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Abstract

This paper proposes a new pre-test estimator of panel data models includ-

ing time invariant variables based upon the Mundlak-Krishnakumar estimator

and an “unrestricted” Hausman-Taylor estimator. The paper evaluates the bi-

ases of currently used restricted estimators, omitting the average-over-time of

at least one endogenous time-varying explanatory variable. Repeated Between,
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Ordinary Least Squares, Two stage restricted Between and Oaxaca-Geisler esti-

mator, Fixed Effect Vector Decomposition, Generalized least squares may lead

to wrong conclusions regarding the statistical significance of the estimated pa-

rameter values of time-invariant variables.

JEL classification numbers: C01, C22, C23.

Keywords: Time-Invariant Variables, Panel data, Time-Series Cross-Sections,
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1. Introduction

We observe in sample time-invariant variables such as variables of origin, rare events

or rarely changing variables which have been measured only once within the period

of interest. Let us give a few examples of time invariant variables: colonial, legal

or political system, international conflicts, institutional and governance indicators,

initial gross domestic product per head when testing the convergence of incomes in

growth regressions; geographical position for cross country data in gravity models

of foreign trade and foreign direct investments; years of schooling, gender and race

when testing wage income using survey data. These variables are often highly relevant

in a theoretical model predicting correlations with a cross-sections and time-varying

variable of interest. Because publishing results that do not reject the null hypothesis

of no effect of these time invariant variable on the time varying variable of interest

is generally not accepted by journal editors, applied researchers are likely to select
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estimators that reject the null hypothesis among the pool of available estimators.

We are then interested in drawing inference with respect to the statistical signif-

icance of these time-invariant variables (observed for N individuals) for explaining

the variance of a time and individual varying variable (observed for N individuals

during T periods). Since a time-invariant variable has no variance in the time direc-

tion, it can only explain the variance of a time and individual varying variable in its

individual direction. The reason why it matters for inference is that “the effect of a

random component can only be averaged out if the sample increases in the direction

of that random (time or individual) component” (Kelejian and Stephan 1983, see also

Hsiao 2003, pp. 51-53.). For example, the pooled ordinary least square (OLS) esti-

mator with time-invariant explanatory variables leads to inference on time-invariant

variables using the time dimension NT . But “we have to deal with the unfortunate

fact that there is not quite so much information in N individuals observed T times as

there is with NT individuals.” (Johnston and Di Nardo (1997), pp. 395.).

This leads to the suggestion of a number of possible estimators for the parameter

values with different characteristics. The available estimators of time invariant vari-

ables using panel data or time series cross sections are found in Hausman and Taylor

(1981), Hsiao (2003), Baltagi, Bresson and Pirotte (2003), Oaxaca and Geisler (2003),

Krishnakumar (2006) extension of Mundlak (1978) and Plümper and Troeger (2007)

Fixed Effect Vector Decomposition Estimator (FEVD). For example, the FEVD es-

timator has been widely used over the recent years (for example, Blaydes (2006)
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and Goodrich (2006)). By contrast, the Mundlak-Krishnakumar (2006) estimator

remained unnoticed by practitionners.

This paper suggests that inference on time-invariant variables without a pre-test

Mundlak-Krishnakumar estimator may lead to conclude wrongly that time-invariant

variables are statistically significant. This paper includes four contributions:

(1) It proposes a pre-test estimator based upon the Mundlak-Krishnakumar es-

timator and a modified Hausman-Taylor estimator, extending the pre-test estimator

proposed Baltagi, Bresson and Pirotte (2003).

(2) The Mundlak-Krishnakumar model is not currently used for doing inference

on time invariant variables. It means that some currently published papers where the

data generating process could be approximated by the Mundlak-Krishnakumar theoret-

ical model report, for example, restricted estimators omitting the average over time of

endogenous time-varying variables. The paper computes the determinants of the bias

of the estimated parameters and of the estimated standard errors of using other esti-

mators instead of the pre-test estimator. It presents an illustration of these omitted

variable biases on a returns to schooling classic database (Baltagi and Khanti-Akom

(1990), Cornwell and Rupert (1988), Baltagi (2008 and 2009), Cameron and Trivedi

(2009), chapter 8).

(3 and 4) The paper explains why the Oaxaca-Geisler (2003) and FEVD estimators

may provide misleading estimated standard errors of the parameters of time-invariant

variables. Mitze (2009) and Breusch, Ward, Nguyen and Kompas (2010) found that
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FEVD estimated standard errors of the estimated parameters of time invariant vari-

ables were (too) small. The explanation that we propose is that the FEVD estimator

uses the within root mean square error for the estimator of these standard errors. In

so doing, it contradicts the Frisch-Waugh-Lovell theorem, where the same orthogonal

projection matrix has to be used in the parameter estimate and in the estimator of

its variance (following a similar argument, Greene (2010) refers to Aitken’s theorem).

The overall picture is that when one uses this pre-test estimator, results may differ

a lot from currently published inference which neglects a pre-test stage. There are two

reasons for that. First, an omitted variable bias of the average over time of endogenous

time-varying variables may occur. Secondly, the estimator of the standard error of the

parameters of time invariant variables may be biased because of an excessive weight

on within mean square error and on within degrees of freedom (depending on the time

dimension T ). As the extent of these potential biases are not known when the data

sets are not available for replication, this casts serious doubts on the emphasis put

on inference on time invariant variable in panel data formerly published in academic

journals.

This paper proceeds as follows. Section 2 defines our pre-test estimator based

upon the Mundlak-Krishnakumar and the Hausman and Taylor estimator. Section 3

compares the outcome of different estimators using a typical time series cross section

data set of gasoline demand. Section 4 analyses the differences of our pre-test estimator

with the currently available estimators, in particular, the Oaxaca-Geisler, the two
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stage, the FEVD and the usual random effects estimators. Section 5 concludes.

2. A Pre-Test Estimator including Time-invariant Variables

and Correlated Individual Effects

2.1. Mundlak-Krishnakumar Estimator

The model of time-series cross-sections regression estimates the following equation

yit = Xitβ + Ziγ + αi + εit (2.1)

where yit denotes the endogenous variable, Xit is a NT × k matrix of cross-sections

time-series data, Zi is a NT × g matrix of time invariant variables, β and γ are k and

g vectors of coefficients associated with time-varying and time-invariant observable

variables respectively. Subscripts indicate variation over individuals (i = 1, ..., N)

and time (t = 1, ..., T ). Observations are ordered first by individual and then by

time, so that αi and each column of Zi are NT vectors having blocks of T identical

entries within each individual i = 1, ..., N . The disturbance εit is assumed to be

uncorrelated with the columns of (Xit,Zi,αi) and has zero mean and constant variance

σ2ε conditional onXit and Zi. The individual effect αi is assumed to be a time-invariant

random variable, distributed independently across individuals with variance σ2α. The

primary focus of the literature is the potential correlation of αi with the columns of

(Xit,Zi).
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Mundlak [1978] and Krishnakumar [2006] introduce an auxiliary regression which

takes explicitly into account a linear relation between the explanatory variables and

the individual random effects:

αi = Xi.π + Ziφ+ αMi (2.2)

where it is assumed that the disturbance αMi ∼ (0,σ2αM ) and where Xi. is the average

over time for each individual of time varying variables, such that E
³
αMi | Xi.

