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Abstract

Aumann (1976) put forward aformal definition of common mOwlepge and used it to
prove that two "'like minded" individuals cannot " agreeto disagree” in the *ollowing sense. If
they start from a common prior and update the probability of an event E (u#ing Bayes’ rule) on
the basis of privateinformation, then it cannot be common knowledge bet ‘een them that
individual 1 assigns probability p to E and individual 2 assigns probability“l) toEwithp=g.In
other words, if their posteriorsof event E are common knowledge then the)l must coincide.
Aumann’s Agreement Theorem hasgiven riseto alarge literature which w% review in this paper.

Theresults are classified according to whether they are probabilistic (Bayeﬁian) or qualitative.

Particular attention is paid to the issue of how to interpret the notion of Har#anyi consistency asa
\

(local) property of belief hierarchies.



1. Introduction

Aumann (1976) put forward a formal definition of common knowledge and used it to
prove that two "like minded" individuals cannot "agree to disagree” in the following sense. If
they start from a common prior and update the probability of an event E (using Bayes' rule) on
the basis of private information then it cannot be common knowledge between them that
individual 1 assigns probability p to E and individual 2 assigns probability q to E withp # g. In
other words, if their posteriors of event E are common knowledge then they must coincide. This
celebrated result captures the intuition that the fact that somebody else tias a different opinion
from yours is an important piece of information which should induce you to revise your own

opinion. This processof revision will continue until consensus is reached.

Aumann’s original result has given rise to alarge literature on the tppic, which we review
in this paper. We shall base our exposition on the distinction between Bayesian (or quantitative)

versionsand qualitative versionsof the notion of agreeing to disagree.

2. lllugtration of thelogic of agreeingto disagree

Imagine two scientists who agree on everything. They agree that the true law of Nature
must beone of seven, call thema&, B, v, 6, €, ¢, . They also agree on the relative likelihood of
these possibilities, which they take to be asillustrated in Figure 1:
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Experiments can be conducted to learn more. An experiment leadsto a

ition of the above set.

For example, if thetruelaw of Natureisc and you performed experiment 1 then you would

learn that it cannot be 6 or e or v} but you still would not know which is the|true law of Nature

amecwg the remaining ones. Supposethat the scientistsagree that Scientist 1 will perform
experiment 1 and Scientist 2 will perform experiment 2. They also agree that each experiment

would lead to a partitiond thestatesas illustrated in Figure 2

Experiment 1:
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Figure 2
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Suppose that they are interested in establishing the truth of a proposition that is represented by
event E={ ay, 6, ¢}. Initidly they agree that the probability that E istrue is.

P(E) = P(a) + P(y) + P(d) + Ple) = % = 75%



Beforethey perform the experiments they also realize that, depending on what the true law of
Natureis, after the experiment they will have an updated probability of event E conditional on
what the experiment has revealed. For example, they agreethat if one performs Experiment 1
and thetruestate is 3 (sothat E is actually false) then the experiment will yield the information
| = {a,B, ¥y} and Bayesian updating (which they agree to be the correct way of updating
probabilities) will lead to thefollowing new probability of event E:
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Similarly for every other possibility. Thus we can attach to every cell of eadh experiment a new
updated probability of E, asillustrated in Figure 3:

Note the interesting fact that sometimes experiments, although they are informative (that is, they reduce your
state of uncertainty) might actually induce you to become more confident of the truth|of something that is fase:
in this case you increase your subjective probability that E is true from 75% to 86%, athough E is actually false!
(Recall that we have assumed that the true state is 3.)



Experiment 1: |
Prob(E) = 12/14 Prob(E) = 12/14 Prob(E) =0
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Figure 3

Suppose now that each scientist goes to her laboratory and performs the respective
experiment (Scientist 1 Experiment 1 and Scientist 2 Experiment 2). Assurne also that thetrue
stateof Natureist. Afterwards they exchange e-inail messages informing each other of their
new subjective estimates of event E. Scientist 1 says that she now attaches probability 12/14 to
E, while Scientist 2 says that she attaches probability 15/21 to E. So their ¢stimates disagree (not
surprisingly, since they have perfbrmed different experiments and have therefore collected
different information). Should they be happy with these estimates? Obviously not. Consider
Scientist 2. She hears that Scientist 1 has a new updated probability of 1244. From this what can
she deduce? That the true state is not r). She can thus revise her knowledge partition by

eliminating 1} from her information set. Then she will need to re-computetheprobability of E as



shown in thefollowing figure. Similarly, Scientist 1 learnsthat the true sthte cannot be 6, hence

revises her information partition and estimate of E asillustrated in Figure

Scientist 1:
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Figure 4

4

Prob(E) = 0

ob(E) =0

Now they inform each other of their new subjective estimates: 719 for Sciintist 1 and 15/17 for
Scientist 2. Again, there is disagreement. Should they accept such disagreement? The answer is,

again, No. Scientist 1 does not learn anything from the new estimate of Sﬁientist 2, but Scientist

2 does learn something, namely that the state cannot bey. Hence she will +evi se her information

partition and estimate of the probability of E, as illustratedin Figure5:



Scientist 1:
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Scientist 2
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Prob(E) = 9/11

Figure 5

knowledge that both estimate this probability to be 719 =78% (before theexperiments the ex

Notice that at this stage they finally agree on the probability of E and inde:J: it becomes common
ante: probability of E was 24/32=75%; notethat with the experiments and the exchange of

information they have gone further from the truth!).

Notice that before thelast step (leading to it being common knowledge that P(E) =719 for
both scientists) it was not common knowledge between the two what probability each scientist
attached to E. When one scientist announced his subjective estimate, th% other scientist found

that announcement informative and revised her own estimate accordinély. At the end of the



process of exchanges, the announcement by one scientist of his estimate did not make the other
scientist change her estimate. In a sense further announcements became pointless, occasioned no

|
surprise, revealed nothing new.

