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Abstract

We consider strategic-form games with ordinal payoffs and provide a
syntactic analysis of common belief/knowledge of rationality, which we
define axiomatically. Two axioms are considered. The first says that a
player is irrational if she chooses a particular strategy while believing
that another strategy is better. We show that common belief of this weak
notion of rationality characterizes the iterated deletion of pure strategies
that are strictly dominated by pure strategies. The second axiom says
that a player is irrational if she chooses a particular strategy while be-
lieving that a different strategy is at least as good and she considers it
possible that this alternative strategy is actually better than the chosen
one. We show that common knowledge of this stronger notion of rational-
ity characterizes the restriction to pure strategies of the iterated deletion
procedure introduced by Stalnaker (1994).

Keywords: rationality, common belief, rationalizability, dominated strate-
gies, game logic, frame characterization.

1 Introduction

The notion of rationalizability in games was introduced independently by Bern-
heim [2] and Pearce [13]. A strategy of player i is said to be rational if it
maximizes player i’s expected payoff, given her beliefs about the strategies used
by her opponents, that is, if it can be justified by some beliefs about her oppo-
nents’ strategies. If player i, besides being rational, also attributes rationality
to her opponents, then she must only consider as possible strategies of her op-
ponents that are themselves justifiable. If, furthermore, player i believes that
her opponents believe that she is rational, then she must believe that her op-
ponents justify their own choices by only considering those strategies of player
i that are justifiable, and so on. The strategies of player i that can be justified
in this way are called rationalizable. Rationalizability was intended to capture
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the notion of common belief of rationality. Bernheim and Pearce showed that
a strategy is rationalizable if and only if it survives the iterated deletion of
strictly dominated strategies.1 They expressed the notion of common belief of
rationality only informally, that is, without making use of an epistemic frame-
work. The first epistemic characterization of rationalizability was provided by
Tan and Werlang [15] using a universal type space, rather than Kripke struc-
tures (Kripke [10]). A characterization of common belief of rationality using
probabilistic Kripke structures was first provided by Stalnaker [14], although it
was implicit in Brandenburger and Dekel [7]. Stalnaker also introduced a new,
stronger, notion of rationalizability — which he called strong rationalizability
— and showed that it corresponds to an iterated deletion procedure which is
stronger than the iterated deletion of strictly dominated strategies. Stalnaker’s
approach is entirely semantic and uses the same notion of Bayesian rationality
as Bernheim and Pearce, namely expected payoff maximization. This notion
presupposes that the players’ payoffs are von Neumann-Morgenstern payoffs.
In contrast, in this paper we consider the larger class of strategic-form games
with ordinal payoffs. Furthermore, we take a syntactic approach and define
rationality axiomatically. We consider two axioms.

The first axiom says that a player is irrational if she chooses a particular
strategy while believing that another strategy of hers is better. We show that
common belief of this weak notion of rationality characterizes the iterated dele-
tion of strictly dominated pure strategies. Note that, in the Bayesian approach
based on von Neumann-Morgenstern payoffs, it can be shown (see Pearce [13]
and Brandenburger and Dekel [7]) that a pure strategy si of player i is a best
reply to some (possibly correlated) beliefs about the strategies of her opponents
if and only if there is no mixed strategy of player i that strictly dominates si.
The iterated deletion of strictly dominated strategies in the Bayesian approach
thus allows the deletion of a pure strategy that is dominated by a mixed strat-
egy, even though it may not be dominated by another pure strategy. Since we
take a purely ordinal approach, the iterated deletion procedure that we consider
only allows the removal of strategies that are dominated by pure strategies.

The second axiom that we consider says that a player is irrational if she
chooses a particular strategy while believing that a different strategy is at least
as good and she considers it possible that this alternative strategy is actually
better than the chosen one. We show that common knowledge of this stronger
notion of rationality characterizes the iterated deletion procedure introduced by
Stalnaker [14], restricted — once again — to pure strategies.

The paper is organized as follows. In the next section we review the KD45
multi-agent logic for belief and common belief and the S5 logic for knowledge
and common knowledge. In Section 3 we review the definition of strategic-form
game with ordinal payoffs and the iterated deletion procedures mentioned above.
In Section 4 we define game logics and introduce two axioms of rationality. In
Section 5 we characterize common belief of rationality in the weaker sense and

1This characterization of rationalizability is true for two-player games and extends to n-
player games only if correlated beliefs are allowed (see Brandenburger and Dekel [7]).
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common knowledge of rationality in the stronger sense.
The characterization results proved in Section 5 (Propositions 15 and 19)

are not characterizations in the sense in which this expression is used in modal
logic, namely characterization of axioms in terms of classes of frames (see [3] p.
125). Thus in Section 6 we provide a reformulation of our results in terms of
frame characterizations. Section 7 concludes.

2 Multi-agent logics of belief and knowledge

We consider a multi-modal logic with n+ 1 operators B1, B2, ..., Bn, B∗ where,
for i = 1, ..., n, the intended interpretation of Biφ is “player i believes that φ”,
while B∗φ is interpreted as “it is common belief that φ”. The formal language
is built in the usual way (see [3] and [8]) from a countable set A of atomic
propositions, the connectives ¬ and ∨ (from which the connectives ∧, → and
↔ are defined as usual) and the modal operators.

We denote by KD45∗n the logic defined by the following axioms and rules
of inference.

AXIOMS:

1. All propositional tautologies.

2. Axiom K for every modal operator: for � ∈ {B1, ..., Bn, B∗},

�φ ∧�(φ→ ψ)→ �ψ (K)

3. Axioms D, 4 and 5 for individual beliefs: for i = 1, ..., n,

Biφ→ ¬Bi¬φ (Di)
Biφ→ BiBiφ (4i)
¬Biφ→ Bi¬Biφ (5i)

4. Axioms for common belief: for i = 1, ..., n,

B∗φ→ Biφ (CB1)
B∗φ→ BiB∗φ (CB2)
B∗(φ→ B1φ ∧ ... ∧Bnφ)→ (B1φ ∧ ... ∧Bnφ→ B∗φ) (CB3)

RULES OF INFERENCE:

1. Modus Ponens: from φ and (φ→ ψ) infer ψ (MP)

2. Necessitation for every modal operator: for � ∈ {B1, ..., Bn, B∗},

from φ infer �φ (NEC)

We denote by S5∗n the logic obtained by adding to KD45∗n the following
axiom:
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5. Axiom T for individual beliefs: for i = 1, ..., n,

Biφ→ φ. (Ti)

While KD45∗n is a logic for individual and common beliefs, S5∗n is the logic
for (individual and common) knowledge. To stress the difference between the
two, when we deal with S5∗n we shall denote the modal operators by Ki and K∗
rather than Bi and B∗, respectively.

Note that the common belief operator does not inherit all the properties of
the individual belief operators. In particular, the negative introspection axiom
for common belief, ¬B∗φ → B∗¬B∗φ, is not a theorem of KD45∗n. In order
to obtain it as a theorem, one needs to strengthen the logic by adding the
axiom that individuals are correct in their beliefs about what is commonly
believed: BiB∗φ→ B∗φ. Indeed, the logic KD45∗n augmented with the axiom
BiB∗φ → B∗φ coincides with the logic KD45∗n augmented with the axiom
¬B∗φ→ B∗¬B∗φ (see [6]).

