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Abstract , 

Aumann (1976) put forward a formal definition of common knowlebge and used it to 
I 

prove that two "like minded" individuals cannot "agree to disagree" in the lollowing sense. If 

they start from a common prior and update the probability of an event E (4ing Bayes' rule) on 

the basis of private information, then it cannot be common knowledge bet een them that 

individual 1 assigns probability p to E and individual 2 assigns probability to E with p z q. In 1 
other words, if their posteriors of event E are common knowledge then thed must coincide. 

Aumann's Agreement Theorem has given rise to a large literature which review in this paper. 

The results are classified according to whether they are probabilistic or qualitative. 

Particular attention is paid to the issue of how to interpret the notion consistency as a 

(local) property of belief hierarchies. 



1. Introduction 

Aurnann (1976) put forward a formal definition of common kna 

prove that two "like minded" individuals cannot "agree to disagree" in I 

they start from a common prior and update the probability of an event E 

the basis of private information then it cannot be common knowledj 

individual 1 assigns probability p to E and individual 2 assigns probabilit 

other words, if their posteriors of event E are common knowledge then th 

celebrated result captures the intuition that the fact that somebody else t 

from yours is an important piece of information which should induce y~ 

opinion. This process of revision will continue until consensus is reached. 

Aumam's original result has given rise to a large literature on the t 

in this paper. We shall base our exposition on the distinction between Baj 

versions and qualitative versions of the notion of agreeing to disagree. 

2. Illustration of the logic of agreeing to disagr 

Imagine two scientists who agree on everything. They agree that th 

must be one of seven, call them a, f3, y, 6, E, <, q. They also agree on the r 

these possibilities, which they take to be as illustrated in Figure 1: 
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q to E with p # q. In 
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lative likelihood of 

Figure 1 



Experiments can be conducted to learn more. An experiment leads to a pa 

For example, if the true law of Nature is a and you performed experiment 

leann that it cannot be 6 or E or r/ but you still would not know which is th 

amcwg the remaining ones. Suppose that the scientists agree that Scientist 

experiment 1 and Scientist 2 will perfom1 experiment 2. They also agree t 

wol;~ld lead to a partition of the states as illustrated in Figure 2: 

Experiment 1 : 

Experiment 2: 

Figure 2 
f 

Suppose that they are interested in establishing the truth of a proposition I 

event E = {a, y, 6, E). Initially they agree that the probability that E is tr 

tion of the above set. 

then you would 

rue law of Nature 

will perform 

t each experiment 

ht is represented by 

is: 



Before they perform the experiments they also realize that, depending on what the true law of 

Nature is, after the experiment they will have an updated probability of evebt E conditional on 

what the experiment has revealed. For example, they agree that if one p e r f w s  Experiment 1 

and the true state is p (so that E is actually false) then the experiment will the information 

I = {a, p, y) and Bayesian updating (which they agree to be the correct wag of updating 

probabilities) will lead to the following new probability of event E: 

Similarly for every other possibility. Thus we can attach to every cell of eadh experiment a new 

updated probability of E, as illustrated in Figure 3: 

I 
Note the interesting fact that sometimes experiments, although they are informative (that is, they reduce your 
state of uncertainty) might actually induce you to become more confident of the truth of something that is false: 
in this case you increase your subjective probability that E is true from 75% to 86%, a though E is actually false! 
( Recall that we have assumed that the true state is (3.) 

I 



Experiment 1 : I 
I 

E = {a, y, 6, : 

Experiment 2: 
Prob(E) = 15/21 

Figure 3 

Suppose now that each scientist goes to her laboratory and perforn 

experiment (Scientist 1 Experiment 1 and Scientist 2 Experiment 2). Assu 

state of Nature is <. Afterwards they exchange email  messages informin, 

new subjective estimates of event E. Scientist 1 says that she now attaches 

E, .while Scientist 2 says that she attaches probability 15/21 to E. So their I 

/ 

surprisingly, since they have performed different experiments and have th 

different information). Should they be happy with these estimates? Obvio~ 

Scientist 2. She hears that Scientist 1 has a new updated probability of 121 

she deduce? That the true state is not q,. She can thus revise her knowledg 

eliiminating q from her information set. Then she will need to re-compute 

s the respective 

ne also that the true 

; each other of their 

probability 12/14 to 

stimates disagree (not 

:refore collected 

sly not. Consider 

14. From this what can 

: partition by 

:he probability of E as 



shown in the following figure. Similarly, Scientist 1 learns that the true st 

revises her information partition and estimate of E as illustrated in Figure 

Scientist 1: 

true state is 5 I 
Scientist 2: 

~ t e  cannot be 6, hence 

4. 

Figure 4 

Nolw they inform each other of their new subjective estimates: 719 for Sci ntist 1 and 15/17 for 

Scientist 2. Again, there is disagreement. Should they accept such disagre ment? The answer is, \ 
again, No. Scientist 1 does not learn anything from the new estimate of ~dientist 2, but Scientist 

2 does learn something, namely that the state cannot be y. Hence she will evise her information t 
paliition and estimate of the probability of E, as illustrated in Figure 5: ~ 



Scientist 1 : 

E = {a, y, 6, d 

Scientist 2: 

true state I 

Notice that at this stage they finally agree on the probability of E and indet 

knowledge that both estimate this probability to be 719 = 78% (before the 

ante: probability of E was 24/32 = 75%; note that with the experiments anc 

information they have gone further from the truth!). 