Although this example suggests that (if the true state is¢ ) the sci#ntist will end up with
\

exactly thesame information set, thisis not true in general. i

3. Formal statement of Aumann’s result |

In this section we provide a formal and precise statement of AUrﬁann’s (1976) result —
known as the Agreement Theorem — which was proved within the contht of knowledge and
common knowledge. Extensions of the result to the more general case %f belief and common

belief will be examined in Section. 1

Let © be a set of states. There are two individuals and suppose that they start with the
same prior probability distribution p :  — [0,1] on Q ( define, for évery E < @, up(E) =

ZH(CO))- Individual i receives private information (the nature of the Frivate information is

weE

common knowledge between the two) according to the information parti#ion I. For every state
w e Q, L(w) denotes the cell of i’s partition that contains 0. Assume thalt, forevery i e {1, 2}
andoe @, u{(w) #0. |
Q Q
The knowledge operator of individual i, K. : 2 — 2, is defin%d by KE = {w e Q:
Q Q. ,
L(w) < E}. The common knowled/ge operator K, : 2 — 2 isdefined by: |

KE=KENKENKKENKKENKKKENKKKEN..

That is, an event E is common knowledge between the two if both know F. both know that both

know E, etc. ad infinitum. Let I, be the meet (finest common coarsening) of the partitions /, and



7, and denote by L,(w) thecell of Z, that contains w. Aumann (1976) proved that, for every event
EKE={we Q: L(w) cE).

Fix an event E and let || pi(E) za|l={we Q: u(E | L(w)) =a}.2 Tl‘hat is, || ui(E) =all is
the event that individual 1’s posterior probability of E is a. In the example of the previous

section, for Scientist 2 we have that — after the experiment and before any exchange of
information with the other scientist - || p,(B) = & || = { &B, 8}. whereEi={ ay, 6,¢}.

Aumann's Agreement Theorem. Let © beaset of states and suppose that two
individuals 1 and 2 have the same prior probability distribution p: & — [0,1] on Q sartisfying
the property that for every i€ {1, 2} andw € Q, u(l.(w)) # 0. Let E be an event and let

a,be [0,1]. Suppose that at some state w it iscommon knowledge that individual 1’s posterior
probability of E (given hisinformation a ) isa and 2's posterior probability of E (given her
information a w) isb. Thena = b. In other words, individuals who start with the same prior

cannot agreeto disagree. Formally,

if K,(lu,® =allnllp,E=5l)#2 then a=»n

The theorem is a consequence of the following lemma.

LEMMA 1. Fix an arbitrary event F and let {P , ..., P_} beapartition of F (thusF=P, U
.. UP_andany two F’J and P, with j # k are non-empty and digoint). Suppose that u(E | PJ.) =a

foralj=1,..,m Thenu(E|F) =a.

® For every E, | € Q such that u{l) = 0, u(Ell) is the conditional probability of E given |, defined by
wED = BEND |
ulr)



wENP)
Proof of Lemma 1. u(E | Pj) = WL . Hence, since u(E | Pj) = a, we have that
3

uE N PJ.) =a u(Pj). Adding over j, the LHS becomes w(E N F) and the RHS becomes au(F) (by

WENF)
wk

definition of probability measure). Henceu(E } F) =

Proof of the Agreement Theorem. Let I, (w) be the cell of the comm(|n knowledge
partition containing w. Consider individual 1. I, (w) isa union of cellsof | ,,the information

partition of individual 1. On each such cell 1’s conditional probability of E isa. By Lemmal,
u(E | I () =a. A similar reasoning for individual 2 leadsto u(E | I,(w)) =b. Hence a=b. W

4. Bayesan extensonsof Aumann'sresult |

Aumann's Agreement theorem has been extended in several di recti?ns In this section we

consider probabilistic or "Bayesian™ extensions.

|. From eventsto expectationsof random variables. Aumann’s result can be

extended from the probability of an event to the expectation of a random vaLiable. In particular,

the following extensions were proved by Milgrom and Stokey (1982), Sebenius and

Geanakoplos (1983), Rubinstein and Wolinski (1990). i

1 Letf bearandomvariableon €2 andaand b two distinct numbers. Tben thereisnow at
which it is common knowledge that, conditional on her information, inéividual 1 believes

" that the expectation of f isaand, conditional on hisinformation, 2 belﬁevas that the

.. .3
expectationish.

3
Note that Aumann’s result isaspecial casedf this: takef to be the characteristic function of event E.

10



2. Letf bearandom variableon € andaanumber. Then thereisno w at which it is common
knowledge that, conditional on her information, individual 1 believes that the expectation of
f isgreater than or equal to a and, conditional on hisinformation, 2 believes that the

4
expectation islessthana ‘

The latter result can be interpreted as saying that it cannot b%: common knowledge
between two risk-neutral individuals they both expect to profit from a b%t: take f (w) to be the
payment from individual 1 to individual 2, if positive, and from 2 to 1, kf negative, in case the
true state turnsout to bea.. If it is common knowledge that they both wxpect to gain from the

bet, then it is common knowledge that for 1 the expectation off is !ositive and for 2 the

expectationof —f ispositive.

II. “No trade' theorems. Along theselines, Milgrorn (1981) and Milgrom Stokey
(1982) proved aresult which is often interpreted as establishing the impossibility of speculative

trade. Assume that the two traders agree on an ex ante efficient allocation f goods. Then, after
the tradersget new information, thereis no transaction with the property t(lat it iscommon

knowledge that both traders are willing to carry it out. \‘

Morris (1994) explores further this "no trade" result, by 1ﬁoking a the case of
heterogeneous prior beliefs. He shows how different notions of efficiéncy under asymmetric
information (ex ante, ex interim and ex post) are related to agents' prior peliefs. These efficiency
results are used to obtain necessary and sufficient conditions on agents’ beliefs for no trade
theoremsin different environments. ’

7

) Note, however, that it is possible that at a state w it is common knowledge that individual 1 believes that the
expectation of T isaand individua 2 believesthat it is different from a. For example, let Q = {a,B}, I] ={Q}

and I, = {{a) {B}}. Let plc) = n(p) = % and f (@)=1, f () =3. Thenata isit common knowledge that
for 2 the expectation of f is2and for 1it isdifferent from 2 (itiseither L or 3). |

11



ITI. From probabilities of eventsto aggregates. In m1 y economic settings,
instead of assuming that individual opinions (conditional probabilitiej“ or expectations) are
cornrnon knowledge, it is more natural to suppose that only some aﬁgregate of individual
opinions (e.g., a price) becomes common knowledge. In this context Mclﬂelvey and Page (1986)
proved that if a stochastically monotone5 aggregate of individual conditional probabilities is
cornrnon knowledge, then it is still true that all the conditional probabilities must be equal.
Nielsen et al (1990) show that also this result — like Aumann’s result — | can be extended from

conditional probabilitiesof an event to conditional expectations of arandoh variable.

