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Abstract

The main objective of this paper is to analyze the links between
product market competition, innovation and growth. In a step-by
step innovation model we explicitly introduce the distinction between
knowledge and technology information flows. Patents protect their
holders from being imitated or copied but do not protect them against
the possibility that less efficient rivals master the disclosed knowledge,
allowing them to start a new race from the cutting edge of the tech-
nology rather than from their own technology. We show that this dis-
tinction has important consequences. The knowledge information flow
increases the positive effect of competition on innovation and growth
while the technology information flow has a negative effect. We also
decompose the overall effect of competition as the sum of two opposite
effects: a negative level effect (competition lowers individual profits in
industries where all firms are symmetric) and a positive spread effect
(the spread of profits between asymmetric firms increases with the
intensity of competition). These effects encompass the selection effect
of competition. Finally we give support to the idea that a higher short
run competition does not favor the long run competition.
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1 Introduction

The link between product market competition, innovation and growth has
been at the heart of much of the economic theory of innovation, going back
to the classic works of Schumpeter (1934), Arrow (1962) and Dasgupta and
Stiglitz (1980). It has been also one of the much debated questions in en-
dogenous growth theory. Until very recently, the consensus emerging from the
endogenous growth literature was that increasing product market competi-
tion is bad for innovation and growth - see for example Aghion and Howitt
(1992, 1996), Grossman and Helpman (1991), Caballero and Jaffe (1993).
The endogenous growth models of the first generation from which this re-
sult was derived were based on the Schumpeterian representation of growth
taking place through a process of creative destruction. This means that in-
novation takes the form of what can be called strong leapfrogging in which
not only the innovating firm has to leapfrog the current insider to become
a leader but also the innovator is necessarily an outsider. Therefore, each
industry is characterized by a persistent monopoly - with the identity of
the monopolist changing overtime. The conclusion that emerges from these
models is a simple consequence of the Arrow’s replacement effect. If the in-
cumbent has no R&D advantage, it has a weaker incentive to innovate than
outsiders, since the incumbent captures only the incremental rent associated
to the innovation while outsiders earn no rents if they fail to innovate and
become monopolies if they do innovate. Then, the monopoly rents of a suc-
cessful innovator decrease when environment becomes more competitive and
the incentive to invest by an outsider also clearly decreases. Note that, in
these models, no competition occurs except at the R&D activity level and,
it is impossible to derive from them a direct relationship between the degree
of rivalry in the product market and the incentive to innovate. Moreover,
the Schumpeterian framework of these models does not correspond exactly
to what we generally observe: innovation occurs frequently within industries
that contain more than one firm; it also occurs within existing firms that are
already earning rents and the competitive pressure in the product market
is not absent from the innovative process. In contrast to what suggest the
results of these growth models, the merits of competition are often invoked
to justify the conventional wisdom on which much public policy relies: a
higher competitive pressure should increase the incentive to innovate, inas-
much as firms create new products and processes in order to escape - albeit
temporarily - from the pressures of competition.
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A second generation of models, driven from the literature on patent races,
has enriched our understanding of the links between competition and inno-
vation1. Budd et al. (1993) analyze a situation of successive innovations in
which firms anticipate the long run effects of their R&D behavior. Their
framework allows an assessment of the dynamics of competition and an iden-
tification of the factors affecting the industry evolution characterized by ei-
ther increased or decreased asymmetries between firms overtime. A recent
paper by Boone (2001) offers a very general framework to analyze the link
between market rivalry and the incentive to innovate. It shows that in a
situation involving asymmetric firms, the identity of the winner of a process
innovation depends on three factors: the ex-ante cost structure distribution,
the level of the technological gap induced by the process innovation and the
degree of rivalry in the product market. There is a change in the identity of
the winner as the degree of rivalry in the product market increases and the
relation between the rivalry in the market and the R&D incentives is non-
monotonic. When market rivalry is below some threshold, a laggard firm has
a higher incentive to invest than the firm ahead: it leapfrogs the leader. But
when the degree of competition is above another threshold, the inverse result
prevails: the firm ahead has a higher incentive to innovate and to increase its
dominance. In other words, when the intensity of competition is sufficiently
high, the replacement effect is outweighed by the efficiency effect and the
leadership persists. These interesting results have been obtained for a broad
class of indexes measuring the degree of rivalry in the industry. These indexes
satisfy axioms that focus on the selection effect of competition, according to
which more competition shifts resources from inefficient firms to an efficient
one.2 The main limitation of Boone’s model is that the analysis is restrained
to the case of a single innovation. The more realistic but more complex case
of a sequence of successive innovations has been the main topic in Budd et
al. (1993). By incorporating some specificities of the dynamics of innovation
included in Budd et al., Aghion et al. (1997) propose a second generation
endogenous growth model in which the strong leapfrogging assumption is
replaced by a process of step-by-step innovation. A technological laggard

1Among influential papers on the patent race literature devoted to the evolution of an
industry in a dynamic competitive setting, see Harris and Vickers (1985, 1987), Vickers
(1986), Beath, Katsoulacos and Ulph (1987), Reinganum (1981a,b,c, 1982, 1983, 1985),
Bessen and Maskin (2002). See also the survey by Reinganum (1989).

2See Boone (2000) for an analysis of the intensity of competition effect for a product
innovation.
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has to catch-up the leading edge technology before racing for technological
leadership in the future. In this setting, the link between competition and
innovation depends on both the current cost structure of an industry and
the intensity of competition in the productmarket. In a neck-and-neck type
of industry where competitors have access to the same technology, a more
intense competition stimulates R&D investment. Each firm is motivated to
innovate in order to escape from competition that prevails between head-by-
head rivals. However, in unleveled industries where a firm is one step ahead,
more competition decreases the short run incentive to invest by the laggard
firm since the profits that it expects from catching-up the firm ahead de-
crease with the intensity of competition. Moreover, there exists an indirect
effect of the competitive pressure: a higher competition intensity lowers the
proportion of neck-and-neck industries in the economy as each firm tries to
escape from this type of industries. The overall characterization of both the
R&D efforts and the proportion of leveled industries in the long run allows
an assessment of the effect of competitive rivalry on innovation and growth.
Two extensions have been made in Aghion et al. (2001): first, the size of
technological gaps between firms and across industries has been allowed to
incorporate more than one step; second, the degree of product market com-
petition has been measured by the elasticity of substitution of the products
sold by the duopolists in each industry. Their results confirm the results by
Boone (2001): the overall effect of product market competition on innovation
and growth has an inverse U form. It is monotonically increasing and posi-
tive when the degree of rivalry is below some threshold and it is decreasing
when the degree of rivalry is above the threshold.
In this paper we extend Aghion et al. (1997) in another direction. We in-

troduce the distinction between knowledge information flows and technology
information flows. Even if knowledge and technology are made proprietary
under an intellectual property right, we claim that the diffusion of knowledge
enlarges the possible dynamics of an industry. Suppose that an innovation
is patented and that the patent discloses information. In a step-by-step
process, the next innovation depends on the extent to which others can mas-
ter the disclosed knowledge information behind the invention. The patent
protects its holder from having its technology copied or imitated by others
but it does not protect against the possibility that a competitor successfully
masters the disclosed knowledge, allowing it to start a new race from the
cutting edge in order to reach the next improved technology. In other words,
in a step-by-step innovation framework, it is possible to leapfrog the patent
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holder’s technology without having to catching-up with it before. One of
the main justifications of the patent system over the trade secrecy is that a
patent favours the diffusion of knowledge from the compulsory disclosure re-
quirement. This aspect is emphasized in Gallini (2002, p.139-140): "Patents
present a bargain between society and the inventor in which society benefits
from disclosure of the invention and the inventor receives exclusive rights over
the technology for 20 years...The disclosure requirement under the American
Inventors Protection Act of 1999-which requires that patent applications be
open for public inspection 18 months after the filing date- may improve the
flow of information from patent applications". 3