On the semantic side we consider Kripke structures (see [10]) 〈Ω,B1, ...,Bn,B∗〉
where Ω is a set of states or possible worlds and, for every j ∈ {1, ..., n, ∗}, Bj
is a binary relation on Ω. For every ω ∈ Ω and for every j ∈ {1, ..., n, ∗}, let
Bj(ω) = {ω

′ ∈ Ω : ωBjω
′}.

Definition 1 A D45∗n frame is a Kripke structure 〈Ω,B1, ...,Bn,B∗〉 that sat-
isfies the following properties: for all ω, ω′ ∈ Ω and i = 1, ..., n,

1. Seriality: Bi(ω) 
= ∅,

2. Transitivity: if ω′ ∈ Bi(ω) then Bi(ω′) ⊆ Bi(ω),

3. Euclideanness: if ω′ ∈ Bi(ω) then Bi(ω) ⊆ Bi(ω
′),

4. B∗ is the transitive closure of B1∪ ...∪ Bn, that is, ω′ ∈ B∗(ω) if and only
if there is a sequence 〈ω1, ..., ωm〉 in Ω such that (1) ω1 = ω, (2) ωn = ω

′ and
(3) for every k = 1, ...,m−1 there is an ik ∈ {1, ..., n} such that ωk+1 ∈ Bik(ωk).

An S5∗n frame is a D45∗n frame that satisfies the following additional prop-
erty: for all ω ∈ Ω and i = 1, ..., n,

5. Reflexivity: ω ∈ Bi(ω).

Figure 1 illustrates the following D45∗n frame: n = 2, Ω = {α, β, γ}, B1(α) =
B1(β) = {α}, B1(γ) = {γ}, B2(α) = {α} and B2(β) = B2(γ) = {β, γ}. Thus
B∗(α) = {α} and B∗(β) = B∗(γ) = {α, β, γ}. We shall use the following con-
vention when representing frames graphically: states are represented by points
and for every two states ω and ω′ and for every j ∈ {1, ..., n, ∗}, ω′ ∈ Bj(ω)
if and only if either (i) ω and ω′ are enclosed in the same cell (denoted by a
rounded rectangle), or (ii) there is an arrow from ω to the cell containing ω′, or
(iii) there is an arrow from the cell containing ω to the cell containing ω′.
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α β γ

1
:

α β γ

B

2
:B

*
:B

Figure 1

The link between syntax and semantics is given by the notions of valuation
and model. A D45∗n model (respectively, S5

∗
n model) is obtained by adding to

a D45∗n frame (respectively, S5∗n frame) a valuation V : A → 2Ω, where A is
the set of atomic propositions and 2Ω denotes the set of subsets of Ω. Thus a
valuation assigns to every atomic proposition p the set of states where p is true.
Given a model and a formula φ, we denote by ω |= φ the fact that φ is true at
state ω. The truth set of φ is denoted by ‖φ‖, that is, ‖φ‖ = {ω ∈ Ω : ω |= φ}.
Truth of a formula at a state is defined recursively as follows.

if p ∈ A, ω |= p if and only if ω ∈ V (p),
ω |= ¬φ if and only if ω � φ,
ω |= φ ∨ ψ if and only if either ω |= φ or ω |= ψ (or both),
ω |= Biφ (i = 1, ..., n) if and only if Bi(ω) ⊆ ‖φ‖, that is,

if ω′ |= φ for all ω′ ∈ Bi(ω),
ω |= B∗φ if and only if B∗(ω) ⊆ ‖φ‖ .

A formula φ is valid in a model if it is true at every state, that is, if ‖φ‖ = Ω.
It is valid in a frame if it is valid in every model based on that frame.

The following result is well-known (see, for example [4], [11] and [12]).

Proposition 2 Logic KD45∗n is sound and complete with respect to the class
of D45∗n frames, that is, a formula is a theorem of KD45∗n if and only if it is
valid in every D45∗n frame. Similarly, S5

∗
n is sound and complete with respect

to the class of S5∗n frames.
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3 Games and dominance

In this paper we restrict attention to finite strategic-form (or normal-form)
games with ordinal payoffs, which are defined as follows.

Definition 3 A finite strategic-form game with ordinal payoffs is a quintuple
G =

〈
N, {Si}i∈N ,O, {�i}i∈N , z

〉
, where

N = {1, ..., n} is a set of players,
Si is a finite set of strategies of player i ∈ N ,
O is a finite set of outcomes,
�i is player i’s ordering of O,2

z : S → O (where S = S1 × ...× Sn) is a function that associates with every
strategy profile s = (s1, ..., sn) an outcome z(s) ∈ O.

Given a player i we denote by S−i the set of strategy profiles of the players
other than i, that is, S−i = S1 × ...× Si−1 × Si+1 × ...× Sn. When we want to
focus on player i we shall denote the strategy profile s ∈ S by (si, s−i) where
si ∈ Si and s−i ∈ S−i.

Definition 4 Given a game G =
〈
N, {Si}i∈N , O, {�i}i∈N , z

〉
and si ∈ Si, we

say that, for player i, si is strictly dominated in G if there is another strategy
ti ∈ S such that — no matter what strategies the other players choose — player
i prefers the outcome associated with ti to the outcome associated with si, that
is, if z(ti, s−i) ≻i z(si, s−i), for all s−i ∈ S−i.

LetG =
〈
N, {Si}i∈N ,O, {�i}i∈N , z

〉
andG′ =

〈
N ′, {S′i}i∈N ′ ,O′, {�′i}i∈N ′ , z′

〉

be two games. We say that G′ is a subgame of G if N ′ = N , O′ = O, �′i=�i,
z′ = z and, for every i ∈ N , S′i ⊆ Si.

Definition 5 (IDSDS procedure). The Iterated Deletion of Strictly Dominated
Strategies (IDSDS) is the following procedure. Given a game
G =

〈
N, {Si}i∈N ,O, {�i}i∈N , z

〉
let
〈
G0, G1, ..., Gm, ...

〉
be the sequence of sub-

games of G defined recursively as follows. For all i ∈ N ,
1. let S0i = Si (thus G

0 = G) and let D0i ⊆ S
0
i be the set of strategies of

player i that are strictly dominated in G0;
2. for m ≥ 1, let Smi = Sm−1i \Dm−1i and let Gm be the subgame of G with

strategy sets Smi . Let D
m
i ⊆ Smi be the set of strategies of player i that are

strictly dominated in Gm.

Let S∞i =
⋂

m∈N

Smi (where N denotes the set of non-negative integers) and

let G∞ be the subgame of G with strategy sets S∞i . Let S
∞ = S∞1 × ...× S∞n .

3

2That is, �i is a binary relation on Ω that satisfies the following properties: for all o, o′, o′′ ∈
O, (1) either o �i o

′ or o′ �i o (completeness) and (2) if o �i o
′ and o′ �i o

′′ then o �i o
′′

(transitivity). The interpretation of o �i o
′ is that, according to player i, outcome o is at

least as good as outcome o′. The strict ordering ≻i is defined as usual: o ≻i o
′ if and only if

o �i o
′ and not o′ �i o. The interpretation of o ≻i o

′ is that player i prefers outcome o to
outcome o′.