IV. Communication and common knowledge. One way in which common
knowledge can be achieved is through communication. Suppose that the state space is finite. If
the agents communicate to each other the probability of an event (or the expectation of arandom
variable, etc.) and revise their information partitions and subjective estimates accordingly, then a
time will be reached after which communication induces no further revision. Then at that time it
will become common knowledge at every state that each agent can predict the opinion she will
hear from the other agent in the future. Then, by Aumann's theorem, at that time the opinions
must be the same. This "convergence to common knowledge" theorem was proved by

Geanakoplos and Polemarchakis (1982) and Sebenius and Geanakoplos (1983).

Along the same lines, Parikh and Krasucki (1990) consider communication protocols
among more than two individuals in which values of functions are communicated privately
through messages: when agent A communicates with agent B, other gents are not informed

about the content of the messagé. They show that the agent may fail td/reach agreement even

® A function $: R" R is stochastically monotone if it can be written in the form ¢4x1, e X ) = ¢ (x)) +...+
¢, (x ) whereeach ¢.: R — R isstrictly increasing (this definition differs from, but iT equivalent to, the one used
by McKelvey and Page, 1986). 1

! 12



with reasonable protocols. Krasucki (1996) takes this line of inquiry a step further by identifying
restrictions on protocols which guarantee that agreement is reached. Heifetz (1996) clarifies the

relationship between consensus and common knowledgein this context. |

V. Errorsin information processing. Geanakoplos (1 89) and Samet (1990)

extend Aumann’s (1976) result in a different direction. They ask “lhat conditions on the

indviddas information functions (or "possibility corr%pondences"') are sufficient for the
impossibility of agreeing to disagree. They assume the existence of aco hon prior and consider
posterior beliefs obtained by updating the common prior on n¢" -partitional possibility
correspondences which represent how individuals process information. In particular, Sarnet
generalizes Aumann's result from the case where the information function of each individual is
reflexive and euclidean (and hence transitive) to the case where it is reflexive and transitive. In
other words, he drops the Negative Introspection axiom for individual peliefs (see Section 7).
Thus he takes a "bounded rationality” approach. Geanakoplos (1@89) also focuses on
"environments where information processing is subject to error” ajnd finds even weaker
conditions on individual beliefs that ensure the absence of speculationy and of "agreement to
disagree".6 Geanakoplos, however, goes a step further by providing also a necessary condition,

which he calls " positive balancedness”.

° Like Samet, he assumes reflexivity  the information functions, but replaces trangtiyity with a property which he
calls " (positive) balancedness™. Thus the Truth Axiom (that is, reflexivity o the linformation function of each
individud) playsacrucia rolein Geanakoplos and Samet's analysis.

13



5. Non-Bayesian or " Qualitative" generalizatio-rsof Aumann's
result

Cave (1983) and Bacharach (1985) extended Aumann's result fr{jm the Bayesian setting
(that is, from the conditional probability of an event given a common prior) to the case of like-
minded individuals who follow a common decision procedure that jtisfies the Sure Thing
Principle. Roughly speaking, they showed that once two Iike—minded\agents reach common
knowledge of the actions each of them intends to perform, they will p$om identical actions.

Thisisillustrated in the following story, which Aumann (1989) attributes *o Bacharach.

A murder has been committed. To increase the chances of aconvigtion, the
chief of police putstwo detectiveson the case, with strict instructions to work
independently and exchange no information. The two, Alice and Bob, went to
the same police school so given the same clues, they would reach the same
conclusions. But as they will work independently, they will, presurnably, not
get thesame clues. At theend of thirty days, each isto decide whom to arrest
(possibly nobody). On the night before the thirtieth day, they happen to meet in
the locker room at headquarters, and get to talking about the case. True to their
instructions, they exchange no substantive information, no clues, but both are
self-confident individuals, and feel that thereis no harm in telling each other
whom they plan to arrest. Thus when they leave the locker room, iﬂ is common
knowledge between them whom Alice will arrest, and it iscommon knowledge
between them whom Bob will arrest. Conclusion: They arrest the st‘ame people;
and this, in spited knowing nothing about each other's clues. |

Let 2 beaset of states and denote by 2® theset of events. Let A beafiniteset o actions.

Q
A decision procedure is afunction D : 2 \J — A. The interpretation is that the decision
procedure D recommendsaction D(I) € A to an individual whose information (theset of states

he considers possible) is|. What one learnsin police school is a decision procedure: if you know

such and such, then you should de so and so. The decision procedureD : ZQ\Q — A satisfiesthe

Sure Thing Principle, if and only if, for every event E and for every partition{P,, ..., P_} of E,

D(P) =aforeveryi= 1,..m, impliesD(E) =a

14



Intuitively, suppose that if you knew which of the mutually exclusive events P, happened, you
would choose action a (whichis thesamefor al P,)). Then you will take the same action a if you
only know that some P. happened, without knowing which one. Thusif Alice would arrest the
butler if acertain blood stainisof type A, B, AB, or O, (perhapsfor different reasons in each

case), then sheshould arrest the butler without bothering to send the stain to the police
laboratory.

Given decision procedure D and individualsi = 1,2 with information partitions I, define
action functions d, : @ — A by d.\w) = D(,(®)); in words, d.(w) isi’s action at state w. For every

ae A, we write || d = al| for theevent {we - d.(w)=a).

Generalized Agreement Theorem (Cave, 1983, Bacharach, 1985). Consider two
individuals who follow the same decision procedure, which satisfies the Sure Thing Principle. If,
at some state, it iscommon knowledge that individual 1 plansto take action a and individual 2

plansto take action b, then they must be planning to take the same action. Formally.

i K*(Hdl=a|| nl|d2=b||)¢@ then a=».