The consequence is that, in a step-by-step innovation framework, the
firms that are currently in different positions with regard to their technolog-
ical efficiency levels may nevertheless start a new race from the same cutting
edge technology. Our framework gives a full recognition to this possibility.
In these conditions, catching-up and leapfrogging appear as special cases of
a more general situation where the rate of knowledge diffusion becomes cen-
tral. The knowledge diffusion rate is affected either by licensing practices
or by individual learning practices allowing a competitor to understand and
master the knowledge disclosed in the patent. In this paper we represent the
knowledge diffusion rate as the conditional probability that a laggard firm
improves the cutting edge technology rather than its own technology when
it succeeds in innovating. This extension allows a deeper investigation of the
effects of an increase in the intensity of rivalry on innovation and growth.
As in Aghion et al. (1997), each industry in our model has just two firms

and we also assume that the maximum gap between the firms is always of
one step. This means that patents only protect the latest technology: when
a firm moves onto a new technological frontier, the patent lapses on the
previous technology. We also assume that any firm that acquires a technology
through the lapse of a patent also acquires the knowledge associated with the
technology.
The implications of these assumptions are clear. Consider for instance

the situation of an industry in which two asymmetric firms compete. One

3The information becomes publicly available before the patent is granted. The same
delay of 18 months prevails between the filing date and the publication of the disclosed
information for patents that apply to the European Patent Office. Note that, at an inter-
national level, the obligation to publish applications before grant has also been introduced
as a minimum requirement in the agreement on Trade Related Aspects of Intellectual
Property Rights (TRIPS).
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firm is on the leading-edge technological frontier and has the knowledge as-
sociated with that frontier. The other firm is one step behind and has both
the technology and the knowledge associated with its own technological fron-
tier. Under the patent system, the follower is not allowed to use the leading
technology by simply copying it. Both firms can undertake R&D in order
to move forward. Therefore two possible outcomes may arise: (i) The leader
succeeds in innovating. In this case the leader will move one step ahead and
acquire both the knowledge and the technology associated with the new tech-
nological frontier. However given our assumption that patents protect only
the latest technological frontier, the follower is able to acquire the technology
at the current frontier and, since it hasn’t just copied the technology, it also
acquires the knowledge at the current frontier. Thus the industry stays in a
leader-follower situation and the leader’s gap remains equal to one step. (ii)
The follower succeeds in innovating. In this case we assume that there is a
probability θ that, in the course of doing its R&D, the follower will master
the knowledge at the current frontier, and so, if it succeeds in innovating, will
actually acquire both the knowledge and the technology associated with the
new frontier. Thus the follower will leapfrog the current leader with prob-
ability θ. However, with probability 1 − θ, the follower will not master the
ideas at the current frontier, and so its one step of progress will just take
it onto the existing frontier alongside the leader, leading to a situation of
neck-by-neck competition.
Thus our model allows both leapfrogging and catch-up. Leapfrogging

may be either strong or weak, depending on the technological gap induced
by a one step ahead move. A strong leapfrogging occurs when the innovator
acquires a monopoly on the product market because the technological gap
is high. A weak leapfrogging is related to the situation where the innovator
acquires just a temporary leadership that can be contested by the laggard
firm during the subsequent race. While the endogenous growth models of the
first generation focused on the strong leapfrogging assumption and those of
the second generation (step-by-step) on the weak leapfrogging one, our model
encompasses both assumptions as special cases of a more general assumption.
The dynamics of transition are more complex than in strong leapfrogging and
step-by-step innovation models, since an industry can move from a leader-
follower type to a neck-and-neck type or to another leader-follower situation
with the respective roles of the leader and follower being reversed.
Besides the knowledge flows of information, there exist also technology

flows of information, also called technology spillovers, according to which a
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technology can be imitated by others, insofar as a patent does not offer to its
holder a perfect protection4. We capture the possibility of imperfect patent
protection by assuming that in a leader-follower situation there is a probabil-
ity δ, 0 ≤ δ ≤ 1, that the follower can acquire the current frontier technology
- but not the underlying knowledge - simply by copying or imitating it.
There are therefore two independent flows of information in this model:

one about underlying knowledge that is represented by the parameter θ,
the second about technology that is represented by the parameter δ. These
flows of information are logically and statistically independent. For instance
θ could be high in industries where there exists a well developed scientific
community and firms employ well trained scientists capable of mastering the
latest advances, while δ could be low because patents are very effective in
preventing firms from simply copying other firms’ technologies. Conversely,
in some other industries, θ could be very low because the nature of knowledge
is such that it is impossible to master an idea without having discovered it
oneself, while δ could be high because it is relatively easy to simply copy
technologies. Thus, δ corresponds to the usual spillover parameter that has
been much analyzed in the literature on innovation. Since the distinction
between technology and knowledge is not frequently made, there has been less
attention devoted to the role of θ. As we will show, the distinction between
these two knowledge flows is crucial insofar as their impact on innovation
is dramatically different: The parameter θ controls the basic dynamics of
the innovation process whereas δ just affects the profits available in leader-
follower situations.
We turn now to the measure of the intensity of competition in the prod-

uct market used in this paper. There exist different possible measures and
Boone (2001a,b) suggests a useful common requirement. A parameter ρ will
serve as an indicator of competition as long as it satisfies a short run re-
allocation effect property stating that "competition reallocates profits from
inefficient to more efficient firms: A rise in competition raises the profits of
a firm relative to the profits of a less efficient firm and reduces the profits
of the least efficient firm in the market". The reallocation effect implies the
selection effect of the competitive process invoked in Budd et al (1993) and
Vickers (1995) in situations where firms’ costs differ. We use in this paper

4A recent paper by Anton and Yao (2004) analyzes the consequences of an imperfect
patent protection when the innovator has a private information on the cost reduction level
that its innovation allows , the cost reduction being signalled by the amount of disclosed
information that the innovator chooses when adopting the decision to apply for a patent.
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the conjectural variation parameter ρ as an index of the intensity of compe-
tition. We analyze below the selection effect properties of this measure of
the intensity of competition.
We use this general framework to investigate the following questions:
(i) How innovation and growth are affected by the intensity of competition

represented by the conjectural variation parameter ρ?
(ii) How innovation and growth are affected by the two types of informa-

tion flows related to knowledge and technology and represented respectively
by the parameters θ and δ?
The model also enables us to address a third issue. Does innovation

result in industries which are more frequently of the leader-follower type or
more frequently of the neck-and-neck type? We ask thus how the frequency
with which the industry is in the neck-and-neck situation is affected by firms
having to work in a more competitive environment. Put somewhat differently,
the third question is:
iii) How the short term competition affects the long term competition?
The paper is organized as follows. The basic set-up is described in section

2. The determination of the value functions, the distribution of industries
according to their type and, the rate of growth of the economy are obtained
in section 3. In Section 4 a quadratic R&D cost function is specified and the
solution of the model is determined as the unique solution of a system of
equations. In section 5, we derive the properties of the short run incentives
to innovate given by the incremental profits and we introduce the distinction
between the level effect and the spread effects of competition. The main
results concerning the impact of the degree of rivalry ρ on innovation and
growth are presented in section 6. In Section 7, we examine the impact of
the two knowledge flows θ and δ on innovation and growth. The concluding
remarks appear in section 8.