3Note that, since the strategy sets are finite, there exists an integer r such that G∞ =
Gr = Gr+k for every k ≥ 1.
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The IDSDS procedure is illustrated in Figure 2, where

S01 = {A,B,C,D}, D
0
1 = {D}, S

0
2 = {e, f, g}, D

0
2 = ∅;

S11 = {A,B,C}, D
1
1 = ∅, S

1
2 = {e, f, g}, D

1
2 = {g};

S21 = {A,B,C}, D
2
1 = {C}, S

2
2 = {e, f}, D

2
2 = ∅;

S31 = {A,B}, D
3
1 = ∅, S

3
2 = {e, f}, D

3
2 = {f};

S41 = {A,B}, D
4
1 = {B}, S

∞
2 = S42 = {e}, D

4
2 = ∅;

S∞1 = S51 = {A}. Thus S
∞ = {(A, e)}.

In Figure 2 we have represented the ranking �i by a utility (or payoff)
function ui : S → R satisfying the following property: ui(s) ≥ ui(s

′) if and only
if z(s) �i z(s′) (in each cell, the first number is the payoff of player 1 while the
second number is the payoff of player 2).

2 , 3

P
l
a
y
e
r

1

Player  2

gfe

A

B

C

D 1 , 30 , 30 , 2

4 , 11 , 21 , 2

3 , 12 , 2

0 , 13 , 13 , 2

2 , 3

Player  2

gfe

A

B

C 4 , 11 , 21 , 2

3 , 12 , 2

0 , 13 , 13 , 2

(by C) (by e)

2 , 3

fe

A

B

C 1 , 21 , 2

2 , 2

3 , 13 , 2

(by B)
2 , 3

fe

A

B 2 , 2

3 , 13 , 2

(by e)
2 , 3

e

A

B

3 , 2

(by A)

0
G = G

G 1

G 2G 3G
4

3 , 2A

e

G 5 G=
∞

3 , 2 3 , 2

3 , 2
3

Figure 2
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The next iterated deletion procedure differs from IDSDS in that at every
round we delete strategy profiles rather than individual strategies.4

Definition 6 (IDIP procedure) Given a game G =
〈
N, {Si}i∈N , O, {�i}i∈N , z

〉
,

a subset of strategy profiles X ⊆ S and a strategy profile x ∈ X, we say that x
is inferior relative to X if there exists a player i and a strategy si ∈ Si of player
i (thus si need not belong to the projection of X onto Si) such that:

1. z(si, x−i) ≻i z(xi, x−i), and
2. for all s−i ∈ S−i, if (xi, s−i) ∈ X then z(si, s−i) �i z(xi, s−i).

The Iterated Deletion of Inferior Profiles (IDIP) is defined as follows. For
m ∈ N define Tm ⊆ S recursively as follows: T 0 = S and, for m ≥ 1, Tm =
Tm−1\Im−1, where Im−1 ⊆ Tm−1 is the set of strategy profiles that are inferior
relative to Tm−1. Let T∞ =

⋂

m∈N

Tm.5

The IDIP procedure is illustrated in Figure 3, where
T 0 = S = {(A, d), (A, e), (A, f), (B, d), (B, e), (B, f), (C, d), (C, e), (C, f)},
I0 = {(B, e), (C, f)} (the elimination of (B, e) is done through player 2 and
strategy f , while the elimination of (C, f) is done through player 1 and strategy
B);

T 1 = {(A, d), (A, e), (A, f), (B, d), (B, f), (C, d), (C, e)}, I1 = {(B, d), (B, f), (C, e)}
(the elimination of (B, d) and (B, f) is done through player 1 and strategy A,
while the elimination of (C, e) is done through player 2 and strategy d);

T 2 = {(A, d), (A, e), (A, f), (C, d)}, I2 = {(C,d)} (the elimination of (C,d) is
done through player 1 and strategy A);

T 3 = {(A, d), (A, e), (A, f)}, I3 = ∅; thus T∞ = T 3.

d e f d e f
A 2 , 1 0 , 1 2 , 1 A 2 , 1 0 , 1 2 , 1
B 1 , 0 1 , 0 1 , 1 B 1 , 0 1 , 1
C 1 , 4 1 , 3 0 , 3 C 1 , 4 1 , 3

T0 T1

d e f d e f
A 2 , 1 0 , 1 2 , 1 A 2 , 1 0 , 1 2 , 1
B B
C C 1 , 4

T∞ = T3 T2

Player
1

Player  2

Player
1

Player  2

Player
1

Player  2

Player
1

Player  2

Figure 3

4This procedure is the restriction to pure strategies of the algorithm introduced by Stal-
naker [14].

5Since the strategy sets are finite, there exists an integer r such that T∞ = T r = T r+k

for every k ≥ 1.
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4 Game logics

A logic is called a game logic if the set of atomic propositions upon which it is
built contains atomic propositions of the following form:

• Strategy symbols si, ti, ... The intended interpretation of si is “player i
chooses strategy si”.

• The symbols ri whose intended interpretation is “player i is rational”.

• Atomic propositions of the form ti �i si, whose intended interpretation is
“strategy ti of player i is at least as good, for player i, as his strategy si”,
and atomic propositions of the form ti ≻i si, whose intended interpretation
is “for player i strategy ti is better than strategy si”.

From now on we shall restrict attention to game logics.

Definition 7 Fix a game G =
〈
N, {Si}i∈N , O, {�i}i∈N , z

〉
with

Si = {s1i , s
2
i , ..., s

mi

i } (thus the cardinality of Si is mi). A game logic is called a
G-logic if its set of strategy symbols is

{
ski
}
i=1,...,n;k=1,...,mi

(with slight abuse

of notation we use the symbol ski to denote both an element of Si, that is, a
strategy of player i, and an element of A, that is, an atomic proposition whose
intended interpretation is “player i chooses strategy ski ”).

Given a game G with Si = {s
1
i , s

2
i , ..., s

mi

i }, we denote by LD45G (respectively,
L
S5
G ) the KD45∗n (respectively, S5∗n) G-logic that satisfies the following addi-

tional axioms: for all i = 1, ..., n and for all k, ℓ = 1, ...,mi, with k 
= ℓ,

(
s1i ∨ s

2
i ∨ ... ∨ s

mi

i

)
(G1)

¬(ski ∧ s
ℓ
i) (G2)

ski → Bis
k
i (G3)(

ski �i s
ℓ
i

)
∨
(
sℓi �i s

k
i

)
(G4)(

sℓi ≻i s
k
i

)
↔
((
sℓi �i s

k
i

)
∧ ¬

(
ski �i s

ℓ
i

))
(G5)

Axiom G1 says that player i chooses at least one strategy, while axiom G2
says that player i cannot choose more than one strategy. Thus G1 and G2
together imply that each player chooses exactly one strategy. Axiom G3, on
the other hand, says that player i is aware of his own choice: if he chooses
strategy ski then he believes that he chooses ski . The remaining axioms state
that the ordering of strategies is complete (G4) and that the corresponding
strict ordering is defined as usual (G5).

