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Abstract

This paper studies the optimal growth of a developing non-renewable nat-
ural resource producer, which extracts the resource from its soil, and pro-
duces a single consumption good with man-made capital. Moreover, it
can sell the extracted resource abroad and use the revenues to buy an
imported good, which is a perfect substitute of the domestic consumption
good. The domestic technology is convex-concave, so that the economy
may be locked into a poverty trap. We study the optimal extraction and
depletion of the exhaustible resource, and the optimal paths of accumu-
lation of capital and of domestic consumption. We show that the extent
to which the country will optimally escape from the poverty trap and the
exhaustible resource will be a blessing depends on the characteristics of its
technology and of the revenues from the resource function, on its impa-
tience, on the level of its initial stock of capital, and on the abundance of
the natural resource. If the marginal productivity of capital at the origin
is greater than the sum of the social discount rate and the depreciation
rate, the country will accumulate capital along the entire growth path,
and will escape from the poverty trap, whatever its initial stocks of cap-
ital and resource, and provided that the marginal revenue obtained from
the exportation of the resource is finite at the origin. On the contrary,
if the marginal productivity of capital is lower than the depreciation rate
whatever the level of capital, and if moreover the initial stock of capital
is small, then the country will never accumulate; it will consume the rev-
enues obtained from selling abroad the extracted resource, until there is
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no resource left and the economy collapses. We also show that any op-
timal path may be decentralized in a competitive equilibrium by using a
tax/subsidy scheme for firms.

Keywords: optimal growth, exhaustible resource, convex-concave tech-
nology, poverty trap, competitive equilibrium with tax/subsidy.
JEL Classification: Q32, C61
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1 Introduction

The standard literature on growth and exhaustible resources, initiated by Das-
gupta and Heal [2] in the seventies, deals with developed economies, or a world
economy, relying on a non-renewable natural resource as a factor of production.
Capital and resource are imperfect substitutes in the production process. The
resource input is necessary in the sense that there is no production without it,
but unessential in the sense that its productivity at the origin is unbounded.
When the social planner adopts a social welfare function of the discounted
utilitarian type, the shadow price of the resource stock follows the Hotelling’s
rule, the resource is asymptotically depleted, and consumption asymptotically
vanishes.

The problematic of this paper is different. We are concerned here with a
developing non-renewable natural resource producer –an oil producing country
for instance–, which extracts the resource from its soil in its primary sector, and
produces a single consumption good with man-made capital in its secondary
sector. Moreover, it can sell the extracted resource abroad1. The revenues
are then used to buy an imported good, which is a perfect substitute of the
domestic consumption good. The resource is unnecessary in the preceeding
sense: domestic production is possible without it.

The question we want to address is the following: Can the ownership of
non-renewable natural resources allow a poor country to make the transition
out of a poverty trap? We suppose that the production function is convex for
low levels of capital and concave for high levels. The conditions of occurrence
of a poverty trap are then fulfilled (Dechert and Nishimura [3], Azariadis and
Stachurski [1]): the country, if initially poor, may be unable to pass beyond
the trap level of capital, that is to say to develop. But the country can also
extract its resource, sell it abroad, and use the revenues to import the good.
The natural resource is a source of income, which, together with the income
coming from domestic production, can be used to consume, or to accumulate
capital. The idea is that a poor country with abundant natural resources could
extract and sell an amount of resource which would enable it to accumulate a
stock of capital sufficient to overcome the weakness of its initial stock. We want
to know on what circumstances would such a scenario optimally occur.

We study in this paper the optimal extraction and depletion of the ex-
haustible resource, and the optimal paths of accumulation of capital and of
domestic consumption. We take into account the characteristics of the domes-

1In the same spirit, Eliasson and Turnowsky [4] study the growth of a small economy

exporting a renewable resource to import consumption goods, with a reference to fish for

Iceland, or forestry products for New-Zealand.
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tic technology, the shape of the foreign demand for the exhaustible resource,
and of course the initial abundance of the resource and the initial level of de-
velopment of the country.

We show that the extent to which the country will optimally escape from
the poverty trap and the exhaustible resource will be a blessing depends on the
characteristics of its technology and of the revenues from the resource function,
on its impatience, on the level of its initial stock of capital, and on the abun-
dance of natural resource. The technology is convex-concave, so a poverty trap
exists. If the marginal productivity of capital at the origin is greater than the
sum of the social discount rate and the depreciation rate, the country will accu-
mulate capital along the entire growth path, and will escape from the poverty
trap, whatever its initial stocks of capital and resource, and provided that the
marginal revenue obtained from the exportation of the resource is finite at the
origin. On the contrary, if the marginal productivity of capital is lower than the
depreciation rate whatever the level of capital, and if moreover the initial stock
of capital is small, then the country will never accumulate; it will consume the
revenues obtained from selling abroad the extracted resource, until there is no
resource left and the economy collapses.

Finally, we show that any optimal path may be decentralized in a com-
petitive equilibrium. Due to the existence of increasing returns in production
for low levels of capital, it is necessary to introduce a tax/subsidy scheme to
ensure that the competitive equilibrium exists. This scheme is based upon the
difference between the values of the input and output.

The remaining of the paper is organized as follows. Section 2 presents the
model. Section 3 gives the properties of the optimal growth paths. We prove
in section 4 the existence of a competitive equilibrium. Section 5 provides a
summary of the main results and concludes.

2 The model

We consider a country which possesses a stock of a non-renewable natural re-
source S. This resource is extracted at a rate Rt, and then sold abroad at a
price Pt, in terms of the numeraire, which is the domestic single consumption
good. The inverse demand function for the resource is P (Rt). The revenue
from the sale of the natural resource, φ(Rt) = P (Rt)Rt, is used to buy a foreign
good, which is supposed to be a perfect substitute of the domestic good, used
for consumption and capital accumulation. The domestic production function
is F (kt), supposed to be convex for low levels of capital and then concave. The
depreciation rate is δ. We define the function f(kt) = F (kt) + (1− δ)kt, and we
shall, in the following, name it for simplicity the technology. We are interested
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in the optimal growth of this country which, if its initial capital is low, can
be locked into a poverty trap (Dechert and Nishimura [3]). Will the revenues
coming from the extraction of the natural resource allow it to escape from the
poverty trap? Or, on the contrary, will the existence of the natural resource,
which allows the country to consume without producing, destroy any incentive
to accumulate?

Formally, we have to solve problem (P)

max
+∞∑
t=0

βtu(ct), β ∈ (0, 1)

under the constraints

∀t, ct ≥ 0, kt ≥ 0, Rt ≥ 0,

ct + kt+1 ≤ f(kt) + φ(Rt),
+∞∑
t=0

Rt ≤ S,

S > 0, k0 ≥ 0 are given.

We denote by Z(k0, S) the Value-function of Problem (P). We make the fol-
lowing assumptions:
H1 The utility function u is strictly concave, strictly increasing, continuously
differentiable in R+, and satisfies u(0) = 0, u′(0) = +∞.
H2 The production function F is continuously differentiable in R+, strictly
increasing, strictly convex from 0 to kI , strictly concave for k ≥ kI , and
F ′(+∞) < δ. Moreover, it satisfies F (0) = 0.
H3 The revenue function φ is continuously differentiable, concave, strictly in-
creasing from 0 to R̂ ≤ +∞, and strictly decreasing for R > R̂. It also satisfies
φ(0) = 0.

