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Abstract: Queuing theory may be useful for analyzing economic phenomena involving

count and duration data. We develop maximum likelihood estimators for the time-varying

parameters of a simple queuing system based on two kinds of data: complete interarrival

and service times (IST), and number of units in service (NIS). The IST estimator dom-

inates the NIS estimator, in terms of ease of implementation, bias, and variance. The

model is useful for many empirical applications in economics.
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1 Introduction

Queuing theory is useful when each of many events of interest is followed by a duration.

For example, consider the study of labor contract strikes. One may be interested in

the number of strikes beginning within a period, the number of strikes ongoing at a

point in time, or the duration of individual strikes. Clearly these quantities are related,

and a researcher may suspect that a covariate such as a change in labor law affects all

three. Queuing theory provides a framework for unified analysis of the phenomenon.

Other examples from economics include the analysis of the number and duration of visits

to recreational facilities and the number and time to regulatory approval of patents or

pharmaceuticals.

Applications of queuing theory in economic literature include the study of equilibrium

in quality good markets (De Vany and Saving, 1983) and in service industries (Davidson,

1988), financial trading and continuous auctions (Brock and Kleidon, 1992), monetary ag-

gregates and interest rates (Iwamura, 1992), congestion pricing at airports (Daniel, 1995),

waiting lists for hospital treatment (Goddard, Malek and Tavakoli, 1995), day-care quality

(Mulligan and Hoffman, 1998), and innovation and regulatory delay in telecommunications

(Prieger, 2000b; Prieger, 2000c), among others. Empirical applications of queuing theory

in economics (e.g., De Vany and Frey, 1982; Daniel, 1995; Prieger, 2000b; Prieger, 2000c)

appear to be scarcer than theoretical studies (all the other citations above and many

others). A possible reason for this may be that the queuing literature, received mostly

from the field of operations research, focuses mostly on characterizing steady state quan-

tities such as the average number of units in the system or the average time spent in the

system instead of estimation of system parameters based on data likely to be available to

an econometrician. This article discusses the adaptation of queuing theory to economics,

presents a simple queuing model suitable for many economic phenomena, and discusses

estimation using various data.

When adopting a queuing model, an immediate question for the empirical researcher

is the type of data that are available or are to be collected. Most desirable are complete

data on the interarrival and service times. We refer to these as IST data. Alternatively,

1



only less-informative data may be available (or affordable) in some applications. For

instance, one may know only the number of units in the system each period, not when

each arrives and exits. Call these NIS data (for Number In Service). Such data may

arise in application of the model to unemployment, for example: one may observe the

number of individuals unemployed each month, but not know when each spell begins or

ends. More generally, NIS data arise whenever they are collected by census methods that

report stock levels (e.g., pending stock trades, monetary aggregates, number of patients

on a waiting list) and not flows.

We develop estimators for the M(t)/M(t)/∞ queue (described in the next section),

the simplest system that allows the arrival and service time rates to evolve over time, a

necessity for application to economic problems. We rely heavily on techniques drawn from

the existing queuing theory literature, although we have not seen the explicit likelihoods

presented for this model elsewhere. We develop estimators based on IST and NIS data and

compare their ease of implementation, bias, and variance. The closed-form expressions

for likelihoods based on both types of data are derived in the next two sections. The

likelihood for the NIS data, which is non-trivial to derive, enables maximum likelihood

estimation, which is more efficient than the usual moment-based estimation pursued in

the queuing literature when IST data are not available (Bhat and Rao, 1986). The IST

and NIS maximum likelihood estimators are compared in a Monte Carlo study in section

5; the IST estimator outperforms the NIS estimator. The IST estimator generally has

smaller bias and variance.

2 Queuing Theory for Economists

Because queuing theory is novel to many economists, a brief primer will be useful. Queu-

ing1 theory was developed by telecommunications engineers (most notably A.K. Erlang)

tackling the problem of designing telephone switching equipment adequate to handle the

growing telephone traffic in the early 1900’s. Operations researchers took over the van-

1When searching the queuing literature, beware: most engineers and operations researchers use the
orthographically inelegant term “queueing”.
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guard of advancing the analytic development of queuing theory. The terminology of

queuing theory (in particular, arrivals and service times) reflects the origins of the field.

Cooper (1981) and Bunday (1996) provide more complete introductions.

Kendall notation provides a compact description of a queuing system: an A/B/c

system has interarrival time distribution A, service time distribution B, and c servers.

A and B are chosen from a few traditional symbols such as M for the exponential (for

its Markovian property) or E for the Erlang distribution.2 M(t) denotes an exponential

distribution with time-varying rate. In a queuing system, traffic arrives from the source

with interarrival distribution A. Once in the system it waits in the queue, if any, until a

server is open to receive it for servicing. Once the unit enters a server, its service time

has distribution B. Figure 1 depicts the M(t)/M(t)/∞ model studied here. A classic

example of a physical queuing system is a toll booth.