Proposition 8 Fix an arbitrary game G. The following is a theorem of logic
L
D45
G : Biski → ski . That is, every player has correct beliefs about her own choice
of strategy.6

6Note that, in general, logic LD45
G

allows for incorrect beliefs. In particular, a player might
have incorrect beliefs about the choices made by other players. By Proposition 8, however, a
player cannot have mistaken beliefs about her own choice.
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Proof. In the following ‘PL’ stands for Propositional Logic. Fix a player i
and k, ℓ ∈ {1, ...,mi} with k 
= ℓ. Let φ denote the formula

(s1i ∨ ... ∨ s
mi

i ) ∧ ¬s
1
i ∧ ... ∧ ¬s

k−1
i ∧ ¬sk+1i ∧ ... ∧ ¬smi

i .

1. φ→ ski tautology
2. ¬(ski ∧ s

ℓ
i) axiom G2 (for ℓ 
= k)

3. ski → ¬sℓi 2, PL
4. Bis

k
i → Bi¬s

ℓ
i 3, rule RK 7

5. Bi¬sℓi → ¬Bisℓi axiom Di

6. sℓi → Bis
ℓ
i axiom G3

7. ¬Bisℓi → ¬sℓi 6, PL
8. Bis

k
i → ¬sℓi 4, 5, 7, PL (for ℓ 
= k)

9. s1i ∨ ... ∨ s
mi

i axiom G1
10. Bis

k
i → (s1i ∨ ... ∨ s

mi

i ) 9, PL
11. Bis

k
i → φ 8 (for every ℓ 
= k), 10, PL

12 Biski → ski 1, 11, PL.

On the semantic side we consider models of games, which are defined as
follows.

Definition 9 Given a game G =
〈
N, {Si}i∈N ,O, {�i}i∈N , z

〉
and a Kripke

frame F = 〈Ω, {Bi}i∈N ,B∗〉, a frame for G, or G-frame, is obtained by adding
to F n functions σi : Ω → Si (i ∈ N) satisfying the following property: if
ω′ ∈ Bi(ω) then σi(ω

′) = σi(ω).

Thus a G-frame adds to a Kripke frame a function that associates with every
state ω a strategy profile σ(ω) = (σ1(ω), ..., σn(ω)) ∈ S. The restriction that if
ω′ ∈ Bi(ω) then σi(ω′) = σi(ω) is the semantic counterpart to axiomG3. Given
a player i, as before we will denote σ(ω) by (σi(ω), σ−i(ω)), where σ−i(ω) ∈ S−i
is the profile of strategies of the players other than i.

We say that the G-frame 〈Ω, {Bi}i∈N ,B∗, {σi}i∈N}〉 is a D45
∗
n G-frame (re-

spectively, S5∗n G-frame) if the underlying Kripke frame 〈Ω, {Bi}i∈N ,B∗〉 is a
D45∗n frame (respectively, S5∗n frame: see Definition 1).

Definition 10 Given a game G with Si = {s
1
i , s

2
i , ..., s

mi

i }, and a G-frame FG =
〈Ω, {Bi}i∈N ,B∗, {σi}i∈N}〉, a model of G, or G-model, is obtained by adding to
FG the following valuation:

• ω |= ski if and only if σi(ω) = s
k
i ,

• ω |= (ski �i s
ℓ
i) if and only if z(s

k
i , σ−i(ω)) �i z(s

ℓ
i , σ−i(ω)) and, similarly,

ω |= (ski ≻i s
ℓ
i) if and only if z(s

k
i , σ−i(ω)) ≻i z(s

ℓ
i , σ−i(ω)).

Let FD45G (respectively, FS5G ) denote the set of D45∗n (respectively, S5∗n) G-
frames and MD45

G (respectively, MS5
G ) the corresponding set of G-models.

7RK denotes the inference rule “from ψ → χ infer �ψ → �χ”, which is a derived rule
of inference that applies to every modal operator � that satisfies axiom K and the rule of
Necessitation.
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Figure 4 illustrates a game and a D45∗n frame for it. The corresponding
model is given by the following valuation:

α |= B ∧ e ∧ (B ≻1 A) ∧ (C ≻1 A) ∧ (B �1 C) ∧ (C �1 B) ∧ (f ≻2 d)
∧ (f ≻2 e) ∧ (e �2 d) ∧ (d �2 e)

β |= B ∧ d ∧ (A ≻1 B) ∧ (A ≻1 C) ∧ (B �1 C) ∧ (C �1 B) ∧ (f ≻2 d)
∧ (f ≻2 e) ∧ (e �2 d) ∧ (d �2 e)

γ |= A ∧ d ∧ (A ≻1 B) ∧ (A ≻1 C) ∧ (B �1 C) ∧ (C �1 B) ∧ (d �2 e)
∧ (e �2 d) ∧ (d �2 f) ∧ (f �2 d) ∧ (e �2 f) ∧ (f �2 e).

d e f
A 2 , 1 0 , 1 2 , 1
B 1 , 0 1 , 0 1 , 1
C 1 , 4 1 , 3 0 , 3

Player  2

Player
1

α β γ

1
:

α β γ

B

2
:B

*
:B

σ
1

:

σ
2

:

B AB

e dd

Figure 4

Proposition 11 Logic LD45G (respectively, LS5G ) is sound with respect to the class
of MD45

G (respectively, MS5
G ) models.

Proof. It follows from Proposition 2 and the following observations: (1)
axioms G1 and G2 are valid in every model because, for every state ω, there is
a unique strategy ski ∈ Si such that σi(ω) = s

k
i and, by the validation rules (see

Definition 10), ω |= ski if and only if σi(ω) = s
k
i ; (2) axiom G3 is an immediate

consequence of the fact (see Definition 9) that if ω′ ∈ Bi(ω) then σi(ω
′) = σi(ω);

(3) axioms G4 and G5 are valid because, for every state ω, there is a unique
profile of strategies σ−i(ω) of the players other than i and the ordering �i on
O restricted to z(Si × σ−i(ω)) induces an ordering of Si.
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5 Rationality and common belief of rationality

So far we have not specified what it means for a player to be rational. The first
extension of LD45G that we consider captures a very weak notion of rationality.
The following axiom — called WR for ‘Weak Rationality’ — says that a player
is irrational if she chooses a particular strategy while believing that a different
strategy is better for her (recall that ri is an atomic proposition whose intended
interpretation is “player i is rational”):

ski ∧Bi(s
ℓ
i ≻i s

k
i )→ ¬ri. (WR)

Given a game G, let LD45G +WR (respectively, LS5G +WR) be the extension
of LD45G (respectively, LS5G ) obtained by adding axiom WR to it.

The next axiom — called SR for ‘Strong Rationality’ — expresses a slightly
stronger notion of rationality: it says that a player is irrational if she chooses
a strategy while believing that a different strategy is at least as good and she
considers it possible that this alternative strategy is actually better than the
chosen one.

ski ∧Bi(s
ℓ
i �i s

k
i ) ∧ ¬Bi¬(s

ℓ
i ≻i s

k
i ) → ¬ri. (SR)

Given a game G, let LD45G +SR (respectively, LS5G +SR) be the extension of
L
D45
G (respectively, LS5G ) obtained by adding to axiom SR.