´
= 0,

π and φ are k and g vectors of coefficients associated with the average over time of

time-varying variables and time-invariant observable variables, respectively. Clearly

π = 0 and φ = 0 if and only if the time varying and time invariant variables are

uncorrelated with the random individual effects. Combining the auxiliary regression

with the initial regression yields:

yit = Xitβ + Zi (γ + φ) +Xi.π + αMi + εit (2.3)

When E (αi | Zi) = φ 6= 0, one may only estimate the sum γ+φ and may not iden-

tify γ and φ separately, without additional prior information. The prior information

the Hausman and Taylor (1981) procedure uses is the ability to distinguish columns

of Xit and Zi which are asymptotically uncorrelated with αi from those which are not.

For fixed T , let
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plim
N→∞

1

N
X

0
1itαi = π1 = 0, plim

N→∞

1

N
X

0
2itαi = π2 6= 0

plim
N→∞

1

N
Z
0
1iαi = φ1 = 0, plim

N→∞

1

N
Z
0
2iαi = φ2 6= 0

where Xit = [X1it,X2it] and Zi = [Z1i,Z2i] are split into two sets of variables such

that X1 is NT × k1, X2 is NT × k2, Z1 is NT × g1, Z2 is NT × g2 with k1 + k2 = k

and g1 + g2 = g. X1 and Z1 are assumed exogenous and not correlated with αi and

εit, while X2 and Z2 are endogenous due to their correlation with αi but not with

εit. The pre-test estimator proposed in the next section differs from the Hausman and

Taylor [1981] estimator in that no prior information is assumed about how to split π,

but that the information is obtained using t-tests on each estimated parameter bπ of
equations (2.2) or equation (2.3).

It will prove helpful to recall the menu of conventional estimators for (β, γ) in

equation (2.3). Letting iT denote a T vector of ones, two orthogonal projection

operators can be defined as:

B = IN ⊗
1

T
iT i

0
T ,W = INT −B

which are idempotent matrices of rankN andNT−N respectively. With data grouped

by individuals, B transforms a vector of observations into a vector of group means,

such that Byit = yi.. Similarly,W produces a vector of deviation from group means:
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i.e., Wyit = yit − yi.. For any time-invariant vector of observations, Wzi = O. The

orthogonality of the two projection operators is such BW =WB = ONT . The space

of observations (RNT ) has an orthogonal decomposition in two spaces: the subspace of

observations transformed by the between operator (dimension N) and the subspace of

observations transformed by the within operator (dimension NT−N). In other words,

the covariance of the between transformed variable (time average for each individual

i, with t a time index and T observations) xi. =
1
T

Pt=T
t=1 xit with respect to a within

transformation of another variable (yit − yi.) is always equal to zero:

cov (yit − yi., xi.) = 0 and cov (yit − yi., yi.) = 0 (2.4)

Hence, the total sum of squares SST of yit is the sum of total sum of squares

SSTW for the within transformed variable and T times the total sum of square SSTB

for the between transformed variable over N observations:

SST (yit) = SST (yit − yi.) + SST (yi.) = SSTW + T · SSTB. (2.5)

Transform model (3) by the Within projection operator, we obtain:

yit − yi. = WXitβ +WZi (γ + φ) +WXi.π +WαMi +Wεit (2.6)

yit − yi. = (Xit −Xi.)β + εit − εi. (2.7)
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Least square estimates of β in the within transformed equation are Gauss-Markov

for the transformed equation and define the within-groups estimator:

bβW = (X0
itFXit)

−1
X0
itFyit with F =W. (2.8)

Since the columns ofWXit are uncorrelated withWεit, bβW is unbiased and con-

sistent for β regardless of possible correlation between αi and the columns of Xit

or Zi. The OLS analysis of variance in the within subspace of observations (SSM

is the sum of squares of the model, SSE is the sum of squares of the error) is:

SSTW = SSMW +SSEW . The sum of squared residuals (denoted form this equation

can be used to obtain an unbiased and consistent estimate of σ2ε :

MSEW = cσ2ε = SSEW
NT −N − k (2.9)

To make use of between-group variation, transform model (3) by the Between

projection operator obtaining

yi. = Xi. (β + π) + Zi (γ + φ) + αMi + εi.

When E (αi | Xit,Zi) = 0 = π = φ, least squares estimates of β and γ in the

between transformed regression define the between groups estimators estimators (de-

noted bβB and bγB) which are unbiased and consistent for β and γ, using N observa-
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tions. When E (αi | Xit) 6= 0 or when π 6= 0 , bβB is biased and inconsistent. When
E (αi | Zi) 6= 0 or when φ 6= 0, bγB is biased and inconsistent. The OLS analysis
of variance in the between subspace of observations is: SSTB = SSMB + SSEB.

The sum of squared residuals SSEB provides a biased and inconsistent estimator for

var (αi + εi.) = σ2αi + (1/T )σ
2
ε when E (αi | Xit,Zi) 6= 0 and unbiased and consistent

when E (αi | Xit,Zi) = 0. Whenever we have consistent estimators for both β and γ,

a consistent estimator for σ2α can be obtained with:

MSEB =
cσ2α + cσ2ε

T
=

SSEB
N − k − g − 1 . (2.10)

Estimators that correspond to weighted average of the within and the between

estimators are obtained as follows. Summing the within equation and the between

equation multiplied by a parameter θ and repeated T times, which amounts to trans-

form equation (3) applying the linear operatorW+θB, we obtain:

yit − yi. + θyi. = (W+θB)Xitβ + θZi. (γ + φ) + θXi.π + θαMi + (W+θB) εit (2.11)

When π 6= 0, that is when E (αi | Xit) 6= 0, and when E (αi | Zi) = 0 = φ,

Mundlak [1978] and Krishnakumar [2006] prove that the best linear unbiased estimator

is obtained for a value of θ corresponding to the generalized least square model (GLS)

11

ha
l-0

04
92

03
9,

 v
er

si
on

 1
 - 

14
 J

un
 2

01
0



or random effect estimator, which leads to the following estimates:

bβGLS = bβW , bπGLS = bβB − bβW and bγGLS = bγB, (2.12)

var (bπGLS) = var
³ bβB´+ var ³ bβW´ and var (bγGLS) = var (bγB) (2.13)

A demonstration for the equalities on estimated variance-covariance matrix of esti-

mated parameters is also found in Baltagi (2009, p.152-154). More precisely, Mundlak

(1978) shows that (i) if αi is correlated with every column of Xi. (π 6= 0, with k1 = 0

and k2 = k), the Gauss-Markov estimator for β is the within groups estimator bβW ,
and (ii) if αi is uncorrelated with every column of Xi. (π = 0 in the true model, with

k1 = k and k2 = 0), the Gauss-Markov estimator for β is the “usual” GLS estimator

bβGLS, (iii) Using the “usual” GLS estimate assuming the restriction π = 0 when the

true model is such that π 6= 0 is denoted “‘restricted GLS” (RGLS) and leads to

biased estimate bβRGLS 6= bβGLS = bβW , because of the k omitted variables Xi. bias.