The infinite server queuing model is attractive to work with because of its tractabil-

ity. The infinite server assumption is distasteful for most physical applications of queuing

theory (bank teller’s windows, computer networks, etc.) because processing capacity is

typically limited. This disadvantage of the infinite server assumption in physical appli-

cations often does not pertain when applying the model more abstractly to economic

problems. In many economic applications the notion of a finite number of servers is un-

tenable, for at least two reasons. First, one most likely needs a model that admits the

possibility of a very short delay time for any observation. It is clearly possible for regula-

tory delays (or strikes, or visits to a park) to finish almost as soon as they begin. Within

the class of first in first out models, no finite server model will suffice; in such models the

probability that an arrival will have to wait for a server is (eventually) non-zero. Second,

since the phenomenon of interest often will not suggest a number of servers, one would

have to either choose the number of servers on an ad hoc basis or attempt to estimate it,

which may not be feasible.

Even within an infinite server model, however, one often would like to test for con-

2A fully complete description of the queuing model also contains a characterization of the source of
potential arrivals, maximum queue capacity, and queue discipline (e.g., First In First Out or FIFO ). The
default assumptions are an inexhaustible source of potential arrivals, infinite queue capacity, and FIFO
queuing.
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gestion effects in applications such as regulatory delay. There are two main approaches

to incorporate congestion in an infinite server model. In the first method one includes

covariates reflecting the system state, such as the number of recent arrivals or the number

of units in service, directly in the determination of the arrival or service time rates. In

this approach care must be taken concerning the possible endogeneity of the covariates;

see Prieger (2000b) for such a model and discussion. In the second method one allows

the arrival and service time processes to be correlated through an unobserved bivariate

heterogeneity term (Prieger, 2000a). In these congestion models the likelihood for the NIS

data would be difficult or impossible to find, and moment-based estimation may be more

promising. Consequently, given the focus here on the comparison between ML estimation

with IST and NIS data, we do not consider congestion models further in this paper.

In most queuing literature outside of economics, the arrival and service rates are taken

as primitive. In economic applications, we are often interested in the impact of covariates

on these rates. For example, we might be interested in the impact of changes in a regula-

tory regime on the creation (arrival) of new drugs and the time until regulatory approval

(service time). When covariates evolve over time, as is typical in econometric studies, a

queuing system with time-varying parameters (TVP) is appropriate. Ignoring the evolu-

tion of covariates in the interarrival and service time durations by merely conditioning on

the covariates at the start of the spell–as is often done–introduces bias into the estima-

tion (Heckman and Singer, 1986). Conditioning on the initial value of the covariates is

particularly inappropriate when a duration lasts a long time. Accordingly, we adopt the

infinite server queue with TVP, allowing covariates to change the arrival and servicing

rates contemporaneously. We study the simplest such TVP queue, the M(t)/M(t)/∞

queue, which has Poisson arrivals from an infinite source population, exponential service

times, and immediate servicing of arrivals.

The seminal work on maximum likelihood estimation for the M/M/∞ queue is Beneš

(1957), which assumes that IST data are available. That article, and much of the

estimation literature since, assumes that the parameters of the system are stable, al-

though Hantler and Rosberg (1989) and Daniel (1995) provide exceptions. For the NIS
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estimator, we use techniques based on methods developed for an M(t)/M(t)/1 queue

(Clarke, 1953; Clarke, 1956; Srivastava and Kashyap, 1982).

3 Estimation Based on Interarrival and Service Times

In this section and the next we construct the maximum likelihood (ML) estimators for

the parameters of the system. In the M(t)/M(t)/∞ system, the arrival of units is a

nonhomogeneous Poisson process, so that interarrival times are exponentially distributed

with instantaneous rate λ(t) at time t. Service time of each arrival is exponentially

distributed with instantaneous rate µ(t). The two processes are independent. In this

section we assume that IST data are available. Then independence allows one to estimate

the parameters of the arrival and service time processes separately; there is no efficiency

gain from joint estimation (Cox, 1965). We now find the likelihood of the IST data from

the exponential duration process with time-varying parameters.

Let t be the realization of the random duration variable T > 0. Let vector X(t) be

the value at time t of explanatory variables, and let X(a, b) be its time-path on [a, b].

Vector X is assumed to be exogenous in the sense of Lancaster (1990, p.28).3 The hazard

rate, cumulative density function (CDF), and probability density function (PDF) of T

(conditional on X(t) and a finite parameter vector θ) are:

h (t;θ,X(t)) ≡ lim
dt→0

Pr [t ≤ T < t+ dt|T ≥ t,θ,X(t, t+ dt)] (1)

F (t;θ,X(0, t)) ≡ 1− exp
∙
−
Z t

0

h (s;θ,X(s)) ds

¸
(2)

f (t;θ,X(0, t)) ≡ h (t;θ,X(t)) [1− F (s;θ,X(0, t))] , (3)

respectively. Note that only the contemporaneous value of X(t) enters h(t) (not its entire

path).