The following proposition shows that LD45G +SR is an extension of LD45G +WR.

Proposition 12 WR is a theorem of LD45G +SR.

Proof. As before, ‘PL stands for Propositional Logic’.

1. ski ∧Bi(s
ℓ
i �i s

k
i ) ∧ ¬Bi¬(s

ℓ
i ≻i s

k
i ) → ¬ri Axiom SR

2. (ri ∧ ski )→ ¬
(
Bi(sℓi �i s

k
i ) ∧ ¬Bi¬(s

ℓ
i ≻i s

k
i )
)

1, PL
3. (sℓi ≻i s

k
i )↔ (sℓi �i s

k
i ) ∧ ¬(s

k
i �i s

ℓ
i) Axiom G5

4. (sℓi ≻i s
k
i )→ (sℓi �i s

k
i ) 3, PL

5. Bi(sℓi ≻i s
k
i )→ Bi(sℓi �i s

k
i ) 4, RK (see footnote 7)

6. Bi(s
ℓ
i ≻i s

k
i )→ ¬Bi¬(s

ℓ
i ≻i s

k
i ) Axiom Di

7. Bi(s
ℓ
i ≻i s

k
i )→

(
Bi(s

ℓ
i �i s

k
i ) ∧ ¬Bi¬(s

ℓ
i ≻i s

k
i )
)

5, 6, PL
8. ¬

(
Bi(s

ℓ
i �i s

k
i ) ∧ ¬Bi¬(s

ℓ
i ≻i s

k
i )
)
→ ¬Bi(s

ℓ
i ≻i s

k
i ) 7, PL

9. (ri ∧ s
k
i )→ ¬Bi(s

ℓ
i ≻i s

k
i ) 2, 8, PL

10. ski ∧Bi(s
ℓ
i ≻i s

k
i )→ ¬ri. 9, PL.

Definition 13 Given a game G, letM
D45|WR

G ⊆MD45
G (respectively,M

S5|WR

G ⊆
M
S5
G ) be the class of D45

∗
n (respectively, S5∗n) G-models (see Definition 10)

where the valuation function satisfies the following additional condition:

12



• ω |= ri if and only if, for every si ∈ Si there exists an ω′ ∈ Bi(ω) such
that z(σi(ω), σ−i(ω

′)) �i z(si, σ−i(ω
′)).

For instance, in the model based on the frame of Figure 4 we have that
α |= (r1∧¬r2), β |= (r1∧r2) and γ |= (r1∧r2). To see, for example, that β |= r2
note that σ2(β) = d and for strategy f we have that γ ∈ B2(β), σ1(γ) = A and
z(A,d) �2 z(A, f), while for strategy e we have that β ∈ B2(β), σ1(β) = B and
z(B, d) �2 z(B, e).

Thus, in the model based on the frame of Figure 4, we have that at state β
both players are rational, player 2 believes that player 1 is rational, but player
1 mistakenly believes that player 2 is irrational: β |= r1 ∧ r2 ∧B2r1 ∧B1¬r2.

Proposition 14 Logic LD45G +WR (respectively, LS5G +WR) is sound with re-

spect to the class of models M
D45|WR

G (respectively, M
S5|WR

G ).

Proof. By Proposition 11 it is sufficient to show that axiom WR is valid
in an arbitrary such model. Suppose that ω |= ski ∧ Bi(s

ℓ
i ≻i s

k
i ). Then

σi(ω) = ski and Bi(ω) ⊆
∥∥sℓi ≻i ski

∥∥ , that is (see Definition 10), z(sℓi , σ−i(ω
′)) ≻i

z(ski , σ−i(ω
′)), for every ω′ ∈ Bi(ω). It follows from Definition 13 that ω |= ¬ri.

(Recall that, by Definition 9, σi(ω
′) = σi(ω), for all ω

′ ∈ Bi(ω).)

The following proposition shows that common belief of the weak notion
of rationality expressed by axiom WR characterizes the Iterated Deletion of
Strictly Dominated Strategies (see Definition 5).8

Proposition 15 Fix a finite strategic-form game with ordinal payoffs G. Then
both (A) and (B) below hold.

(A) Fix an arbitrary model in M
D45|WR

G and an arbitrary state α.
If α |= B∗(r1 ∧ ... ∧ rn) then σ(α) ∈ S∞.

(B) For every s ∈ S∞ there exists a model in M
S5|WR

G and a state α such
that (1) σ(α) = s and (2) α |= K∗(r1 ∧ ... ∧ rn).9

Proof. (A) Fix a model in M
D45|WR

G and a state α and suppose that α |=
B∗(r1∧ ...∧rn). The proof is by induction. First we show that, for every player
i = 1, ..., n and for every ω ∈ B∗(α), σi(ω) /∈ D

0
i (see Definition 5). Suppose

not. Then there exist a player i and a β ∈ B∗(α) such that σi(β) ∈ D0i , that
is, strategy σi(β) of player i is strictly dominated in G by some other strategy
ŝi ∈ Si: for every s−i ∈ S−i, z(ŝi, s−i) ≻i z(σi(β), s−i). Thus, for every
ω ∈ Bi(β), z(ŝi, σ−i(ω)) ≻i z(σi(β), σ−i(ω)). It follows from Definition 13 that

8Proposition 15 is the syntactic-based, ordinal version of a semantic, probabilistic-based
result of Stalnaker [14]. As noted in the Introduction, Stalnaker’s result was, in turn, a
reformulation of earlier results due to Bernheim [2], Pearce [13], Tan and Werlang [15] and
Brandenburger and Dekel [7].

9Recall that, in order to emphasize the distinction between belief and knowledge, when
dealing with the latter we denote the modal operators by Ki and K∗ rather than Bi and B∗,
respectively. Similarly, we shall denote the accessibility relations by Ki and K∗ rather than
Bi and B∗, respectively.
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β |= ¬ri, contradicting the hypothesis that β ∈ B∗(α) and α |= B∗ri. Since, for
every ω ∈ Ω, σi(ω) ∈ S

0
i = Si, it follows that, for every ω ∈ B∗(α), σi(ω) ∈

S0i \D
0
i = S

1
i . Next we prove the inductive step. Fix an integer m ≥ 1 and

suppose that, for every player j = 1, ..., n and for every ω ∈ B∗(α), σj(ω) ∈ S
m
j .