Notice that before the last step (leading to it being common knowlc 

both scientists) it was not common knowledge between the two what prl 

attached to E. When one scientist announced his subjective estimate, th 

that announcement informative and revised her own estimate accordin; 

it becomes common 

xperiments the ex 

:he exchange of 

~ g e  that P(E) = 719 for 

lability each scientist 

other scientist found 

y. At the end of the 



process of exchanges, the announcement by one scientist of his estimate id not make the other 

scientist change her estimate. In a sense further announcements became p intless, occasioned no 

stqxise, revealed nothing new. 
." ~ 

Although this example suggests that (if the true state is ) the scifntist will end up with 

exactly the same information set, this is not true in general. i 
i 

3. Formal statement of Aumam's result 
I 

I 

In this section we provide a fonnal and precise statement of Au (1976) result - 

known as the Agreement Theorem - which was proved within the knowledge and 

common knowledge. Extensions of the result to the more general and common 

belief will be examined in Section. ~ 

Let 52 be a set of states. There are two individuals and suppose t at they start with the h 
same prior probability distribution p : Q -+ [0,1] on SZ ( define, for 'very E Q, p(E) = t 

p(w) ). Individual i receives private information (the nature of the rivate information is 
oaE I 
common knowledge between the two) according to the information partit/on .Ti. For every state 

I 
w E: 51, Ii(w) denotes the cell of i's partition tt,at contains o. Assume th t, for every i E (1, 2 )  d 
and o E SZ, p(Ii(u)) f 0. i 

P Q 
. The knowledge operator of individual i, Ki : 2 + 2 , is defindd by K,E = { o  E Q : 

I 
/ Q Q 

Ii(u) G E}. The common knowledge operator K, : 2 + 2 is defined by: i 

That is, an event E is common knowledge between the two if both know , both know that both F 
know E, etc. ad infiniturn. Let 1, be the meet (finest common coarsening) of the partitions 1, and 



4 and denote by I,(w) the cell of I* that contains co. Aumam (1976) provF that, for every event 

E, ICE = {o E Q : I,(o) c E). 

the event that individual i's posterior probability of E is a. In the exsmple of the previous 

section, for Scientist 2 we have that - after the experiment and before any exchange of 

information with the other scientist - (1 p2(E) = 6 11 = {a, (3, a), where E I= {a, y, 6, E } .  

Aumann's Agreement Theorem. Let 52 be a set of states and Guppose that two 

individuals 1 and 2 have the same prior probability distribution p : 8 4 [/3,1] on 8 sartisfying 

the property that for every i E { 1,2) and o E 52, p(I,(o)) # 0. Let E be an event and let 

a , b ~  [0,1]. Suppose that at some state o it is common knowledge that indikidual 1's posterior 

probability of E (given his information at co) is a and 2's posterior probability of E (given her 

inflormation at o )  is b. Then a = b. In other words, individuals who start wlth the same prior 

cannot agree to disagree. Formally, 

The theorem is a consequence of the following lemma. 

LEMMA 1. Fix an arbitrary event F and let {P,, ..., Pm} be a partilion of F (thus F = P, u 

... u Pm and any two P and P, with j t k are non-empty and disjoint). Suqpose that p(E 1 PJ) = a 
J 

foir all j = 1, ..., m. Then p(E ) F) = a. 

2 
For every E, I G 52 such that p(I) # 0, p(E([) is the conditional probabilityi of E given I, defined by 



p(E n P,) 
PmofofLemm 1. p(E I P,) = 

p(P,) 
. Hence, since p(E I P,) a ,  we have that 4 1 

p(E n P.) = a p(P,). Adding over j, the LHS becomes p(E n F) and the RH becomes a p(F) (by 
J 

definition of probability measure). Hence p(E 1 F) = p(E n F) 
p(F) 

= a. 
I 

Proof of the Agreement Theorem Let I,(o) be the cell of the comm n knowledge 0 

4. Bayesian extensions of Aumann's result ~ 

partition containing w. Consider individual 1. I,(@) is a union of cells of I,, 

partition of individual 1. On each such cell 1's conditional probability of E 

Aumann's Agreement theorem has been extended in several directi ns. In this section we 

consider probabilistic or "Bayesian" extensions. 

the information 

is a. By Lemma 1, 

I. From events to expectations of random variables. A result can be 

extended from the probability of an event to the expectation of a random 

the following extensions were proved by Milgrom and Stokey (1982), 

Geanakoplos (1983), Rubinstein and Wolinski (1990). 

p ( ~  I I,(o)) =a. A similar reasoning for individual 2 leads to p(E 1 I,(w)) = b. Hence a = b. 

1. Let f be a random variable on Q and a and b two distinct numbers. en there is no o at 

which it is common knowledge that, conditional on her information, 1 believes 

that the expectation of f is a and, conditional on his information, 2 bel'eves that the 
3 1 

expectation is b. i 

3 
Note that Aurnann's result is a special case of this: take f to be the characteristic function of event E. 



2. Let f be a random variable on Q and a a number. Then there is no d at which it is common 

knowledge that, conditional on her information, individual 1 believes at the expectation of 

f is greater than or equal to a and, conditional on his information, 2 elieves that the 
4 

expectation is less than a. 

," 
The latter result can be interpreted as saying that it cannot b common knowledge i. 

between two risk-neutral individuals they both expect to profit from a b t: take f (a) to be the .i 
payment frorn individual 1 to individual 2, if positive, and from 2 to 1, if negative, in case the 

true state turns out to be a. If it is common knowledge that they both xpect to gain from the e 
bet, then it is common knowledge that for 1 the expectation off  is ositive and for 2 the 

expectation of - f is positive. 
I ~ 

11. "No trade" theorems. Along these lines, Milgrorn (1981) and Milgrom Stokey 

(1982) proved a result which is often interpreted as establishing the impos ibility of speculative 

trade. Assume that the two traders agree on an ex ante efficient allocation b f goods. Then, after 

the traders get new information, there is no transaction with the property t at it is common (I ! 

knowledge that both traders are willing to carry it out. i 

Morris (1994) explores further this "no trade" result, by 1 oking at the case of i 
heterngeneom prior beliefs. He shows how different notions of efficiency under asymmetric 

information (ex ante, ex interim and ex post) are related to agents' prior eliefs. These efficiency b 
results are used to obtain necessary and sufficient conditions on age&' beliefs for no trade 

theorems in different environments. 

/ 

4 
Note, however, that it is possible that at a state w it is common knowledge that i 1 believes that the 

expectation of f is a and individual 2 believes that it is different from a. For = {a, Cj}, I,  = ( 5 2 )  

and Iz = {{a). {p) 1. Let p(a) = p(P) = $ and f (a) = 1, f (p) = 3. Then at a is it common knowledge that 

for 2 the expectation of f is 2 and for 1 it is different from 2 (it is either 1 or 3). 1 



111. From probabilities of events to aggregates. In m y economic settings, Bn 
instead of assuming that individual opinions (conditional or expectations) are 

cornrnon knowledge, it is more natural to suppose that of individual 

opinions (e.g., a price) becomes common knowledge. In 
5 

pro'ved that if a stochastically monotone aggregate of individual con itional probabilities is 

cornrnon knowledge, then it is still true that all the conditional proba ilities must be equal. 

