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1 Introduction

The issue of the relationship between agents beliefs and risk tolerances and the

existence of efficient allocations and equilibria has first been considered, in the

early seventies, by Grandmont [20], Green [21] ) and Hart [24] for markets with

short-selling in the context of temporary equilibrium models and assets equi-

librium models and reconsidered later by Hammond [22] and Page [33], [34].

In these early models, investors were assumed to have a single homogeneous or

heterogeneous probabilistic belief and be von Neumann-Morgenstern (vNM),

risk averse utility maximizers. Two sufficient conditions for existence of an

equilibrium were given:

- the overlapping expectations condition which expresses that investors are suf-

ficiently similar in their beliefs and risk tolerances so that there exists a non

empty set of prices (the no-arbitrage prices) for which no agent can make cost-

less unbounded vNM utility nondecreasing purchases (see Hammond [22], Page

[33], [34]),

-the no unbounded utility arbitrage condition, a condition of absence of collec-

tive arbitrage, which requires that investors do not engage in mutually compat-

ible, utility nondecreasing trades (see Hart [24], Page [34], Nielsen [32]).

These conditions were shown to be equivalent under adequate assumptions and

necessary for existence of equilibrium (see e.g. Page [34], Page and Wooders

[36]) under further assumptions.

The problem of existence of equilibria with consumption sets unbounded below

has been extended to abstract economies and the assumptions mentioned above

generalized (see Werner [41] and Nielsen [32]). For a review of the subject in

finite dimension, see Allouch et al [1], Dana et al [12], Page [33],[35]. The theory

has also been developped in infinite dimension (see Brown and Werner [8] and

Dana et al [13] for some of the difficulties encountered). Finally, since the early

work of Artzner et ali [2], for the last ten years, the problem of quantifying the

risk of a financial position has been very popular in finance (see Föllmer and

Schied [16] for an overview) and has led to the concept of convex measure of

risk. Risk sharing of an aggregate capital betwen different units or different

investors gives rise to problems of efficiency with shortselling in finite or infi-

nite dimension (see for example, Heath and Ku [25], Dana and Le Van [14] for

the finite dimension, Barrieu and El Karoui [4], Burgert and Rüschendorf [5],

Filipovic and Kupper [17], Filipovic and Svindland [18] and Jouini et al [26],

for the infinite dimension).

This paper reconsiders the equilibrium theory of assets with short-selling

when there is risk and ambiguity. The variational preferences axiomatized by

Maccheroni, Marinacci and Rustichini [29] (denoted MMR from now on) are
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used. Variational preferences nest many of the models developed to study

ambiguity in the decision theoretic, financial and economic literatures, in par-

ticular, the maxmin expected utility of Gilboa and Schmeidler [19], the penalty

preference functionals of Hansen and Sargent [23] and the convex measures of

risk introduced in mathematical finance. A risk averse variational preference

is characterized by a convex cost (penalty) function defined on the probability

simplex and a concave utility index that models risk-aversion. Up to a minus

sign, convex measures of risk correspond to a risk neutral agent with a zero

discount rate. Without loss of generality, attention may be restricted to the

probabilities with finite cost that we call the priors. To simplify as much as

possible the analysis, we assume complete markets and consider a standard

Arrow-Debreu model of state contingent claims.

The first contribution of the paper is the characterization, for MMR prefer-

ences, of all the basic concepts of the theory of equilibrium with short-selling,

the useful and useless trading directions, the no-arbitrage (weak no-arbitrage)

prices, the concepts of collective absence of arbitrage, in terms of sets of priors

which, in the financial tradition, we call the risk adjusted sets of priors. These

sets contain two types of information, the beliefs of the agents and the intensity

of their risk aversion. When an agent is risk neutral, her risk adjusted set of

priors equals her set of priors but in general, it strictly contains it. The more

ambiguous and the more risk averse the agent, the larger it is. The second con-

tribution of the paper is to provide under the no half-line (weak no half-line)

condition, necessary and sufficient conditions in terms of the risk adjusted set

of priors, for existence of efficient allocations or of equilibria. A necessary and

sufficient condition is that the intersection of the relative interiors of the risk

adjusted set of priors be non empty. It is equivalent to the inexistence of mutu-

ally compatible trades with non negative expectations with respect to any risk

adjusted prior, strictly positive for some agent and some prior. As a corollary,

we obtain that the more ambiguous and the more risk averse the agents and the

more likely is an equilibrium to exist. When the no half-line condition is not

fulfilled (for example some agent is an expected utlity maximizer with constant

marginal utilities at extreme levels of wealths), a set of necessary conditions for

existence of efficient allocations is provided as well as a set of sufficient condi-

tions.