REMARK. Aumann’s Agreement Theorem isacorollary of the above: for afixed event
E, define the decision procedure D, by D_(F) = u(E | F). By Lemmal o Section 3, thisdecision
procedure satisfies the Sure Thing Principle. (Similarly, the expectation of arandom variable
satisfies the Sure Thing Principle.)

Moses and Nachum (1990) point out that Bacharach's technical definition of the Sure
Thing Principle is considerably stronger than is suggested by the blood type example given
above. Indeed, "it requires the decision procedure to be defined in a manner satisfying certain
consistency propertiesat what an;ount to impossible situations” (Mosesand Nachum, 1990, p.
152). They provide thefollowing " counterexample” to the Generalized Agreement Theorem. A
murder was committed and it is known that one of three suspects, A, B and C is the culprit. Two
police officers are put on the case and are instructed to act independently and adhere to the

following decision procedure:

15



L If you know who the culprit is, indict him;

2. If you know that exactly one of'them is not the cul prit, of the other two arrest (for

further interrogation) the one who comesfirst in alphabetical order;
3. If you cannot rule out any of the three as the culprit, do not arrest anybody.

This could be expressed formally asfollows. For every i € {A, B, C) leti denote the state where
individual i isthe one who committed the murder. Then, for example, { A) represents the state of
information of a detective who has established that A istheculprit, and{B, C) isthe state of
information of a detective who has established only that A is not the culprit. Then the above

decision procedure can be expressed as follows:
1 D({A}) =indict A, D{{B}) =indict B, D({C}) =indict C;
2. D({A, B})) =D({A, C}) = arest A, D({B, C}) = arrest B;
3. D({A, B, C}) = do not arrest anybody.

Thisdecision procedure satisfies the Sure Thing Principle trivially. Now imagine that detective
Maigret has not collected any clues, while detective Columbo has established that (and only that)
C isnot the culprit. Columbo therefore initially intends to suggest that A be arrested, while
Maigret would suggest that no arrests be made. Columbo communicates his intentions to
Maigret, but Maigret cannot use this information to rule out any suspects and therefore insistson
suggesting that no arrests be made. In the end it becomes common knowledge between them that
Columbo intendsto arrest A, while Maigret intends to suggest that no arrests be made. Hence
they agree to disagree. The situation after their initial communication of intentions can be
represented using a state space €2 that contains four points: a, 3, y and 6. At both aand -y suspect
A is the murderer, at 3 the murderer isB, and at & the murderer is C. Columbo's information
pantitionis{{ a, B}, { a, y}} while Maigret’s information partition is {2}.This isillustrated in
Figure 6.

16
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Figure 6

By the above decision procedure, D({a,8}) = D({y,8}) = arrest A and D(®) = no arrest, thus
violating Bacharach’s Sure Thing Principle. Moses and Nachum point out that Bacharach's Sure
Thing Principle in this case does not capture the intuition which is normally associated with it.
Indeed, it makes no sense for Columbo to ask himself what he would do if he had Maigret's
inlformation, for thefollowing reason. Maigret's information is that (1) either Columbo knows
that C isnot guilty or Columbo knows that B is not guilty, (2) he (Maigret) considers it possible
that C isquilty and considers it possible that B is guilty. If Columbo were to know what Maigret
knows (if he had the information Maigret has) then he would find himself believing
contradictory propositions. Formally, let E={ a, 3} and suppose that the true stateisa. Then

ae K, (K.E UK —-E) andae —K,E N —K,,~E. For Columbo to bein the same state of
information at aas Maigret, it would haveto betruethat ae K. (K.E UK_—E) andae —-K_E
N —K.—E. By Negative Introspection, ~K _E ¢ K.~K_E and —K —E ¢ K.—~K_.—E. Thus

ae KC—IKCE M KC—1KC-—|E = KC(_'KCE M —1KC—|E ) = KCﬁ(KCE U KC“‘-xE ) Thusas KCF M
K.—F, where F=K_E U K_.—E, contradicting consistency of knowledge. As Moses and

Nachum (1990, p. 156) point out, "taking the union of statesof knowledgein which an agent has
differing knowledge does not result in astate of knowledge in which the agent is more ignorant;

it simply does not result in a state of knowledge at dl!™.

17



Moses and Nachum's criticism of Bacharach's Sure Thing Principle issimilar to Gul's
(1996) and Dekel and Gul's (1997) criticism of 'the notion of acommon prior in situations of
incomplete information (see Section 6)

In their paper, Moses and Nachum go on to propose a weakening of the Sure Thing
Principle and find conditions under which the weaker notion yields the impossibility of agreeing
todisagree.

6. Common Prior and Agreement in situationsof incomplete
information.

The assumption of acommon prior iscentral to Aumann’s result on agreeing to disagree
and in related results, such as the no-trade theorem (Milgrom and Stokey, 1982). The Common
Prior Assumption (CPA) plays an important role also in game theory: it isthe basic assumption
behind decision-theoretic justifications of equilibrium reasoning in games (Aumann, 1987,
Aumann and Brandenburger, 1995). Not surprisingly, the CPA has attracted its share of
criticism. In models of asymmerric information (wherethereis an ex ante stage at which the
individuals have identical information and subsequently update their beliefsin response to
private signals), the controversy focuses on the plausibility or appropriateness of assuming
commonnessof the prior beliefs (seeMorris, 1995). In this section we want to focus on situations
of incompleteinformation, where there is no ex ante stage and where the primitives of the model
aretheindividuals' beliefs about the external world (their first-order beliefs), their beliefs about
the other individuals' beliefs (second-order beliefd, etc., i.e. their hierarchies of beliefs. In this
context, the CPA isamathematical property whose conceptual content is not clear. This has
giyen riseto anovel and, in away, more radical, criticism of the CPA, one that questions its very
meaningfulness in situations of inéomplete information (Dekel and Gul, 1997, Gul, 1996,
Lipman, 1995).