2 The basic set-up

2.1 The consumption side

The assumptions with regard to the consumption side are made as simple
as possible. In particular, we choose a utility function that allows a unit-
elasticity demand curve in each industry, such that current market profits
depend only on the relative firm’s levels of efficiency and not on the absolute
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levels. We suppose that there exists a continuum of final goods in the econ-
omy. Each good is produced in a specific industry indexed by i ∈ [0, 1] .
Consumption of output from industry i at time t is denoted by ci(t). Time is
continuous. We suppose that the representative consumer is infinitely lived
and has a separable intertemporal utility function given by:

U =

Z ∞

0

lnC(t)e−σtdt (1)

In this expression, C(t) represents an index of overall consumption at
date t defined by:

lnC(t) =

Z 1

0

ln ci(t)di (2)

and σ > 0 is the rate of time preference (discount rate).
We suppose that financial markets are perfect and characterized by an

instantaneous interest rate rt. Denote by E(t) the instantaneous global ex-
penditure at date t : E(t) ≡ P (t)C(t) where P (t) is the general price index
at date t defined by: lnP (t) =

R 1
0
ln pi(t)di and pi(t) is the price in industry

i at date t. Since the intertemporal rate of substitution in (1) is constant
and equal to unity, the maximization of U under an intertemporal budget
constraint leads to the standard Ramsey equation5:

.

E(t)

E(t)
= σ − rt (3)

We choose the following normalization rule:

E(t) ≡ P (t)C(t) = 1 ∀ t ∈ [0,∞[ (4)

According to (3) and (4), the interest rate rt is thus equal to the discount
rate σ:

rt = σ ∀t ∈ [0,∞[ (5)

We will denote r the constant rate of interest.
According to (2), each final good has the same weight in the instantaneous

utility function. Thus the normalization rule leads also to a uniform spending
in each industry:

5See Grossman and Helpman (1997), page 48.
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pi(t)ci(t) = 1∀t ∈ [0,∞[ ,∀i ∈ [0, 1] (6)

2.2 The productive side

In this section we assume that patent protection is perfect and consequently
that there is no imitation of a protected technology, i.e. we assume that
the spillover rate δ = 0. In section 7, we will show how imperfect patent
protection can be introduced.
We suppose that in each industry there are two firms which are involved

both in production and R&D. In each industry, the rival firms can be at
different technology levels.
At each date t, an industry is described by a pair of technology levels

(k, k − n), where k is the technological level of the leader and k − n is the
technological level of the follower. The variable n is the gap between the
two firms. This gap will be treated as a state variable. According to (6),
the demand function in the industry i, given by qi(t) = ci(t) =

1
pi(t)

, is of
the constant elasticity type. Thus, whatever the nature of product market
competition is, firms’ equilibrium profit flows derived from competition in
the product market depend only upon the technological gap n and not upon
the level k. We denote by πn the equilibrium profit flow of a firm which is n
steps ahead of it’s rival (or −n steps behind it if n is negative).
As in Aghion et al. (1997), we suppose that the technological gap between

firms cannot exceed one step. This assumption, which simplifies the model
and allows analytical solutions, can be justified in two ways. First, it may be
too costly (in terms of R&D effort) to a firm to get more than one step ahead
of it’s rival. Second, as a firmmoves one step ahead, it has no incentive to pay
the renewal fee to maintain the protection on its old technology. The effective
patent life is thus determined by the rhythm of the innovative process. The
consequence of this assumption is that, at any time, each of the two firms
in an industry can be in one and only one of the three following states: n
∈ {−1, 0, 1}. A firm which is in the state n = −1 at some date is the
technological follower while it’s rival in the same industry, the technological
leader, is in the state n = 1. The corresponding unleveled industry is of the
follower-leader type. When a firm is in the state n = 0, both firms are at
the same technological level and the corresponding leveled industry is of the
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neck-by-neck type. An industry can be, at any time, in just one of these two
types. But, as time elapses, the type of an industry changes permanently.
We suppose that there exists an innovation process that allows a produc-

tivity increase by a parameter ϕ (ϕ > 1), equivalent to a reduction of unit
cost. Thus a firm that makes an invention reduces its unit cost from a level
c to a level c

ϕ
. We suppose that, by incurring an R&D cost of γ(p), a firm

moves one step ahead with Poisson hazard rate p. The R&D technology is
assumed to have decreasing returns. We assume that the R&D cost function
γ(p) is increasing, continuous and convex. We also assume that γ(0) = 0.
We are now in position to describe how an industry evolves in time.

Consider an infinitesimal period [t, t+ dt] . Two cases must be considered
depending on the type of the industry at the beginning of the period.
1. If an industry starts at date t in the neck-by-neck state, both firms are

at the existing cutting edge of technology. Three outcomes can occur during
the period: i/ If both firms innovate during the period, neither will create a
gap over the other and the industry will end the period as it began it in the
neck-by-neck state; ii/ The same outcome prevails if neither firm innovates;
iii/ If only one firm innovates, it will open a unit gap over its rival and the
industry ends the period in the leader-follower state.
2. If an industry starts at date t in the leader-follower type, then the

technological leader has a unit gap over its rival and is at the cutting edge
technology. Because the leader is at the cutting edge, if it succeeds in in-
novating, it lowers its unit production cost by the specified amount ϕ. For
the follower, the situation is slightly different. We assume that with prob-
ability θ, 0 6 θ 6 1, a follower who succeeds in innovating is able to reach
an understanding of the knowledge at the cutting edge, and so will be able
to achieve exactly the same technology as the leader would obtain if it in-
novated. Thus, a successful follower can leapfrog the preceding leader with
conditional probability θ. However, with probability 1− θ, the follower will
not master the knowledge at the cutting edge, and so, if it succeeds in in-
novating, it will obtain only the technology currently used by the leader. In
this case, there is only a catching-up of the current leader’s technology by
the follower. The model captures thus the two polar cases corresponding
respectively to leapfrogging (θ = 1) and to step-by-step innovation (θ = 0)
as special cases of a more general situation where the intermediate cases,
leapfrogging and catching-up, occur with the respective probabilities θ and
1− θ.
The possible evolutions of an industry starting from a leader-follower type
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can now be described.
i/ Suppose the follower does not succeed in innovating. If the leader

succeeds in innovating, it will open up a gap of two steps, but according to
our assumptions, the follower gets access to the previous leader’s technology
and the industry ends the period in the follower-leader position. If the leader
does not succeed in innovating, the industry ends the period as it began it,
namely in a follower-leader position. Therefore, when the follower does not
succeed in innovating, it is preferable for the leader to avoid the R&D cost.
ii/ Suppose now that the follower succeeds in innovating from the existing

cutting edge. If the leader also innovates, the gap between them will be
reduced to zero and the industry will end the period in the neck-by-neck
position. However, if the leader fails to innovate, then the previous follower
will have become the new leader and the industry will end the period in the
leader-follower type (but with the role of firms being reversed).
iii/ Finally, suppose the follower succeeds in innovating, but not from the

cutting edge. Then if the leader also innovates, it will maintain its gap of one
step and the industry ends the period as it began it, namely in the leader-
follower type. However, if the leader fails to innovate, then its technological
lead will be eliminated, and the industry will end the period in the neck-by-
neck position.
Innovative advances and hence economic growth occur at a rate deter-

mined by the R&D efforts denoted respectively p−1, p0 and p1 according
to whether the firm is in a follower position, a neck-by neck position or, a
leadership position.

3 The steady state equilibrium

We focus on the determination of the Markov perfect and symmetric equilib-
rium of the game occurring at the steady state of the economy. A Markovian
strategy for each firm in each industry specifies a choice of its R&D effort
as a function of its current gap6 and is time independant in the stationary
state. Each firm chooses its R&D efforts in each state in order to maximize
its value function. Let Vn denote the value function of a firm starting from
the state n. This value function gives the firm’s expected discounted payoff

6Note that a firm which is ahead (n = 1) has no incentive do undertake R&D due to
our assumption of a maximal gap of 1. Thus, we will find that at equilibrium p1 = 0.
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in the game starting from the state in which it is n steps ahead (or behind if
n < 0) of its rival (n = −1, 0, 1). These value functions satisfy the Bellman
equations7.