It is convenient to approximate continuously evolving covariates by step functions,

since economic data are typically reported discretely (e.g., as annual or quarterly time

3When a time-varying covariate is not exogenous, the likelihood derived in this section is only a partial
likelihood (Lancaster, 1990, sec.9.2.11). Estimates resulting from maximizing a partial likelihood behave
like ML estimates: they are consistent and the usual estimate of the variance is consistent. Partial
likelihood estimates are inefficient compared to maximization of the true likelihood.
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series). When X(s) is a step function on [0, t] with jumps at (t1, t2, . . . , tI), let hi(s) be

the hazard rate in period i. The first part of the complete duration of length t, interval

[0, t1), takes place in the first period, interval [t1, t2) in the second period, and so on, until

the duration is completed with interval [tI , t] in period I + 1.

We term a straddling duration to be one that begins in one period and ends in another.

From (3), a straddling duration has PDF:

f (t) = hI+1 (t) exp

"
−
Z t1

0

h1 (s) ds−
IX
i=2

Z ti

ti−1

hi (s) ds−
Z t

tI

hI+1 (s) ds

#
(4)

(Peterson, 1986), where the dependence on (θ,X(0, t)) is suppressed in the notation.

Equation (4) can be rewritten as

f (t) = [1− F1 (t1)]

"
IY
i=2

1− Fi (ti)

1− Fi (ti−1)

# ∙
fI+1 (t)

1− FI+1 (tn)

¸
, (5)

where Fi and fi represent densities under hazard hi.

For exponential durations, (5) takes a particularly convenient form that enables one

to handle straddling observations with “canned” estimation routines. The exponential

distribution with rate λ has PDF and CDF

f(t) = λ exp (−λt) (6)

F (t) = 1− exp (−λt) (7)

respectively, with constant hazard rate λ. From (6)—(7), (5) simplifies to:

f(t) = [1− F1 (t1)] ·
Ã

IY
i=2

[1− Fi (ti − ti−1)]

!
· fI+1 (t− tI) . (8)

The ith term of the first I terms is the likelihood of a censored duration of length ti −

ti−1 (where t0 = 0), and the final term is the likelihood of an uncensored duration of

length t − tI . So by splitting up the straddling observations and marking all but the

last period’s portion as censored, one can use canned estimation routines. Even when

the distribution is not exponential, (8) is an approximation to the true density and can

be used to find preliminary estimates to use as starting values for a ML routine. The

weaker the duration dependence in the true distribution, the better these starting values

will be. The simplification of (5) follows from the memoryless property of the exponential
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distribution; the length of the spell up to time s does not affect the distribution of the

spell after s.

Say that one has J original observations in the sample, where each straddling duration

is counted only once. Let the jth observation have Ij terms after splitting at the points of

discontinuity, so that we have a sample of durations ((tji− tj(i−1))
Ij
i=1)

J
j=1. For simplicity

of notation, relabel these in order as (si)Ni=1, where N =
PJ

j=1 Ij . Similarly, construct

associated censoring indicators (di)Ni=1, where di = 1 if si is censored and 0 if not, and

explanatory variables (Xi)
N
i=1, the appropriate levels of X(t). Note that Xi is a vector of

constants. Censored observations will arise from sources other than splitting straddling

observations: at the end of the observation period, ongoing interarrival and servicing

spells are censored.

The log likelihood of (si|di,Xi)
N
i=1, from (6)—(8), is then:

lα (α) =
NX
i=1

{di log [1− Fi (si)] + (1− di) log [fi (si)]} (9)

=
NX
i=1

[(1− di) log λi − siλi] (10)

λi = exp (−X0
iα) . (11)

The rate parameter is modeled in (11) as a function of a single index of the explanatory

variables, with α being the parameter of interest to be estimated. To present the likelihood

of the IST data, let the above notation pertain to the interarrival times and let the service

time data have analogous likelihood lβ given by replacing (α, λ) with (β, µ). Then, letting

θ = (α0,β0)0, the joint likelihood of the IST data is

lISTθ = lα + lβ . (12)

The asymptotic variance of the ML estimate of θ is:

V IST = −
£
E
¡
∇θθ 0 l

IST
θ

¢¤−1
(13)

=

⎡⎢⎣ PN
i=1

¡
1− e−λiai

¢
XiX

0
i 0

0
PM

i=1

¡
1− e−µibi

¢
ZiZ

0
i

⎤⎥⎦
−1

, (14)

where ai and bi are the censoring times for the ith (split) interarrival and service time,
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respectively (see A.2 of the Appendix). V IST can be consistently estimated by plugging

in the ML estimates of θ.