The skepticism concerning the CPA in situations of incomplete information can be
developed along the following lines. As Mertens and Zamir (1985) showed in their classic paper,
the description of the"actual world" interms of belief hierarchies generates a collection of

18



""possible worlds"*, one of whichisthe actual world. Thisset of possible worlds, or states, gives
riseto aformal similarity between situations of asymmetric information and those of incomplete
information. However, while a state in theformer representsa real contingency, in the latter it is
"afictitious construct, used to clarify our understanding of the real world" (Lipman, 1995, p.2),
"anotational devicefor representing the profileof infinite hierarchies of beliefs™ (Gul, 1996, p.
3). Asaresult, notionssuch as that of acommon prior, "seem to be based on giving the
artificially constructed states more meaning than they have" (Dekel and Gul, 1997, p.42). Thus
an essential step in providing a justification for, say, correlated equilibrium under incomplete
information isto provide an interpretation of the “common prior* based on "assumptions that do
not refer to the constructed state space, but rather are assumed to hold in the true state”, that is,
assumptions "that only usethe artificially constructed states the way they originated — namely as
elements in ahierarchy of belief" (Dekel and Gul, 1997, p.116).

When the beliefsof theindividuals can be viewedas f they were obtained by updating a
common prior on some information, they are called Harsanyi consistent. Harsanyi consistency is
awell-defined mathematical property, but, due to the "artificial nature™ of the states in situations
of incomplete information, “we do not know what it is that we would be accepting if we were to
accept the common prior assumption™ (Gul, 1996, p.5).

In thissection we show that the existence of a common prior can be understood as a
generalized form of Agreement, which we call Comprehensive Agreement. In order to motivate
this notion, we take as point of departure the observation that, in some special cases, it iseasy to
find an interpretation of Harsanyi consistency that does not involve an ex ante stage. In
particular, in situations of complete information (characterized by the fact that the beliefs of each
individual are commonly known) Harsanyi consistency amounts to identity of beliefs across
individuals. It thus seems natural, in situations of incompleteinformation, to think of Harsanyi
consistency as likewise amounting to equality of those aspects of beliefs that are commonly
known. For instance, one can take as an aspect of beliefs the subjective probability of an event E,
in which case Agreement reduces to the notion introduced by Aumann (1976). Subjective
probabilities of events are rather special aspects of beliefs and are not rich enough to fully
capture the conceptual content of Harsanyi consistency. Thus one needs a more general notion of
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Comprehensive Agreement as the absence of any " agreement to disagree™ about aspects of
beliefs (or belief indices) in an appropriately defined general class.

In general situationsaf incomplete information where some individuals might havefalse
beliefs (i.e. in non-partitional models), the relationship between Comprehensive Agreement and
theexistence of acommon prior issomewhat complex. To see this, consider thefollowing
example, illustrated in Figure 7. Individual 2 isan economist who knows the correct spelling of
hisname (Mas-Coléll). Individual 1 mistakenly believes that the spelling is Mas-Collel. Sheeven
believes this spelling to be common belief between them. These beliefs are represented by state t
in Figure 7. Note, in particular, that 1’s mistaken beliefs are represented with the help of an

"artificial state” 3 which she believesto obtain for sure a ¢ (hencethe arrow from t to 3) "

spelling: spelling:
Mas-Colell Mas-Collel

1: ’_—'@
T p
2: (o) ()
Figure 7

In thisexample Comprehensive Agreement is satisfied a the true state T (and also at f3). To see
this, think of abdief index, or aspect of belief, as afunction whose domain is the set of
probability distributions over {t, 3}. Letf beany such belief index. Then individual 1’s value of
T is(thesame, hence) common belief at every state, in particular at t. Call thisvaluex. Now,
individual 2's valueoff at 3 must also bex (since they have the same beliefs there). Thusif 2's
index iscommon belief at t it must bex. Henceat t (and at 3), there cannot be agreement to

disagree (i.e. commonly known disagreement) about the aspect of beliefs captured by f .

7
The statef3 isdefined asthe following conjunction of facts about the world and individuals' beliefs: "thecorrect
spelling isMasCollel and it iscommonly (and correctly) believed to be MasCollel”. For moredetailson the
"state space" representationof belief hierarchies, see below.
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Arethe beliefs represented by state T in Figure 7 Harsanyi consistent? This question
requires clarification, since in an incomplete information setting properties need to be stated
locally as pertaining to a particular profileof belief hierarchies — represented by the true state
1 -- rather than globally as pertaining to the model as awhole. In aweak sense the question can
be answered affirmatively: the true state t could be thought of astheex interim stage of an
asymmetric information model with acommon prior that assigns probability 0 to T and
probability 1 to f3. We define a corresponding weak notion of the CPA (Harsanyi Quasi
Consistency),which in Figure 7 issatisfied at t, and in Proposition 1 below we show it to be
equivalent to Comprehensive Agreement. However, Harsanyi Quasi Consistency allows the
""common prior" to give zero probability to the true state even if every individual assigns
positive probability to it (seeFigure 9). In such a case the true beliefs are compatible with the
common prior largely due to the lack of restrictions associated with updating on zero probability
events. Asaresult, the beliefs at the true state may be accounted for only incompletely by the
common prior. A considerably stronger notion (Strong Harsanyi Consistency) requires the
common prior to assign positive probability to the true state (in Figure 7, this requirement is not
met). In Proposition 2 we provide the following characterization: Strong Harsanyi Consistency is
equivalent to the conjunction of Comprehensive Agreement, "Truthd common belief" (what is
actually commonly believed is true) and common belief in " Truthabout common belief" (if

somebody believes that E iscommonly believed, then E is indeed commonly believed).
Requiring the " prior" to assign positive probability to the true state (that is, requiring

Strong Harsanyi Consistency) iswhat is needed in order to trandate to situations of incomplete

information probability 1 results based on the Common Prior Assumption obtained in an

asymmetric information context, such as Aumann’s (1987) characterization of correlated

equilibrium.

We now turn to the formal analysis
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DEFINITION 1. AninteractiveBayesian model (or Bayesian model, for short)8 isa
tuple

B =<N, Q, 1, {p }ieN>

i

where
e N={1,.., n} isafinitesetofindividuals..