Throughout this paper, an infinite sequence (xt)t=0,...,+∞ will be denoted by
x. An optimal solution to Problem (P) will be denoted by (c∗,k∗,R∗). We say
that the sequences c, k, R are feasible from k0 if they satisfy the constraints:

∀t, ct ≥ 0, kt ≥ 0, Rt ≥ 0

ct + kt+1 ≤ f(kt) + φ(Rt),
+∞∑
t=0

Rt ≤ S, and k0 is given.

Let Ω(k0, S) denote the set of (k, R) feasible from k0 and S, i.e.,

∀t, 0 ≤ kt+1 ≤ f(kt) + φ(Rt), 0 ≤ Rt

+∞∑
t=0

Rt ≤ S, k0 ≥ 0 is given.
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We first list some preliminary results necessary for the main results of our paper.

Lemma 1 The Value-function Z is continuous in k0, given S.

Proof : We first prove that the correspondence Ω is compact-valued and con-
tinuous in k0, for the product topology, given S.

To prove that Ω(k0, S) is compact, take a sequence {kn ,Rn} which con-
verges to {k ,R} for the product topology. First, observe that for any feasible
k we have

∀t, 0 ≤ kt+1 ≤ f(kt) + φ(Rt) ≤ f(kt) + max{φ(R̂), φ(S)}.

Therefore, k will be in a compact set for the product topology (see e.g. Le Van
and Dana [5]). Second,

∀n,∀t, 0 ≤ kn
t+1 ≤ f(kn

t ) + φ(Rn
t ),

hence, by taking the limits we get

∀t, 0 ≤ kt+1 ≤ f(kt) + φ(Rt).

We have proved that the set of feasible k is closed for the product topology. It
is obvious that the set of feasible R belongs to a fixed compact set. To prove

that this set is closed, observe that ∀N,∀n
N∑

t=0
Rn

t ≤ S. Taking the limit we get

∀N,∀n
N∑

t=0
Rt ≤ S. That implies

+∞∑
t=0

Rt ≤ S. Summing up, we have proved that

Ω(k0, S) is compact.
It is easy to check that Ω is upper hemi-continuous in k0. It is less easy

for the lower hemi-continuity of Ω. We will prove that, actually, Ω is lower
hemi-continuous. Let kn

0 → k0 as n goes to +∞ and (k, R) ∈ Ω(k0, S). We
have to show there exists a subsequence still denoted by (kn, Rn), for short,
which converges to (k, R) and satisfies (kn, Rn) ∈ Ω(kn

0 , S),∀n. We have three
cases.
Case 1 :

0 ≤ kt+1 < f(kt) + φ(R0), ∀t < T − 1

0 ≤ kt ≤ f(kt−1) + φ(Rt−1), ∀t ≥ T.

There exists N such that for any n ≥ N , we have k1 < f(kn
0 ) + φ(R0). Define,

for any n ≥ N , any t, kn
t = kt, Rn

t = Rt and the proof is done.
Case 2 :

kt+1 = f(kt) + φ(Rt), ∀t ≤ T − 1,

kT+1 < f(kT ) + φ(RT ),

kt+1 ≤ f(kt) + φ(Rt), ∀t ≥ T + 1.
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Define, for t = 0, ..., T − 1 and for any n, kn
t+1 = f(kn

t ) + φ(Rt). Obviously,
kn

t → kt for t = 0, ..., T − 1. Hence, there exists N such that for any n ≥ N ,
kT+1 < f(kn

T ) + φ(RT ). The sequences (kn
0 , k

n
1 , ..., k

n
T , kT+1, kT+2, ...) and Rn

=R, for every n, satisfy the required conditions.
Case 3 :

∀t, kt+1 = f(kt) + φ(Rt).

It suffices to take kn
t+1 = f(kn

t ) + φ(Rt) for every t, every n.
The second step is to prove that the intertemporal utility function is con-

tinuous on the feasible set for the product topology. But the proof is standard
(see e.g. Le Van and Dana [5]).

The third step is to apply the Maximum Theorem to conclude that Z is
continuous in k0.

Lemma 2 There exists a constant A which depends on k0, R̂, and S, such that
for any feasible sequence (c,k,R), we have ∀t, 0 ≤ ct ≤ A, 0 ≤ kt ≤ A.

Moreover, Problem (P) has an optimal solution. If kI = 0, then the solution
is unique.

Proof : It is obvious that Rt ≤ S, ∀t. Now, if R̂ < +∞ then for any t, we
have ct + kt+1 ≤ f(kt) + φ(R̂). And if R̂ = +∞ then for all t, ct + kt+1 ≤
f(kt) + φ(S). Since f ′(+∞) < 1, from Le Van and Dana [5], page 17, there
exists a constant A which depends on k0, R̂ (if R̂ < +∞) or on k0, S such that
∀t, 0 ≤ ct ≤ A, 0 ≤ kt ≤ A.

We have already proved that the set of feasible sequences is compact for the
product topology and the intertemporal utility function is continuous on the
feasible set for the same topology. Hence, there exists a solution to Problem
(P). When kI equals 0, because of the strict concavity of the technology and
the utility function u, the solution will be unique.

3 Properties of the optimal paths

We now study the properties of the optimal paths.
In the following, the superscript ∗ denotes the optimal value of the variables.
Proposition 1 states that along the optimal path consumption is always

strictly positive and the extraction always less than R̂, the maximum of the
revenue function; moreover, if the marginal revenue is infinite when the extrac-
tion becomes very small, the resource will not be exhausted in finite time.

Proposition 1 For any t, c∗t > 0 and R∗t < R̂. If φ′(0) = +∞, then R∗t > 0
for all t. Obviously, R∗t → 0 as t→ +∞.
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Proof : Let V denote the Value-function. Observe that V (k0) > 0 for any
k0 ≥ 0, since the sequence c defined by c0 = f(k0) + φ(S) and ct = 0 for any
t > 0 is feasible. Hence V (k0) ≥ u(c0) > 0. That implies c∗t > 0,∀t, by the
Inada condition u′(0) = +∞.

Let us prove that R∗t < R̂ for all t. If R̂ = +∞, the proof is obvious.
So, assume R̂ < +∞. We cannot have R∗t > R̂ for some t, since u is strictly
increasing and φ is strictly decreasing for R > R̂. We cannot have R∗t = R̂

for all t since
+∞∑
t=0

R∗t = S. If there exists T with R∗T = R̂, we can suppose

R∗T+1 < R̂. Without loss of generality, take T = 0. So

c∗0 + k∗1 = f(k0) + φ(R̂)

c∗1 + k∗2 = f(k∗1) + φ(R∗1), with R∗1 < R̂.

Choose ε > 0 small enough such that R∗1 + ε < R̂ and R̂− ε > 0. Let

c0 + k∗1 = f(k0) + φ(R̂− ε)

c1 + k∗2 = f(k∗1) + φ(R∗1 + ε)

and ct = c∗t , ∀t ≥ 2.