The estimator bπGLS is equal to the difference between the between estimator and the
within estimator bβ1,B − bβ1,W .
For the time-invariant variables, the estimator bγGLS is exactly the between esti-

mator bγB. The standard error estimator, bσbγGLS , of the estimated parameter using the
Mundlak GLS model is exactly the same as the one of the between regression (see

appendix 1). This estimator — even though the data includes NT observations — takes

into account that for time-invariant explanatory variables only N observations should
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be used. It has N − k − g − 1 degrees of freedom:

bσbγGLS = bσbγB =
s

SSEB
N − k − g − 1

1q
CSS(zj)

q
1−R2A (zj)

, for j = 1, ..., g (2.14)

where CSS is the sum of squares corrected for the mean and 1 − R2A (zj) is the

“tolerance” (or the inverse of the variance inflation factor) and where R2A (zj) is the

coefficient of determination of the following auxiliary regression where the explanatory

variable zi is explained by all other explanatory variables of regression (3) in the

between dimension (Stewart 1987):

zj = Xi.π
0 + Zi,−jγ

0 + η
0
j

where η
0
j are disturbances, where π0and γ0 are coefficients, and where Zi,−j is the

matrix of time-invariant variables excluding the column of observations related to

the variable zj. R
2
A (zi) measures the effect of other explanatory variables on the

estimated standard error of the estimated parameter of a given variable zi. When

R2A (zi) is close to unity, there is a potential problem of near-multicollinearity. The root

mean squared error of the between regression (including the degrees of freedom in the

denominator) is
q

SSEB
N−k−g−1 . The convergence of the estimator is obtained by increasing

N to infinity, for T fixed. An increase of T does not lead the between estimator to

converge. Inference on time-invariant explanatory variables do not depend on the

number of observations in the time dimension T .
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2.2. A Pre-test Estimator

The pre-test estimator consists of a first step using the Mundlak-Krishnakumar esti-

mator (equation (2.3) using GLS method) and then perform specification tests of null

hypothesis H0 : E (αi | Xmit) = πm = 0 against the alternative H0 : E (αi | Xmit) =

πm 6= 0 for each of the time-varying explanatory variables 0 ≤ m ≤ k. If H0 is rejected

for exactly k2 variables, these variables are included in the subset X2it assumed to be

endogenous due to their correlation with αi but not with εit, while the remaining

k1variables are included in the subset X1it. Hence, no prior information on how to

split Xit is required for this pre-test estimator. In practice, researchers priors on how

to split Xit and Zi based on theory may be misleading because of unobservable and

omitted time-invariant variables, measurement errors, and so on.

The second step consists of using an unrestricted Hausman Taylor (1981) estimator

using X1it as instruments for Z2 endogenous time invariant variables, but keeping the

time invariant variablesX2i.. which are not used as instruments, in order to correct for

their endogeneity (this is not usually done with the Hausman and Taylor estimator).

More precisely, if the specification tests rejects H0 for k2 ≥ 1 variables, it may still

be possible to obtain consistent estimates of both β and γ in a second stage. Let

bdi = yi. −Xi.
bβW =

³
B−Xi. (X

0
itWXit)

−1
X0
itW

´
yit

be the NT vector of group means estimated from the within-groups residuals. Ex-
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panding this expression using equation 2.3 including only X2i.leads to:

bdi = Z1i.γ1+Z2i. (γ2 + φ2) +X2i.π2+αMi +
³
B−Xi. (X

0
itWXit)

−1
X0
itW

´
εit. (2.15)

Treating the last two terms as an unobservable mean zero disturbance, consider

estimating γ from the above equation usingN observations. If αi is correlated with the

columns of Z2i, E (αi | Z2i) = φ2 6= 0, according to prior information, both OLS and

GLS will be inconsistent estimates for γ. Consistent estimation is possible, however,

if the columns of X1it, uncorrelated with αi according to the non rejection of the null

hypothesis of preliminary tests, provide sufficient instruments for the columns of Zi.

in equation (4.1). A necessary condition for identification of γ2 and φ2 is that k1 ≥ g2:

there are at least as many exogenous time-varying variables as there are endogenous

time-invariant variables (proposition 3.2 in Hausman and Taylor (1981)). When the

condition k1 ≥ g2 is fulfilled, one may proceed to a second step for estimating γ

knowing that the first step provided efficient estimates of β.

The two stage least squares (2SLS) estimator for γ in equation (4.1) is:

bγII = ([Z0i,X2i.]PA [Z
0
i,X2i.])

−1
[Z0i,X2i.]

0
PA bdi (2.16)

where A = [X1it,Z1i] and PA is the orthogonal projection operator onto its column

space. The sampling error is given by
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bγII−γ = ([Z0i,X2i.]PA [Z
0
i,X2i.])

−1
[Z0i,X2i.]

0
PA

³
αMi +

³
B−Xi. (X

0
itWXit)

−1
X0
itW

´
εit
´

and under the usual assumptions governing Xit and Zi, the 2SLS estimator is consis-

tent for γ, since for fixed T , plimN→∞
1
N
A

0
αi = 0 and plimN→∞

1
N
X

0
itεi = 0. Having

consistent estimates of β and, under the condition k1 ≥ g2, γ, we can construct con-

sistent estimators for the variance components. A consistent estimate of σ2ε can be de-

rived from the within-group residuals in the first step cσ2ε =MSEW . Whenever we have
consistent estimators for both β and γ, a consistent estimator for σ2α can be obtained.

Let s2 = (1/N)
³
Yi. −Xi. bβW − ZibγII −X2i.bπ2,II´0 ³Yi. −Xi. bβW − ZibγII −X2i.bπ2,II´:

then

plim
N→∞

s2 =plim
N→∞

1

N
(αi + εi)

0 (αi + εi) = σ2α +
1

T
σ2ε

so that s2a = s
2 − (1/T ) s2ε is consistent for s2a.

In the particular case when one assumes that αi is uncorrelated with the columns of

Zi: E (αi | Zi) = 0 = φ, and when all time varying variables reject the null hypothesis

H0 (k1 = 0) using N observations to estimate the above equation in a second stage II,

both OLS and GLS will be consistent estimates of γ identical to the between estimates

( bγII,OLS = bγB, bσbγII,OLS = bσbγB ) and with bπII,OLS = bβB − bβW .
Baltagi, Bresson and Pirotte (BBP) (2003) pre-test estimator reverts to the usual
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random effects estimator if the standard Hausman test based on the “within-groups”

versus the random effects estimators is not rejected. It reverts to the HT estimator if

the choice of strictly exogenous regressors is not rejected by a second Hausman test

based on the difference between the “within-groups” and HT estimators. Otherwise,

this pre-test estimator reverts to the “within-groups” estimator.

The pre-test estimator differs from BBP (2003) in that (1) it assumes Mundlak

auxiliary regression, (2) it tests the endogeneity of each time-varying variables instead

of relying on prior information for splittingXit = [X1,X2], (3) it includesX2i.π2 which

may change widely the estimates of γ in the second stage, (4) when 0 ≤ k1 < g2 (not

enough exogenous X1it to instrument endogenous Z2i ) or respectively when g2 = 0

and k1 = k (no endogenous Z2i, and all time varying variables are endogenous X1it )

it reports a biased (respectively unbiased) estimators for γ, instead of no estimates at

all.

Because classical statistical hypothesis testing implies non-zero probabilities of

type I error (p-value) and type II error (one minus the power of the test), a pre-test

estimator cannot perform as well as an estimator where the researcher exactly knows

the “true” model based on “true prior information” before testing. This only occurs

when the number of observations tends to infinity, so that the probabilities of both

types of errors tends to zero.

Mundlak (1978) considers the following estimators for his theoretical model: pooled

OLS (θ = 1), between, within (θ = 0), Generalized least square (GLS) or random
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effects estimator (for an estimated value of θ), restricted generalized least square with

the restriction π = 0 (that is applying the usual random effect model whereas the true

model is such that: π 6= 0), restricted pooled OLS with the restriction π = 0. The

reasons for considering restricted estimators are twofold. Firstly, these restrictions are

likely to decrease the variance of the estimators although these restricted estimators

are generally biased. There is therefore a trade off between bias and variance and the

choice of an estimator depends on the weights to be assigned to the two components.

