanimously best complete matching ν̄ for marriage market (N̄ , R̄): ν̄
matches agent i with agent j. Hence, by weak unanimity, ϕ(N̄ , R̄) = {ν̄} and ν̄(i) = j. In the
sequel we will not use the single-valuedness of ϕ(N̄ , R̄) but that for all µ′ ∈ ϕ(N̄ , R̄), µ′(i) = j.

Without loss of generality assume that N = N̄ ∪ {1, . . . , l}. First, consider the extension
(N1, R1) of (N̄ , R̄) that is obtained by adding newcomer 1 such that N1 = N̄ ∪ {1} and R1 = RN1

[if (N,R) is a marriage market, then (N1, R1) is also a marriage market].17 By weak resource
sensitivity, for all µ1 ∈ ϕ(N1, R1), there exists µ′ ∈ ϕ(N̄ , R̄) such that if agents i and j are not
matched at µ1 anymore, then at least one is better off. Then, since for all µ′ ∈ ϕ(N̄ , R̄) agents i
and j are already mutually best matched, for all µ1 ∈ ϕ(N1, R1), µ1(i) = j.

We continue adding newcomers 2, . . . , l in a similar fashion and end up with the original room-
mate market (N,R). By weak resource-sensitivity, for all µ ∈ ϕ(N,R), µ(i) = j.

Proof of (b): Let ϕ be a solution on the domain of solvable roommate markets that satisfies Maskin
monotonicity, weak unanimity, and weak competition sensitivity, but not mutually best. Thus,
there exists a solvable roommate market (N,R) and a matching µ ∈ ϕ(N,R) such that for two
agents i and j [possibly i = j] that are mutually best, µ(i) 6= j.

We define R̃ ∈ RN by moving µ(i) just below agent j in agent i’s preferences, by moving µ(j)
just below agent i in agent j’s preferences and, for all k ∈ N \ {i, j}, by moving µ(k) on top of
agent k’s preferences.

17Note that for solvable roommate markets this step might be problematic because even though (N,R) and (N̄ , R̄)
are solvable, (N1, R1) might not be solvable.
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Note that (N, R̃) is solvable18 and that R̃ is a Maskin monotonic transformation of R at µ.
Hence, by Maskin monotonicity, µ ∈ ϕ(N, R̃). Agents i and j that are still mutually best and
µ(i) 6= j.

Let N̄ = N \ {µ(i), µ(j)} and consider the reduced preferences R̄ = R̃N̄ . There exists a
unanimously best complete matching ν̄ for the solvable roommate market (N̄ , R̄): ν̄ matches agent
i with agent j, and all agents in N̄ \{i, j} according to µ. Hence, by weak unanimity, ϕ(N̄ , R̄) = {ν̄}
and ν̄(i) = j. In the sequel we will not use the single-valuedness of ϕ(N̄ , R̄) but that for all
µ′ ∈ ϕ(N̄ , R̄), µ′(i) = j.

If µ(i) 6= i, then consider the extension (N1, R1) of (N̄ , R̄) that is obtained by adding newcomer
µ(i) such that N1 = N̄ ∪ {µ(i)} and R1 = RN1 .19 By weak resource sensitivity, for all µ1 ∈
ϕ(N1, R1), there exists µ′ ∈ ϕ(N̄ , R̄) such that if agents i and j are not matched at µ1 anymore,
then at least one is better off. Then, since for all µ′ ∈ ϕ(N̄ , R̄) agents i and j are already mutually
best matched, for all µ1 ∈ ϕ(N1, R1), µ1(i) = j.

If µ(j) 6= j, then we add newcomer µ(j) in a similar fashion. So we end up with the original
roommate market (N, R̃). By weak resource-sensitivity, for all µ2 ∈ ϕ(N, R̃), µ2(i) = j, contradict-
ing µ(i) 6= j.