Let 4ε =
+∞∑
t=0

βtu(ct)−
+∞∑
t=0

βtu(c∗t ). We have

4ε = u(c0)− u(c∗0) + β[u(c1)− u(c∗1)]

≥ u′(c0)[φ′(R̂− ε)(−ε)] + βu′(c1)[φ′(R∗1 + ε)(ε)]

≥ ε[βu′(c1)φ′(R∗1 + ε)− u′(c0)φ′(R̂− ε)].

Let ε → 0. Then limε→04ε ≥ βu′(c∗1)φ
′(R∗1) > 0. Thus 4ε > 0 for ε small

enough. That is a contradiction to the optimality of c∗.
Now consider the case φ′(0) = +∞. First assume R∗t = 0, ∀t. Then let

c0 = f(k0)− k∗1 + S > c∗0

ct = f(k∗t )− k∗t+1 = c∗t , for t ≥ 1.

Then
+∞∑
t=0

u(ct) >
+∞∑
t=0

u(c∗t ): a contradiction. Hence if R∗T = 0 we can assume

that R∗T+1 > 0. Without loss of generality, take T = 0. So

c∗0 = f(k0)− k∗1

c∗1 = f(k∗1)− k∗2 + φ(R∗1), with 0 < R∗1 < R̂.

Let ε ∈ (0, R∗1). Define

c0 = f(k0)− k∗1 + φ(ε)

c1 = f(k∗1)− k∗2 + φ(R∗1 − ε)

ct = c∗t , ∀t ≥ 2.
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Then

4ε =
+∞∑
t=0

βtu(ct)−
+∞∑
t=0

βtu(c∗t )

= u(c0)− u(c∗0) + β[u(c1)− u(c∗1)]

≥ u′(c0)φ(ε) + βu′(c1)[φ(R∗1 − ε)− φ(R∗1)]

≥ [u′(c0)φ′(ε)− βu′(c1)φ′(R∗1 − ε)]ε.

Notice that limε→0
4ε

ε = +∞ which implies 4ε > 0 for ε small enough: a
contradiction.

Proposition 2 gives the Euler conditions of our problem, in the case where
the marginal revenue at the origin is finite, which we will favor in the remaining
of the paper. Notice that in the case of an interior solution, equations (E1) and
(E2) allow us to obtain the Hotelling’s rule:

φ′(R∗t+1)
φ′(R∗t )

= f ′(k∗t+1). (1)

Proposition 2 Let k0 ≥ 0. Assume φ′(0) < +∞. Then we have the following
Euler conditions:

(i) ∀t, f ′(k∗t+1) ≤
u′(c∗t )

βu′(c∗t+1)
(E1)

with equality if k∗t+1 > 0,

(ii) ∀t, ∀t′, βtu′(c∗t )φ
′(R∗t ) = βt′u′(c∗t′)φ

′(R∗t′), (E2)

if R∗t > 0, R∗t′ > 0, and

(iii) ∀t, ∀t′, βtu′(c∗t )φ
′(R∗t ) ≤ βt′u′(c∗t′)φ

′(R∗t′), (E2′)

if R∗t = 0, R∗t′ > 0.

Proof : (i) Given t, k∗t+1 solves :

max
y

[
u(f(k∗t ) + φ(R∗t )− y) + βu(f(y) + φ(R∗t+1)− k∗t+2)

]
s.t. 0 ≤ y ≤ f(k∗t ) + φ(R∗t )

0 ≤ y.

Since c∗t = f(k∗t ) + φ(R∗t )− k∗t+1 > 0, one easily gets (E1).
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(ii) Since S > 0, there exists t with R∗t > 0. Fix some T such that there exists
t ≤ T with R∗t > 0. Then (R∗0, ..., R

∗
T ) solve

max
(R0,...,Rt)

T∑
t=0

βtu(f(k∗t ) + φ(Rt)− k∗t+1)

s.t.
T∑

t=0

Rt ≤ S −
+∞∑

τ=T+1

R∗τ

0 ≤ Rt,∀t = 0, ..., T

k∗t+1 − f(k∗t ) ≤ φ(Rt),∀t = 0, ..., T.

Since φ is concave and u is strictly concave, (R∗0, ..., R
∗
T ) will be the unique

solution. Moreover, since c∗t > 0 for every t, the third constraints system will
not be binding. There exist therefore λ ≥ 0 and µt ≥ 0, t = 0, ..., T such that
(R∗0, ..., R

∗
T ) maximize

T∑
t=0

βtu(f(k∗t ) + φ(Rt)− k∗t+1)− λ

[
T∑

t=0

Rt − S +
+∞∑

τ=T+1

R∗τ

]
+

T∑
t=0

µtRt,

with µtR
∗
t = 0,∀t = 0, ..., T . One easily obtains (E2) and (E2′).

Proposition 3 shows that, even if the initial capital stock equals 0, if the
marginal productivity of capital at the origin is large enough, then, thanks to
the exhaustible resource, the country will accumulate from some date on. More
precisely, the marginal productivity at the origin of the production function F
must be larger than the depreciation rate δ.

Proposition 3 Let k0 ≥ 0. Assume φ′(0) < +∞. If f ′(0) > 1, then there
exists T ≥ 1 with k∗t > 0 for any t ≥ T .

Proof : Since f ′(0) > 1, we can choose ε > 0 such that f ′(0) > 1 + ε. Assume
that there exists an infinite sequence {k∗tν}ν such that k∗tν = 0, for any ν, and
hence correspondently R∗tν > 0. Because

∑+∞
t=o R

∗
t = S we have R∗tν −→ 0 as

ν −→ +∞. Since R∗tν −→ 0 and R∗tν−1 either equals 0 or converges to 0, there

exists T such that φ′(R∗
tν )

φ′(R∗
tν−1)

< 1 + ε if tν ≥ T . We can write down the optimal

consumptions at time tν and tν − 1 as follows:

c∗tν−1 = φ(R∗tν−1) + f(k∗tν−1)

c∗tν = φ(R∗tν )− k∗tν+1

We have

u(c∗tν−1 − y) + βu(c∗tν + f(y)) ≤ u(c∗tν−1)) + βu(c∗tν ),

10
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for all y ∈ [0, c∗tν−1], thus

−u′(c∗tν−1) + βu′(c∗tν )f ′(0) ≤ 0,

and we get a contradiction

1 + ε < f ′(0) ≤
u′(c∗tν−1)
βu′(c∗tν )

≤ φ′(R∗tν )
φ′(R∗tν−1)

< 1 + ε.

So, there must exist T ≥ 1 such that k∗t > 0 for all t ≥ T .

In Proposition 4, we show that thanks to the exhaustible resource, the
country will accumulate at any period, provided that the marginal productivity
of capital at the origin is larger than the sum of the social discount rate and
the depreciation rate, ρ+δ, with ρ = 1

β −1. Notice that when the initial capital
stock is equal to 0, the same economy without natural resources never takes-off
(Dechert and Nishimura [3]). So, when the technology is “good” enough, the
natural resource is a blessing allowing the economy to escape from the poverty
trap.

Proposition 4 Let k0 ≥ 0. Assume f ′(0) > 1
β . Then k∗t > 0 for any t ≥ 1.

Proof : Assume k∗1 = 0. Then we have

c∗0 = f(k0) + φ(R∗0)

c∗1 + k∗2 = φ(R∗1).