Secondly, the Krishnakumar-Mundlak is not currently used for doing inference on

time invariant variables. It means that some currently published papers where the

data generating process could be approximated by the Mundlak theoretical model report

Mundlak’s restricted estimators. It is interesting to evaluate the bias of the estimated

parameters and of the estimated standard errors of the time invariant variables for the

restricted models. We therefore do a similar investigation as Mundlak (1978) did on

retricted estimators for time varying variables, and we focus on the estimators related

to time-invariant variables when our pre-test is estimator is consistent.

3. A Return to Schooling Illustration of the Unrestricted Model

3.1. Pre-test Estimator

The pre-test estimator leads to dramatic changes with respect to alternative estimators

of time invariant variables in panel data. This is demonstrated empirically for a

return to schooling example based on a panel of 595 individuals observed over the
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period 1976-1982 drawn from the Panel Study of Income Dynamics (PSID) (Baltagi

and Khanti-Akom (1990), Cornwell and Rupert (1988)). First, the tests based on

Mundlak-Krishnakumar specification lead to alternative choices of the instruments

than the ones chosen by Baltagi and Khanti-Akom (1990) and Cornwell and Rupert

(1988). Second, when the average over time of endogenous time varying variables are

not omitted in the Hausman-Taylor estimates, the estimates of the return to schooling

are much lower than the ones found by Baltagi Khanti-Akom [1990] and Cornwell and

Rupert [1988].

In tables 1 and 2, the dependent variable log(wage) is explained by nine time-

varying variables (Xit’s) and three time-invariant variables (Zi’s). Baltagi and Khanti-

Akom (1990) and Cornwell and Rupert (1988) assumed that four of the Xit variables

and two of the Zi variables are uncorrelated with the individual effects. These are

denoted by X1 and Z1, respectively. They are listed at the bottom of table 2. The

remaining Xit and Zi are correlated with the individual effects. They are denoted by

X2 and Z2, respectively.

Table 1 includes estimates of the unrestricted model using six estimators: within,

between, Mundlak-Krishnakumar, pre-test unrestricted Hausman-Taylor, repeated be-

tween (RB), ordinary least square (OLS) and FEVD. Table 2 includes six estimates of

the restricted model: step II restricted between, step II repeated restricted between,

GLS, OLS, FEVD and HT(X∗∗1 ), where the set of exogenous time varying variables
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X∗∗1 is the one chosen by Baltagi and Khanti-Akom (1990). 1

For the unrestricted model, we observe the following. The estimates of the all

parameters are identical for all estimators, except for the average over time of a time-

varying variable in the Between or Repeated Between estimators which exclude the

time- and individual-varying variable. For the time- and individual-varying variable,

Mundlak-Krishnakumar, LSDV and FEVD estimators exhibit the same estimated

standard deviation and value of the t-statistics, which differs from OLS. But, for the

time-invariant variable, the estimated standard deviation and the values of the t-

statistic vary dramatically. For the Between and the Mundlak-Krishnakumar estima-

tors, the estimated standard deviations of time invariant variables are equal, whereas

the estimated standard deviations for the repeated between estimate are 2.67 times

smaller, the ones for the OLS estimate are 2.33 times smaller, and the ones for the

FEVD estimate are 4.63 smaller. It seems, and this is confirmed later on by our the-

oretical analysis, that the standard deviation of the OLS and FEVD is systematically

smaller and the value of the t-statistic systematically larger than for the Mundlak es-

timator. If this is the case, inference with the OLS and FEVD estimator will less often

reject the null-hypothesis that γ is equal to zero, and more often conclude that the

time-invariant variable has an effect on the endogenous variable statistically different

from zero.

In table 1, the within estimator, which is consistent, serves as a benchmark for the

1Five of these thirteen estimates are also reported in Baltagi [2009], p.27-29: Within, Between,
Restricted GLS, Restricted OLS and p.157, Restricted Hausman Taylor HT(X∗∗1 ).
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Hausman (1978) test. The experience variable (EXP) is a time trend which differs

only in levels for each individuals, i.e. EXPit = EXPi.+ t where EXPi. is the average

number of years of experience in the sample of years 1976-1982 for each individual i

and t is a time trend (= −3 for 1976,...,= +3 for 1982). This individual time trend

accounts for 65% of the within variance of the dependent variable log(wage), along

with a correlation coefficient of 0.8. Once this variable is included in the model, the

partial R2 contribution of the eight other within transformed variables is very small

(the R2 increases by only 0.74%). The estimated coefficients of blue collar occupation

(OCC), of marital status (MS), of living in the south of the U.S.A. (SOUTH), of

weeks worked (WKS), of industry (IND), of the standard metropolitan statistical area

(SMSA), of belonging to an union (UNION) and of EXP2 are statistically significant.

The between estimator includes estimates of the three time invariant variables:

female workers (FEM), black worker (BLK), and years of schooling (ED). Degrees

of freedom are 582. All the estimated coefficients are statistically significant. The

95% confidence interval for the return to school is [0.045, 0.057]. The standard error

estimator, bσbγGLS , of the estimated parameter using the Mundlak-Krishnakumar GLS
model is exactly the same as the one of the between regression (table 1, column 2):

bσbγGLS = bσbγB =
q

SSEB
N−k−g−1q

CSS(zi)
q
1−R2A (zj)

=

q
42.07257
595−13√

4623.77479

1√
0.50673

= 0.00555

where 1− R2A = 0.5067 is the tolerance and CSS is the sum of squares corrected for

the mean of the time invariant explanatory variable zi.
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The Mundlak-Krishnakumar estimator is able to deal with a non linear model

(this one includes EXP2) as long as the model remains linear with respect to the

parameters. It provides t-tests for parameters of the average over time of the nine

time-varying variables, indexed by m (H0 : bπGLS,m = bβB − bβW ). At the 5% threshold,
these tests accept the null hypothesis for the parameters of the variables X∗1 = (EXP

2,

SOUTH, IND) which is the choice of exogenous variable of the pre-test estimator.

It is remarkable that EXP is strongly endogenous in the sample whereas EXP2 is

exogenous in the sample. Cornwell and Rupert [1988] assumed that X1 = (SOUTH,

WKS, SMSA, MS) are exogenous. Baltagi and Khanti-Akom (1990) assumed that

X∗∗1 = (SOUTH, IND, OCC, SMSA) are exogenous. However, the t-statistic in the

Mundlak parameter is equal to t = 4.01 for OCC and to t = 6.77 for SMSA. The

choice of exogenous time-invariant variables is based on prior assumption: Z1 = (FEM,

BLK). Years of education Z2 = (ED) is assumed to be correlated with the individual

effect.

In column 4, the pre-test unrestricted Hausman Taylor estimator using X∗1 as in-

struments of Z2 = (ED) and including the average over time of endogenous time

varying variables X∗2 = (EXP, WKS, SOUTH, SMSA, MS, OCC, UNION) leads to

larger estimates for SOUTHit and for INDit than with the consistent within estima-

tor. The return to schooling estimates (0.049) is nearly the same than the Between

estimator (0.051). However, it is no longer statistically significant, with a 95% con-

fidence interval equal to [−0.05, 0.15], to be compared with the Between estimator
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[0.045, 0.057].