3.1 The value functions of the Markovian game

Consider a period [t, t+ dt] . Consider a firm that is in the state n = −1 at
the starting date t. It obtains first a current profit given by π−1dt. Second,
by spending γ(p−1) in R&D, it obtains an innovation during this period with
probability p−1dt. This innovation can be made either from the cutting edge
technology with the probability p−1θdt or from its own technology with the
probability p−1(1 − θ)dt. In the first case, the firm leapfrogs the rival and
starts the next period with the expected value V1, while in the second case
the firm succeeds only in catching-up the rival, starting the next period with
the expected value V0. Finally, with the complementary probability 1−p−1dt,
the firm does not obtain any innovation during the period [t, t+ dt] and it
starts the next period with the expected value V−1. During the same period,
the rival succeeds in innovating with the probability p1dt where p1, p0 and
p−1 denote the rivals’ R&D efforts. Figure 1 describes the corresponding
game during the period [t, t+ dt] . It also gives the discounted payoffs (gross
of R&D costs) of the follower at the end of this period.

The value function V−1 of a follower satisfies the following Bellman equa-
tion :

V−1 =Max
p−1≥0

{(π−1−γ(p−1))dt+e−rdt[V1p−1θdt+V0p−1(1−θ)dt+V−1p1dt+V−1(1−(p−1+p1)dt)]}
(7)

By using the first order approximation e−ρdt ' 1 − ρdt, and by keeping
only the first order terms in dt, one obtains the equivalent equation:

(1 + r)V−1 =Max
p−1≥0

{π−1 − γ(p−1) + p−1θV1 + p−1(1− θ)V0 + (1− p−1)V−1}
(8)

For an interior solution, the first order condition is:

7See Fudenberg and Tirole (1991, Ch. 13).
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Figure 1: Determination of the follower’s value function

γ0(p−1) = θ(V1 − V−1) + (1− θ)(V0 − V−1) (9)

The interpretation of condition (9) is straightforward. The LHS is the
R&D marginal cost of the follower. The RHS gives the expected incremental
revenue decomposed according whether the incremental revenue results from
leapfrogging or from catching-up.
In the same way, one obtains the Bellman equations giving the value of a

firm starting the period [t, t+ dt] at the respective states n = 1 and n = 0,
and the corresponding first order conditions:

(1 + r)V1 =Max
p1≥0

©
π1 − γ(p1) +

_
p−1(θV−1 + (1− θ)V0) + (1− _

p−1)V1
ª
(10)

γ0(p1) ≤ 0 and p1γ0(p1) = 0 (11)

(1 + r)V0 =Max
p0≥0

{π0 − γ(p0) + p0V1 + p0V−1 + (1− p0 − p0)V0)} (12)
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γ0(p0) = V1 − V0 (13)

The symmetric-equilibrium conditions p−1 = p−1, p0 = p0, p1 = p1 are
added to the preceding system of six equations ((8)-(13)). The unknowns
of this system as the three value functions V−1, V0, V1 and the three R&D
efforts p−1, p0, p1. They depend of the following factors: r (interest rate),
θ (conditional probability to leapfrog), π−1 (follower’s current profit), π0
(leveled firm’s current profit), π1 (leader’s current profit), γ(p) (R&D cost
to move one technological step ahead with Poisson hazard rate p). Note
that, according to (11), if γ0(p1) 6= 0, then, p1 = 0. This results from the
assumption of a maximal gap of one step.

3.2 Industry structure and rate of growth

The distribution of industries between leveled and unleveled ones in the
steady-state is endogenous. Let denote by ν (ν ∈ [0, 1]) the proportion of
industries that are of the neck-by-neck type in the steady state. In order
to determine the value of ν, consider a period [t, t+ dt] . During this time
interval, two types of evolutions do occur.
In an industry of the neck-by-neck type (proportion ν), a successful in-

novation made by only one of the two firms leads to an evolution towards
an industry of the leader-follower type. This occurs with the probability:
2p0dt(1− p0dt) ' 2p0dt.
In an industry of the leader-follower type (proportion 1−ν), a successful

innovation made either by both firms with a follower innovating from the
cutting edge of technology or by only the follower who innovates from its
own technology leads to an evolution towards an industry of the head-to-
head type. This occurs with the probability: (p−1θdtp1dt)+(p−1(1−θ)dt(1−
p1dt)) ' p−1(1− θ)dt.
Since the distribution of industries remains stationary over time in the

steady state, we must have:

2p0νdt = p−1(1− θ)(1− ν)dt. (14)

From this we obtain the value of ν which depends directly and indirectly
on the parameter θ since the values of p0 and p−1 depend themselves on θ :
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ν =
(1− θ)p−1

2p0 + (1− θ)p−1
(15)

The results are summarized in the following lemma:

Lemma 1 The proportion ν of industries that are neck-by-neck in the steady
state is given by ν = (1−θ)p−1

2p0+(1−θ)p−1 , where θ is the probability to leapfrog the
leader, conditional to a successful innovation by the follower, p0 is the R&D
effort by a neck-by neck firm and p−1 is the R&D effort by a follower. For a
given θ in [0, 1], ν is an increasing function of p−1 and a decreasing function
of p0.

Note that for θ = 0, we obtain the same result as in Aghion et al. (1997).
For θ = 1,we have ν = 0 insofar as p0 6= 0. This means that in a strong
leapfrogging situation, where a successful innovation by the follower gives it
a leadership position, there are no industries that are of the neck-by-neck
type.

We can now determine the instantaneous rate of growth of the economy
in the steady state. Consider again a period [t, t+ dt] . The growth rate g of
the economy is defined by

g =
d

dt
lnQ(t) =

d

dt
lnC(t) =

d

dt

Z 1

0

ln ci(t)di (16)

Whatever each firm of an industry moves ahead by one step or the follower
alone moves ahead by two steps, the rate of growth of the industry is given
by lnϕ. This occurs in two ways.
First by the evolution from a neck-by-neck type towards the next neck-

by-neck type. Such evolution can be decomposed in two stages. In the first
stage, the industry evolves from a neck-by-neck type (proportion ν) to a
leader-follower type. We denote lnϕ1 the rate of growth in this first stage.
The probability that such evolution occurs during the period [t, t+ dt] is
given by 2p0dt(1 − p0dt) ' 2p0dt. In the second stage, the industry evolves
from a leader-follower type (proportion 1 − ν) to a neck-by-neck type. We
denote lnϕ2 the rate of growth in this second stage. The probability that
an industry of the leader-follower type moves to an industry of the neck-
and-neck type during the same period is given by p−1(1− θ)dt(1− p1dt) '
p−1(1− θ)dt. Of course, we have lnϕ1 + lnϕ2 = lnϕ.
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Second by the evolution from a leader-follower type to the next leader-
follower type, where the follower succeeds in leapfrogging the leader by mov-
ing ahead by two steps and the previous leader does not succeed in innovating.
This evolution, which reverses the identity roles of the leader and follower,
gives rise to a rate of growth of lnϕ. The probability that an industry of
the leader-follower type (proportion 1− ν) moves to an industry of the next
follower-leader type during the same period is given by p−1θdt(1 − p1dt) '
p−1θdt.
The expected growth rate of the economy during the period [t, t+ dt] is

thus given by:

gdt = 2νp0dt lnϕ1 + p−1(1− θ)(1− ν)dt lnϕ2 + p−1θ(1− ν)dt lnϕ (17)

From (16) we obtain the following expression of the rate of growth of the
economy at the steady state:

g = (2νp0 + θp−1(1− ν)) lnϕ (18)

By substituting the value of ν given in the previous lemma, one obtains:

g =

·
2p0p−1

2p0 + (1− θ)p−1

¸
lnϕ (19)

Note again that g is a direct and an indirect function of θ. These results
are summarized in the following lemma:

Lemma 2 For any θ ∈ [0, 1] , the growth rate at the the steady state of the
economy g is given by (19). It is an increasing function of both the R&D
effort p−1 of a follower and the R&D effort p0 of a neck-by-neck firm. For
fixed values of p0 and p−1, g is an increasing function of θ.