Nielsen et al (1990) show that also this result - like Aumam's result - can be extended from I 
conditional probabilities of an event to conditional expectations of a randob variable. 

Along the same lines, Parikh and Krasucki (1990) consider co munication protocols 

among more than two individuals in which values of functions are c mmunicated privately ! 
through messages: when agent A communicates with agent B, other a ents are not informed 

about the content of the messa&. They show that the agent may fail to 6 reach agreement even 

IV. Communication and common knowledge. One ay in which common 

knowledge can be achieved is through communication. Suppose that the tate space is finite. If 1 

5 n 
A function 4 : [W + IR is stochastically monotone if it can be written in the form + ,, ..., xn) = $l(xl) + . .. + 

'$"(xn) where each +i: [W + [W is strictly increasing (this definition differs from, but i to, the one used 

by McKelvey and Page, 1986). 

the agents communicate to each other the probability of an event (or the 

variable, etc.) and revise their information partitions and subjective estimates 

time will be reached after which communication induces no further revision. 

will become common knowledge at every state that each agent can predict 

hear from the other agent in the future. Then, by Aumann's theorem, at 

must be the same. This "convergence to common knowledge" 

Gei~nakoplos and Polemarchakis (1982) and Sebenius and Geanakoplos 

expectation of a random 

accordingly, then a 

Then at that time it 

the opinion she will 

that time the opinions 

theorem was proved by 

(1883). 



with reasonable protocols. Krasucki (1996) takes this line of inquiry a st p further by identifying 

restrictions on protocols which guarantee that agreement is reached. Hei etz (1996) clarifies the \ 
relationship between consensus and common knowledge in this context. 1 

V. Errors in information processing. Geanakoplos (1 89) and Samet (1990) 

extend Aurnann's (1976) result in a different direction. They ask hat conditions on the 

individuals' information functions (or "possibility correspondences") are sufficient for the 

irnrpossibility of agreeing to disagree. They assume the existence of a co mon prior and consider 

posterior beliefs obtained by updating the common prior on no 1 -partitional possibility 

correspondences which represent how individuals process informatio . In particular, Sarnet 

generalizes Aumann's result from the case where the information functi n of each individual is 

reflexive and euclidean (and hence transitive) to the case where it is re exive and transitive. In 

ot.her words, he drips the Negative Introspection axiom for individual eliefs (see Section 7). ; 
Thus he takes a "bounded rationality" approach. Geanakoplos (1989) also focuses on 

"environments where information processing is subject to error" , 

cc~nditions on individual beliefs that ensure the absence of speculatic 
6 

disagree". Geanakoplos, however, goes a step further by providing als 

which he calls "positive balancedness". 

6 
Like Samet, he assumes reflexivity of the information functions, but replaces transit 

calls "(positive) balancedness". Thus the Truth Axiom (that is, reflexivity of thc 
individual) plays a crucial role in Geanakoplos' and Samet's analysis. 

nd finds even weaker 

I and of "agreement to 

a necessary condition, 

d y  with a property which he 
information function of each 



5. Non-Bayesian or "Qualitative" generalizatio s of Aumann's i 
result ~ 

Cave (1983) and Bacharach (1985) extended Aumann's result fr m the Bayesian setting 0 
(that is, from the conditional probability of an event given a common p or) to the case of like- ri 
minded individuals who follow a common decision procedure that sjisfies the Sure Thing 

I 

Principle. Roughly speaking, they showed that once two like-minded agents reach common 

knlowledge of the actions each of them intends to perform, they will pe o m  identical actions. f 
This is illustrated in the following story, which Aumann (1989) attributes lo Bacharach. 

A murder has been committed. To increase the chances of a con 
chief of police puts two detectives on the case, with strict instm 
independently and exchange no information. The two, Alice an 
the same police school so given the same clues, they would rea 
conclusions. But as they will work independently, they will, p 
get the same clues. At the end of thirty days, each is to decid 
(possibly nobody). On the night before the thirtieth day, they 
the locker room at headquarters, and get to talking about the 
instructions, they exchange no substantive information, no c 
self-confident individuals, and feel that there is no harm in t 
whom they plan to arrest. Thus when they leave the locker r 
knowledge between them whom Alice will arrest, and it is 
between them whom Bob will arrest. Conclusion: They arr 
and this, in spite of knowing nothing about each other's clues. 1 

52 
Let SZ be a set of states and denote by 2 the set of events. Let A b a finite set of actions. e 

Q I 

A decisionprocedure is a function D : 2 \0 -3 A. The interpretation is that the decision 

procedure D recommends action D(1) E A to ian individual whose informalion (the set of states 

he considers possible) is I. What one learns in police school is a decision flrocedure: if you know 
Q 

such and such, then you should do so and so. The decision procedure D : 2 \0 + A satisfies the 

Sure Thing Principle, if and only if, for every event E and for every partition {P,, ..., Pm) of E, 

D(P,) = a for every i == 1, ..., m, implies D(E) = a 



Intuitively, suppose that if you knew which of the mutually exclusive events Pi happened, you 

would choose action a (which is the same for all P,). Then you will take the same action a if you 

onty know that some Pi happened, without knowing which one. Thus if Alice would arrest the 

butler if a certain blood stain is of type A, B, AB, or 0, (perhaps for different reasons in each 

case), then she should arrest the butler without bothering to send the stain to the police 

laboratory. 

Given decision procedure D and individuals i = 1,2 with information partitions < define 

achbnfunctions di : 52 + A by di(o) = D(I,(w)); in words, di(o) is i's action at state o. For every 

ae A, we write 11 d, = a  ) I  for the event {w Q : di(o) = a ) .  

Generalized Agreement Theorem (Cave, 1983, Bacharach, 1985). Consider two 

individuals who follow the same decision proc.edure, which satisfies the Sure Thing Principle. If, 

at some state, it is common knowledge that individual 1 plans to take action a and individual 2 

plains to take action b, then they must be planning to take the same action. Formally. 

if ~ , ( l l d , = a l l  n ~ l d , = b l l ) # @  then a = b .  