4 Estimation Based on Number of Units in Service

Turn now to estimation using NIS data. Even if IST data are available for use in esti-

mation, the likelihood for the NIS data derived here may be useful if the researcher is

interested in predicting the mean or variance of the number of units in service at a given

point in time [see Prieger (2000b), sec. 6, for such an application].

The time series of units in service contains less information than the IST data, and

inference is accordingly less efficient. To see this, note that from the complete arrival and

service calendar times, one can construct both the IST and NIS data. From the IST data,

one can form sufficient statistics for the complete data (Beneš, 1957), but one cannot

form such sufficient statistics from the NIS data alone. Therefore the IST data contains

as much information as the complete arrival and service times, but the NIS data contains

less. The NIS likelihood is also considerably more complicated than the IST likelihood.

We now derive the likelihood function for the NIS data, using techniques from the

queuing theory literature (Clarke, 1953; Clarke, 1956; Srivastava and Kashyap, 1982).4

Let N(t) be the random variable generating the number of units in the system (i.e., units

that have arrived but not exited) at time t ∈ [t0, t0 + T ], n(t) be a realization of N(t),

and ni be the number of units in the system at the end of period i ∈ {1, . . . , T}. For

simplicity each period is of unit length, so that ni = n(t0 + i).

In this section we treat the arrival rate λ(t) and the servicing rate µ(t) as constant

within a period, so that λ(s) = λt and µ(s) = µt for s ∈ [t − 1, t). The rates are

deterministically related to explanatory variables as:

λt = exp (−X0
tα) (15)

µt = exp (−Z0tβ) , (16)

4For a more advanced theoretical treatment of queues with time-varying parameters, refer to Brémaud
(1981, section VI.2).
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where α and β are vectors of parameters and (Xt,Zt) are the appropriate levels of

(X(t),Z(t)) as before. The distinction between (15)—(16) and (11) is the timing of the

periods. In section 3, we place no restrictions on the timing of the jumps in the step-

function variable X, so that the resulting “periods” need not match among observations.

Here, we restrict the periods to be of equal length, and common to all observations. This

restriction is not material, because one can always construct a uniform set of periods from

any set of non-matching periods by appropriate subdivision.

From the properties of Poisson and exponential processes we have the following (where

o(x) denotes order smaller than x):

Pr{1 arrival in interval (t, t+∆t)} = λ(t)∆t+ o(∆t) (17)

Pr{0 arrivals in interval (t, t+∆t)} = 1− λ(t)∆t+ o(∆t). (18)

For any particular server we have:

Pr{1 exit in interval (t, t+∆t)} = µ(t)∆t+ o(∆t) (19)

Pr{0 exits in interval (t, t+∆t)} = 1− µ(t)∆t+ o(∆t). (20)

The probability of any compound event (e.g., an arrival and an exit) is o(∆t).

From (17)—(20) one can derive the probability of the number of units in service at

time t. Most TVP queuing studies focus on the limiting behavior of the system, but we

are interested in the transient behavior; in application there is no reason to assume that

the system is stationary (or even that the system is ergodic). We begin by deriving the

likelihood for nt+1 given that N(t) = nt. Suppress the dependence on t in the notation for

λ, µ, and n for the moment. Then from (17)—(20) we can derive a recursive equation for

the probability that there are n units in the system at time t. Let Pn(s) be the probability

that N(s) = n. Then we can show that

d

dt
Pn(t) = −Pn(t)(λ+ nµ) + Pn+1(t)(n+ 1)µ+ Pn−1(t)λ, n ≥ 0; (21)

see (Kalashnikov, 1994, p.276). Add the initial condition

Pn(t0) = δn0n (22)
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where δn0n is the Kronecker delta ( δxy equals 1 if x = y and 0 otherwise) and n0 = n(t0).

Equations (21)—(22) form a differential difference equation known as the forward Kol-

mogorov equation, which does not always have a closed form solution. This particular

case admits a solution, after employing several changes of variable and a generating func-

tion that reduce the problem to a linear partial differential equation.

To smooth out the piecewise continuous λ and µ, we undertake the following changes

of variable. Define

τ ≡
tZ

t0

µ(s)ds (23)

R(τ) ≡ 1

τ

τZ
0

ρ(σ)dσ (24)

Qn(τ) ≡ Pn(τ)e
τ [n+R(τ)] (25)

where ρ ≡ λ
µ is the traffic intensity. Differentiating (23), (24), and (25), we have:

dτ = µ(t)dt (26)

R0(τ) =
1

τ
[ρ(τ)−R(τ)] (27)

d

dτ
Qn(τ) = eτ [n+R(τ)] [(n+ 1)Pn+1(τ) + ρPn−1(τ)] (28)

where (28) follows from (21), (24), and (26). Making use of (25), (22) and (28) may be

rewritten as the differential difference equation

Qn(0) = δn0n (29)

d

dτ
Qn(τ) = ρ(τ)eτQn−1(τ) + (n+ 1)e

−τQn+1(τ), (30)

where again Q−1(τ) ≡ 0.