We want to show that, for every player i = 1, ..., n and for every ω ∈ B∗(α),
σi(ω) /∈ D

m
i . Suppose not. Then there exist a player i and a β ∈ B∗(α) such that

σi(β) ∈ D
m
i , that is, strategy σi(β) is strictly dominated in Gm by some other

strategy s̃i ∈ S
m
i . Since, by hypothesis, for every player j and for every ω ∈

B∗(α), σj(ω) ∈ S
m
j , it follows — since Bi(β) ⊆ B∗(β) ⊆ B∗(α) (see Definition 1) —

that for every ω ∈ Bi(β), z(s̃i, σ−i(ω)) ≻i z(σi(β), σ−i(ω)). Thus, by Definition
13 , β |= ¬ri, contradicting the fact that β ∈ B∗(α) and α |= B∗ri. Thus, for
every player i = 1, ..., n and for every ω ∈ B∗(α), σi(ω) ∈

⋂

m∈N

Smi = S∞i . It

only remains to show that σi(α) ∈ S∞i . Fix an arbitrary β ∈ Bi(α). Since
Bi(α) ⊆ B∗(α), β ∈ B∗(α). Thus σi(β) ∈ S

∞
i . By Definition 9, σi(β) = σi(α).

Thus σi(α) ∈ S
∞
i .

(B) Letm be the cardinality of S∞ = S∞1 ×...×S
∞
n and let Ω = {ω1, ..., ωm}.

Let σ : Ω→ S∞ be a one-to-one function. For every player i, define the following
equivalence relation on Ω: ωKiω′ if and only if σi(ω) = σi(ω′), where σi(ω) is
the ith coordinate of σ(ω). Let K∗ be the transitive closure of

⋃

i∈N

Ki (then,

for every ω ∈ Ω, K∗(ω) = Ω). The structure so defined is clearly an S5∗n G-
frame. Consider the model corresponding to this frame (see Definition 10). Fix
an arbitrary state ω and an arbitrary player i. By definition of S∞, for every
si ∈ Si there exists an ω′ ∈ Ki(ω) such that z(σi(ω), σ−i(ω′)) �i z(si, σ−i(ω′)).
Thus ω |= ri (see Definition 13). Hence, for every ω ∈ Ω, ω |= (r1∧ ...∧rn) and,
therefore, for every ω ∈ Ω, ω |= K∗(r1 ∧ ... ∧ rn).

Remark 16 Since M
S5|WR

G ⊆M
D45|WR

G it follows from part (B) of Proposition
15 that the implications of common belief of rationality (as implicitly defined by
axiom WR) are the same as the implications of common knowledge of ratio-
nality.

The above observation is not true for the stronger notion of rationality ex-
pressed by axiom SR, to which we now turn.

Definition 17 Given a game G, let M
D45|SR
G ⊆MD45

G (respectively, M
S5|SR
G ⊆

M
S5
G ) be the class of D45 (respectively, S5) G-models where the valuation func-

tion satisfies the following condition:

• ω |= ri if and only if, for every si ∈ Si, whenever there exists an ω′ ∈
Bi(ω) such that z(si, σ−i(ω′)) ≻i z(σi(ω), σ−i(ω′)) then there exists an
ω′′ ∈ Bi(ω) such that z(σi(ω), σ−i(ω

′′)) ≻i z(si, σ−i(ω
′′)).

Thus, at state ω, player i is rational if, whenever there is a strategy si of
his which is better than σi(ω) (the strategy he is actually using at ω) at some

14



state ω′ that he considers possible at ω, then σi(ω) is better than si at some
other state ω′′ that he considers possible at ω. For example, in the model based
on the frame of Figure 4 we have that ω |= (r1 ∧ ¬r2) for every ω ∈ {α, β, γ}.
At state β, for instance, player 2 is choosing strategy d when there is another
strategy of his, namely f , which is better than d at β and as good as d at γ and
B2(β) = {β, γ}. Thus he is irrational according to Definition 17.

It is easily verified that M
D45|SR
G ⊆ M

D45|WR

G and, similarly, M
S5|SR
G ⊆

M
S5|WR

G .

Proposition 18 Logic LD45G +SR (respectively, LS5G +SR) is sound with respect

to the class of models M
D45|SR
G (respectively, M

S5|SR
G ).

Proof. By Proposition 11 it is sufficient to show that axiom SR is valid in
an arbitrary such model. Suppose that ω |= ski ∧ Bi(s

ℓ
i �i s

k
i ) ∧ ¬Bi¬(s

ℓ
i ≻i

ski ). Then σi(ω) = ski and Bi(ω) ⊆
∥∥sℓi �i ski

∥∥ [that is — see Definition 10 —
z(sℓi , σ−i(ω

′)) �i z(s
k
i , σ−i(ω

′)), for every ω′ ∈ Bi(ω)] and there is an ω′′ ∈ Bi(ω)
such that ω′′ |= sℓi ≻i s

k
i , that is, z(sℓi , σ−i(ω

′′)) ≻i z(s
k
i , σ−i(ω

′′)). It follows
from Definition 17 that ω |= ¬ri.

The following proposition shows that common knowledge of the stronger
notion of rationality expressed by axiom SR characterizes the Iterated Deletion
of Inferior Profiles (see Definition 6).10

Proposition 19 Fix a finite strategic-form game with ordinal payoffs G. Then
both (A) and (B) below hold.

(A) Fix an arbitrary model in M
S5|SR
G and an arbitrary state α. If

α |= K∗(r1 ∧ ... ∧ rn) then σ(α) ∈ T∞.

(B) For every s ∈ T∞ there exists a model in M
S5|SR
G and a state α such

that (1) σ(α) = s and (2) α |= K∗(r1 ∧ ... ∧ rn).

Proof. (A) As in the case of Proposition 15, the proof is by induction. Fix

a model in M
S5|SR
G and a state α and suppose that α |= K∗(r1 ∧ ... ∧ rn). First

we show that, for every ω ∈ K∗(α), σ(ω) /∈ I
0 (see Definition 6). Suppose, by

contradiction, that there exists a β ∈ K∗(α) such that σ(β) ∈ I0, that is, σ(β)
is inferior relative to the entire set of strategy profiles S. Then there exists
a player i and a strategy ŝi ∈ Si such that z(ŝi, σ−i(β)) ≻i z(σi(β), σ−i(β)),
and, for every s−i ∈ S−i, z(ŝi, s−i) �i z(σi(β), s−i). Thus z(ŝi, σ−i(ω)) �i
z(σi(β), σ−i(ω)), for every ω ∈ Ki(β); furthermore, by reflexivity of Ki (see
Definition 1), β ∈ Ki(β). It follows from Definition 17 that β |= ¬ri. Since
β ∈ K∗(α), this contradicts the hypothesis that α |= K∗ri. Thus, since, for
every ω ∈ Ω, σ(ω) ∈ S = T 0 we have shown that, for every ω ∈ K∗(α), σ(ω) ∈
T 0\I0 = T 1.
Now we prove the inductive step. Fix an integer m ≥ 1 and suppose that, for
every ω ∈ K∗(α), σ(ω) ∈ T

m. We want to show that, for every ω ∈ K∗(α),

10Proposition 19 is the syntactic-based, ordinal version of a semantic, probabilistic-based
result due to Stalnaker [14] . For a correction of that result see Bonanno and Nehring [5].
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σ(ω) /∈ Im. Suppose, by contradiction, that there exists a β ∈ K∗(α) such that
σ(β) ∈ Im, that is, σ(β) is inferior relative to Tm Then there exists a player i
and a strategy s̃i ∈ Si such that z(s̃i, σ−i(β)) ≻i z(σi(β), σ−i(β)), and, for every
s−i ∈ S−i, if (s̃i, s−i) ∈ T

m then z(s̃i, s−i) �i z(σi(β), s−i). By Definition 9,
for every ω ∈ Ki(β), σi(ω) = σi(β) and by the induction hypothesis, for every
ω ∈ K∗(α), (σi(ω), σ−i(ω)) ∈ T

m. Thus, since Ki(β) ⊆ K∗(β) ⊆ K∗(α), we
have that, for every ω ∈ Ki(β), (σi(β), σ−i(ω)) ∈ T

m. By reflexivity of Ki,
β ∈ Ki(β). It follows from Definition 17 that β |= ¬ri. Since β ∈ K∗(α), this
contradicts the hypothesis that α |= K∗ri.