The following Euler conditions hold:

−u′(c∗0) + βu′(c∗1)f
′(0) ≤ 0

u′(c∗0)φ
′(R∗0)− βu′(c∗1)φ

′(R∗1) ≤ 0.

This implies

1 <
1
β
< f ′(0) ≤ u′(c∗0)

βu′(c∗1)
≤ φ′(R∗1)
φ′(R∗0)

.

¿From these inequalities, we get u′(c∗0) > u′(c∗1), φ
′(R∗1) > φ′(R∗0) or equiva-

lently, c∗1 > c∗0 and R∗0 > R∗1. A contradiction arises:

φ(R∗1) ≥ φ(R∗1)− k∗2 = c∗1 > c∗0 = f(k0) + φ(R∗0) ≥ φ(R∗0) > φ(R∗1).

Therefore, k∗1 > 0. By induction, k∗t > 0 for all t ≥ 1.

We want to show now that the natural resource will be exhausted in finite
time if the marginal productivity of capital at the origin is high enough. Before
proving that, let us introduce an intermediary step.
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Consider Problem (Q)

U(k0) = max
+∞∑
t=0

βtu(ct), β ∈ (0, 1)

under the constraints

∀t, ct ≥ 0, kt ≥ 0,

ct + kt+1 ≤ f(kt),

k0 ≥ 0 is given.

Let ϕ denote the optimal correspondence of (Q), i.e., k1 ∈ ϕ(k0) iff we have
k1 ∈ [0, f(k0)] and

U(k0) = u(f(k0)− k1) + βU(k1)

= max{u(f(k0)− y) + βU(y) : y ∈ [0, f(k0)]}.

Next consider Problem (Qa) where a is a sequence of non-negative real numbers

which satisfies
+∞∑
t=0

at < +∞:

W (k0, (at)t≥0) = max
+∞∑
t=0

βtu(ct), β ∈ (0, 1)

under the constraints

∀t, ct ≥ 0, kt ≥ 0,

ct + kt+1 ≤ f(kt) + at,

k0 ≥ 0 is given.

Obviously, W (k0, 0) = U(k0), and W (k0, (at)t≥0) ≥ U(k0). We also have the
Bellman equation: for all k0,

W (k0, (at)t≥0) = max{u(f(k0)− y + a0) + βW (y, (at)t≥1) : y ∈ [0, f(k0) + a0]}.

Let ψ(., (at)t≥0) denote the optimal correspondence associated with (Qa), i.e.,
k1 ∈ ψ(k0, (at)t≥0) iff W (k0, (at)t≥0) = u(f(k0)−k1 +a0)+βW (k1, (at)t≥1) and
k1 ∈ [0, f(k0) + a0]. We have the following lemma.

Lemma 3 Let kn
0 → k0 and an → 0 in l∞ when n converges to infinity. If, for

any n, kn
1 ∈ ψ(kn

0 ,a
n) and kn

1 → k1 as n→ +∞, then k1 ∈ ϕ(k0).
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Proof : We first prove that W (kn
0 ,a

n) → U(k0) as n→ +∞. We have:

∀n, W (kn
0 , (a

n
t )t≥0) ≥ U(kn

0 ),

hence
lim inf
n→+∞

W (kn
0 , (a

n
t )t≥0) ≥ lim

n→+∞
U(kn

0 ) = U(k0).

We now prove that lim sup
n→+∞

W (kn
0 , (a

n
t )t≥0) ≤ U(k0). Let α > 0. There exists

N such that, for any n ≥ N , we have f(kn
0 ) + an

0 ≤ f(k0) + α and kn
0 ≤ α.

Let k̄α be the largest value of k which satisfies f(k̄α) + α = k̄α. Using the
same argument as in Le Van and Dana [5], page 17, one can show that, for any
feasible sequences from kn

0 , cn, kn of (Qan), for any n ≥ N , any t, we have
cnt ≤ max{k̄α, k0 + α}, kn

t ≤ max{k̄α, k0 + α}. Let c∗n,k∗n be the optimal
sequences from kn

0 of Problem (Qan). Let ε > 0. There exists T such that

∀n, W (kn
0 , (a

n
t )t≥0) ≤

t=T∑
t=0

βtu(c∗nt ) + ε.

For t = 0, ...T , we can suppose that c∗nt → c̄t and k∗nt+1 → k̄t+1. Since for
t = 0, ...T , we have c∗nt + k∗nt+1 = f(k∗nt ) + an

t , we obtain c̄t + k̄t+1 = f(k̄t) for
t = 0, ..., T . Define c̄ = (c̄0, ..., c̄T , 0, 0, ..., 0, ...). We get

lim sup
n→+∞

W (kn
0 , (a

n
t )t≥0) ≤

t=T∑
t=0

βtu(c̄t) + ε =
t=+∞∑

t=0

βtu(c̄t) + ε ≤ U(k0) + ε.

This inequality holds for any ε > 0. We have proved lim sup
n→+∞

W (kn
0 ,a

n) ≤ U(k0).

Now, let kn
1 ∈ ψ(kn

0 ,a
n) and suppose kn

1 → k1 as n→ +∞. We have

W (kn
0 , (a

n)t≥0) = u(f(kn
0 )− kn

1 + an
0 ) + βW (kn

1 , (a
n)t≥1),

and kn
1 ∈ [0, f(kn

0 ) + an
0 ]. Taking the limits we get

U(k0) = u(f(k0)− k1) + βU(k1),

with k1 ∈ [0, f(k0)]. That proves k1 ∈ ϕ(k0).

Proposition 5 states that if the marginal revenue of the resource at the origin
is finite and the marginal productivity of capital greater than the depreciation
rate, then the stock of resource will be exhausted in finite time.

Proposition 5 Assume φ′(0) < +∞ and f ′(0) > 1. Then there exists T∞ such
that, for all t ≥ T∞, we have R∗t = 0.
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Proof : ¿From Proposition 3, there exists T such that ∀t ≥ T , k∗t > 0.
Step 1. We will show that there exists T ′ such that R∗T ′ = 0. If not, for any
t ≥ T we have the Euler conditions:

βu′(c∗t+1)f
′(k∗t+1) = u′(c∗t ), (2)

βu′(c∗t+1)φ
′(R∗t+1) = u′(c∗t )φ

′(R∗t ).

Hence

f ′(k∗t+1) =
u′(c∗t )

βu′(c∗t+1)
=
φ′(R∗t+1)
φ′(R∗t )

.

Since
φ′(R∗

t+1)

φ′(R∗
t )

→ 1, we have f ′(k∗t+1) → 1, as t→ +∞. Under our assumptions

there exists a unique k̂ which satisfies f ′(k̂) = 1. Thus k∗t+1 → k̂. In this case,
for t large enough, u′(c∗t+1) > u′(c∗t ) ⇔ c∗t > c∗t+1. The sequence c∗ converges
to c̄. If c̄ > 0, we have f ′(k̂) = 1

β : a contradiction. So, c̄ = 0. Since

∀t, c∗t+1 + k∗t+2 = f(k∗t+1) + φ(R∗t+1),

we have k̂ = f(k̂) with f ′(k̂) = 1, and that is impossible. Hence, there must be
T ′ with R∗T ′ = 0.
Step 2. Assume there exists three sequences (c∗tν )ν , (k∗tν )ν , (R∗tν )ν which satisfy

∀ν, c∗tν−1 + k∗tν = f(k∗tν−1)

c∗tν + k∗tν+1 = f(k∗tν ) + φ(R∗tν ), with R∗tν > 0.