This lack of precision is partly due to the fact that X∗1 consists of three weak

instruments explaining altogether only 12% of the variance of years of education. The

pre-test estimator leads to choose highly exogenous instruments X1. If the variables

Z2 are strongly correlated with unobservable heterogeneity αi, then the exogenous

instruments X1 will be weakly correlated with Z2. Because the pre-test estimator

leads to choose weak instruments, the Mundlak estimator is likely to be as reliable as

the Hausman-Taylor estimator for this data set.

3.2. Repeated Between Estimator

We present this estimator because repeating T times the time invariant observations

turns out to be the major component of the increase of the t-statistic of time-invariant

variables using panel data for several other estimators. However, Kelejian and Stephan

(1983) argue “the effect of a random component can only be averaged out if the sample

increases in the direction of that random (time or individual) component”. By con-

trast, Oaxaca and Gleiser (2003) assume that the consistency of the estimator of a

parameter of a time-invariant explanatory variable “depends on the time series obser-

vations approaching infinity”. The estimated parameters of time-invariant variables

are the same with the repeated between and the between estimator (γB = γRB). The

between estimator of the standard error with observations repeated T times is equal
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to (the subscript for this estimator is RPB):

bσRBbγ =

q
T ·SSEB

NT−k−g−1q
T · CSS(zj)

1q
1−R2A (zj)

=

s
N − k − g − 1
NT − k − g − 1

bσBbγ = bσBbγ
2.671

.

Inference uses NT−k−g−1 degrees of freedom instead of N−k−g−1 in the between

estimator. The coefficient of determination of the auxiliary regression R2A (zj) does not

change in the between or repeated between samples. The estimated standard error of

the estimated parameter of the time invariant variables is divided by
q
4165−13
595−13 = 2.67

in table 1. As the parameter estimate is the same as γB, the repeated between tRB-

statistic amounts to multiply the between tB statistics by the following factor:

tRB =
cγBbσRBcγB =

s
NT − k − g − 1
N − k − g − 1

cγBbσBbγ =
s
NT − k − g − 1
N − k − g − 1 t

B

When N is large, the t-statistic of the repeated between model is multiplied by

around
√
T (say by 2 when T = 4 and by 5 when T = 25) with respect to the between

model.

3.3. Pooled OLS Unrestricted Estimator

The Pooled OLS (θ = 1) estimator ignores the random effects. It leads to the same

parameter estimates as the Mundlak estimator, but not the same standard error es-

timates. The reason why we analyse the Pooled OLS estimator for time-invariant

explanatory variables is that it is still used by some applied researchers. When test-
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ing does not reject the existence of random effects and when the Hausman test leads

to reject the random effect models with respect to the “correlated random effects”

model, some applied researchers present Pooled OLS estimates with time invariant

explanatory variables, on the ground that the required within estimates wipes out

time-invariant variables. For example, Oaxaca and Geisler [2003] evaluate the consis-

tency of the OLS estimator of a parameter of a time-invariant explanatory variable.

The OLS estimator uses the irrelevant NT − k − g − 1 degrees of freedom for

time-invariant variables. The estimated standard error is larger than for the repeated

between estimator, because the RMSE of the OLS estimator is larger since it includes

the sum of squares of the error of the within model: SSEOLS = T · SSEB + SSEW

(the last equality presents table 1 values):

bσOLSbγ =

q
T ·SSEB+SSEW
NT−k−g−1q
T · CSS(zi)

1q
1−R2A (zj)

=

s
1 +

SSEW
T · SSEB

s
N − k − g − 1
NT − k − g − 1

bσBbγ .
=

s
1 +

84.11480

7 · 42.07257 = 1.1338 ·
bσBbγ
2.671

=
bσBbγ
2.33

.

R2A (zj) is the determination coefficient of the auxiliary regression. It does not

change with respect to the between, repeated between and OLS estimators. In table

1 example, as T = 7 is small, the OLS tOLS statistics (equal to 2.33 times the between

tB statistics) is close to the repeated between tRB statistics (equal to 2.67 times the

between tB statistics). However, as the time-invariant variables do not explain any
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variance of the within transformed explained variable, taking into account SSEW is

irrelevant for doing inference on time-invariant variables.T

4. The Omitted Variable Bias of the Restricted Models

4.1. Restricted Random Effect Estimator

Both, the restricted random effects and the Mundlak-Krishnakumar estimator use the

same weight bθ for computing quasi demeaned variables (the second equality refers to
our example) using the Swamy and Arora method (1972):

yit − yi. + bθyi. with bθ = RMSEW√
T ·RMSEB

=
0.14071√
7 · 0.26887

= 0.1978.

The between regression includes the same variables (the average-over-time of all

explanatory variables. Hence, the root mean squared error of the between estimator

RMSEB is the same in both models. The restricted random effect model faces an

omitted variable bias when one rejects the null hypothesis bβB = bβW , for at least one
time-varying variable. In the wages example, the bias with the random effect model

is (γGLS denotes the Mundlak GLS estimator whereas γRGLS denotes the Mundlak

restricted GLS estimator):

bγRGLS = bγB + j=kX
j=1

³ bβB − bβW´ bβbθxi./bθzii = 0.06966 + 0.03044 = 0.10
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with βxi./zi given by the auxiliary regression using OLS on quasi demeaned variables

(table 2, column 1):

bθxi. = βxi./zi
bθzi + βxi./xit

³bθxi. + xit − xi.´+ bθβ0 + εit.

The omitted variable bias on the parameters of the time-invariant variables is large

for ED (the return of education parameter nearly doubled: it is multiplied by 1.93βB)

and it is smaller for BLK (1.33βB)and FEM (1.06βB). The omitted variable bias on

the t-statistic is 1.87tB for ED, 1.03tB for BLK, 1.14tB for FEM.

4.2. Restricted Hausman-Taylor Estimator

In table 2, the column HT(X∗∗1 ) presents Baltagi and Khanti-Akom (1990) estimates

using the standard Hausman Taylor procedure, with the set of instruments X∗∗1 and

omitting the average-over-time of the endogenous time-varying variables X∗∗2 . The

return to schooling is 0.137 with a confidence interval [0.116, 0.158].

The rise of the return to schooling with respect to the between estimate is only

partly due to “instrumental variables” correcting the endogeneity of schooling with the

individual effect. Around half of the rise is given by the omission of time-invariant

variables which corrects the endogeneity of time varying regressors with the individual

effect. The other component of the rise of the parameter is related to the strong

instrument “blue collar occupation” which is strongly correlated with the number of

years of education (its correlation coefficient around 0.45). This is likely to drive the
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results emphasized by Boumahdi and Thomas [2006] for their measure of instruments

relevance on this data set. They find that the gain in efficiency across the various

sets of instruments seems to be in the education variable. However, “blue collar

occupation” is endogenous, with a relatively large difference between its estimated

parameters bβB − bβW with a relatively large t statistics (t = 4.57) in the Mundlak

equation. Unobservable ability affect primarily the number of years of education,

which determine the outcome of a “blue collar” occupation.

Let us finally remark that Angrist and Pischke (2009, p.64-68) do not recommend

to include the time varying variable OCCit (occupation) when investigating the causal

link between education and wages, because it is an outcome variable which occurs at

a later stage than education.