Note that in the case θ = 0, which corresponds to the catching-up setting
implicit to the step-by-step innovation analyzed in Aghion et al. (1997),
we obtain g = 2p0p−1

2p0+p−1
lnϕ. The case θ = 1 corresponds to the leapfrogging

situation in which a successful follower obtains a technological leadership. In
this case we have ν = 0 and thus g = p−1 lnϕ. The rate of growth is directly
proportional to the follower’s R&D effort whenever θ = 1.
We have now to compute the solution of the non linear system (8− 13)8.
8Note that a solution of this system exists if the R&D cost function is continuous
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4 The solution for a quadratic R&D cost func-
tion

Suppose that the R&D cost function is given by: γ(p) = 1
2
p2. We define

the parameters a ≡ π1 − π0 and b ≡ π0 − π−1. The parameters a and b
play an important role in what follows. They measure the short run profit
flow increments respectively associated to gaining the lead and to catching
up. They are directly linked to the short term determinants of an industry
evolution (Budd et al. (1993)). The values of these parameters depend on ϕ
and on the intensity of product market competition which we denote by ρ.
In the next section we will explore more fully howρ affects a and b and hence
the short run incentives to innovate.
After tedious but straightforward substitutions, the system (8−13) leads

to a system of two equations having the variables p0 and p−1 as solutions:

2rp0 + (1 + 2θ)(p0)
2 + 2θ (p−1)

2 − 2θ2p0p−1 − 2a = 0 (20)

2r(p−1 − θp0)− (1 + 2θ)(p0)2 + (p−1)2 + 2p0p−1 − 2b = 0 (21)

In order to make further progress it is necessary to make a simplifying
assumption about the interest rate. In the remainder of the paper we will
take r = 0.
By transforming the preceding system, one obtains:

(1− θ2)p0 =
2(a+ b)− (p−1)2(1 + 2θ)

2p−1
(22)

(1 + 2θ)p0 =
θ(θ + 2)

1 + 2θ
p−1 +

2

sµ
θ(θ + 2)

1 + 2θ
p−1

¶2
+ 2(a− 2θb) (23)

In each of the two polar cases, θ = 0 and θ = 1 the analytic solution of the
system is immediate. For intermediate values of θ we establish an existence
result.

and convex. To get a sketch of the proof of this existence, consider the vector X =
(p−1, p0, p1, V−1, V0, V1) and write the system (8−13) as F (X) = 0, where F is a continuous
and convex function from R6+ to R6. Choose a convex compact set B ⊂ R6+ sufficiently
large to insure that F is defined in B and have values in B. Now, consider the function
G(X) = F (X) +X. By the Brouwer fixed point theorem, there exists a value of X such
that G(X) = X. Such a value of X is a solution of the system (8− 13).
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4.1 Pure Catch-up: θ = 0.

By solving (23) and substituting the solution into (22) it follows that

p0 =
√
2a; p−1 =

p
2(2a+ b)−

√
2a (24)

4.2 Pure Leapfrog: θ = 1.

By solving (22) and substituting the solution into (23), we obtain:

p0 =
1

3

"r
2

3
(a+ b) +

r
2

3
(4a− 5b)

#
; p−1 =

r
2

3
(a+ b) (25)

It is interesting to notice that if b = 0 then p0 = p−1. In the next section
we show that b = 0 when Bertrand competition prevails in the market.
Notice that, in order for the value of p0 defined by (25) to be well defined

we need to ensure that

a >
5

4
b (26)

Although, as pointed out above, we can generally assume that a > b,
there is no guarantee that the inequality in (26) will generally hold. We will
show in the next section that (26) holds if, either the cost gap ϕ is sufficiently
large or, the intensity of competition ρ is sufficiently high.
We can turn now to the intermediate values of θ for which an analytical

solution is more difficult to obtain.

4.3 Intermediate values: 0 < θ < 1.

Do there exist a positive solution of the system (22-23) whatever the values
of the parameters a and b?
Equation (22) makes p0 a strictly decreasing function of p−1. Moreover,

p0 is positive if p−1 <
q

2(a+b)
1+2θ

and p0 →∞ as p−1 → 0.
Equation (23) makes p0 a strictly increasing function of p−1. If a ≥

2θb, the function is well defined and convex for all non-negative values of
p−1. Clearly, in this case, the system (22) and (23) has a unique positive
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solution for p0 and p−1. If a < 2θb then the value of p0 defined by (23) is well
defined only for p−1 ≥ 1+2θ

θ(θ+2)

p
2(2θb− a). It is straightforward to show that

the inequality (26) is a sufficient condition to guarantee that the equations
(22) and (23) has a unique positive solution for p0 and p−1 for all values of
θ ∈ [0, 1]. Thus we have established the following existence result:

Theorem 3 If a > 5
4
b then the system given by equations (22) and (23) has

a unique positive solution, p0 and p−1, for any value of θ ∈ [0, 1].
The solution of the system (22-23) depends finally on the following vari-

ables: a, b and θ. But a and b are themselves are dependent on two parame-
ters: the degree of rivalry ρ in the product market and the cost reduction ϕ
allowed by a one step move innovation. Before undertaking the comparative
static analysis of the solution (p0, p−1) of the system (22-23) with respect to
the parameters ρ, θ and ϕ, it is important to examine the short run incentives
to innovate given by the profit increments a and b. As a point of reference
we briefly explore how the degree of rivalry ρ in the product market and the
cost reduction ϕ affect the individual firm short-run incentives to innovate
in different types of industries.

5 Short-run effects of rivalry on innovation

In our model, each industry is represented as an homogeneous product duopoly.
The inverse demand curve is given by:

p =
1

q1 + q2
(27)

where qi is output of firm i. We examine the short-run equilibrium profits
of the market game in which the industry is in either a leader-follower type
or a neck-by-neck type. We denote the ratio of the the unit production cost
of the most efficient firm to the unit cost of the least efficient firm by 1−Ψ
where 0 ≤ Ψ < 1. A neck-by-neck industry is represented by ψ = 0, while an
unleveled industry is represented by ψ ≡ ϕ−1

ϕ
> 0. One way to capture the

intensity of competition (or the degree of rivalry) in the product market is to
use the conjectural variation approach, according to which, when maximizing
profits, firm i makes the conjecture that it’s rival j will react accordingly
through dqj

dqi
= −ρ. The parameter ρ ∈ [0, 1] can serve as a measure of the
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degree of rivalry or the intensity of competition in the product market, since it
satisfies the reallocation property emphasized by Boone (2001b). We assume
that the two firms use the same conjectures. The value ρ = 0 corresponds to
Cournot behavior and ρ = 1 to Bertrand behavior.

5.1 Flow profits.

In a neck-by-neck industry (Ψ = 0) the two firms are always active at the
equilibrium of the market game. The equilibrium flow profits of each firm in
a neck-by-neck industry are given by:

π0(ρ) =
1− ρ

4
(0 ≤ ρ ≤ 1) (28)

The individual flow profits π0(ρ) is a strictly decreasing function of ρ.
We will refer to this as the level effect : An increased rivalry in the product
market lowers the absolute profits of the firms acting in a leveled industry.

In a leader-follower type industry (Ψ > 0), an interior solution where the
two firms are active exists only if ρ < 1−Ψ. Whenever ρ ≥ 1−Ψ a boundary
solution prevails where only the most efficient firm is active. The equilibrium
profit flows are given by:

π−1(ρ,Ψ) =

 1−ρ
4

[1− Ψ
1−ρ ]

2

[1−Ψ
2 ]

2 if 0 ≤ ρ ≤ 1−Ψ

0 if 1−Ψ ≤ ρ ≤ 1
(29)

π1(ρ,Ψ) =

 (1−ρ)
4

[1+ ψρ
1−ρ ]

2

[1−ψ
2 ]
2 if 0 ≤ ρ ≤ 1−Ψ

Ψ if 1−Ψ ≤ ρ ≤ 1
(30)

The equilibrium flow profits π−1(ρ,Ψ) of the follower is a decreasing func-
tion of the rivalry index ρ when ρ ∈ [0, 1−Ψ] . For higher levels of rivalry
(ρ ≥ 1−Ψ) the follower becomes inactive.
The properties of the equilibrium flow profits of the leader π1(ρ,Ψ) are

slightly different. One has to distinguish two cases, according to whether the
relative cost parameter given by Ψ is lower or higher to 1

2
.