Hence

∀ν, f ′(k∗tν ) =
u′(c∗tν−1)
βu′(c∗tν )

≤ φ′(R∗tν )
φ′(0)

< 1.

Therefore, ∀ν, k∗tν > k̂. Observe that there exists λ > 0 such that

∀ν, βtνu′(c∗tν )φ′(R∗tν ) = λ.

This implies c∗tν → 0 as ν → +∞. From Lemma 2, k∗tν ≤ A,∀ν. One can
suppose k∗tν → k̄ ≥ k̂ > 0 and k∗tν+1 → k = f(k̄). From Lemma 3, k ∈ ϕ(k̄).
This implies c∗tν → c̄ = f(k̄) − k = 0. But, since k̄ > 0, we must have c̄ > 0
(see Le Van and Dana [5]). This contradiction implies the existence of T∞ such
that for all t ≥ T∞, we have R∗t = 0.

Remark 1 When the function f is concave, the proof will be very short. In-

deed, from Le Van and Saglam [6], the sequence (βtu′(c∗t ))t satisfies
+∞∑
t=0

βtu′(c∗t ) <

+∞. Since there exists λ > 0 such that βtνu′(c∗tν )φ′(R∗tν ) = λ, we have

βtνu′(c∗tν ) → λ
φ′(0)

> 0. This excludes
+∞∑
t=0

βtu′(c∗t ) to be bounded from above.
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In the following corollary, we prove that, even when the initial capital equals
0, thanks to the natural resource, the country may take-off if the marginal
productivity of capital at the origin is larger than the sum of the discount and
depreciation rates. But, when this productivity is low, the natural resource
cannot prevent the economy to collapse in the long term.

Corollary 1 Let k0 ≥ 0. Assume φ′(0) < +∞.
(a) If f ′(0) > 1

β , then k∗t → ks where ks is defined by f ′(ks) = 1
β .

(b) If f is concave and 1 < f ′(0) ≤ 1
β , then k∗t → 0.

Proof : ¿From Proposition 5, we know that R∗t = 0 for t ≥ T∞. The optimal
sequence (k∗t )t≥T∞ solves problem (Q) with initial data k∗T∞ > 0. Assertion (a)
follows from Dechert and Nishimura [3], while assertion (b) follows, e.g., from
Le Van and Dana [5].

We now show that the country may never accumulate in physical capital if
the marginal productivity is very low, and the initial capital stock is small.

Proposition 6 Assume φ′(0) < +∞ and f ′(kI) < 1.
(a) Let k0 ≥ 0. Then there exists T with k∗t = 0,∀t ≥ T .
(b) There exists ε > 0 such that, if k0 ≤ ε, then k∗t = 0,∀t.

Proof : (a) There must be t0 with R∗t0 > 0. We claim that R∗t > 0,∀t > t0.
Assume R∗t0+1 = 0. Then we have the Euler conditions

f ′(k∗t0+1) =
u′(c∗t0)

βu′(c∗t0+1)
≥ φ′(0)
φ′(R∗t0)

> 1,

which is impossible. Hence R∗t0+1 > 0. By induction, R∗t > 0,∀t > t0. Thus,
for t ≥ t0, we have the FOC:

f ′(k∗t+1) =
u′(c∗t )

βu′(c∗t+1)
=
φ′(R∗t+1)
φ′(R∗t )

, if k∗t+1 > 0.

If there exists an infinite sequence (k∗tν+1)ν with k∗tν+1 > 0,∀ν, then from the
previous FOC we have lim

ν→+∞
f ′(k∗tν+1) = 1: a contradiction since ∀ν, f ′(k∗tν+1) ≤

f ′(kI) < 1. Therefore, k∗t = 0 for any t large enough.
(b) Consider Problem (R):

S(k0, S) = max
+∞∑
t=0

βtu(ct)

under the constraints

0 ≤ c0 ≤ f(k0) + φ(R0)

∀t ≥ 1, 0 ≤ ct ≤ φ(Rt), 0 ≤ Rt

+∞∑
t=0

Rt ≤ S.
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We first prove the claim for k0 = 0. Let (R∗t , c
∗
t )t be the solution. We have

+∞∑
t=0

R∗t = S and c∗t = φ(R∗t ),∀t. There exists λ such that ∀t, βtu′(φ(R∗t ))φ
′(R∗t ) =

λ. Let (kt, Rt)t be a solution to the initial problem. We have
+∞∑
t=0

Rt = S.

Consider

4 =
+∞∑
t=0

βt [u(φ(R∗t ))− u(φ(Rt) + f(kt)− kt+1)] .

We have

4 ≥
+∞∑
t=0

βtu′(φ(R∗t ))φ
′(R∗t )(R

∗
t −Rt) +

+∞∑
t=0

βtu′(φ(R∗t ))(kt+1 − f(kt))

≥ λ(
+∞∑
t=0

R∗t −
+∞∑
t=0

Rt) +
+∞∑
t=0

βtu′(φ(R∗t ))(kt+1 − f(kt))

≥
+∞∑
t=0

βtu′(φ(R∗t ))(kt+1 − f(kt)).

Recall that ∀t, R∗t+1 < R∗t . Since u′(φ(R∗t ))φ
′(R∗t ) = βu′(φ(R∗t+1))φ

′(R∗t+1) we
have u′(φ(R∗t )) > βu′(φ(R∗t+1)),∀t. From part (a), there exists T such that
kt = 0,∀t ≥ T + 1. Therefore

4 ≥
T∑

t=1

βtu′(φ(R∗t ))(kt − f(kt)).

Since f ′(k) < 1 and f(0) = 0, we have f(k) < k. Thus, 4 > 0. This is a
contradiction.
Now, let k0 > 0. Then we have βtu′(φ(R∗t ))φ

′(R∗t ) = λ for some λ > 0 and
t ≥ 1, and u′(φ(R∗0)+f(k0))φ′(R∗0) ≤ βu′(φ(R∗1))φ

′(R∗1) with equality if R∗0 > 0.
The same computations as above give

4 ≥
T∑

t=2

βtu′(φ(R∗t ))(kt − f(kt)) + u′(f(k0) + φ(R∗0))k1 − βu′(φ(R∗1))f(k1).

When k0 = 0 we have u′(φ(R∗0)) > βu′(φ(R∗1)). But R∗0 and R∗1 are continuous
in k0. Hence, when k0 ≤ ε with ε small enough, we still have u′(f(k0)+φ(R∗0)) >
βu′(φ(R∗1)). A contradiction arises as before.

We expect that, when the marginal productivity of capital is low, the coun-
try will never accumulate if the stock of non-renewable resource is very large.
The result is true if we assume R̂ = +∞. To simplify the proof we will use
some explicit forms of the functions u and φ.