4.3. Two-stage Restricted Between

A common practice consists of a two-stage restricted between (denoted II − RB)

estimator of time-invariant variables, with the restriction bβ = bβW for the average-

over-time of time-varying variables in a between regression. Let

bdi = yi. −Xi.
bβW =

³
B−Xi. (X

0
itWXit)

−1
X0
itW

´
yit
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be the N vector of group means estimated from the within-groups residuals. Expand-

ing this expression leads to:

bdi = Z1i.γ1+Z2i. (γ2 + φ2) +αMi +
³
B−Xi. (X

0
itWXit)

−1
X0
itW

´
εit+Xi.

³ bβB − bβW´
(4.1)

Treating the last two terms as an unobservable mean zero disturbance, consider

estimating γ from the above equation using N observations, without taking into ac-

count that the disturbances of the restricted between includes this omitted term:

Xi.

³ bβB − bβW´. There is then an omitted variable bias on the parameter of the time-
invariant variable:

bγII−RB = bγB + j=kX
j=1

³ bβB − bβW´ bβxj./zi
with βxi./zi estimated using the following auxiliary regressions in the between dimen-

sion:

xi. = βxi./zizi + β0,xi./zi + εi,xi./zi .

In this two stage restricted between estimator, the omitted variable bias on the

estimated standard error of the estimated parameter of the time-invariant variables

leads to differences with respect to the between estimator:

bσ2bγII−RB =

s
SSEII−RB
N − g − 1

1q
CSS(zi)

q
1−R2A,RB (zj)

6=

bσbγB =

s
SSEB

N − k − g − 1
1q

CSS(zi)
q
1−R2A (zj)
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First, the sum of squares of errors SSEII−RB is larger than the SSEB because the

model constrains the parameters of the time-varying variables to their within estimate

which may not minimize the between sum of squares of errors. However, this increase

of the estimated standard error may be offset for two reasons due to the fact the

averages of k time-varying variables are on the left hand side of the equation. First,

the degrees of freedom increase by k. This decreases the root mean squared error.

Second, the variance inflation factor decreases because R2A,RB (zj) < R
2
A (zj). R

2
A (zj)

is the coefficient of determination of an auxiliary regression where the time-invariant

variable is correlated with the other g− 1 time-invariant explanatory variables on the

right hand side of the equation. In the between estimator, R2A (zj) is the coefficient of

determination of an auxiliary regression where the time-invariant variable is correlated

with the other g−1 time-invariant explanatory variables and k averages of time-varying

explanatory variables. As the number of explanatory variables increases by k, one has

R2A,RB (zj) < R
2
A (zj).

With respect to the estimated parameter of the non restricted between, the esti-

mated parameter of the restricted between are multiplied by 0.89 for BLK, by 1.23

for ED and by 1.42 for FEM. With respect to the t-statistics of the non restricted

between, the t-statistics of the restricted between are multiplied by 0.77 for BLK, by

1.47 for ED and by 1.86 for FEM.

Oaxaca and Geisler (2003) propose an alternative correction of the omitted variable

bias of the two-stage restricted between approach than the Mundlak-Krishnakumar
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estimator. They estimate the repeated restricted between with a two stage generalized

least square estimator using a covariance matrix that takes into account that the

disturbances of the restricted between includes this omitted term: Xi.

³ bβB − bβW´.
The first drawback of the Oaxaca and Geisler (2003) estimator is that the second step

between should not be estimated using observations repeated T times. The second

drawback is that it is simpler to include explicitly the variables Xi. in the Mundlak-

Krishnakumar estimator, than to compute a two stages GLS estimator with a specific

covariance matrix.

4.4. Three-stage FEVD Unrestricted and Restricted Estimator

The FEVD estimator adds a third stage to the previous two stage estimator. It is

assumed that time-invariant variables are not correlated with the random individual

effects: E (αi | Zi) = φ = 0 and three sets of alternative assumptions can be dealt

with (E (αi | Xit) = π = 0, or E (αi | X2it) = π2 6= 0 or E (αi | Xit) = π 6= 0 (all

time-varying variables are endogenous). Plümper and Troeger (2007) use a restricted

FEVD estimator with a second stage and a third stage omitting variables X2i. or Xi.

which is consistent with the assumption E (αi | Xit) = π = 0. Note that if αi is

random instead of being fixed, the “usual” GLS estimator is consistent, which is not

the case of the first stage “within-groups” estimator for the FEVD.

Let us denote bεi,B the between residuals of stage II restricted between:

bεi,B = bαMi +³B−Xi. (X
0
itWXit)

−1
X0
itW

´ bεit+Xi.

³ bβB − bβW´ = yi.−Xi.
bβW−Zi.bγII−RB
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The third stage of the FEVD estimator is an OLS regression which includes the

residual of the second stage repeated between regression denoted bεi,B with a parameter
δ estimated or constrained to one.

yit = Xitβ + Ziγ +Xi.π + bεi,B · δ + ηit,III .

Expanding this expression yields:

yit − yi. =Wyit = (Xit −Xi.)β −Xi.

³
β − δ bβW´+ Zi (γ − δbγII−RB) + ηit,III (4.2)

Wyit is orthogonal in the sample to all time-invariant variables, so that OLS estimates

are: bγ = bδbγB, bπ = bδ ³ bβB − bβW´, bβ = bδβW , bβ = bβW , bδ = 1, and bηit,III = bεit − bεi..
The residuals of the third step regression are exactly the within-groups regression

residuals. The only change of the three stage FEVD estimator with respect to the

two stage estimator is related to the estimated standard error of the parameters γ

of time invariant variables Zi. The FEVD estimator of the standard error of the

estimated parameter of a time-invariant variable amounts to substitute the mean

squared error in the between dimension (MSEB = SSEB/ (N − k − g − 1)) by the

mean squared error in the within dimension (MSEW = SSEW/ (NT −N − k)). The

estimated parameters bγII−RB are related to the projection in the between subspace of
observations, but their estimated standard errors are related to the projection in the

within subspace of observations, which is orthogonal to the between subspace. This
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contradicts the Frisch-Waugh-Lovell theorem: the same orthogonal projection matrix

has to be used in the parameter estimate and in the estimator of its variance.

The Frisch-Waugh-Lovell decomposition of the Between and the Within dimen-

sion holds with any of these assumptions: effects are fixed or random, or the time-

varying variables are correlated or not with the random effect do not matter at all.

As the residuals in the between dimension are excluded from the computation of the

variance of the parameters, the potential correlations of the time-invariant variable

with the individual random effect (which are in the between dimension) are excluded

from the computation of the FEVD variance of the parameters. As well, adding a

large number of time-invariant variables in the regression, in particular when they are

near-multicollinear with the time-invariant variable of interest, changes the estimated

parameter, but does not increase the FEVD estimated standard error of the estimated

parameter of the time-invariant variable of interest. So the FEVD wipes out near-

multicollinearity problems in the time-invariant dimension, which is also “practical”

for reducing estimated standard errors.

This analysis explains why Kristensen and Wawro 2007 (footnote p.22) found that

the FEVD estimated standard errors were relatively “too small” using Monte Carlo

simulations with respect to other estimators. The FEVD estimator of the standard

error is (the last equality refers to the unrestricted FEVD case, table 1 column 6):

bσbγFEVD =

q
SSEW

NT−N−kq
T · CSS(zi)

1q
1−R2A (zj)

=

s
N − k − g − 1
NT −N − k

s
SSEW
T · SSEB

bσBbγ
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=

s
595− 13

4165− 595− 9

s
84.11480

7 · 42.07257
bσBbγ = 1

2.4736
· 1

1.8712
· bσBbγ = bσBbγ

4.6286

The FEVD estimated standard error of a time-invariant variable is usually biased

downwards for two reasons:

- It uses NT −N − k degrees of freedom (with N the number of individuals, k the

number of time-varying explanatory variables, with T the number of periods) instead

of N − k − g − 1 degrees of freedom.