When Ψ < 1
2
, the productivity improvement ϕ brought by a move of one

step ahead is such that ϕ < 2. Each innovation reduces the unit cost by
less than half. In this case, the profit flow of the leader π1(ρ,Ψ) is a non-
monotone function of ρ. It is first decreasing with ρ when ρ ∈ £0, 1−2Ψ

1−Ψ
¤
, then
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it increases with ρ when ρ ∈ £1−2Ψ
1−Ψ , 1−Ψ

¤
before becoming independent of

ρ when the leader becomes a monopolist.
When Ψ ≥ 1

2
the productivity improvement ϕ is such that ϕ ≥ 2. In

this case, a leader benefits from its cost advantage all the more the degree
of rivalry is higher. The flow profits π1(ρ,Ψ) is an increasing function of ρ
when ρ ∈ [0, 1−Ψ].
All these properties allow us to introduce the profit spreads.

5.2 Spread effects of competition.

We define the ratios α(ρ,Ψ) and β(ρ,Ψ) by α(ρ,Ψ) ≡ π1(ρ,Ψ)
π0(ρ)

and β(ρ,Ψ) ≡
π−1(ρ,Ψ)
π0(ρ)

. These ratios measure the spread effects of competition, taking the
profits in a leveled industry as a benchmark. Suppose that the degree of ri-
valry in the product market is less than maximal (ρ < 1). By using equations
(29) to (31), one obtains:

α(ρ,Ψ) =

(
[1+ Ψρ

1−ρ ]
2

[1−Ψ
2
]2

if 0 ≤ ρ ≤ 1−Ψ
4Ψ
1−ρ if 1−Ψ ≤ ρ < 1

(31)

β(ρ,Ψ) =

(
[1− Ψ

1−ρ ]
2

[1−Ψ
2
]2

if 0 ≤ ρ ≤ 1−Ψ

0 if 1−Ψ ≤ ρ < 1
(32)

It is easy to check the following properties.
Property 1 : 0 ≤ β(ρ,Ψ) < 1 < α(ρ,Ψ) ∀ρ ∈ [0, 1[ and ∀Ψ ∈]0, 1[.
This property states that the relative gain that a successful follower ob-

tains by catching-up the leader is lower than the relative gain of a neck-by-
neck firm that moves one step ahead. Moreover, the profit of a follower is
always lower than the profit of a neck-by-neck firm. This means that the
short term profit incentive to invest in R&D is lower for a follower than for a
head-to-head firm when the follower hopes to succeed in innovating by only
catching up the leader.

Property 2 : α(ρ,Ψ) is an increasing function of ρ ∈ [0, 1[ and β(ρ,Ψ) is
a decreasing function of ρ ∈ [0, 1−Ψ].

This property states that the spread effects are both increasing with the
degree of rivalry in the product market. On the one hand, the short term
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profit incentive of a firm to move away one step ahead from a neck-by-neck
competition increases with the degree of rivalry in the market. This is the
escape from competition effect. On the other hand, the short term incentive
to innovate of a follower who expects to catch-up the leader increases with
the degree of rivalry because the laggard firm’s profit decreases as ρ increases.
In order to evaluate the overall effect of competition on the short-run

incentives to innovate, we decompose the overall effect of ρ onto the level
effect and the spread effects. Recall that the short run incentives to innovate
are given by the incremental profits a(ρ,Ψ) ≡ π1(ρ,Ψ)−π0(ρ) and b(ρ,Ψ) ≡
π0(ρ) − π−1(ρ,Ψ). These parameters represent what are called respectively
the escape from competition incentive to innovate (a(ρ,Ψ)) and the catching-
up incentive to innovate (b(ρ,Ψ)). Note that the sum a(ρ,Ψ) + b(ρ,Ψ) ≡
π1(ρ,Ψ)− π−1(ρ,Ψ) represents the leapfrogging incentive to innovate.

5.3 Decomposition of the overall effect of competition.

One can write a(ρ,Ψ) = π0(ρ)A(ρ,Ψ) where A(ρ,Ψ) = α(ρ,Ψ) − 1 > 0
and b(ρ,Ψ) = π0(ρ)B(ρ,Ψ) where B(ρ,Ψ) = 1 − β(ρ,Ψ) > 0. A variation
of the intensity of competition ρ has therefore two effects on the short run
incentives to innovate.
The first effect of ρ on a(ρ,Ψ) and b(ρ,Ψ) is obtained through π0(ρ). This

effect, called the level effect, is negative : ∂π0(ρ)
∂ρ

< 0 (see 28).
The second effect of ρ on a(ρ,Ψ) and b(ρ,Ψ) is obtained through the

respective terms A(ρ,Ψ) and B(ρ,Ψ). These effects, called the spread effects,
are positive: ∂A(ρ,Ψ)

∂ρ
> 0 and ∂B(ρ,Ψ)

∂ρ
> 0 (Property 2).

It appears that, taken together, these two effects certainly lower the flow
profits of the least efficient firm but may or may not increase the profits of
the most efficient firm.
One can easily check that:
(a) a(ρ,Ψ) > b(ρ,Ψ) ∀ ∈ [0, 1]. The escape from competition incentive to

innovate dominates the catching-up incentive to innovate.
(b) a(ρ,Ψ) is a strictly increasing function of ρ ∈ [0, 1]. The escape from

competition incentive to innovate increases with the degree of rivalry in the
product market.
(c) If Ψ > 0.8 (⇔ ϕ > 5), then b(ρ,Ψ) is a strictly decreasing function

ofρ ∈ [0, 1]. When the cost reduction brought by an innovation is high, the
catching-up incentive to innovate decreases with the degree of rivalry.
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(d) If Ψ ≤ 0.8 (⇐⇒ ϕ ≤ 5), then b(ρ,Ψ) is no more a monotonic function.
It increases strictly with ρ in the interval

h
0, 4−5ψ

4−ψ
´
and it decreases strictly

with ρ in the interval
³
4−5ψ
4−ψ , 1

i
. Note that b(ρ = 1,Ψ) = 0 ∀Ψ.

(d) a (ρ,Ψ) + b (ρ,Ψ) is a strictly increasing function of ρ on [0, 1 − ψ].
The leapfrogging incentive to innovate increases with the degree of rivalry in
the market, as long as both firms are active.
(e) a(ρ,Ψ) > 5

4
b(ρ,Ψ) if and only if ψ > 4(1−ρ)

7ρ+11
. Notice that if ψ > 4

11

(⇔ ϕ > 11
7
) then a(ρ) > 5

4
b(ρ) ∀ρ ∈ [0, 1]. Since we have shown that

an existence of a positive solution (p0, p−1) of the system (22-23) requires
a > 5

4
b, the existence of a positive solution for any value of ρ ∈ [0, 1] is

insured by imposing the condition ϕ > 11
7
.

(f) A(ρ,Ψ) is a strictly increasing function on ρ ∈ [0, 1]; B(ρ,Ψ) is strictly
increasing of ρ ∈ [0, 1 − ψ) and is independent of ρ when ρ ∈ [1− ψ, 1] .
Therefore, the spread effects of competition are increasing functions of the
degree of rivalry as long as both firms remain active in the market.

6 Effects of rivalry on innovation and growth

We will assume throughout this section that ϕ > 11
7
. This will guarantee that

Ψ > 4
11
and so (26) holds for all ρ ∈ [0, 1]. Our results are obtained through

a mixture of numerical simulation and analytical methods. In the numerical
simulations we have used the values of Ψ = 0.4, 0.6 and 0.8.9 These span a
wide range of cases consistent with the requirement that Ψ > 4

11
andΨ ≤ 0.8.