Thus, we have shown by induction that, for every ω ∈ K∗(α), σ(ω) ∈
⋂

m∈N

Tm =

T∞. It only remains to establish that σ(α) ∈ T∞, but this follows from reflex-
ivity of K∗.

(B) Letm be the cardinality of T∞ and let Ω = {ω1, ..., ωm}. Let σ : Ω→ T∞

be a one-to-one function. For every player i, define the following equivalence
relation on Ω: ωKiω

′ if and only if σi(ω) = σi(ω
′), where σi(ω) is the i

th coordi-

nate of σ(ω). Let K∗ be the transitive closure of
⋃

i∈N

Ki (then, for every ω ∈ Ω,

K∗(ω) = Ω). The structure so defined is clearly an S5∗n G-frame. Consider the
model corresponding to this frame (see Definition 10). Fix an arbitrary state
ω and an arbitrary player i. By definition of T∞, for every player i and every
si ∈ Si if there exists an ω′ ∈ Ki(ω) such that z(si, σ−i(ω′)) ≻i z(σi(ω), σ−i(ω′))
then there exists an ω′′ ∈ Ki(ω) such that z(σi(ω), σ−i(ω

′′)) ≻i z(si, σ−i(ω
′′)).

Thus ω |= ri (see Definition 17). Hence, for every ω ∈ Ω, ω |= (r1∧ ...∧rn) and,
therefore, for every ω ∈ Ω, ω |= K∗(r1 ∧ ... ∧ rn).

Note that Proposition 19 is not true if one replaces knowledge with belief, as
illustrated in the game and frame of Figure 5. In the corresponding model we
have that, according to the stronger notion of rationality expressed by Definition
17, α |= r1 ∧ r2 and β |= r1 ∧ r2, so that α |= B∗(r1 ∧ r2), despite the fact
that σ(α) = (B,d), which is an inferior strategy profile (relative to the entire
game).11 In other words, common belief of rationality, as expressed by axiom
SR, is compatible with the players collectively choosing an inferior strategy
profile. Thus, unlike the weaker notion expressed by axiom WR (see Remark
16), with axiom SR there is a crucial difference between the implications of
common belief of rationality and those of common knowledge of rationality.

11 In the game of Figure 5 we have that S∞ = S = {(A, c), (A, d), (B, c), (B, d)} while
T∞ = {(A, c), (B, c)}.
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6 Frame characterization

The characterization results proved in the previous Section (Propositions 15
and 19) are not characterizations in the sense in which this expression is used
in modal logic, namely characterization of axioms in terms of classes of frames
(see [3] p. 125). In this Section we provide a reformulation of our results in
terms of frame characterizations.

Definition 20 An axiom characterizes (or is characterized by) a class F of
Kripke frames if (1) the axiom is valid in every model based on a frame that
belongs to F and, conversely, (2) if a frame does not belong to F then there is a
model based on that frame and a state in that model at which an instance of the
axiom is falsified.12

We now modify the previous analysis as follows. First of all, we drop the
symbols ri from the set of atomic propositions and correspondingly drop the

definitions of the classes of models M
D45|WR

G , M
S5|WR

G , M
D45|SR
G and M

S5|SR
G

(Definitions 13 and 17). Secondly we modify axioms WR and SR as follows:

12For example, as is well known, the axiom Biφ → BiBiφ is characterized by the class of
frames where the relation Bi is transitive.
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ski → ¬Bi(s
ℓ
i ≻i s

k
i ) (WR′)

ski → ¬
(
Bi(s

ℓ
i �i s

k
i ) ∧ ¬Bi¬(s

ℓ
i ≻i s

k
i )
)
. (SR′)

Axioms WR′ and SR′ correspond to adding to the logics considered previ-
ously the axiom that players are rational. In fact, from ri and WR one obtains
WR′ (using Modus Ponens) and similarly for SR′.

The next proposition is the counterpart of Proposition 15.

Proposition 21 Subject to the valuation of the atomic propositions ski ,
(
sℓi �i s

k
i

)

and
(
sℓi ≻i s

k
i

)
specified in Definition 10, axiom WR′ is characterized by the

class of D45∗n game frames (see Definition 9) that satisfy the following prop-
erty: for all i ∈ N and for all ω ∈ Ω, σi(ω) ∈ S∞i .

Proof. Fix a model based on a frame in this class, a state α, a player i and
two strategies ski and s

ℓ
i of player i. Suppose that a |= s

k
i , that is, σi(α) = s

k
i . We

want to show that a |= ¬Bi(sℓi ≻i s
k
i ). Suppose not. Then Bi(α) ⊆

∥∥sℓi ≻i ski
∥∥ ,

that is,

for every ω ∈ Bi(α), z(sℓi , σ−i(ω)) ≻i z(s
k
i , σ−i(ω)). (1)

By hypothesis, for every player j 
= i and for every ω ∈ Ω, σj(ω) ∈ S
∞
j . Thus

it follows from this and (1) that ski /∈ S
∞
i , contradicting the hypotheses that

σi(α) = s
k
i and σi(ω) ∈ S

∞
i for all ω ∈ Ω.

Conversely, fix a D45∗n frame not in the class. For every state ω and every

player j let m(ω, j) =

{
∞ if σj(ω) ∈ S∞j
m if σj(ω) ∈ D

m
j

. Let m̂ = min{m(ω, j) : j ∈

N,ω ∈ Ω}. By our hypothesis about the frame, m̂ ∈ N. Let i ∈ N and α ∈ Ω
be such that m̂ =m(i, α). Then

σi(α) ∈ D
m̂
i (2)

and, since (see Definition 5), for every j ∈ N and for every p, q ∈ N ∪ {∞},
Sp+qj ⊆ Spj ,

for every j ∈ N and ω ∈ Ω, σj(ω) ∈ S
m̂
j . (3)

Let ski = σi(α). By (2) and (3) , there exists a sℓi ∈ Si such that, for every
ω ∈ Ω, z(sℓi , σ−i(ω)) ≻i z(s

k
i , σ−i(ω)). Thus Bi(α) ⊆

∥∥sℓi ≻i ski
∥∥ and thus

α |= ski ∧Bi
∥∥sℓi ≻i ski

∥∥, so that axiom WR′ is falsified at α.