Now introduce the generating function of the sequence {Qn(τ)}∞n=0 :

Q(z, τ) ≡
∞X
n=0

Qn(τ)z
n, (31)

where z ∈ C, kzk < 1. Q(z, τ) allows us to restate (29)—(30) as an initial value partial

differential equation:

Q (z, 0) = zn0 (32)
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∂Q

∂τ
= zρ(τ)eτQ(z, τ) + e−τ

∂Q

∂z
. (33)

The solution to (32)—(33) is

Q (z, τ) =
¡
z − e−τ + 1

¢n0 exp £τR (τ) + ¡z − e−τ
¢
A (τ)

¤
, (34)

where A (τ) ≡
R τ
0
eσρ (σ) dσ, as shown in the Appendix (section A.1).

Now expand the first term and use the power series expansion of exp[zA(τ)] to rewrite

(34) as

Q (z, τ) = exp
£
τR (τ)− e−τA (τ)

¤⎡⎢⎣ n0X
m=0

⎛⎜⎝ n0

m

⎞⎟⎠ zm
¡
1− e−τ

¢n0−m⎤⎥⎦ (35)

·
" ∞X
n=0

znA (τ)
n

n!

#
.

Qn (τ) is equal to the coefficient on zn in Q (z, τ) (Rudin, 1976, theorem 8.5), which is

Qn (τ) = exp
£
τR (τ)− e−τA (τ)

¤ kX
m=0

A (τ)
n−m

(n−m)!

⎛⎜⎝ n0

m

⎞⎟⎠ ¡1− e−τ
¢n0−m , (36)

where k ≡ min{no, n}.

From (25) and (36), we find the probability of there being n units in the system at

(rescaled) time τ , given that there were initially n0 units in the system:

Pn (τ) = exp
£
−τn− e−τA (τ)

¤ kX
m=0

A (τ)
n−m

(n−m)!

⎛⎜⎝ n0

m

⎞⎟⎠ ¡1− e−τ
¢n0−m . (37)

We can now find the likelihood of an observation, nt, conditional on its lagged value

nt−1. Let Pnt|nt−1 (t) = Pr{N(t) = nt|N(t− 1) = nt−1}. Then from (23), (24), and (37)

we have

Pnt|nt−1 (t) = exp
£
−ρt

¡
1− e−µt

¢¤ ktX
m=0

Bmt, (38)

where kt ≡ min{nt−1, nt} and

Bmt ≡

⎛⎜⎝ nt−1

m

⎞⎟⎠ ρnt−mt

(nt −m)!
e−µtm

¡
1− e−µt

¢nt+nt−1−2m . (39)

To find the joint likelihood of the data (nt)Tt=1, note that N(t) is a Markov process.

Therefore f
¡
nt|(ns)t−1s=0

¢
= f (nt|nt−1) ∀t ∈ {1, . . . , T} and

f
¡
(nt)

T
t=1|n0

¢
=

TY
t=1

f (nt|nt−1) ,
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where f is the density function appropriate for the arguments. The expression for

f (nt|nt−1) may be found from (38). The log joint density of the time-series data is

log f
¡
(nt)

T
t=1|n0

¢
=

TX
t=1

"
−λt
µt

¡
1− e−µt

¢
+ log

ktX
m=0

Bmt

#
. (40)

The log likelihood function for the parameter vector θ, lNIS
θ

¡
θ|n0, (nt,Xt,Zt)

T
t=1

¢
, is

determined from (15), (16), and (40).

Let θ̂ be the ML estimate obtained from maximizing lNIS
θ . The asymptotic variance

of θ̂ may, in principle, be found from (13), although the expression is complicated and

not revealing. Because the asymptotic variance of θ̂ has infinite sums in the analytical

expression, the ML variance is best estimated in practice by the BHHH estimator or

other such methods that use only the gradient of (40). For similar reasons, maximization

techniques that require only the gradient are an appealing choice here. We use a variant

of the Davidon-Fletcher-Powell (DFP) algorithm in the Monte Carlo exercise below. The

DFP algorithm has the advantage that it constructs an estimate of the ML variance as it

calculates the parameter estimates.