Proposition 7 Assume φ′(0) < +∞ and f ′(kI) < 1. Assume also R̂ = +∞,
φ(R) = aR, a > 0 and u(c) = cθ

θ with 0 < θ < 1. Let k0 > 0 be given. Then
we have k∗t = 0,∀t, when S is large enough.
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Proof : Let (R∗t )t=0,...,+∞ be the solution. We have

∀t ≥ 1, µ0 + a (f(k0) + aR∗0)
θ−1 = βta(aR∗t )

θ−1 (3)

where µ0 ≥ 0, and µ0R
∗
0 = 0. (4)

We obtain

∀t ≥ 1, R∗t =
β(1−θ)t

a

[
µ0 + a (f(k0) + aR∗0)

θ−1

a

] 1
θ−1

+∞∑
t=0

R∗t = R∗0 +
β1−θ

a(1− β1−θ)

[
µ0 + a (f(k0) + aR∗0)

θ−1

a

] 1
θ−1

,

and µ0R
∗
0 = 0.

R∗0, and when R∗0 = 0, µ0 will be determined by the contraint S =
+∞∑
t=0

R∗t . It is

obvious that µ0 is a decreasing function of S, while R∗0 is an increasing function
of S. Thus, when S is high enough, we have µ0 = 0 and R∗0 > 0. Hence,
from relation (3), we get (f(k0) + aR∗0)

θ−1 = β(aR∗1)
θ−1, i.e. u′(f(k0)+aR∗0) =

βu′(aR∗1). Using the proof of Proposition 6, we conclude that the optimal path
(k∗t ) equals 0.

We now study the long term of our economy with an exhaustible resource.
Obviously, in the long term, the exhaustible resource is depleted.

We know, from Dechert and Nishimura [3], that if f ′(0) < 1
β < max{f(k)

k :

k > 0}, then there exists kc(< kI < k̃, with f ′(k̃) = 1), such that if k0 < kc

then any solution k to Problem (Q) converges to 0, and if k0 > kc, then it
converges to a high steady state ks fulfilling f ′(ks) = 1

β . In other words, we
have a poverty trap. We will show, under some more assumptions, that if S
is high enough the poverty trap can be passed over in our model. We need a
preliminary lemma.

Lemma 4 Consider the following problem:

max
+∞∑
t=0

βtu(ct)

under the constraints

c0 + k1 ≤ f(k0)

c1 + k2 ≤ f(k1) + a, a ≥ 0,

ct + kt+1 ≤ f(kt)

∀t, 0 ≤ ct, 0 ≤ kt, k0 > kI .
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Assume f ′(kI) = +∞. Then, for any a ≥ 0, we have a unique solution
{k∗1(a), ..., k∗t (a), ....}. Moreover, k∗1(a) > kI , k∗1(a) decreases while f(k∗1(a)) + a

increases, when a increases.

Proof : Under the assumption that f ′(0) < 1
β < max{f(k)

k : k > 0}, when
k0 > kI and a = 0, any optimal path will be bounded below by kI (see Dechert
and Nishimura [3]). We just consider the feasible paths which are bounded
below by kI . In this case, the constraints will be strictly concave, since the
function f is strictly concave for k > kI . Hence the solution will be unique.
Moreover the Value function is strictly concave and differentiable when a = 0.

Since for a = 0, k∗1(a) > kI , f(k∗1(a)) > kI , it will still be true when a > 0
small enough. We have the Bellman equation

V (f(k0)) = max
0≤y≤f(k0)

{u(f(k0)− y) + βV (f(y) + a)}

When a > 0 is small, k∗1(a) satisfies

u′(f(k0)− k∗1(a)) = βV ′(f(k∗1(a))) + a)f ′(k∗1(a)). (5)

Assume that a increases and f(k∗1(a))+a decreases. In this case, k∗1(a) decreases,
and the left-hand side of (5) decreases. But the right-hand side increases since
V ′(k) and f ′(k) are decreasing functions for k > kI . We have a contradiction.

It is easy to check that k∗1(a) decreases when a is small and increases.
Assume there exists a, the maximum value of a such that k∗1(a) ≥ kI . Let

a converge to a. In this case, k∗1(a) converges to kI . For a < a, we have the
Euler condition:

f ′(k∗1(a)) =
u′(f(k0)− k∗1(a))

βu′(f(k∗1(a) + a− k∗2(a)))

≤ u′(f(k0)− k∗1(a))
βu′(f(k∗1(a) + a))

.

Taking the limits we get a contradiction:

+∞ = f ′(kI) ≤
u′(f(k0)− kI)
βu′(f(kI + a))

< +∞.

Hence, for all a ≥ 0, k∗1(a) > kI . We can prove as before, when a is small, that
k∗1(a) decreases while f(k∗1(a)) + a increases, when a increases.

Proposition 8 Assume there exists R̃ ∈ (0, R̂) such that φ(R) = aR, a > 0
when 0 ≤ R ≤ R̃, and 1 < f ′(0) ≤ 1

β ≤ max{f(k)
k : k > 0}. Define k′0 by

f(k′0) = φ(R̃). Assume k′0 > kI . Assume moreover that f ′(kI) = +∞. Let
k0 ≥ 0. The optimal sequence, k∗t → ks as t→ +∞, if S is high enough.
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Proof : ¿From Proposition 5, there exists T∞ such that:

c∗T∞−2 + k∗T∞−1 = f(k∗T∞−2) + φ(R∗T∞−2)

c∗T∞−1 + k∗T∞ = f(k∗T∞−1) + φ(R∗T∞−1)

c∗T∞ + k∗T∞+1 = f(k∗T∞)

c∗t + k∗t+1 = f(k∗t ), ∀t ≥ T∞ + 1.

Case 1: We have R∗T∞−1 ≥ R̃.
Let k∗′0 satisfy f(k∗′0 ) = f(k∗T∞−1) + φ(R∗T∞−1). Then, k∗′0 > kI . The sequence
{k∗t }t≥T∞ is optimal for the growth model with initial capital k∗′0 > kI . It will
converge to the steady state ks since kI > kc.
Case 2: We have R∗T∞−1 ≤ R̃ and R∗T∞−2 ≤ R̃.
We have, from the Euler conditions

f ′(k∗T∞−1) ≤
φ′(R∗T∞−1)
φ′(R∗T∞−2)

= 1

hence, k∗T∞−1 ≥ k̃ > kI (f ′(k̃) = 1) and as before, the optimal path converges
to the steady state.
Case 3: We have R∗T∞−1 ≤ R̃ and R∗T∞−2 ≥ R̃.
Let k∗′0 satisfy f(k∗′0 ) = f(k∗T∞−2) + φ(R∗T∞−2). Then, k∗′0 > kI . From Lemma
4, we have k∗T∞−1 > kI . As before, the optimal path converges to the steady
state.

In the following proposition we drop the assumption that the technology φ
is linear in a neighborhood of 0. But we will strengthen the assumptions on the
marginal productivity of capital.

Proposition 9 Assume there exists R̃ ∈ (0, R̂) such that, if k′0 satisfies f(k′0) =
φ(R̃), then k′0 > kI . Assume moreover that f ′(kI) = +∞ and φ′(0)

φ′( eR)
< f ′(0) ≤

1
β ≤ max{f(k)

k : k > 0}. Let k0 ≥ 0. The optimal sequence, k∗t → ks as t→ +∞,
if S is high enough.