REMARK. Aumann's Agreement Theorem is a corollary of the above: for a fixed event 

E, define the decision procedure DE by D,(F) := p(E I F). By Lemma 1 of Section 3, this decision 

procedure satisfies the Sure Thing Principle. (Similarly, the expectation of a random variable 

satisfies the Sure Thing Principle.) 

Moses and Nachum (1990) point out that Bacharach's technical definition of the Sure 

Th:ing Principle is considerably stronger than is suggested by the blood type example given 

above. Indeed, "it requires the decision procedure to be defined in a manner satisfying certain 
/ 

corlsistency properties at what amount to impossible situations" (Moses and Nachum, 1990, p. 

152). They provide the following "counterexample" to the Generalized Agreement Theorem. A 

murder was committed and it is known that one of three suspects, A, B and C is the culprit. Two 

police officers are put on the case and are instructed to act independently and adhere to the 

following decision procedure: 



1. If you know who the culprit is, indict him; 

2. If you know that exactly one of' them is not the culprit, of the other two arrest (for 

further interrogation) the one who comes first in alphabetical order; 

3. If you cannot rule out any of the three as the culprit, do not arrest anybody. 

This could be expressed formally as follows. For every i E {A, B, C) let i denote the state where 

individual i is the one who committed the murder. Then, for example, {A) represents the state of 

information of a detective who has established that A is the culprit, and {B, C) is the state of 

information of a detective who has established only that A is not the culprit. Then the above 

decision procedure can be expressed as follows: 

1. D({A)) = indict A, D({B)) = indict B, D({C)) = indict C; 

2. D({A, B)) = D({A, C}) = arrest A, D({B, C)) = arrest B; 

3. D({A, B, C)) = do not arrest anybody. 

This decision procedure satisfies the Sure Thing Principle trivially. Now imagine that detective 

Maigret has not collected any clues, while detective Columbo has established that (and only that) 

C is not the culprit. Columbo therefore initially intends to suggest that A be arrested, while 

Maigret would suggest that no arrests be made. Columbo communicates his intentions to 

Maigret, but Maigret cannot use this information to rule out any suspects and therefore insists on 

suggesting that no arrests be made. In the end i t  becomes common knowledge between them that 

Columbo intends to arrest A, while Maigret intends to suggest that no arrests be made. Hence 

thely agree to disagree. The situation after their initial communication of intentions can be 

represented using a state space 52 that contains four points: a ,  P, y and 6. At both a and y suspect 

A is the murderer, at f3 the murderer is B, and at 6 the murderer is C. Columbo's information 

pantition is {{a, (31, {a,  y)) while Maigret's information partition is {52).This is illustrated in 

Figure 6. 



A B A C 
did did did did 
it it it it 

COLUMBO 

MAIGRET 

Figure 6 

By the above decision procedure, D({a,(j)) = D({y,6)) = arrest A and D(Q) = no arrest, thus 

violating Bacharac'l's Sure Thing Principle. Moses and Nachum point out that Bacharach's Sure 

Thing Principle in this case does not capture the intuition which is normally associated with it. 

Indeed, it makes no sense for Columbo to ask himself what he would do if he had Maigret's 

inlformation, for the following reason. Maigret's information is that (1) either Columbo knows 

that C is not guilty or Columbo knows that B is not guilty, (2) he (Maigret) considers it possible 

th;at C is guilty and considers it possible that B is guilty. If Columbo were to know what Maigret 

knows (if he had the information Maigret has) then he would find himself believing 

contradictory propositions. Formally, let E = {a ,  (j} and suppose that the true state is a. Then 

a E KM(KCE u KCYE) and a E 7K,E n l K , 4 .  For Columbo to be in the same state of 

information at a as Maigret, it would have to be true that a E Kc(KcE u KclE) and a E 7KcE 

n lKclE. By Negative Introspection, - ,KcE c Kc7KcE and 7Kc7E Kc7KclE. Thus 

a E KclKcE n KCIKCIE = %(7KcE n X c l E  ) = Kcl(KcE u Kc7E ). Thus a E KcF n 

Kc-$, where F = KcE u KC7E, contradicting consistency of knowledge. As Moses and 

Nachum (1990, p. 156) point out, "taking the union of states of knowledge in which an agent has 

differing knowledge does not result in a state of knowledge in which the agent is more ignorant; 

it simply does not result in a state of knowledge at all!". 



Moses and Nachum's criticism of Bacharach's Sure Thing Principle is similar to Gul's 

(1996) and Dekel and Gul's (1997) criticism of' the notion of a common prior in situations of 

incomplete information (see Section 6)  

In their paper, Moses and Nachum go on to propose a weakening of the Sure Thing 

Principle and find conditions under which the weaker notion yields the impossibility of agreeing 

to disagree. 

6. Common Prior and Agreement in situations of incomplete 
information. 

Th: assumption of a common prior is central to Aumam's result on agreeing to disagree 

and in related results, such as the no-trade theorem (Milgrom and Stokey, 1982). The Common 

Prior Assumption (CPA) plays an important role also in game theory: it is the basic assumption 

behind decision-theoretic justifications of equilibrium reasoning in games (Aummn, 1987, 

Aumann and Brandenburger, 1995). Not surprisingly, the CPA has attracted its share of 

criticism. In models of asymmeCric information (where there is an ex ante stage at which the 

individuals have identical information and subsequently update their beliefs in response to 

priv<ate signals), the controversy focuses on the plausibility or appropriateness of assuming 

commonness of the prior beliefs (see Morris, 1995). In this section we want to focus on situations 

of incomplete information, where there is no ex ante stage and where the primitives of the model 

are the individuals' beliefs about the external world (their first-order beliefs), their beliefs about 

the other individuals' beliefs (second-order beliefs!, etc., i.e. their hierarchies of beliefs. In this 

context, the CPA is a mathematical property whose conceptual content is not clear. This has 

giyen rise to a novel and, in a way, more radical, criticism of the CPA, one that questions its very 

meaningFLlness in situations of indomplete information (Dekel and Gul, 1997, Gul, 1996, 

Lipman, 1995). 