The following example, which is due to an anonymous referee (thanks), shows that we cannot
strengthen Lemma 4 (b) by using weak resource sensitivity instead of resource sensitivity (and
without adding Maskin monotonicity).

Example 4. Solution ϕ̂ defined on the domain of solvable roommate markets
We define solution ϕ̂ using the following roommate market and matchings. Let (N̂ , R̂) be an
element of roommate market subdomain D̂ if N̂ = {1, 2, 3, 4, 5, 6} and

N̂ = {1, 2, 3, 4, 5, 6}
R̂1 : 2, 3, 4, 1, . . .

R̂2 : 3, 4, 1, 2, . . .

R̂3 : 4, 1, 2, 3, . . .

R̂4 : 1, 2, 3, 4, . . .

R̂5 : 6, 5, . . .

R̂6 : 5, 6, . . .

The unique stable matching µ̂ = (3, 4, 1, 2, 6, 5) for a roommate market (N̂ , R̂) ∈ D̂ matches agents
1 and 3, agents 2 and 4, and the mutually best agents 5 and 6. Let µ̂′ = (3, 4, 1, 2, 5, 6) be the
matching obtained from µ̂ by unmatching agents 5 and 6.

We now define ϕ̂ as follows. For all solvable roommate markets (N,R),

ϕ̂(N,R) =

{
{µ̂, µ̂′} if (N,R) = (N̂ , R̂) ∈ D̂,
core(N,R) otherwise. �

Proposition 4. On the domain of solvable roommate markets, solution ϕ̂ is weakly unanimous
and weakly resource sensitive, but neither Maskin monotonic nor mutually best.

18Roommate market (N, R̃) has a unique core allocation that matches agent i with agent j and all agents in
N \ {i, j, µ(i), µ(j)} according to µ – agent(s) µ(i) and µ(j) are either single or, if mutually acceptable, matched with
each other.

19Roommate market (N1, R1) has a unique core allocation that matches agent i with agent j, all agents in N1 \
{i, j, µ(i)} according to µ, and agent µ(i) is single.
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Proof. It is easy to see that ϕ̂ is weakly unanimous (since for (N̂ , R̂) ∈ D̂ no complete unanimously
best matching exists), and neither mutually best (since for (N̂ , R̂) ∈ D̂ and at µ̂′ agents 5 and 6
are not mutually best matched) nor Maskin monotonic (since for (N̂ , R̂) ∈ D̂, µ̂′ is not chosen by
ϕ̂ anymore if agents 1, 2, 3, and 4 like their matches at µ̂′ best).

Note that the only solvable roommate markets for which ϕ̂ does not assign the core are the
ones in D̂. Hence, by Proposition 2, as long as no roommate market in D̂ is concerned, ϕ̂ satisfies
weak resource sensitivity. Thus, to complete the proof that ϕ̂ satisfies weak resource sensitivity, we
only have to consider (a) the addition of a newcomer to a roommate market (N̂ , R̂) ∈ D̂ or (b) the
addition of a newcomer that results in a roommate market (N̂ , R̂) ∈ D̂.

Case (a): Consider an extension (N ′, R′) of (N̂ , R̂) ∈ D̂ such that N ′ = N̂ ∪ {n}. Then, by weak
resource sensitivity, we have to show that for all µ′ ∈ ϕ̂(N ′, R′), there exists µ ∈ ϕ̂(N̂ , R̂) such that
for all i, j ∈ N̂ [possibly i = j] that are not matched at µ′, at least one is better off. This follows
from ϕ̂(N ′, R′) = core(N ′, R′), ϕ̂(N̂ , R̂) ⊇ core(N̂ , R̂), and Proposition 2.