Proof : We just consider Case 2 in the proof of the previous Proposition :
R∗T∞−1 ≤ R̃ and R∗T∞−2 ≤ R̃.
We have, from the Euler conditions

f ′(k∗T∞−1) ≤
φ′(R∗T∞−1)
φ′(R∗T∞−2)

≤ φ′(0)

φ′(R̃)
< f ′(0).

Observe that f ′(k) > f ′(0) for k ∈ [0, ks]. Hence k∗T∞−1 > ks > kI . The optimal
sequence {k∗t }t≥T∞ converges therefore to ks.

In the following proposition, we assume R̃ = +∞.
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Proposition 10 Assume R̂ = +∞, φ(R) = aR, a > 0 and 1 < f ′(0) ≤ 1
β ≤

max{f(k)
k : k > 0}. Let k0 ≥ 0. The optimal sequence, k∗t → ks as t → +∞, if

S is high enough.

Proof : Let (Ŝν) be a sequence which converges to +∞. We consider two cases.
Case 1: For any ν, the optimal sequence (R∗νt ) verifies, R∗ν0 = S

ν . Let kν
0

satisfy f(kν
0 ) = f(k0)+aS

ν . For ν large enough, kν
0 > kc. An optimal sequence

(k∗νt ) is also an optimal sequence for the convex-concave optimal growth-model
with initial endowment equal to kν

0 . Since this one is larger than the critical
value kc, the optimal path (k∗νt ) will converge to the high steady state ks. And
the proof is over.
Case 2. From Proposition 5, there exists T∞ such that:

c∗T∞−2 + k∗T∞−1 = f(k∗T∞−2) + aR∗T∞−2

c∗T∞−1 + k∗T∞ = f(k∗T∞−1) + aR∗T∞−1

c∗T∞ + k∗T∞+1 = f(k∗T∞)

c∗t + k∗t+1 = f(k∗t ), ∀t ≥ T∞ + 1.

We have

f ′(k∗T∞−1) ≤
u′(c∗T∞−2)
βu′(c∗T∞−1)

≤
φ′(R∗T∞−1)
φ′(R∗T∞−2)

= 1.

We cannot have k∗T∞−1 = 0, since f ′(0) > 1. Hence k∗T∞−1 ≥ k̃ which is
the unique point with f ′(k̃) = 1. Moreover, k̃ > ks > kc. Let k′0 satisfy
f(k′0) = f(k∗T∞−1) + aR∗T∞−1. Then, k′0 > k∗T∞−1 > ks > kc. The sequence
(k∗t ), t = T∞ − 1, ...,+∞ is also an optimal solution to the convex-concave
optimal growth-model with initial endowment equal to k′0. Since k′0 > kc, the
path (k∗t ), t = T∞ − 1, ...,+∞ converges to the high steady state.

Remark 2 Proposition 10 shows that the overshooting effect exists when S is
large enough. Indeed, if we are in Case 1 of the proof, then when S is large, the
value k′0 defined by f(k′0) = f(k0) + φ(S) will be larger than ks. From Dechert
and Nishimura [3], the optimal path (k∗t ) will be decreasing and converges to ks.
If we are in Case 2, then, from the proof, there exists k∗T∞−1 > ks.

Remark 3 We will make a small change in H2 by dropping the assumption
f ′(+∞) < 1. Assume f(k) = Ak,A > 1 and φ(R) = aR. Then it is optimal to
exhaust the resource at period 0. Indeed, the Euler conditions will be:

A = f ′(k∗t+1) ≤
φ′(R∗t+1)
φ′(R∗t )

if R∗t+1 > 0

and A = f ′(k∗t+1) ≥ φ′(0)
φ′(R∗t )

= 1

if R∗t+1 = 0.
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¿From these inequalities, since A > 1, we cannot have R∗t+1 > 0, for some t ≥ 0

since
φ′(R∗

t+1)

φ′(R∗
t )

= 1. Hence R∗t+1 = 0, ∀t ≥ 0, and R∗1 = S. Observe that

k∗t → +∞ if A > 1
β .

However, it seems not realistic to completely exhaust the resource in one period.
Actually, in our discrete time model, one period may be many years. Our story
tells that, in developed countries which possess non-renewable resources, it is
optimal to exhaust it quickly in order to build a large initial capital stock and
then converge faster to the steady state.

4 Competitive Equilibrium With Tax/Subsidy

In our intertemporal economy, there is a single firm which produces, with a
technology represented by the function f , an aggregate good which can be
consumed or used as physical capital. This firm also imports this aggregate
good. The importations are covered by the exportation of the natural resource
that the firm extracts. Since we face increasing returns for low levels of capital,
we will define an equilibrium with a tax/subsidy scheme to firms, which will be
supported by the consumer or redistributed to her as a lump sum transfer. The
scheme is defined as follows. If the value of the input is larger than the value
of the output, then firms will receive a subsidy equal to the difference. A tax
will be defined analogously in the reverse case.

Let {kt}t=1,2,..,+∞ be a firm production plan. Formally, if (pt) is the sequence
of prices of the aggregate good, r is the price of initial capital stock k0, and
{σt(.)}t is a system of subsidy, then firm solves the problem

Π = max
(kt),(Rt)

[
+∞∑
t=0

pt(f(kt)− kt+1)− rk0 +
+∞∑
t=0

σt(kt) +
+∞∑
t=0

ptφ(Rt)

]
considering the tax/subsidy scheme as given, and under the constraints:

∀t, 0 ≤ kt+1 ≤ f(kt) + φ(Rt), 0 ≤ Rt,
+∞∑
t=0

Rt ≤ S, and k0 is given.

There is one representative consumer who owns the firm and the initial
capital stock k0. Her problem is

max
(ct)

+∞∑
t=0

βtu(ct)

under the constraints
+∞∑
t=0

ptct ≤ Π + rk0 −
+∞∑
t=0

σt(kt),

21

ha
ls

hs
-0

02
03

18
0,

 v
er

si
on

 1
 - 

9 
Ja

n 
20

08



and ct ≥ 0,∀t.

Let us recall that l∞ = {x : supt |xt| < +∞} and l1 = {p :
+∞∑
t=0

|pt| < +∞}.

Definition 1 The list {c∗,k∗,R∗,p∗, r∗,σ∗(.)}, is a competitive equilibrium of
our economy if:

(1) c∗ ∈ l∞+ , k∗ ∈ l∞+ , R∗ ∈ l∞+ , p∗ ∈ l1+, r∗ ≥ 0, {p∗ , r∗} 6= {0 , 0}.
(2) Given {p∗, r∗,σ∗(.)}, {k∗,R∗} solve the problem of the firm, i.e.

Π∗ = max
(kt),(Rt)

[
+∞∑
t=0

p∗t (f(kt)− kt+1)− r∗k0 +
+∞∑
t=0

σ∗t (kt) +
+∞∑
t=0

p∗tφ(Rt)

]

=

[
+∞∑
t=0

p∗t (f(k∗t )− k∗t+1)− r∗k0 +
+∞∑
t=0

σ∗t (k
∗
t ) +

+∞∑
t=0

p∗tφ(R∗t )

]
.

(3) Given {p∗, r∗,σ∗(.)}, c∗ solve the consumer’s problem:

+∞∑
t=0

βtu(c∗t ) = max
(ct)

+∞∑
t=0

βtu(ct)

under the constraints

+∞∑
t=0

p∗t ct ≤ Π∗ + r∗k0 −
+∞∑
t=0

σ∗t (k
∗
t ).