The skepticism concerning the CPA in situations of incomplete information can be 

developed along the following lines. As Mertens and Zamir (1985) showed in their classic paper, 

the  description of the "actual world" in terms of belief hierarchies generates a collection of 



"possible worlds", one of which is the actual world. This set of possible worlds, or states, gives 

rise to a formal similarity between situations of asymmetric information and those of incomplete 

infbrmation. However, while a state in the former represents a real contingency, in the latter it is 

"a fictitious construct, used to clarify our understanding of the real world" (Lipman, 1995, p.2), 

"a notational device for representing the profile of infinite hierarchies of beliefsn (Gul, 1996, p. 

3). As a result, notions such as that of a common prior, "seem to be based on giving the 

artificially constructed states more meaning than they have" (Dekel and Gul, 1997, p.42). Thus 

an essential step in providing a justification for, say, correlated equilibrium under incomplete 

infbrmation is to provide an interpretation of the "common prior" based on "assumptions that do 

not refer to the constructed state space, but rather are assumed to hold in the true state", that is, 

assumptions "that only use the artificially constructed states the way they originated - namely as 

elements in a hierarchy of belief" (Dekel and Gul, 1997, p.116). 

When the beliefs of the individuals can be viewed as if they were obtained by updating a 

coimmon prior on some information, they are called Harsanyi consistent. Harsanyi consistency is 

a well-defined mathematical property, but, due to the "artificial nature" of the states in situations 

of incomplete information, "we do not know what it is that we would be accepting if we were to 

accept the common prior assumption7' (Gul, 1996, p.5). 

In this section we show that the existence of a common prior can be understood as a 

generalized form of Agreement, which we call Comprehensive Agreement. In order to motivate 

this notion, we take as point of departure the observation that, in some special cases, it is easy to 

find an interpretation of Harsanyi consistency that does not involve an ex ante stage. In 

particular, in situations of complete information (characterized by the fact that the beliefs of each 

individual are commonly known) Harsanyi consistency amounts to identity of beliefs across 

individuals. It thus seems natural, in situations of incomplete information, to think of Harsanyi 

consistency as likewise amountirig to equality of those aspects of beliefs that are commonly 

known. For instance, one can take as an aspect of beliefs the subjective probability of an event E, 

in which case Agreement reduces to the notion introduced by Aumann (1976). Subjective 

prlobabilities of events are rather special aspects of beliefs and are not rich enough to fully 

capture the conceptual content of Harsanyi consistency. Thus one needs a more general notion of 



Cofirlprehemive Agreement as the absence of any "agreement to disagree" about aspects of 

beliefs (or belief indices) in an appropriately defined general class. 

In general situations of incomplete information where some individuals might have false 

beliefs (i.e. in non-partitional models), the relationship between Comprehensive Agreement and 

the existence of a common prior is somewhat complex. To see this, consider the following 

example, illustrated in Figure 7. Individual 2 is an economist who knows the correct spelling of 

his iname (Mas-Colell). Individual 1 mistakenly believes that the spelling is Mas-Collel. She even 

believes this spelling to be common belief between them. These beliefs are represented by state z 

in Figure 7. Note, in particular, that 1's mistaken beliefs are represented with the help of an 
7 

"artificial state" 6 which she believes to obtain for sure at z (hence the arrow from z to 6) . 

spelling: spelling: 
Mas-Cole11 Mas-Collel 

Figure 7 

In this example Comprehensive Agreement is satisfied at the true state t (and also at P). To see 

this., think of a belief index, or aspect of belief, as a function whose domain is the set of 

probability distributions over {t ,  (3). Let f be any such belief index. Then individual 1's value of 

f is (the same, hence) common belief at every state, in particular at t. Call this value x.  Now, 

individual 2's value off at P must also bex (since they have the same beliefs there). Thus if 2's 

index is common belief at z it mugt be x. Hence at t (and at P), there cannot be agreement to 

disaigree (i.e. commonly known disagreement) about the aspect of beliefs captured by f . 

7 
Th~e state (3 is defined as the following conjunction of facts about the world and individuals' beliefs: "the correct 

spelling is MasCollel and it is commonly (and correctly) believed to be MasCollel". For more details on the 
"state space" representation of belief hierarchies, see below. 



Are the beliefs represented by state t in Figure 7 Harsanyi consistent? This question 

requires clarification, since in an incomplete information setting properties need to be stated 

l o cdy  as pertaining to a particular profile of belief hierarchies - represented by the true state 

z -- rather than globally as pertaining to the model as a whole. In a weak sense the question can 

be answered affirmatively: the true state t could be thought of as the ex interim stage of an 

as!rrnmetric information model with a common prior that assigns probability 0 to t and 

probability 1 to P. We define a corresponding weak notion of the CPA (Harsanyi Quasi 

Consistency), which in Figure 7 is satisfied at t, and in Proposition 1 below we show it to be 

equivalent to Comprehensive Agreement. However, Harsanyi Quasi Consistency allows the 

"common prior" to give zero probability to the true state even if every individual assigns 

positive probability to it (see Figure 9). In such a case the true beliefs are compatible with the 

co~mmon prior largely due to the lack of restrictions associated with updating on zero probability 

events. As a result, the beliefs at the true state may be accounted for only incompletely by the 

coimmon prior. A considerably stronger notion (Strong Harsanyi Consistency) requires the 

common prior to assign positive probability to the true state (in Figure 7, this requirement is not 

met). In Proposition 2 we provide the following characterization: Strong Harsanyi Consistency is 

equivalent to the conjunction of Comprehensive Agreement, "Truth of common belief" (what is 

actually commonly believed is true) and common belief in "Truth about common belief" (if 

somebody believes that E is commonly believed, then E is indeed commonly believed). 

Requiring the "prior" to assign positive probability to the true state (that is, requiring 

Strong Harsanyi Consistency) is what is needed in order to translate to situations of incomplete 

information probability 1 results based on the Common Prior Assumption obtained in an 

as!ymmetric information context, such as Aumam's (1987) characterization of correlated 

equilibrium. 

We now turn to the formd analysis 



8 D E F I N I T I 0 N 1 . An interactive Bayesian model (or Bayesian model, for short) is a 

tuple 

N =  (1,  ..., n) isafinitesetofindividuals.. 

9 
52 is a finite set of states (or possible worlds) . The subsets of 52 are called events. 