52 isafiniteset of states (or possibleworlds)g. Thesubsetsof 2 arecalled events.
e 1e Q isthe™true” or "actua” state

* forevery individua ie N, p.: Q@ — A(Q) (whereA(Q) denotes the set of probability

distributions over Q) isafunction that specifies herprobabilistic beliefs, satisfying the
following property [we use the notation p, _ rather than p.(a)]: va ,BeQ,

if p,,(3)>0 then p  =p (1

1,

Thus p, € A(R) isindividual i's subjective probability distribution at state & and condition

(Dsaysthat every individual knows her own beliefs. Wedenote by |lp, = pi_all the event

{lwe Q:p, =p} Itisclea that theset { lp,=p, |l : 0 € Q} isapartitionof 52 itis

often referred to as individual i’s typepartition.

Given a Bayesian model B, itsqualitative interactive belief frame (or frame, for short) is

thetuple @ = (N, Q, T, {Ii}eN)whereN,EZandrareasin Definition 1 and

i

: For asimilar definition see, for example, Aumann and Brandenburger (1995), Dekel and Gul (1997) and Stalnaker
(1994, 1996).

? Finitenessof € isacommon assumption in the literature (cf. Aurnann, 1987, Aurnann and Brandenburger, 1995,
Deke and Gul, 1997, Morris, 1994, Salnaker, 1994, 1996).
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e forevery individua ieN, P,: & — 2Q\Q§ isi’s pessibility correspondence, derived from i’s

probabilistic beliefs asfollows: ™
P (o) = supp(p, ).

Thus for every ae Q, P(a) istheset of states that individual i considers possible at a.

REMARK 1. It follows from condition (1) of Definition 1 that the possibility
conrespondenceof every individua i satisfies the following properties (whose interpretation is

given in Footnote 14): V a,e 2,

Transitivity: if 3¢ l.(a) then P.(3) CP.(a),

Euclideanness: if e P,(a) then Pi(a) gPi([S).

REMA RK 2 (Graphical representation). A non-empty-valued and transitive
possibility correspondence P: € — 2Q can be uniquely represented (seeFigures 6-10) as an

asymmetric directed graph12 whose vertex set consists of d:sjoint events (called cells and
represented as rounded rectangles) and states, and each arrow goes from, or pointsto, either a
cell or astate that does not belong to acell. In such adirected graph, w’ € P(w) if and only if
either w and " belong to the same cell or thereis an arrow from w, or the cell containing w, to
w’, or thecell containing w’. Conversely, given atransitive directed graph in the above class
such that each state either belongs to acell or has an arrow out o it, there exists a unique non-
empty-valued, transitive possibility correspondence which is represented by the directed graph.
The possibility correspondence iseuclidean if and only if all arrows connect states to cells and
no state is connected by an arrow to more than one cell (for an example of a non-euclidean

possibility correspondence see the common possibility correspondence P, of Figure 8 below).

** Wehave included the true state in the definition of an interactive Bayesian model in order to stressthe
iinterpretationof themodel asarepresentationof a particular profileof hierarchiesof beliefs.

S ue A(RQ), supp(u) denotesthe support of i, that is, the set of statesthat are assigned positive probability by p.
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Findly, if — inaddition — the possibility correspondenceis reflexive, then one obtainsa
partition model where each state is contained in acell and there are no arrows between cells (as

isthe case, for example, in Figure6).
Givenaframeand an individual i, i's belief operator B, : 2Q - 2Q isdefined asfollows:
VEcQ,BE={0eQ: L) c E}. B.E can be interpreted as the event that (i.e. theset of states

at which) individual i believesfor sure that event E has occurred (i.e. attaches probability 1 to

B."

Noticethat we have allowed for false beliefs by not assuming reflexivity of the
possibility correspondences(V ae Q, ae P.(a)), which —asiswell known (Chellas, 1984, p.

164) - isequivaentto the Truth Axiom (if theindividual believes E then E isindeed true): V E
c &, BiE cE 14.

The common belief operator B, is defined asfollows. First, for every ECQ, et BE =
(1 B.E,thatis, B E istheevent that everybody believesE. The event that E is commonly
ieN
believed is defined as the infinite intersection:

B,E=BE N BBE NBBBE N ..

12 . . .. . .
A directed graph isasymmetric if, whenever there is an arrow from vertex v to vertex v' then there is no arrow
from V' to V.

4

" Thus Condition (1) of Definition 1 can be stated as follows: ¥ i N, Vae®, [lp.= p N = Blp.=p, Il

It iswell known (see Chellas, 1984, p. 164) that non-empty-valuedness of the possibility correspondenceis
equivalentto consistency of beliefs (an individual cannot smultaneoudly believe E and not E): V E ¢ R,
BE ¢ —-B—E (where for every event F, —F denotes the complement o F). Transitivity of the possibility
correspondenceis equival ent topositive introspectiond beliefs (if the individual believesE then she believes
that she believesE): v Ec 52, BEc B‘.B‘.E.Fi nally, euclideanness of the possibility correspondenceis
equivalentto negativeintrospection o beliefs (if the individua does not believe E, then she believesthat she
does not believeE): VEC @, -BEc B-BE.
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The corresponding possibility correspondence P, isthen defined asfollows. for every ae Q,
P,() ={we Q:ae —B,~{w}}. Itiswel known that Pa can be characterized as the transitive

closure of | J B, thatis,

icN
VaBe Q, Be P,la) if andonly if thereisasequence (i, ...i )inNanda

sequence (N, 1, ..., N_) in @ such that: (i) n,=a, (i) n_=p and (iii) forevery k=0,
wwm=1, 1 €P ().
k+1

Note that, although P, is always non-empty-valued and transitive, in general it need not

be euclidean (despite the fact that the individual possibility correspondences are: for an example
see Figure 8; recall that —cf. Footnote 14 — P, iseuclidean if and only if B, satisfies Negative
Introspection).