(4) Market Clearing:
∀t, c∗t + k∗t+1 = f(k∗t ) + φ(R∗t ),

Proposition 11 Assume H1,H2,H3, φ′(0) > 1 and k0 > 0. Moreover, we
assume

(i) either f ′(0) > 1
β ,

(ii) or the assumptions in Proposition 8 or Proposition 9 are fulfilled.
Let {c∗,k∗,R∗} be a solution to our problem (P). Define:

∀t, p∗t = βtu′(c∗t ), r
∗ = p∗0f

′(k∗0),

and σ∗t (k) = p∗t f
′(k∗t )k − p∗t f(k).

Then the list {c∗,k∗,R∗,p∗, r∗,σ∗(.)} is a competitive equilibrium.
Moreover, the equilibrium profit of the firm is positive.

Proof : Obviously, {c∗,k∗,R∗} ∈ l∞×l∞×l∞. We now prove that {(βtu′(c∗t ))t} ∈
l1. Indeed, under our assumptions, the optimal path {k∗t }t converges to the high
steady state ks and the optimal consumptions converge to cs = f(ks)− ks > 0.

Hence
+∞∑
t=0

βtu′(c∗t ) < +∞.
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We now prove that, given {p∗, r∗,σ∗(.)}, {k∗,R∗}, solve the problem of the
firm. First, observe that there exists λ > 0 and a non-negative sequence µ such
that

∀t, p∗tφ′(R∗t ) = βtu′(c∗t )φ
′(R∗t ) = λ− µt, and µtR

∗
t = 0,

and from Euler conditions:

∀t, p∗t f ′(k∗t ) = p∗t−1.

Now, take a feasible sequence from k0, (k0, k1, ..., kt, ...) and let

4T =

[
T∑

t=0

p∗t (f(k∗t )− k∗t+1)− r∗k0 +
T∑

t=0

σ∗(k∗t ) +
T∑

t=0

p∗tφ(R∗t )

]

−

[
T∑

t=0

p∗t (f(kt)− kt+1)− r∗k0 +
T∑

t=0

σ∗(kt) +
T∑

t=0

p∗tφ(Rt)

]
.

Then we have:

4T ≥
T∑

t=1

[(
p∗t f

′(k∗t )− p∗t−1

)
(k∗t − kt)

]
− p∗T (k∗T+1 − kT+1) +

T∑
t=0

p∗tφ
′(R∗t )(R

∗
t −Rt)

= −p∗T (k∗T+1 − kT+1) + λ
T∑

t=0

(R∗t −Rt)−
T∑

t=0

µtR
∗
t +

T∑
t=0

µtR
t

≥ −p∗Tk∗T+1 + λ
T∑

t=0

(R∗t −Rt).

Since
+∞∑
t=0

R∗t = S ≥
+∞∑
t=0

Rt, we have limT 4T ≥ limT {−p∗Tk∗T+1}. But k∗T+1

converges to ks. Since
+∞∑
t=0

p∗t < +∞, we have p∗t → 0. Therefore, limT 4T ≥ 0.

We now prove that, given {p∗, r∗,σ∗(.)}, c∗ solves the consumer’s problem.
Indeed, let c satisfy

+∞∑
t=0

p∗t ct ≤ Π∗ + r∗k0 −
T∑

t=0

σ∗(k∗t ).

We have

+∞∑
t=0

βtu(c∗t )−
+∞∑
t=0

βtu(ct) ≥
+∞∑
t=0

βtu′(c∗t )(c
∗
t − ct)

=
+∞∑
t=0

p∗t (c
∗
t − ct) ≥ 0

since
+∞∑
t=0

p∗t c
∗
t = Π∗ + r∗k0 −

T∑
t=0

σ∗(k∗t ).
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Finally, market clearing condition is obviously satisfied.
To prove that the profit, at equilibrium, of the firm is positive, observe that

Π∗ ≥
[

+∞∑
t=0

p∗t (f(kt)− kt+1)− r∗k0

]
+

+∞∑
t=0

σ∗t (kt)+
+∞∑
t=0

p∗tφ(Rt) for any feasible se-

quences (k0, k1, ..., kt, ...), (R0, R1, ..., Rt, ...). The sequences (k0, 0, ..., 0, ..) and
(R∗t )t=10,..,+∞ are feasible. Therefore,

Π∗ ≥ p∗0f(k0)− r∗k0 +
[
p∗0f

′(k0)− p∗0f(k0)
]
+

+∞∑
t=0

p∗tφ(R∗t ) > 0

since p∗0f(k0) − r∗k0 + [p∗0f
′(k0)− p∗0f(k0)] = 0, from the very definition of r∗.

5 Summary of the main results and conclusion

We summarize below the main results, according to the characteristics of the
technology.
(a) High marginal productivity of capital

Assume φ′(0) < +∞ and F ′(0) > ρ + δ. Then the optimal capital path
(k∗t ) converges to the high steady state ks, with F ′(ks) = ρ + δ. The stock of
non-renewable resource is exhausted in finite time.
(b) Intermediate marginal productivity of capital

Assume φ′(0) < +∞ and δ < F ′(0) ≤ ρ+ δ ≤ max{F (k)
k + 1 − δ : k > 0}.

The stock of non-renewable resource is exhausted in finite time.
(b.1) If the production function F is concave, then the optimal capital path

converges to zero.
(b.2) If the production function is convex-concave, the revenue function is

linear (i.e. the price is inelastic with respect to the demand) in a neighborhood
of the origin, the initial resource stock is large enough and F ′(kI) = +∞, then
the optimal capital stock converges to the high steady state ks.

(b.3) We drop the assumption that φ is linear in a neighborhood of the
origin. We maintain the conditions that the initial resource stock is large and
F ′(kI) = +∞. If the maximum of the revenue function R̂ is large and the
marginal productivity of capital at the origin F ′(0) is high enough,but less
than the sum of the social discount rate ρ nd the depreciation rate δ, then the
optimal capital stock converges to the high steady state ks.
(c) Low marginal productivity of capital

Assume φ′(0) < +∞ and F ′(k) < δ,∀k.
(c.1) There exists T such that k∗t = 0,∀t > T .
(c.2) The optimal capital path vanishes for any k0 small enough.
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(c.3) Assume that the revenue function is linear and the utility function
CRRA. Given k0, the optimal capital path vanishes when the initial resource
stock S is large.

We have then shown that exhaustible resources can, under certain circum-
stances among which the most important is a high marginal productivity of
capital at the origin compared with the social discount rate, allow a developing
economy to escape from the poverty trap. The initial abundance of the resource
and the value of the maximum marginal revenue that can be obtained by selling
abroad the resource extracted are also determining. If the initial resource stock
is large and if it is possible to extract a large amount of resource immediately, it
is possible to escape from the poverty trap even if the marginal productivity of
capital at the origin is intermediate. On the contrary, in the same case but with
a low marginal productivity of capital, the economy consumes first its resource
and then collapses when it it exhausted.

Finally, we prove, by using a tax/subsidy scheme for firms, that any optimal
path may be decentralized in a competitive equilibrium.
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