10 
z E 52 is the "true" or "actual" state . 

for every individual i~ N, pi : 52 4 A(52) (where A(52) denotes the set of probability 

distributions over 52 ) is a function that specifies herprobabilistic beliefs, satisfying the 

following property [we use the notation pi+= rather than pi(a)] : V a ,  p E 52, 

Thus p. E A ( 8 )  is individual i's subjective probability distribution at state a and condition 
1.a 

(1) says that every individual knows her own beliefs. We denote by (Ip, = p. 1 1  the event 
La 

{o E 9 : piVw = pi,. ). It is clear that the set { llpi = pi,wll : o E 52 ] is a partition of 52; it is 

often referred to as individual i's typepartition. 

Given a Bayesian model B, its qualitative ilrteractive beliefframe (or frame, for short) is 

the tuple = (N, 52, t, ( Ii lie, ) where N, 52, and r are as in Definition 1 and 

8 
For a similar definition see, for example, Aumann and Brandenburger (1995), Dekel and Gul (1997) and Stalnaker 

(1994, 1996). 

9 
Finiteness of 52 is a common assumption in the literature (cf. Aurnann, 1987, Aurnann and Brandenburger, 1995, 

Dekel and Gul, 1997, Morris, 1994, Stalnaker, 1994, 1996). 



Q 
for every individual i~ N, Pi : Q 4 2 \0 is i'spossibility correspondence, derived from i's 

11 
probabilistic beliefs as follows: 

Pi(a) =: supp(p,.,). 

Thus, for every a€ Q, Pi(a) is the set of states that individual i considers possible at a. 

R E MA R K 1 . It follows from condition (1) of Definition 1 that the possibility 

conrespondence of every individual i satisfies the following properties (whose interpretation is 

given in Footnote 14): Va,fk Q, 

Transitivity: if (3 E I. (a)  then Pi(@) 5; Pi(a), 

Euclideanness: if (3 E Pi (a) then Pi(a) c Pi(P). 

R E MA R K 2 (Graphical representation). A non-empty-valued and transitive 
Q 

possibility correspondence P : Q + 2 can be uniquely represented (see Figures 6-10) as an 
12 

asymmetric directed graph whose vertex set consists of dsjoirit events (called cells and 

represented as rounded rectangles) and states, and each arrow goes from, or points to, either a 

cell or a state that does not belong to a cell. In such a directed graph, or E P(o) if and only if 

either o and o' belong to the same cell or there is an arrow from o ,  or the cell containing o ,  to 

cut, or the cell containing a'. Conversely, given a transitive directed graph in the above class 

such that each state either belongs to a cell or has an arrow out of it, there exists a unique non- 

empty-valued, transitive possibility correspondence which is represented by the directed graph. 

The possibility correspondence is euclidean if and only if all arrows connect states to cells and 

no state is connected by an arrow to more than one cell (for an example of a non-euclidean 

possibility correspondence see the common possibility correspondence P, of Figure 8 below). 

10 
We have included the true state in the definition of an interactive Bayesian model in order to stress the 
iinterpretation of the model as a representation of a particular profile of hierarchies of beliefs. 

11 
If p~ A@), supp(p) denotes the support of p , that is, the set of states that are assigned positive probability by p. 



Finally, if - in addition - the possibility correspondence is reflexive, then one obtains a 

pafitition model where each state is contained in a cell and there are no arrows between cells (as 

is the case, for example, in Figure 6). 

S Q 
Given a frame and an individual i, i's belief operator Bi : 2 + 2 is defined as follows: 

V E  c SL, BiE = (WE SL : Ii(o) EI. B,E can be interpreted as the event that (i.e. the set of states 

at which) individual i believes for sure that event E has occurred (i.e. attaches probability 1 to 

E).') 

Notice that we have allowed for false beliefs by not assuming reflexivity of the 

possibility correspondences (V a€ 8, a E Pi(a)), which -as is well known (Chellas, 1984, p. 

164) - is equivalent to the Truth Axiom (if the individual believes E then E is indeed true): V E 
14 

cG!, B i E c E  . 

The common belief operator B, is defined as follows. First, for every E c Q ,  let BeE = 

n B.E , that is, BeE is the event that everybody believes E. The event that E is commonly 
itzN 

believed is defined as the infinite intersection: 

12 
A directed graph is asymmetric if, whenever there is an arrow from vertex v to vertex v' then there is no arrow 
flrom v' to v. 

13 
/ 

Thus Condition (1) of Definition 1 can be stated as follows: V icz N, V ~ E  52, !!pi = piall = Bill pi = P,.~II. 

14 
It is well known (see Chellas, 1984, p. 164) that nonempty-valuedness of the possibility correspondence is 
equivalent to consistency of beliefs (an individual cannot simultaneously believe E and not E): V E c 52, 
1S.E E -IB.TE (where, for every event F, TF denotes the complement of F). Transitivity of the possibility 

correspondence is equivalent topositive introspection of beliefs (if the individual believes E then she believes 
that she believes E): V E cr- 52, BiE c B.B.E. Finally, euclideanness of the possibility correspondence is 

I I 

equivalent to negative introspection of beliefs (if the individual does not believe E, then she believes that she 
dloes not believe E): V E G 52, 7BiE c Bi7BiE. 



Thle corresponding possibility correspondence P, is then defined as follows: for every a E Q, 

P,(a) = ( o E 8 : a E l B , l { o )  ). It is well known that P . can be characterized as the transitive 

closure of U f: , that is, 
k N  

Va,P E Q, p E P,(a) if and only if there is a sequence ( i,, ... im) in N and a 

sequence (q,, qI, ..., q,) in Q such that: (i) q, = a, (ii) q, = f3 and (iii) for every k = 0, 

Note that, although P, is always non-empty-valued and transitive, in general it need not 

be euclidean (despite the fact that the individual possibility correspondences are: for an example 

see Figure 8; recall that -cf. Footnote 14 - F', is euclidean if and only if B, satisfies Negative 

Introspection). 