Events represent propositions and a state determines, for each individual, her beliefs
about the external world (her first-order belief's), her beliefs about the other individuals' beliefs
about the external world (her second-order beliefs), her beliefs about their beliefs about her
beliefs (her third-order beliefs), and so on, ad infinitum. An entire hierarchy of beliefs about
beliefs about beliefs ... about the relevant facts is thus encoded in each state of an interactive
belief model. For example, consider the following model, which isillustrated in Figure8

according to the convention established in Remark 22 N = {1, 2}, Q ={r, 3, v, &}, O

Pys= [S . 2) Pig= Ppp=Py, = ({f - Z) Ppy = Py = (f; i Y% Z).Here
the event {@, r ,y} represents the proposition "it issunny" and event {8} the proposition "it is
cloudy". The true state T describes aworld where in fact it issunny, individual 2 believes that it
is sunny and believes that 1 also believes it is sunny (indeed he believes that thisis common
belief), but in fact 1 believes that it is sunny with probability § and cloudy with probability 5

and believesthat also 2 isuncertain as to whether it issunny or cloudy (and attaches equal
probability to both), etc.
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Conversely, given any profile of infinite hierarchies of beliefs (onefor each individual)
satisfying minimal coherency regquirements, one can construct an interactive Bayesian model B
such that at the true state T the beliefs of each individual i€ N fully capturei’s origina infinite

hierarchy of beliefs (seeBoege and Eisele, 1979, Brandenburger and Dekel, 1993, Mertens and
Zamir, 1985, and Battigalli, 1997) .

sunny sunny sunny cloudy

1: @ o o;: ‘e

B T Y 5

2: (ﬂ<—o o Y

B T Y 5

P, !T\:H~a——ﬂl ° o}
Figure 8

It is not obvious what a proper local formulation of the existence of a'common prior”
ouglht to be. Below we suggest two definitions. Thefirst turns out to be equivalent to a
generalized notion o Agreement, but is too weak in some respects. The second, stronger,

definition is more appealing but is no longer equivalent to Agreement.

* Finitenessdf 2, however, cannat be guarantesd in general.
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DEFINITION 2. For every peA(Q), let HQC, (for Harsanyi Quasi Consistency
with respect to the'prior” ) bethefollowing event: ae HQCu if and only if

plw’)
ulllp;=p, I
wellp, = p,,ll and p, (@) = 0 otherwise (that is, p, is obtained from p by

@) VieN, Vo' sP(a),if pllp,=p,I) >0 thenp, (') = if

conditioning on Ilp, = p, 1N ® and
2 pP,()>0.

If ae HQCu, pisalocal commonprior at a. Furthermore, let HQC = UHQC, .

ueA(Q)

We now defineformally a general notion of agreement. Agreement as equality of beliefs
isessentially atwo-person property. Hence, for the remaining part of this section, we specialize

tothecase where N = {1,2}.

Let X beaset with at least two elements. A belief index isafunctionf : A($2) = X 17.

EXAMPLE 1. (i) LetEc Q beanarbitrary event, X =[0,1] and fEthefollowing
belief index: fE(p) = p(E) ; thusf E(pi'a) isindividual i's subjective probability of event E at
state Q.

(i) LetY : Q — R bearandom variable, X =R and f, bethebelief index given by

fr(p) = 2 Y(w)pw).; thus f, (p,,) isi’s subjective expectation of Y at state &
weR

* Where. for every event E, p(E) = Z (). Note that. for every w € Q and i € N.w € llp, = p. Il Thus

weE

w(w) > 0 implies p(llp,=p, II)>0.

Tt may seem that a belief index T dependson the set of states Q. However, thisisnat so: one should think of f
as being defined on the" universal belief space’ (cf. Mertens and Zamir, 1985). Indeed, all that mattersisthe
regrictionof f to P,(x).
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(iii) Let A beaset of actions, X = 2A and U : A x 2 — R autility function. Define the

belief index £, : A(Q) — 2" asfollows: f,p) = argmax > Ufa,w)pw). Thus f,(p, ) is

acA we

the set of actions that maximize individual i’s expected utility at state a.

DEFINITION 3. A bdlief index isproper if and only if it satisfies the following
property: Vp,q e A(R), VxeX, Vae|0,1],

if f(p)=f(q) =x thenf (apt (1-a)q) =x

Let J_ denote the class of proper belief indices.

It iseasily verified that all the belief indicesof Example 1 are proper.

Given a proper belief index f : A(Q) — X and an individua ie N, definef,: 2 — X by

f{@) = flp, ). For every xe X denote theevent {ae Q : f(a) =x} by ||f, =xIl.

DEFINITION 4. GivenaBayesian model and a proper belief index f: A(Q) — X, at

ae R thereisAgreement for £ or f-Agreement if and only if, forallx,, x,€X,

ae B, =x,l A llf,=x,l) = x =x,. 2.

That is, if at ait iscommon belief that individual 1’s baief index isx, and individual 2's index

isx,, thenx, =x,. Correspondingly, define thefollowing event:

S-Agree = [ -B. (I, =x,ll A llf,=x,1). @)
xlxzeX
/ X #X

1772

Given a Bayesian model and aset / of proper belief indices, at athereis Agreement on

J or J-Agreement if andonly if, Vf e J , aef-Agree. Correspondingly, let
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J-Agree = ﬂ f-Agree 4.
fed

A general notion of agreement is given by the entire class of proper belief indices.

DEFINITION 5. Let CA (for Comprehensive Agreement) be thefollowing event:

CA = J_-Agree.

Thefollowing proposition (proved in Bonanno and Nehring, 1996) characterizes

Comprehensive Agreement as equivalent to Harsanyi Quasi Consistency.

PROPOSITION 1. CA = HQC.

The notion of Harsanyi Quasi Consistency is rather weak: it allows the " common prior"
to assign zero probability to the true beliefsof all theindividuals (evenif none of theindividuals
has false beliefs: Example 2) and it is compatible with some individuals believing that thereis

agreement to disagree (Example 3).

EXAMPLE 2. Consider themodel of Figure9. Let u e A(2) besuch that u() = 1.
Then HQCH = Q. Thus at T Harsanyi Quasi Consistency is satisfied even though the type

(beliefs) of each individual isassigned zero probability by p. Note that at T both individualshave
correctbeliefs (x € P (v) N P, ().
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Figure 9

EXAMPLE 3. Consider themode of Figure 8. Let u e A(Q) besuch that u(f) = 1.
Then HQC, = {7, B}. At T Harsanyi Quasi Consistency is satisfied even though individual 1
believesthat he and 2 "agreeto disagree” about the probability that it issunny (that is, 1 believes
that it is common belief that he himself attaches probability'1/3 to the event {f3, t, y} while 2

attaches probability 1/2 to it).