All our qualitative predictions hold for these values.
Our investigation will proceed in two parts. We begin by examining the

overall effects of an increase in competition on innovation and growth. We
will show that in the catching-up case (θ = 0) an increase in the degree of
rivalry will increase growth when competition is weak, but decrease growth
when competition is intense. In the weak leapfrogging case (θ = 1), an
increase in competition will always increase growth. We then decompose
the effects of competition into the two separate effects - the level effect and
the spread effect. We show that the former always reduces innovation and
growth and the latter always increases it.

9These correspond to values for ϕ of 53 ,
5
2 , and 5 respectively.
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6.1 Overall effects of an increase in rivalry

To obtain insights we will focus on the two extreme cases of a step-by-step
process innovation, namely catching-up (θ = 0) and leapfrogging (θ = 1).10

6.1.1 Catching-up: θ = 0

From (24) and the results obtained in subsection 5.1, we see that an in-
crease in competition always increases p0. Numerical simulations reveal that
p−1(ρ,Ψ, θ = 0) is strictly increasing in ρ whenever we have an interior solu-
tion - i.e. whenever ρ < 1 − ψ. Taken together these results show that the
growth rate g(ρ,Ψ, θ = 0) is an increasing function of ρ whenever ρ < 1−ψ.
However it is possible to prove analytically that both p−1(ρ,Ψ, θ = 0) and the
growth rate g(ρ,Ψ, θ = 0) are strictly decreasing functions of ρ for ρ > 1−ψ.11
The intuition behind these results is clear. When firms are in a leveled

industry, the short term incentive to escape from competition is given by
a(ρ,Ψ) which is an increasing function of ρ. However, when firms are in an
unleveled industry, the immediate incentive of the follower to innovate is
given by b(ρ,Ψ). This is initially increasing in ρ. But when competition is
very intense (ρ ≥ 1−Ψ), the follower’s profits π−1(ρ,Ψ) are driven to zero,
and so b(ρ,Ψ) = π0(ρ,Ψ) which is a strictly decreasing function of ρ.

6.1.2 Leapfrogging: θ = 1

From (25) and the results obtained in subsection 5.1, we see that an in-
crease in competition always increases p−1(ρ,Ψ, θ = 0) and hence the growth
rate g(ρ,Ψ, θ = 0). The intuition is clear. When θ = 1, the industry
is always in an unleveled situation. The incentive to escape is given by
a(ρ,Ψ) + b(ρ,Ψ) ≡ π1(ρ,Ψ) − π−1(ρ,Ψ) which is a strictly increasing func-
tion of ρ. For completeness we note that numerical simulations reveal that
p0(ρ,Ψ, θ = 0) is strictly increasing in ρ for ρ < 1− ψ. It is easy to see that
p0(ρ,Ψ, θ = 0) is also strictly increasing in ρ for ρ ≥ 1− ψ.
These results are summarized as follows:

10 In the next section we will examine more fully how intermediate values of θ affect
innovation and growth.
11It is possible to show that: when ψ = 0.4 then p−1(ρ = 1) > p−1(ρ = 0); when

ψ = 0.6, then p−1(ρ = 0) ≈ p−1(ρ = 1); and when ψ = 0.8 then p−1(ρ = 1) < p−1(
ρ = 0). Table 1 that appears below confirms these conclusions.
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Theorem 4 In the pure catching-up case (θ = 0) , the overall effect of com-
petition on growth is positive if and only if the degree of rivalry ρ is below the
threshold ψ ≡ ϕ−1

ϕ
. In the pure leapfrogging case (θ = 1), the overall effect

of competition on growth is positive for all values of ρ in [0, 1] .

6.2 Decomposing the overall effect of increased rivalry

We have shown that an increase in rivalry ρ would have two effects on profits:
(i) the level effect, i.e. the reduction in π0(ρ,Ψ); (ii) the spread effect, i.e.
the increase in A(ρ,Ψ) and B(ρ,Ψ). We now want to isolate the impact on
innovation of these two separate effects. More precisely, we want to examine
the effects on innovation of reductions in π0 holding A and B constant, and
the effect on innovation of increases in A and B holding π0 constant. In order
to do this, define the variables q0 and q−1 by the equations:

p0 =
√
π0.q0; p−1 =

√
π0.q−1 (33)

Substituting these into (22) and (23), we obtain

(1− θ2)q0 =
2(A+B)− (q−1)2(1 + 2θ)

2q−1
(34)

(1 + 2θ)q0 =
θ(θ + 2)

1 + 2θ
q−1 +

2

sµ
θ(θ + 2)

1 + 2θ
q−1

¶2
+ 2(A− 2θB) (35)

Notice also that

A >
5

4
B ⇔ a >

5

4
b (36)

Therefore (22) and (23) have a unique positive solution iff (37) and (38)
have a unique positive solution. Notice that (37) and (38) depend only on
the spread variables A and B.
To isolate the impact on innovation of the spread effect of increased com-

petition we examine the effects of an increase in ρ on A and B - and hence,
via (37) and (38) on q0 and q−1. To isolate the impact on innovation of the
level effect of increased competition, we hold A and B constant and, using
(36) examine the impact of increases in ρ on q0 and q−1 via the reduction in
π0. We therefore immediately obtain the following result:
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Theorem 5 In both the pure catching-up and leapfrogging cases, the level
effect of increased rivalry always lowers innovation and growth

A more substantive issue concerns the impact of the spread effect on
innovation and growth. To address this issue it is useful to consider again
the two extreme cases.
Pure catching-up case: θ = 0
Obviously the expressions for q0 and q−1 are the exact analogues for p0

and p−1 in (24) with A and B replacing a and b respectively. From the results
in section 5.1 it is immediately clear that q0 is a strictly increasing function
of ρ. Numerical simulations reveal that q−1 is a strictly increasing function
of ρ when ρ < 1 − ψ. It is also fairly straightforward to prove analytically
that q−1 is also a strictly increasing function of ρ when ρ ≥ 1−ψ. Hence the
spread effect certainly increases growth in this case.
Pure Leapfrogging case: θ = 1
Here the analogue of (25) applies. It follows immediately that the spread

effect increases both q−1 and the growth rate. For completeness, we also
confirmed by numerical methods that q0 is a strictly increasing function of ρ
when ρ < 1 − ψ. It is very straightforward to prove analytically that q−1 is
also a strictly increasing function of ρ when ρ ≥ 1− ψ.
Hence we have established the following result:

Theorem 6 In both the pure catching-up and leapfrogging cases the spread
effect of increased rivalry increases innovation and growth.

6.3 The effects of rivalry on the dynamics of competi-
tion

As mentioned in the introduction, it is interesting to ask how the degree of
product market competition (or intensity of rivalry) affects the competitive-
ness of industries as reflected in the frequency with which they are in the
neck-and-neck equilibrium. That is, we wish to know how ρ affects ν.
We know that in the pure leapfrogging case - where θ = 1 - then ν = 0

and so the industry structure is unaffected by the nature of rivalry.
Consider then the catch-up case, θ = 0. We know that ν is an increasing

function of p−1 and a decreasing function of p0 (Lemma). We also know
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that p0 is a strictly increasing function of ρ, while p−1 is strictly increasing
in ρ whenever ρ < 1 − ψ and strictly decreasing in ρ whenever ρ > 1 − ψ.
Taken together these results immediately imply that ν is a strictly decreasing
function of ρ for ρ > 1 − ψ. It is straightforward to confirm by numerical
simulation that, for the three values of ψ considered above, ν is also a strictly
decreasing function of ρ for ρ < 1− ψ. Hence we have the following result:

Theorem 7 An increase in the intensity of rivalry lowers the fraction of
neck-and-neck industries.

This is a fairly familiar result showing that forces that increase static
competition may have adverse effects on competition in a dynamic context.