The gradient of l, ∇θ l
NIS
θ , may be found from (15), (16), and (40). We have:

∇α 0 lNIS
θ =

TX
t=1

⎡⎣− 1
µt

¡
1− e−µt

¢
+

Ã
ktX

m=0

Bmt

!−1
·

ktX
m=0

Bmt
nt −m

λt

⎤⎦∇α0λt (41)

∇β 0 l
NIS
θ =

TX
t=1

∇β 0µt

½
λt
µ2t

£
1− (1 + µt) e

−µt
¤
+

Ã
ktX

m=0

Bmt

!−1 " ktX
m=0

Bmt

µ
nt + nt−1 − 2m

eµt − 1 −m− nt −m

µt

¶#⎫⎬⎭
∇α 0λt = −λtX0

t (42)

∇β 0µt = −µtZ0t (43)

where Bmt is defined as in (39).

5 Comparison of the NIS and IST Estimators

Analytic comparison of the variance of the NIS estimator with V IST is problematic due

to the different timing of the observations and the complexity of the NIS variance. The
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argument based on sufficient statistics given at the beginning of section 4 shows that

estimation based on NIS data will be less efficient, but gives no notion of the magnitude

of the relative efficiency. Therefore, to compare the IST and NIS estimators, we conduct

four Monte Carlo exercises. Each simulation consists of 1000 rounds of data generation

and estimation with the NIS and IST data. The simulations vary in two ways: the

parameters of the model and the number of periods. The queuing parameters are either

low intensity (averaging fewer than one arrival per period and service time of less than a

period) or high intensity (more than one arrival per period and service time of more than

a period). The number of periods, T , is either 100 or 1000.

For all simulations, the model was taken to be the M(t)/M(t)/∞ queuing model with

a common set of unit-length periods. The two ML estimators are based on lISTθ for

the IST data and lNIS
θ for the NIS data. In the design, α and β [as defined in (15)—

(16)] are 2 × 1 vectors of parameters to be estimated and Xt and Zt are 2 × 1 vectors

of explanatory variables. X and Z each include a constant and a variable generated

from the Normal distribution. For the low-intensity simulations, Xt2 ∼ N(1.193, 1) and

Zt2 ∼ N(−0.193, 1); for the high-intensity simulations the distributions are reversed. The

coefficients are taken to be α = β = (0, 1)0. These values of X, Z, α, and β imply that

λ and µ have means around 0.5 and 2, respectively, for the low-intensity simulations, and

vice versa for the high-intensity simulations. The average interarrival time is 1/λ and the

average service time is 1/µ within a period.

One simulation consisted of the following:

1. Generate (Xt,Zt)
T
t=1 from the given distributions and fix for all rounds of the sim-

ulation.

2. Form (λt, µt)
T
t=1 from the explanatory variables.

3. For each of 1000 rounds, do the following:

(a) Generate pseudo-data (interarrival times, service times, and units in service

per period) from the queuing model (taking n0 to be 0). Details are in A.3 of

the Appendix.
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(b) Calculate the ML estimates of the IST model parameters by maximizing lISTθ

from (12).

(c) Calculate the ML estimates of the NIS model parameters by maximizing lNIS
θ

from (40), using the same pseudo-data as in step 3b.

4. Calculate the sample bias and variance of the estimates.

The routines were implemented in Fortran with Numerical Recipes program dfpmin,

the BFGS variant of DFP maximization (Press, Teukolsky, Vetterling and Flannery, 1992,

sec. 10.7). The pseudo-data from each simulation are summarized in Table 1.

5.1 Simulations with the low-intensity Data

Results from the first two simulations, which use the low-intensity data, are summarized

in Table 2. Recall that the sample size of the NIS data is T , the number of periods, but

the sample size of the IST data will vary according to how many arrivals occur within the

T periods. With the low-intensity parameters, the IST data average about T/2 arrivals

(see Table 1), and as many service time spells.

The IST likelihood is globally concave as long as the matrix of covariates is full rank,

assuring rapid convergence to the maximum. Although we have not proven that the

likelihood of the NIS data is globally concave [the Hessian of (40) is quite complicated]

the algorithm generally converged to a maximum from a wide variety of starting points5

and was globally concave in a few cross sections that we inspected.

From the results in Table 2, bias appears to be small with these sample sizes in both

models, affecting no more than the second decimal place for any parameter. The accuracy

of the NIS estimates is impressive, given that more than half of the dependent variables

nt are zero.

The higher information content of the IST data causes it to perform better than the

NIS estimator. The bias of the IST estimates is less than that of the NIS estimates for

six out of the eight parameters; the IST estimates average 17% less bias than the NIS
5As long as the routine does not experience floating point overflows, that is. The factorials and

exponentials in the likelihood lead to numerical difficulties if the starting values are far away from the
true values, or if the step sizes in the algorithm are too large.
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estimates. The variance of the IST estimates is two to five times smaller than that of

the NIS estimates. Both estimators perform measurably better with the greater number

of periods. The bias and variance of the estimates from simulation 2 are an order of

magnitude smaller than those from simulation 1.