Case (b): Consider an extension (N̂ , R̂) ∈ D̂ of (N,R) such that N̂ = N ∪ {n}. By the solvability
of roommate market (N,R), n ∈ {5, 6}. Therefore, either ϕ̂(N,R) = {(3, 4, 1, 2, 5)} or ϕ̂(N,R) =
{(3, 4, 1, 2, 6)}. In both cases, the only agents that could be matched differently at ϕ̂(N,R) and
ϕ̂(N̂ , R̂) are agent 5 or 6 and if they are, then they are better off.

Lemma 9.

(a) On the domain of marriage markets,

(b) On the domain of solvable roommate markets,

(c) On the domain of all roommate markets,

mutually best and competition sensitivity imply individual rationality.

Proof. Let ϕ be a solution on any of the domains in Lemma 9 that satisfies mutually best and
competition sensitivity. Let (N,R) be a (marriage, solvable) roommate market and i ∈ N . To
prove that ϕ satisfies individual rationality, we show that for all µ ∈ ϕ(N,R), µ(i)Ri i.

Without loss of generality assume that N \ {i} = {1, . . . , l}. Let N̂ = {k1, . . . , kl} be a set of
newcomers and assume that (N ′, R′), N ′ = N ∪ N̂ , is an extension of (N,R) such that agents 1 and
k1 are mutually best, agents 2 and k2 are mutually best, . . ., and agents l and kl are mutually best
[if (N,R) is a marriage market, then the gender of newcomers and preferences can be chosen such
that (N ′, R′) is also a marriage market]. For the (marriage, solvable) roommate market (N ′, R′)
mutually best implies that ϕ(N ′, R′) = {ν ′} where ν ′ is the matching that matches agent 1 with
agent k1, agent 2 with agent k2, . . ., agent l with agent kl, and leaves agent i single.

By competition sensitivity, for all µ ∈ ϕ(N,R), if agent i is newly matched at ν ′, then (s)he is
worse off. Since ν ′(i) = i, for all µ ∈ ϕ(N,R), µ(i)Ri ν(i)′ = i.

Similarly to Lemma 3 and its stronger version Lemma 3’ (Appendix B), one could strengthen
Lemma 9 by using weak competition sensitivity instead of competition sensitivity.

An example similar to Example 3 (Appendix B) can be constructed to show why Lemma 9
might not hold if the set of potential agents is finite.
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Lemma 10.

(a) On the domain of marriage markets,

(b) On the domain of solvable roommate markets,

(c) On the domain of all roommate markets,

mutually best and resource sensitivity imply individual rationality.

Proof. Let ϕ be a solution on any of the domains in Lemma 10 that satisfies mutually best and
resource sensitivity. Let (N,R) be a (marriage, solvable) roommate market and i ∈ N . To prove
that ϕ satisfies individual rationality, we show that for all µ ∈ ϕ(N,R), µ(i)Ri i.

Let N̄ = {i} and consider the reduced preferences R̄ = RN̄ . Since there is only one agent in N̄ ,
ϕ(N̄ , R̄) = {ν̄} and ν̄(i) = i. Without loss of generality assume that N = N̄ ∪ {1, . . . , l}. Consider
the extension (N,R) of (N̄ , R̄) that is obtained by adding newcomers N̂ = {1, . . . , l}. By resource
sensitivity, for all µ ∈ ϕ(N,R), ν̄ is such that if i matched with (her)himself, then (s)he is better
off. Since at ν̄ agents i is single, for all µ ∈ ϕ(N,R), µ(i)Ri i.

Similarly to Lemma 4 (a) and (c) and its stronger version Lemma 4’ (a) and (c) (Appendix B),
one could strengthen Lemma 10 (a) and (c) by using weak resource sensitivity instead of resource
sensitivity.

Similarly to Lemma 4 (b) and its variant Lemma 4’ (b), once could obtain a variant of
Lemma 10 (b) by replacing resource sensitivity with weak resource sensitivity and Maskin mono-
tonicity.

Finally, an example similar to Example 4 (Appendix B) can be constructed to show that when
using weak resource sensitivity Maskin monotonicity cannot be dropped.
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