The next proposition is the counterpart of Proposition 19.
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Proposition 22 Subject to the valuation of the atomic propositions ski ,
(
sℓi �i s

k
i

)

and
(
sℓi ≻i s

k
i

)
specified in Definition 10, axiom SR′ is characterized by the class

of S5∗n game frames (see Definition 9) that satisfy the following property: for
all ω ∈ Ω, σ(ω) ∈ T∞.

Proof. Fix a model based on a frame in this class, a state α, a player i and
two strategies ski and sℓi of player i. Suppose that a |= ski ∧Bi

(
sℓi �i s

k
i

)
, that

is, σi(α) = s
k
i and Bi(α) ⊆

∥∥sℓi �i ski
∥∥, that is,

for all ω ∈ Bi(α), z(sℓi , σ−i(ω)) �i z(s
k
i , σ−i(ω)). (4)

We want to show that a |= Bi¬(s
ℓ
i ≻i s

k
i ). Suppose not. Then there exists a

β ∈ Bi(α) such that β |=
(
sℓi ≻i s

k
i

)
, that is,

z(sℓi , σ−i(β)) ≻i z(s
k
i , σ−i(β)). (5)

It follows from (4) and (5) that (ski , σ−i(β)) = (σi(β), σ−i(β)) is inferior relative
to the set {s ∈ S : s = σ(ω) for some ω ∈ Bi(α)}, contradicting the hypothesis
that σ(ω) ∈ T∞ for all ω ∈ Ω.

Conversely, fix an S5∗n frame not in the class. For every state ω, let m(ω) ={
∞ if σ(ω) ∈ T∞

m if σ(ω) ∈ Im = Tm\Tm+1
. Let m0 = min{m(ω) : ω ∈ Ω}. By our

hypothesis about the frame, m0 ∈ N. Let α ∈ Ω be such that m0 = m(α).
Then σ(α) ∈ Im0 , that is, there is a player i and a strategy sℓi ∈ Si such that

z(sℓi , σ−i(α)) ≻i z(σi(α), σ−i(α)) (6)

and

∀ω ∈ Ω, if (σi(α), σ−i(ω)) ∈ T
m0 then z(sℓi , σ−i(ω)) �i z(σi(α), σ−i(ω)). (7)

By definition of m0, since (see Definition 6) for every p, q ∈ N∪{∞}, T p+q ⊆
T p, for every ω ∈ Ω, σ(ω) ∈ Tm0 . Thus, letting ski = σi(α), it follows from (7)
that Bi(α) ⊆

∥∥sℓi �i ski
∥∥, that is, α |= Bi(s

ℓ
i �i s

k
i ). Since the frame is an S5

frame, Bi is reflexive and, therefore, α ∈ Bi(α). It follows from this and (6) that
α |= ¬Bi¬(sℓi ≻i s

k
i ). Thus α |= ski ∧ Bi(s

ℓ
i �i s

k
i ) ∧ ¬Bi¬(s

ℓ
i ≻i s

k
i ), so that

axiom SR′ is falsified at α.

There appears to be an important difference between the results of Section 5
and those of this section, namely that, while Propositions 15 and 19 give a local
result, Propositions 21 and 22 provide a global one. For example, Proposition 15
states that if at a state there is common belief of rationality, then the strategy
profile played at that state belongs to S∞, while its counterpart in this Section,
namely Proposition 21, states that the strategy profile played at every state
belongs to S∞. As a matter of fact, the results of Section 5 are also global in
nature. Consider, for example, Proposition 15. Fix a model and a state α and
suppose that α |= B∗(r1∧ ...∧ rn). Since, for every formula φ, B∗φ→ B∗B∗φ is
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a theorem of KD45∗n, it follows that α |= B∗B∗(r1 ∧ ... ∧ rn), that is, for every
ω ∈ B∗(α), ω |= B∗(r1 ∧ ... ∧ rn). Thus, it follows from Proposition 15 that
σ(ω) ∈ S∞, for every ω ∈ B∗(α).

13 That is, if at a state there is common belief
of rationality, then at that state, as well as at all states reachable from it by the
common belief relation B∗, it is true that the strategy profile played belongs to
S∞. This is essentially a global result, since from the point of view of a state α,
the “global” space is precisely the set B∗(α).

Thus the only real difference between the results of Section 5 and those of
this section lies in the fact that Propositions 15 and 19 bring out the role of
common belief by mimicking the informal argument that if player 1 is rational
then she won’t choose a strategy s1 ∈ D

0
1 and if player 2 believes that player 1 is

rational then he believes that s1 /∈ D01 and therefore will not choose a strategy
s2 ∈ D

1
2, and if player 1 believes that player 2 believes that player 1 is rational,

then player 1 believes that s2 /∈ D
1
2 and will, therefore, not choose a strategy

s1 ∈ D21, and so on. Beliefs about beliefs about beliefs ... are explicitly modeled
through the common belief operator. In contrast, Propositions 21 and 22 do
not make use of the common belief operator. However, the logic is essentially
the same. In particular, common belief of rationality is generated by the axiom
WR′ (or SR′) and the rule of necessitation: from sk1 → ¬B1(s

ℓ
1 ≻1 s

k
1) we get,

by Necessitation, that B1
(
sk1 → ¬B1(sℓ1 ≻1 s

k
1)
)
∧B2

(
sk1 → ¬B1(sℓ1 ≻1 s

k
1)
)
and

thus, whatever is implied byWR′ is believed by both players. Further iterations
of the Necessitation rule yields beliefs about beliefs about beliefs ... about the
rationality of every player.

7 Conclusion

We have examined the implications of common belief and common knowledge of
two, rather weak, notions of rationality. Most of the literature on the epistemic
foundations of game theory have dealt with the Bayesian approach, which iden-
tifies rationality with expected payoff maximization, given probabilistic beliefs
(for surveys of this literature see [1] and [9]). Our focus has been on strategic-
form games with ordinal payoffs and non-probabilistic Kripke structures. While
most of the literature has been developed within the semantic approach, we
have used a syntactic framework and expressed rationality in terms of syntactic
axioms. We showed that the first, weaker, axiom of rationality characterizes
the iterated deletion of strictly dominated strategies, while the stronger axiom
characterizes the pure-strategy version of the algorithm introduced by Stalnaker
[14].

The two notions of rationality used in this paper can, of course, be used also
in the subclass of games with von Neumann-Morgenstern payoffs and the results
would be the same. Furthermore, the standard notion of Bayesian rationality
as expected payoff maximization is stronger than (that is, implies) both notions
of rationality considered in this paper. Thus our results apply also to Bayesian
rationality.

13This fact was proved directly in the proof of Proposition 15.
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We have provided two version of our characterization results. The first
(Propositions 15 and 19), which comes closer to the previous game-theoretic
literature, is based on an explicit account of the role of common belief of ra-
tionality and thus requires a syntax that contains atomic propositions that are
interpreted as “player i is rational”. The second characterization (Propositions
21 and 22) is closer to the modal logic literature, where axioms are characterized
in terms of properties of frames. However, we argued that the two characteri-
zations are essentially identical.

We have restricted attention to strategic-form games. In future work we
intend to extend the analysis to extensive-form games with perfect information
and the notion of backward induction, which also does not require a probabilistic
framework.
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