5.2 Simulations with the high-intensity Data

The last two simulations use the data generated with the high-intensity parameters. The

results are in Table 3, and are generally more favorable than those from the corresponding

simulations with the low-intensity data. With one exception, the biases in simulations

3 and 4 are less than those of the same data type (NIS or IST) and period length from

simulations 1 and 2. The variances are uniformly smaller with the high-intensity data.

The reason is that the higher intensity data contains more information than the lower

intensity data. To see this, note that if the parameters were constant over time, then the

stationary distribution for the number of units in service would have mean equal to the

traffic intensity, ρ [a standard result from queuing theory; see, for example, Tanner (1995,

p.166)]. The low-intensity parameters imply that intensity ρ averages about 0.7; the high-

intensity parameters imply that ρ averages about 10. This is why the NIS data in Table 1

have median near zero for the low-intensity data, but much higher for the high-intensity

data. When there are many zeroes in the NIS data, the information content of another

zero is low. When the NIS data show more variation, like in the high-intensity data, the

parameters of interest are more easily identified. The message is the same for the IST

data, although the reasoning differs. The higher intensity data contain more interarrival

and service time observations, because there are more arrivals, allowing the estimation to

be more precise.

As with simulations 1 and 2, the IST estimator again outperforms the NIS estimator

in simulations 3 and 4. The absolute bias of the IST estimates is less than that of the NIS

estimates for seven out of the eight parameters; the IST estimates average 28% less bias

than the NIS estimates. The variance of the IST estimates is two to three times smaller

than that of the NIS estimates. Both estimators again perform measurably better with
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more periods; the bias and variance of the estimates from simulation 4 are an order of

magnitude smaller than those from simulation 3.

6 Conclusion

The available data determine how one estimates a queuing model. We have presented two

estimation methods, the IST model and the NIS model. The IST model requires more

data but dominates the NIS model in terms of both ease and accuracy of estimation. The

bias reduction of IST estimation over NIS estimation is higher when the data are from a

high-intensity system; the variance reduction is generally highest when the data are from

a low-intensity system.

The model assumes simple parametric (i.e., exponential) forms for the arrival and

servicing processes, and should be viewed as a starting point for empirical work. The

econometric question in each case is to determine, through specification testing, whether

the parametric forms chosen adequately capture the variation in the data. Extension of

the IST model for interarrival and service times following more general distributions is

straightforward; see Prieger (2000a) for an example. Extending the NIS model similarly

is much more difficult, given the heavy reliance on the memoryless properties of the

exponential arrivals and service times in the derivation of the NIS likelihood.

The queuing model is useful for many economic questions. In any example where a

quantity of interest is a count of events in progress at a given time, the present model

may apply. For example, consider the number of ongoing strikes, or the number of people

at a given time receiving public assistance, or receiving unemployment compensation, or

visiting an attraction. The count is determined by the number of new arrivals and by the

duration of each strike (or welfare tenure, unemployment spell, or tourist trip). The TVP

queuing model may be appropriate for such cases.
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7 Appendix

A.1 To solve the PDE given in (33)—(32), find the simultaneous equations:

dQ

−eτρ(τ)zQ =
dτ

−1 =
dz

e−τ
(44)

The second equation in (44) implies that z = e−τ + c1, where c1 is an arbitrary constant.

The first equation in (44) therefore yields

dQ

dτ
= ρ(τ)Q (1 + eτc1) (45)

Making use of (24), this ordinary differential equation has solution

Q (z, τ) = c2 exp
£
τR (τ) +

¡
z − e−τ

¢
A (τ)

¤
(46)

where A (τ) ≡
R τ
0
eσρ (σ) dσ and c2 is an arbitrary function φ of z − e−τ . To determine

c2, use (46) to find that

φ
¡
z − e−τ

¢
= zn0 ⇒ φ (w) = (w + 1)

n0 ⇒ φ
¡
z − e−τ

¢
=
¡
z − e−τ + 1

¢n0
= c2 (47)
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Thus the particular solution of (46) that matches the boundary condition incorporated

into (47) is given by (34).

A.2 Equation (13) is

V IST =

⎡⎢⎣E
⎛⎜⎝ PN

i=1 sie
−X0

iαXiX
0
i 0

0
PM

i=1 rie
−Z0iβZiZ

0
i

⎞⎟⎠
⎤⎥⎦
−1

,

where N and M are the number of interarrival and servicing observations, resp., after

splitting straddles. Let the fixed right censoring point for observation si be ai, where

the observations are drawn from exponential model (6). The expectation is calculated as

follows:

E (si|Xi) = Pr (di = 1|Xi) ai +Pr (d = 0|x)
Z ai

0

t
fi (t)

Fi (ai)
dt

= aie
−λiai +

∙
1

λi
− e−λiai

µ
ai +

1

λi

¶¸
=

1

λi

¡
1− e−λiai

¢
,

whence follows (14).