- It multiplies the repeated between estimator of the standard error by a positive

factor
q

SSEW
T ·SSEB which can be much smaller than one when T increases.

The combination of the potential omitted variable bias of the parameter estimate

of the time invariant variable ED in the restricted between (step II) and of the bias

of the estimated standard error implies a t-statistics equal to tRFEVD = 5.69 · tB

times the t-statistics of the Mundlak model for the restricted FEVD (table 2, column

6). For the unrestricted FEVD (table 1, column 6), only the bias of the estimated

standard error matters, so that the tFEVD = 4.62 · tB times the t-statistics of the

Mundlak model for ED. For the time invariant BLK, tRFEVD = 3.6 · tB and for FEM,

tRFEVD = 8.6 · tB. Note that when T corresponds to an aggregate annual time series

(T = 25,
√
T = 5), the increase of t-statistics is effect is likely to double with respect

to the wages example (T = 7,
√
T = 2.6). Mitze [2009] also finds that the FEVD

estimator tends to have a smaller root mean square error (rmse) than both Hausman-

Taylor models with perfect and imperfect knowledge about the underlying correlation

34

ha
l-0

04
92

03
9,

 v
er

si
on

 1
 - 

14
 J

un
 2

01
0



between right hand side variables and residual term. Nonetheless, concluding that

FEVD is “more efficient” is misleading, because the computation of the estimated

standard errors of estimated parameters contradicts Frisch-Waugh-Lovell theorem.

5. Conclusion

Our theoretical and empirical investigation on inference on time-invariant variables

shows that a pre-test estimator based upon the Mundlak-Krisnakumar and a modified

Hausman-Taylor estimator should be used. Furthermore, the procedures are already

programmed and available in all econometric softwares. The first stage consists of

the usual random effects GLS estimator including all the variables Xi.. The second

stage uses instrumental variables X1i. keeping the X2i. as explanatory variables, using

instrumental variables estimator or the Hausman-Taylor estimator procedures.

An example shows first that a time-invariant variable is not statistically significant

for some estimators and highly statistically significant with other estimators.

The Mundlak-Krishnakumar regression reports within estimates and between esti-

mates, with tests of the null hypothesis bβB− bβW = 0 for each time-varying explanatory

variable. In the case where at least one (but not all) xi. have estimated parameter

bβB − bβW small and not significantly different from zero, the Mundlak estimator sug-

gests which of the xi. is exogenous. Then, these exogenous xi. are the ones to be used

as instrumental variables in a variant of the Hausman and Taylor [1981] instrumental

variables estimator, including the average over time of endogenous time-varying vari-
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ables. Using this pre-test estimator, one does not rely on subjective priors for deciding

which time-varying variables are or are not endogenous in the Hausman and Taylor

estimator.

One may try further Chamberlain (1984) estimators where the correlation of ex-

planatory variables with the random individual effects is not only contemporaneous,

but can also be related to leads and lags of explanatory variables.

It is not necessarily the failure of a model that the outcome of the tests is:
¯̄̄ bβB ¯̄̄ >

bβW = 0. Some variables have zero or small correlation coefficients in the within

subspace, and large correlation coefficients in the between dimension, just because

it is the statistical information included in these rarely changing or time-invariant

variables during the period of observations in available data sets. If we turn to the

case of rarely changing variables instead of time-invariant variables, these variables

are characterized by small within correlation coefficients with the explained variable

and with all other explanatory variables. By contrast, they may have high between

correlation coefficients with the explained variable and with all other explanatory

variables. The variables are typically such that the null hypothesis bβB − bβW = 0

is rejected. The Mundlak estimator provides directly the t-test related to this null

hypothesis. It is of particular interest for those variables, which are likely to be

endogenous and significant variables in the Mundlak approach. If ever they do not

have large between correlation coefficients, then the joint hypothesis bβB = bβW = 0

may not be rejected.
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Table 1. Dependent variable: log wage: Unrestricted Models. 
  Within Between GLS Mundlak Pre-Test 

HT(X1*) 
Repeated 
Between 

OLS FEVD 

Constant  - 5.12 
(0.203) 

5.12 
(0.203) 

5.18 
(0.861) 

5.12 
(0.076) 

5.12 
(0.08) 

- 

EXP (it) 0.113 
(0.003) 

- 0.113 
(0.003) 

0.114 
(.00226) 

- 0.113 
(0.005) 

0.113 
(0.003) 

EXP2 (it) -0.00042 
(0.00005) 

- -0.00042 
(0.00005) 

-0.000449 
(0.0000485)

- -0.00042 
(0.00011) 

-0.00042 
(0.00005) 

WKS (it) 0.00084 
(0.0006) 

- 0.00084 
(0.0006) 

0.000802 
(0.0006) 

- 0.00084 
(0.0011) 

0.00084 
(0.0006) 

SOUTH (it) -0.0019 
(0.035) 

- -0.0019 
(0.035) 

-0.0388 
(0.0272) 

- -0.0019 
(0.0680) 

-0.0019 
(0.035) 

SMSA (it) -0.0425 
(0.0194) 

- -0.0425 
(0.0194) 

-0.0405 
(0.0193) 

- -0.0425 
(0.0385) 

-0.0425 
(0.0194) 

MS (it) -0.0297 
(0.019) 

- -0.0297 
(0.019) 

-.0307 
(.0189) 

- -0.0297 
(0.037) 

-0.0297 
(0.019) 

OCC (it) -0.0215 
(0.014) 

- -0.0215 
(0.014) 

-0.0222 
(0.0137) 

- -0.0215 
(0.027) 

-0.0215 
(0.014) 

IND (it) 0.0192 
(0.0154) 

- 0.0192 
(0.0154) 

0.0297 
(0.0144) 

- 0.0192 
(0.031) 

0.0192 
(0.0154) 

UNION (it) 0.0328 
(0.0149) 

- 0.0328 
(0.0149) 

0.0325 
(0.0148) 

- 0.0328 
(0.0296) 

0.0328 
(0.0149) 

EXP(i) (i.) - 0.0319 
(0.0048) 

-0.0813 
(0.0054) 

-0.0875 
(.00272) 

0.0319 
(0.0018) 

-0.0813 
(0.0053) 

-0.0813 
(0.0012) 

EXP2(i) (i.) - -0.00057 
(0.00011)

-0.00015 
(0.00012) 

- -0.00057 
(0.00004) 

-0.00015 
(0.00012) 

-0.00015 
(0.000026)

WKS(i) (i.) - 0.0092 
(0.0036) 

0.00835 
(0.0037) 

0.00874 
(0.00448) 

0.0092 
(0.0013) 

0.00835 
(0.0019) 

0.00835 
(0.0080) 

SOUTH(i) (i.) - -0.057 
(0.026) 

-0.055 
(0.043) 

- -0.057 
(0.0097) 

-0.055 
(0.069) 

-0.055 
(0.0091) 

SMSA(i) (i.) - 0.176 
(0.026) 

0.218 
(0.032) 

0.218 
(0.0386) 

0.176 
(0.0096) 

0.218 
(0.040) 

0.218 
(0.0069) 