7 Effects of knowledge and technological flows

7.1 Effects of knowledge flows θ

We begin by examining the effects of θ on growth. In trying to understand
this issue we will focus on the two extreme cases of Cournot competition
(ρ = 0) and Bertrand competition (ρ = 1). For each of these cases, and for
the values of ψ considered above, it is straightforward to compute directly
what happens at the extreme cases where θ = 0 and θ = 1.
The following table 1 conveys the essential information.
What we see from this table is that as θ increases: (i) p0 falls; (ii) p−1

increases; (iii) g increases.
It is straightforward to verify that the behavior of these three variables

is monotonic across the range of intermediate values of θ. The following
diagrams (figs. 2-6) illustrate.
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ψ Case 1: ψ = 0.4 Case 2: ψ = 0.6 Case 3: ψ = 0.8
ρ 0 1 0 1 0 1
π0 0.25 0 0.25 0 0.25 0
π1 0.39 0.4 0.51 0.6 0.69 0.8
π−1 0.14 0 0.08 0 0.03 0
a 0.14 0.4 0.26 0.6 0.44 0.8
b 0.11 0 0.17 0 0.22 0
θ 0 1 0 1 0 1 0 1 0 1 0 1
p0 0.53 0.17 0.89 0.52 0.72 0.30 1.10 0.63 0.94 0.44 1.26 0.73
p−1 0.35 0.41 0.37 0.52 0.45 0.53 0.45 0.63 0.55 0.67 0.52 0.73
g 0.14 0.21 0.16 0.27 0.31 0.49 0.35 0.58 0.68 1.1 0.69 1.2
ν 0.25 0 0.17 0 0.24 0 0.17 0 0.23 0 0.17 0

Table 1: Values of innovation and growth for θ = 0 and θ = 1, ρ = 0 and
ρ = 1 for different values of Ψ.

The intuition behind these results is straightforward. The easier it is for
firms to leapfrog one another, the greater is the incentive for the follower to
innovate, and the lower is the incentive of firms in a neck-and-neck situation
to try to establish a position of dominance. Although these effects have
opposing impacts on the growth rate, we see from the formula for g given in
(19) that as θ increases, the growth rate is increasingly dominated by p−1 -
which explains why growth is also increasing in θ.
Notice also that our conclusions are in contrast to those of Aghion et al.

(1997) who argue that growth is faster under catching-up than leapfrogging.
Turning to the impact of θ on ν, the proportion of neck-and-neck indus-

tries, we know that ν is positive when θ = 0 and equal to zero when θ = 1.
In this case the behavior of ν is NOT monotonic for intermediate values of
θ. Instead ν initially increases and then decreases with θ (see fig. 7).
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Figure 2: Fig. 2: p0 (θ, ρ) for ρ = 0 (curve below) and ρ = 1 (ψ = 0.6).
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Figure 3: Fig. 3: p−1(θ, ρ) for ρ = 0 and ρ = 1 (ψ = 0.8).
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Figure 4: Fig.4: p−1(θ, ρ) for ρ = 0 and ρ = 1 (ψ = 0.6).
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Figure 5: Fig.5: p−1(θ, ρ) for ρ = 0 and ρ = 1 (ψ = 0.4).
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7.2 The effect of technological flows δ

So far we have assumed that there is perfect patent protection - effectively
δ = 0. We now wish to briefly consider the impact of imperfect patent
protection, namely the case δ > 0. Recall that from the discussion in the
introduction, patents play no role in neck-and-neck industries and are only
relevant in leader-follower industries. Recall also that when patents are
imperfect then there is a probability δ that the follower can simply copy the
technology of the leader without acquiring the underlying knowledge behind
the technology. Thus if the follower acquires the leader’s technology, the
industry still remains in a leader-follower situation, all that happens is that
the profits of the leader and follower in this situation just become π0. Thus,
the presence of imperfect patents just means that the expected profits of a
leader are now δπ0 + (1− δ)π1 while the expected profits of the follower are
now δπ0+(1−δ)π−1. Consequently a = (1−δ)(π1−π0), b = (1−δ)(π0−π−1).
It is clear therefore that the effect of spillover on innovation and growth can
be analyzed in exactly the same way that we analyzed the impact of the level
effect on growth in the previous section. We therefore obtain the immediate
conclusion:

Theorem 8 An increase in spillover leads to an equi proportionate reduction
in p0, p−1 and g.

Once more, this result is in sharp contrast with those of Aghion et al
(1997) who argue that greater ease of imitation can sometimes be growth
enhancing. This occurs only in the absence of distinction between the two
types of information flows. In our model the two types of information flows
have dramatically different impacts on growth. Growth responds positively
to increases in θ but negatively to increases in δ. This is the best justification
of the patent system.

8 Conclusion

In this paper we have provided a general framework for undertaking a sys-
tematic analysis of the impact on innovation and growth of a particular type
of increased product market competition - that which comes about through
increased rivalry between competitors. In order to develop this framework
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Figure 6: Fig. 6: g(θ, ρ) for ρ = 0 (curve below) and ρ = 1 (ψ = 0.6)
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Figure 7: Fig. 7: ν(θ, ρ) for ρ = 0 (curve above) and ρ = 1 (ψ = 0.6).
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we have had to clarify the nature of information flows underpinning the in-
novation process. In particular we have distinguished flows of information
about underlying knowledge - represented by the variable θ- and flows of
information about technology (the conventional spillover parameter) - rep-
resented by δ. This general model encompasses both catch-up and what we
have called weak leapfrogging (creation without destruction) as special cases
where θ = 0 and 1 respectively.
We have also argued that the effects of an increase in rivalry can generally

be understood as comprising two separate effects - a level effect and a spread
effect.
Using this framework we have obtained the following results.
- In the pure catch-up case (θ = 0) an increase in rivalry raises innovation

in neck-and-neck industries and increases the R&D effort of the follower in
leader follower industries as long as rivalry is not too intense - specifically
as long as ρ < 1 − Ψ. Both of these effects will increase growth. However
when rivalry is intense - ρ > 1 − Ψ- then further increases in rivalry will
lower both innovation by the follower and the rate of growth. The threshold
from which the competition’s effect on growth switches from a positive effect
to a negative one in a pure catch-up framework is thus perfectly identified
(ρ = 1−Ψ = 1

ϕ
).

- In the pure leapfrog case (θ = 1) an increase in rivalry always increases
both innovation and growth. This result illustrates the importance of the
technological diffusion rate in analyzing the effect of competition on innova-
tion and growth.
- In both catch-up and leapgfrog situations the level effect of increased

rivalry always reduces innovation and growth while the spread effect increases
both innovation and growth.
- In the pure catch-up case an increase in rivalry produces less competitive

industries in the sense that the fraction that are neck-and-neck falls. This
illustrates the idea that an increase in the short run rivalry lowers the long
run competitive structure.
- An increase in θ raises growth while an increase in δ lowers it. Insuring

simultaneously a higher diffusion rate of the patented knowledge and a better
protection of the patented technology constitute thus important policy levers
with respect to economic growth based on technological progress.
All these conclusions indicate that the distinctions we have introduced in

this paper are worthwhile for understanding the impact of increased compe-
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tition on innovation and growth.
Our model may be improved along different lines. We suggest three pos-

sible directions for further research. First, we could increase the number of
periods of patent protection. This would allow a richer story of innovation -
since leaders would now have incentives to increase the gap- and of industrial
organization - since industries would comprise more asymmetric firms. Sec-
ond, the industry dynamics could be enriched by taking into account the fact
that innovations may be complementary, in the sense that the overall prob-
ability that a successful innovation is reached within a given time increases
as each innovator takes a different research line12. Third, the technological
rate of diffusion is clearly favored by specific individual practices of learn-
ing and mastering the knowledge behind the cutting edge technology. These
practices are in general costly and the corresponding costs may explain the
gap between the states of scientific knowledge and technological development
that seems to persist in some countries.
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