Events represent propositions and a state determines, for each individual, her beliefs 

about the external world (her first-order belief's), her beliefs about the other individuals' beliefs 

about the external world (her second-order beliefs), her beliefs about their beliefs about her 

beliefs (her third-order beliefs), and so on, ad infiniturn. An entire hierarchy of beliefs about 

beliefs about beliefs ... about the relevant facts is thus encoded in each state of an interactive 

be1 ief model. For example, consider the following model, which is illustrated in Figure 8 

according to the convention established in Remark 2: N = (1. 21, R = {r, (3, y, 61, p,,% = p = 
1 ,Y 

the event (6, r ,y) represents the proposition '"it is sunny" and event (6) the proposition "it is 

cloudy". The true state z describes a world where in fact it is sunny, individual 2 believes that it 

is :sunny and believes that 1 also believes it is sunny (indeed he believes that this is common 

belief), but in fact 1 believes that it is sunny with probability f and cloudy with probability 4 
and believes that also 2 is uncertain as to whether it is sunny or cloudy (and attaches equal 

probability to both), etc. 



Conversely, given any profile of infinite hierarchies of beliefs (one for each individual) 

satisfying minimal coherency requirements, one can construct an interactive Bayesian model 2? 

such that at the hue state z the beliefs of each individual i~ N fully capture i's original infinite 

hierarchy of beliefs (see Boege and Eisele, 1979, Brandenburger and Dekel, 1993, Mertens and 
15 

Zamir, 1985, and Battigalli, 1997) . 

sunny sunny sunny cloudy 

Figure 8 

It is not obvious what a proper local formulation of the existence of a "common prior" 

ouglht to be. Below we suggest two definitions. The first turns out to be equivalent to a 

generalized notion of Agreement, but is too weak in some respects. The second, stronger, 

definition is more appealing but is no longer equivalent to Agreement. 

15 
Finiteness of Q, however, cannot be guaranteed in general. 



D E Fl N IT I0 N 2. For every p~ A(Q), let HQCp (for Harsanyi Quasi Consistency 

with respect to the 'prior" p) be the following event: a E HQCp if and only if 

(1) V i  s N, Vw,wr s P,(a), if p(llpi = p,,ll) > 0 then pi,,(wt) = 
p (0 ' )  

if 
p(Ilpi = Pi,,ll) 

O'E lipi = pi,,ll and pi,,(wf) = 0 otherwise (that is, pi,, is obtained from p by 
16 

conditioning on 11 pi = pi,, 1 1  ) , and 

If a E HQCp, p is a local common prior at a. Furthermore, let HQC = U HQC, . 
P E A W  

We now define formally a general notion of agreement. Agreement as equality of beliefs 

is essentially a two-person property. Hence, for the remaining part of this section, we specialize 

to the case where N = {1,2). 

17 
Let X be a set with at least two elements. A belief index is a function f : A(Q) + X . 

E 
EX A M P L E 1 . (i) Let E E S2 be an arbitrary event, X = [0,1] and f the followiilg 

E E 
belief index: f (p) = p(E) ; thus f (pi,a) is individual i's subjective probability of event E at 

(ii) Let Y : 8 -+ (W be a random variable, X = IW and f y  be the belief index given by 

f y  ( p )  = Y(w)~(w) .  ; thus f y  (pi, ) is i's subjec~ive expectation of Y at state a. 
042 

16 
Where. for every event E. p(E) = p(O) . Note that. for every o E Q and i E N. o E ! I p i  = pi,ull. Thus 

W E E  

p ( ~ )  > 0 implies p(lIpi = P,,~II) > 0. 

17 
It may seem that a belief index f depends on the set of states Q. However, this is not so: one should think of f 

as being defied on the "universal belief space" (cf.. Mertens and Zarnir, 1985). Indeed, all that matters is the 
restriction of f to P,(t). 



A 
(iii) Let A be a set of actions, X = 2 and U : A x 52 + iW a utility function. Define the 

A 
belief index f, : A(52) -+ 2 as follows: fu(p) = argmax U(a,w) p(o) . Thus f,(p,,J is 

a.4 wsS2 

the set of actions that maximize individual i's expected utility at state a. 

D E F l N l T I0 N 3. A belief index is proper if and only if it satisfies the following 

property: Vp, q E A (51) , VEX, VUE [0,1], 

if f (p) = f (q) = x then f (ap + (1 -a)q) = n. 

Let.3, denote the class of proper belief indices. 

It is easily verified that all the belief indices of Example 1 are proper. 

Given a proper belief index f : A(S2) + X and an individual i~ N, definefi : 52 -+ X by 

f;(a.) = /(pi,a). For every XEX denote the event {as S2 : &(a) =x)  by I[/; = X I [ .  

D E F I N IT I0 N 4. Given a Bayesian model and a proper belief index f: A(Q) + X ,  at 

a E 52 there is Agreement for f or f-Agreement if and only if, for all x,, x ~ E X ,  

That is, if at a it is common belief that individual 1's belief index is x ,  and individual 2's index 

is xi!, then x, = x,. Correspondingly, define the following event: 

Given a Bayesian model and a set 3 of proper belief indices, at a there is Agreement on 

3 or 3 - ~ ~ r e e m e n t  if and only i f ,  V f E 3 ,  a E f-Agree. Correspondingly, let 



A general notion of agreement is given by the entire class of proper belief indices. 

D E F l  N l T lo N 5. Let CA (for Comprehensive Agreement) be the following event: 

CA = JW-Agree. 

The following proposition (proved in Bonanno and Nehring, 1996) characterizes 

Coinprehensive Agreement as equivalent to Harsanyi Quasi Consistency. 

PROPOSITION 1. CA = HQC. 

The notion of Harsanyi Quasi Consistency is rather weak: it allows the "common prior" 

to assign zero probability to the true beliefs of all the individuals (even if none of the individuals 

has false beliefs: Example 2) and it is compatible with some individuals believing that there is 

agreement to disagree (Example 3). 

EX A M P L E 2. Consider the model of Figure 9. Let p E A(Q) be such that p((j) = 1. 

Then HQCp = Q. Thus at r Harsanyi Quasi Consistency is satisfied even though the type 

(beliefs) of each individual is assigned zero probability by p. Note that at t both individuals have 

correct beliefs ( t  E PI (1) n P2(r)). 



Figure 9 

EX A M P L E 3. Consider the model of Figure 8. Let p E A(Q) be such that p((J) = 1. 

Then HQCp = {r, (3). At r Harsanyi Quasi Consistency is satisfied even though individual 1 

believes that he and 2 "agree to disagree" about the probability that it is sunny (that is, 1 believes 

that it is common belief that he himself attaches probability' 113 to the event {P, r, y} while 2 

attaches probability 1/2 to it). 