MS(i) (i.) - 0.115 
(0.048) 

0.145 
(0.051) 

0.151 
(0.0542) 

0.115 
(0.0168) 

0.145 
(0.042) 

0.145 
(0.011) 

OCC(i) (i.) - -0.168 
(0.034) 

-0.146 
(0.0365) 

-0.152 
(0.169) 

-0.168 
(0.0126) 

-0.146 
(0.031) 

-0.146 
(0.0079) 

IND(i) (i.) - 0.058 
(0.026) 

0.0387 
(0.0298) 

- 0.058 
(0.0095) 

0.0387 
(0.032) 

0.0387 
(0.0064) 

UNION(i) (i.) - 0.109 
(0.029) 

0.0763 
(0.0328) 

0.0835 
(0.0381) 

0.109 
(0.0109) 

0.0763 
(0.0321) 

0.0763 
(0.0071) 

FEM(i) (i) - -0.317 
(0.055) 

-0.317 
(0.055) 

-0.319 
(0.0601) 

-0.317 
(0.0205) 

-0.317 
(0.023) 

-0.317 
(0.012) 

BLK(i) (i) - -0.158 
(0.045) 

-0.158 
(0.045) 

-0.165 
(0.0499) 

-0.158 
(0.0168) 

-0.158 
(0.019) 

-0.158 
(0.0097) 

ED(i) (i) - 0.0515 
(0.00555 

0.0515 
(0.00555) 

0.0489 
(0.0469) 

0.0515 
(0.00208) 

0.0515 
(0.00235) 

0.0515 
(0.0012) 

D.of F.  3561 582 3561 and 582 3561 and 582 4152 4143 3561 
RMSE  0.141 0.269 0.152  0.359 0.152 0.152 
R2  0.907 0.544 0.645  0.544 0.645 0.645 
Z1=(FEM, BLK), X1*=(SOUTH, IND, EXP2) using pre-test selection.  
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Table 2. Dependent variable: log wage: Restricted Models. 
  R-Between 

(step II) 
R-GLS R-HT (X1** Repeated 

R-Between 
R-OLS R-FEVD 

Constant  5.92 
(0.061) 

4.264 
(0.098) 

2.913 
(0.283) 

5.92 
(0.023) 

5.25 
(0.07) 

- 

EXP (it) - 0.082 
(0.003) 

0.113 
(0.019) 

- 0.040 
(0.002) 

0.113 
(0.003) 

EXP2 (it) - -0.0008 
(0.00006) 

-0.000419 
(0.000055) 

- -0.0007 
(0.00005) 

-0.00042 
(0.00005) 

WKS (it) - 0.00084 
(0.0008) 

0.00084 
(0.0006) 

- 0.0042 
(0.0011) 

0.00084 
(0.0006) 

SOUTH (it) - -0.0017 
(0.027) 

-0.0074 
(0.032) 

- -0.0556 
(0.012) 

-0.0019 
(0.035) 

SMSA (it) - -0.014 
(0.020) 

-0.0418 
(0.0189) 

- 0.151 
(0.120) 

-0.0425 
(0.0194) 

MS (it) - -0.075 
(0.023) 

-0.0298 
(0.019) 

- 0.048 
(0.020) 

-0.0297 
(0.019) 

OCC (it) - -0.050 
(0.017) 

-0.0207 
(0.014) 

- -0.140 
(0.014) 

-0.0215 
(0.014) 

IND (it) - 0.004 
(0.017) 

0.0136 
(0.0152) 

- 0.046 
(0.011) 

0.0192 
(0.0154) 

UNION (it) - 0.063 
(0.017) 

0.0328 
(0.0149) 

- 0.092 
(0.013) 

0.0328 
(0.0149) 

FEM(i) (i) -0.449 
(0.041) 

-0.339 
(0.051) 

-0.131 
(0.127) 

-0.449 
(0.016) 

-0.367 
(0.025) 

-0.449 
(0.009) 

BLK(i) (i) -0.141 
(0.051) 

-0.210 
(0.058) 

-0.285 
(0.155) 

-0.141 
(0.019) 

-0.167 
(0.022) 

-0.141 
(0.011) 

ED(i) (i) 0.0635 
(0.0046) 

0.100 
(0.006) 

0.137 
(0.021) 

0.0635 
(0.0017) 

0.0567 
(0.0026) 

0.0635 
(0.001) 

D.of F.  591 4152 3561 and 591 4161 4152 3561 
RMSE  0.313 0.1896  0.313 0.349  
R2  0.366 0.428  0.366 0.428  
Z1=(FEM, BLK), X1**=(SOUTH, IND, OCC, SMSA), with t statistics for Mundlak estimation in table 1: OCC(i): 
t=-4.01, SMSA(i): t=6.77. R-OLS in Baltagi (2009), table 2.6, p.27. R-GLS in Baltagi (2009) table 2.8, p.28, R-HT 
(X1**) in Baltagi (2009), table 7.2, p.157.  
 
Table 3: t-statistics of time invariant variables, as a proportion of the t-statistics of the between estimator. 
  Pre-Test Repeated 

  

Between GLS 
Mundlak HT(X1*) Between 

OLS FEVD 

t-statistics -5,8 -5,8 -5,3 -15,5 -13,8 -26,4FEM(i) 
t/t(between) 1,0 1,0 0,9 2,7 2,4 4,6
t-statistics -3,5 -3,5 -3,3 -9,4 -8,3 -16,3BLK(i) 
t/t(between) 1,0 1,0 0,9 2,7 2,4 4,6
t-statistics 9,3 9,3 1,0 24,8 21,9 42,9ED(i) 
t/t(between) 1,0 1,0 0,1 2,7 2,4 4,6

  R-Between R-GLS R-HT X1** RRBetween R-OLS R-FEVD 

t-statistics -11,0 -6,6 -1,0 -28,1 -14,7 -49,9FEM(i) 
t/t(between) 1,9 1,2 0,2 4,9 2,5 8,7
t-statistics -2,8 -3,6 -1,8 -7,4 -7,6 -12,8BLK(i) 
t/t(between) 0,8 1,0 0,5 2,1 2,2 3,7
t-statistics 13,8 16,7 6,5 37,4 21,8 63,5ED(i) 
t/t(between) 1,5 1,8 0,7 4,0 2,4 6,8
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Not for publication: 
Table 4: Contribution to R2 in Within regressions with forward selection. 

Variable Rank Partial R2 R2 

EXP 1 0.6505 0.6505 

EXP2 2 0.0060 0.6564 

SMSA 3 0.0005 0.6569 

UNION 4 0.0004 0.6574 

MS 5 0.0002 0.6576 

OCC 6 0.0002 0.6578 

WKS 7 0.0002 0.6580 

IND 8 0.0001 0.6581 

SOUTH 9 0.0000 0.6581 

 
Table 5: Contribution to R2 in Between regressions with forward selection. 

Variable Rank Partial R2 R2 

mED 1 0.2129 0.2129 

mFEM 2 0.1445 0.3575 

mSMSA 3 0.0581 0.4156 

mEXP 4 0.0420 0.4576 

mEXPSQ 5 0.0298 0.4874 

mBLK 6 0.0156 0.5030 

mOCC 7 0.0101 0.5131 

mUNION 8 0.0118 0.5249 

mWKS 9 0.0062 0.5311 

mIND 10 0.0051 0.5362 

mMS 11 0.0043 0.5405 

mSOUTH 12 0.0038 0.5443 
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