A.3 To generate the pseudo-data in Section 5, we did the following.

Arrivals and Interarrival Times. At the beginning of period t ∈ {1, . . . , T}, draw a

deviate from the exponential distribution with rate λt. If the duration goes beyond the end

of the period, censor at period’s end and treat as a straddling interarrival observation.

If the duration is completed before the period’s end, then there is an arrival and the

interarrival observation is not censored. Repeat until the period’s end is reached.

Exits and Service Times. For each arrival still in the system in period t ∈ {1, . . . , T},

draw a deviate from the exponential distribution with rate µt. If the duration goes

beyond the end of the period, censor at period’s end and treat as a straddling service time

observation. If the duration is completed before the period’s end, then there is an exit

and the service time observation is not censored.

Number of Units in Service. There are no units in service at time 0. The number of

units in service in period t is the sum of the number of units in service in period t−1 and

the arrivals in period t, less the exits in period t.
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Figure 1: The M(t)/M(t)/∞ Queuing System
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Minimum Mean Median Maximum
Low Intensity, T = 100
Interarrival Time 1.24E—02 2.69 1.37 13.32
Arrivals/Period 0.00 0.58 5.00E—04 5.98
Service Time 1.04E—02 1.29 0.71 7.15
Number in Service (nt) 0.00 0.49 0.00 5.05

Low Intensity, T = 1000
Interarrival Time 4.38E—04 2.10 1.04 18.3
Arrivals/Period 0.00 0.51 0.00 41.7
Service Time 1.06E—03 0.88 0.49 9.27
Number in Service (nt) 0.00 0.44 0.00 21.9

High Intensity, T = 100
Interarrival Time 1.30E—3 0.47 0.19 4.38
Arrivals/Period 0.00 1.96 1.01 13.43
Service Time 1.42 2.23 1.25 18.82
Number in Service (nt) 0.00 4.37 3.48 15.79

High Intensity, T = 1000
Interarrival Time 8.25E—05 0.53 0.21 7.50
Arrivals/Period 0.00 2.03 1.00 35.68
Service Time 1.09E—03 2.78 1.33 45.48
Number in Service (nt) 0.00 5.27 4.03 36.46

Table notes: Figures are averages over 1,000 simulation rounds. Data generated as described in

text. T is the number of periods. Statistics are calculated from the IST data before splitting

period-straddling observations.

Table 1: Summary of Queuing Model Pseudo-Data from the Simulations

Simulation 1 Simulation 2
NIS MLE IST MLE NIS MLE IST MLE

Parameter T = 100 T = 100 T = 1, 000 T = 1, 000

α̂1
bias:
variance:

5.60E−03
5.52E−02

1.77E−02
1.85E−02

6.70E−03
6.31E−03

3.24E−03
2.01E−03

α̂2
bias:
variance:

−6.90E−03
3.31E−02

−5.73E−03
1.79E−02

−5.70E−04
1.94E−03

−8.77E−04
9.59E−04

β̂1
bias:
variance:

−3.42E−02
9.62E−02

−5.12E−03
2.73E−02

5.53E−03
8.10E−03

7.75E−04
2.81E−03

β̂2
bias:
variance:

6.27E−02
1.08E−01

1.28E−02
2.38E−02

9.13E−03
8.38E−03

1.10E−03
2.72E−03

Table notes: NIS MLE refers to ML estimation via the DFP method using the number of units

in service per period data. IST MLE refers to the same using the interarrival and service time

data. Each consists of 1,000 estimation rounds. Bias is the sample average of the parameter

estimates’ bias. Variance is the sample variance of the parameter estimates.

Table 2: Simulation Results–ML Estimates from the Low Intensity Data
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Simulation 3 Simulation 4
NIS MLE IST MLE NIS MLE IST MLE

Parameter T = 100 T = 100 T = 1, 000 T = 1, 000

α̂1
bias:
variance:

7.43E−03
3.79E−02

7.02E−03
1.29E−02

1.32E−04
3.48E−03

8.66E−05
1.24E−03

α̂2
bias:
variance:

3.15E−03
1.20E−02

3.48E−03
5.90E−03

−2.88E−04
1.08E−03

2.85E−04
5.90E−04

β̂1
bias:
variance:

−7.11E−03
1.43E−02

−4.50E−03
6.39E−03

8.24E−04
1.43E−03

6.12E−05
6.89E−04

β̂2
bias:
variance:

7.40E−03
2.06E−02

4.42E−03
7.49E−03

−1.14E−03
1.32E−03

−8.45E−04
5.78E−04

Table notes: see notes to Table 2.

Table 3: Simulation Results–ML Estimates from the High Intensity Data
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