In view of the above examples, Harsanyi Quasi Consistency is too weak a notion to allow 

the translation to situations of incomplete information of results that are based on the Common 

Prior Assumption, such as Aumam's (1987) characterization of correlated equilibrium. In order 

to strengthen the notion of Harsanyi Quasi Consistency one needs to tighten the connection 

between the implied prior and the true beliefs /state. The following definition does so by 

requ.iring the prior to assign positive probability to the true state. 
I 



D E F I N l T I0 N 6. For every p~ A(P), let SHCp (for Strong Harsanyi Consistency 

with respect to the "prior" p) be the following event: a E SHCp if and only if 

(1) a e H Q C p ,  and 

Furthermore, let SHC = U SHC, . 
peAW 

To explore the gap between HQC and SHC or we introduce the following events (TCB 
* 

stands for Truth about common belief, T stands for Truth of common belief, while NI stands 

for Negative Introspection of common belief :I: 

Tc. captures the notion that individuals an: correct in their beliefs about what is commonly 

believed: a E TcB if and only if, for every event E and individual i, if, at a, individual i believes 

that E is commonly believed, then, at a, E is indeed commonly believed (if a€BiB,E then 
* 

a€: B,E). On the other hand, a€ T if and only if at a whatever is commonly believed is true (for 

18 
every event E, if a€ B,E then a€ E) . Clearly, Truth of common belief is qualitatively weaker 

/ * * 
than Truth; given that B,T = S2, T can be viewed as Truth shorn of any intersubjective 

18 
It is straightforward that a€ T if and only if, a€ I,(a). 



implications. Finally, a  E NI if and only if - for every event E - whenever at a  it is not 
19 

coirnmon belief that E, then, at a, it is common belief that E is not commonly believed. 

The following proposition follows from results proved in Bonanno and Nehring (1996, 

19'97) 

PROPOSITION 2. SHC = H Q C ~ T ' ~ B , T _  = H Q C ~ T ~ ~ N I .  

7. Qualitative agreement 

In this section we show that the qualitative counterpart to Harsanyi Quasi Consistency is 

the: property of quasi-coherence of beliefs denoted by Q. First, let T (for Truth) be the following 

event: 

Thus, for every a  E 52, a E T if and only if' no individual has any false beliefs at a  (for every 
20 

i~ IV and for every E G St, if a€  B,E then a E E )  . Let Q (for Quasi-Coherence) be the following 

event: 

Q captures the notion of Agreement on qualitative belief indices, as we now show. Among the 

proper belief indices defined in the previous section, of particular interest are the following 

special cases: simple indices, which take on only two values, 0 and 1, and qualitative indices, 

/ 

19 
It is well known that a E NI if and only if P*(a) satisfies the following property: V (3, y e P*(a), y E PI(@. 

20 
It is well known that a e  T if and only if ae  ne (a) . It follows that a€ B,T if and only if, for all (k P,(a). 

ie N 

P. new. 
&N 



which depend only on the support of p E A@). We denote the first class by x2 and the latter by 

3,. Thus 

3, = { f :  A(Q) -+ X : (i) f E 3- , (ii) X = (0, 1) and (iii) f -' (1) is closed 1 (5) 

The following results are proved in Bonanno and Nehring (1996). 

P R 0 P 0 S l T I0 N 3.  f E 32 if and only if there exists a random variable Y : SL -+ R 

1 if Y ( o ) p ( o )  2 0 
such that, for all p~ A(Q), f(p) = OEQ 

0 otherwise 

R E MAR K 3 .  A qualitative belief index can be written as f = d 0 supp, with 
f 

Q 
dl : 2 \ 0 -t X (such functions df have been studied in Rubinstein and Wolinsky, 1990). A 

qualitative belief index is proper if and only if df is union consistent, that is, 

Note that since the events El, ..., ENm are not assumed to be pairwise disjoint, union 

corisistency is a stronger property than the Sure Thing Principle defined by Bacharach (1985). 

1 if supp(p) c_ E 
Fix an event E + 0 and consider the following index: f,(p) = 

0 otherwise 

A 

2 1 
Thus, for every individual i and state a ,  fE(pi,J = 1 if and only if a E BiE . Let 3 = 

LI 

To represent fE in the manner of Proposition 3, let Y : Q -+ [W be as follows: Y = YE- 1, where 

lE: 52 4 {0,1) is the characteristic function of E: lE(w) = 1 if and only if WEE. Hence 



A 

{ f ,  :' A(Q) -t {0,1} : E E Q ). Clearly, 3 E 3, n TQ. The following proposition shows that in 

A 

fact 3 coincides with YQ n T2. 

h 

PROPOSITION 4. 3 = 3an32. 

* 

Note that a E 3 -Agree if and only if, for no event E, a E B,(B,E n 7B2E), that is, there 

is no event about which the two individuals "agree to disagree": 

A 

LEMMA 1. V a e  St, a €  J - ~ ~ r e e  ifandonlyif 

As a corollary to Lemma 1 we get that quasi-coherence of beliefs rules out agreeing to 

disagree about events. 

A 

COROLLARY I .  Q 3-Agree. 

The converse to Corollary 1 does not hold. To see this, consider the frame illustrated in 
A 

Figure 10. By Lemma 1, 3 -Agree = St; on the other hand, Q = 0 (in fact, T = {z, and, 

therefore, B,T = 0; thus TB,TB,T = 0). 

'Y(w) = 0 i f w ~ E  . Then x ~ ( w ) p ( w )  = 1 Y(w)p(w) = - x p ( w )  < 0 if and only if p(w) > 0 for 
-1 i f w e E  ~ ~ s - 2  WE-E WC-E 

s;ome OE-E, if and only if p(o)  < 1. 
wcE 



Figure 10 

To obtain a full characterization of quasi-coherence one needs to consider the entire class 

of' qualitative belief indices. 

PROPOSITION 5. Q = xQ-Agree. 

A 

It follows from Proposition 5 and the above example that 3 -Agree t TQ-Agree. Thus, 

in contrast to the case of general "quantitative" proper belief indices, for which simplicity can be 

assumed without loss of generality (i.e. ?--~gree = 3,-Agree: see Bonanno and Nehring, 1996). 

simplicity is a restrictive assumption for qualitative belief indices. 
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