Inview of the above examples, Harsanyi Quasi Consistency is too weak a notion to allow
the trandation to situations of incompleteinformation of results that are based on the Common
Prior Assumption, such as Aumann’s (1987) characterization of correlated equilibrium. In order
to strengthen the notion of Harsanyi Quasi Consistency one needs to tighten the connection
between the implied prior and the true beliefs/state. The following definition does so by

requiring the prior to assign positive probability to the true state.
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DEFINITION 6. Forevery ue A(R), let SHC‘1 (for Strong Harsanyi Consistency
with respect to the "prior 1) be thefollowing event: a € SHCll if and only if

(1) aeHQC,, and
2 >0

Furthermore, let SHC = USHC, .

ueA(Q)

To explore the gap between HQC and SHC or we introduce the following events (T,
*

stands for Truth about common belief, T stands for Truth d common belief, while NI stands

for Negative Introspection o common belief ):

T, =[] (] ~BBEN-BD
ieN Ee2®

T = [ ~(B,E—E)

Ee2%

NI = () (BLEUB,B,B.
Ee2®

T, captures the notion that individuals an: correct in their beliefs about what is commonly
believed: a € T, if and only if, for every event E and individua i, if, & &, individua i believes

that E is commonly believed, then, a @, E is indeed commonly believed (if ae BB,E then

*

ae B,E). On theother hand, ae T if and only if ata whatever is commonly believed is true (for

every event E, if aeB,E then a€E) ° Clearly, Truth of common belief is qualitatively weaker
/ *

than Truth; given that BT‘ = Q, T can be viewed as Truth shorn of any intersubjective

Pt isstraightforward that ae T if and only if, ae 1, (a).
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implications. Finally, a € NI if and only if - for every event E - whenever at a it is not

common belief that E, then, at &, it iscommon belief that E is not commonly believed.

Thefollowing proposition follows from results proved in Bonanno and Nehring (1996,

1997)

PROPOSITION 2. SHC = HQCNT nB,T_ = HQCNT NNL

7. Qualitative agreement

In this section we show that the qualitative counterpart to Harsanyi Quasi Consistency is
the: property of quasi-coherence of beliefs denoted by Q. First, let T (for Truth) be the following

event:

ieN Ee2°
Thus, for every ae Q, ae T if and only if' no individual has any false beliefs at a (for every
ie N and forevery ECQ, if ae BE thenac E) ? Let Q (for Quasi-Coherence) be the following

event:

Q = 'ﬂB*—ﬂB*T.

Q captures the notion of Agreement on qualitative belief indices, as we now show. Among the
proper belief indices defined in the previous section, of particular interest are the following

special cases: smple indices, which take on only two values, 0 and 1, and qualitative indices,

7

“ Itiswell known that ae NI if andonly if P, {a) satisfies the following property: V@, y € P (@), y< P, ().

It is well known that ae T if and only if ae ﬂR. (a). It follows that ae BT if and only if, for al BeP,(a),

ieN
pe (VR ®)-
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which depend only on the support of p & A(R). We denote the first class by o, and the latter by

3 Thus

J={f:AQ) >X : @) fed_, (i) X={0,1}and Gii) f (1) isclosed } (5)

JIQ ={ fe J_ :Vp,qe A(Q), if supp(p) = supp(q) then f(p) =f(g }. 6)

Thefollowing results are proved in Bonanno and Nehring (1996).

PROPOSITION 3. f e J, if and only if there exists a random variable Y : @ —» R

1 i ) Y pw) 20
such that, for all pe A(R2), flp) = weR
0 otherwise

REMARK 3. A qualitative belief index can be written as f = df o supp, with

d,: of \ & — X (such functions df have been studied in Rubinstein and Wolinsky, 1990). A

qualitative belief index is proper if and only if df IS union consistent, that is,

Q m

¥m2L,VE, ..,E €2, VxeX, if dE)=xforallk=1,..mthend(JE )=x @
k=1

Note that since the events E,, ..., E_ are not assumed to be pairwise disjoint, union

consistency isastronger property than the Sure Thing Principle defined by Bacharach (1985).

Fi Ez# 3 and ider the followi index: ()_{1”5"”’(9);-[5
ix an event E # & and consider the following index: f.(p) = 0 otherwise

A

Thus, for every individual i and state a, f.(p,)) = 1if and only if a e BiEZI. Let J =

To represent fE in the manner of Proposition 3, let Y : @ — R be as follows: Y = 1_- 1, where

15 € — {01} is the characteristic function of E: 1.(w) = 1 if and only if weE. Hence
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A

{f,78@) — {0,1} : ECc @}. Clearly, J <, nJ,. Thefollowing proposition shows that in

fact J coincideswithJ, N,

A~

PROPOSITION 4. J = ?Qr\ffrz.

Notethat ae J -Agree if and only if, for no event E, a e B,(B,E N —B,E), that is, there

is no event about which the two individuals " agree to disagree™:

A

J-Agree = [ (] () -B.BEN-BE).

ieN jeN Ee®

LEMMA 1. Vae S, ae f-Agree ifandonlyif

Vije N, 3Be P,(a) such that PJ.(B) c UE((;J) .

wella)

As acorollary to Lemma 1 we get that quasi-coherence of beliefs rules out agreeing to

disagree about events.
COROLLARY 1. Q < 3-Agree

The converse to Corollary 1 does not hold. To see this, consider the frame illustrated in
Figure 10. By Lemma 1, ¢ -Agree= Q; on the other hand, Q = O (in fact, T = {r, B} and,
therefore, B,T = O;thus—-B,—B,T = ).

Y@ =]0 ifweE .Then 2 Y@pw) = Y Yw)pw)=- Y pw) <0 if andonly if plw) > 0 for
-1 ifoeE weR we-E we=E

some we—E, if andonly if Y, plw) <1

weE
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To obtain afull characterization of quasi-coherence one needs to consider the entire class

of qualitative belief indices.
PROPOSITION 5. Q = JQ-Agree.

It follows from Proposition 5 and the above example that  -Agree # J[Q-Agree. Thus,

in contrast to the case of general " quantitative” proper belief indices, for which simplicity can be

assumed without loss of generality (i.e. J_-Agree = 3-Agree: see Bonanno and Nehring, 1996).

simplicity is arestrictive assumption for qualitative belief indices.
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