The condition that the intersection of the relative interiors of the risk ad-

justed set of priors is non empty generalizes the conditions given in the early

seventies for single beliefs. An equilibrium does not exist if agents disagree

”very much”. This happens if for example some agents give no weight what-

ever prior they use to disjoint subsets of the states of the world. Agents must
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have sets of priors with overlapping supports, where by support, we mean a state

of the world which has a strictly positive probability for some prior. Unfortu-

nately, even when this condition is fulfilled, there may not be an equilibrium if

their sets of priors are too different. However when agents are very risk averse,

strong disagreement on expectations may be compatible with the existence of

an equilibrium.

The paper is organized as follows. Section 2 introduces variational prefer-

ences and standard concepts in equilibrium theory. Section 3 recalls and char-

acterizes for MMR agents, the concepts of useful and useless trading directions,

that of a no-arbitrage price (weak no-arbitrage price) and of collective absence

of arbitrage. Section 4 deals with existence of efficient allocations and equilib-

ria. Necessary and sufficient conditions are provided under the assumption of

no half-line (weak no half-line). When there is a half-line, sufficient conditions

as well as necessary conditions are provided. Some examples are given to show

that the existence of an equilibrium is unrelated to the intersection of agents’

priors being non empty. A section briefly discusses the relationship of this pa-

per with other papers on the characterization of efficiency in the presence of

risk and ambiguity. A last section provides all the proofs that are not given in

the main part of the paper.

2 Variational preferences

2.1 M.M.R. preferences

We consider a standard Arrow-Debreu model of complete contingent security

markets. There are two dates, 0 and 1. At date 0, there is uncertainty about

which state s from a state space Ω = {1, ..., k} will occur at date 1. At date

0, agents who are uncertain about their future endowments trade contingent

claims for date 1. The space of contingent claims is the set of random variables

from Ω → R. The random variable X which equals x1 in state 1, x2 in state

2 and xk in state k, is identified with the vector in X ∈ R
k, X = (x1, . . . , xk).

Let △ = {π ∈ R
k
+ :

∑k
s=1 πs = 1} be the probability simplex in R

k. For a

given π ∈ △, we denote by Eπ(X) :=
∑k

l=1 πlxl the expectation of X. Two

probabilities π and q such that π is absolutely continuous with respect to q are

denoted by π ≪ q, two equivalent probabilities p and π will be denoted by p ≃ π.

For π ∈ P, Iπ = {s | πs > 0}. We denote by int△ = {p ∈ △ | ps > 0 for all s}

and for A ⊆ △, intA = {p ∈ A | ∃ a ball B(p, ε) s.t. B(p, ε) ∩ int △ ⊆ A}.

Finally, for a given price p ∈ R
k, p ·X :=

∑k
l=1 plxl, the price of X.

There arem agents indexed by i = 1, . . . ,m. Agent i has an endowment Ei ∈ R
k

of contingent claims. We denote by (Ei)mi=1 the m-tuple of endowments and

by E =
∑m

i=1E
i aggregate endowment. We assume that each agent has a
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preference order � over R
k represented by a utility function V which verify:

there exists a concave, strictly increasing differentiable utility index u : R → R

and a convex lower semi-continuous function c : △ → [0,∞] such that the

utility V : R
k → R is given by

V (X) = min
π∈△

Eπ(u(X)) + c(π) (1)

Utilities of type (1) have been axiomatized by Maccheroni, Marinacci and Rus-

ticchini [29] andy capture risk and uncertainty. Risk aversion is modelled by u

being concave and V1 is more risk averse than V2 if u1 is more risk averse than

u2. From Arrow-Pratt’s theorem, u1 is more risk averse than u2 if and only

if u1 = ψ ◦ u2 for some ψ concave increasing. According to Maccheroni et al

[29], �1 is more ambiguity averse than �2 if and only if u1 = au2 + b for some

a > 0, b ∈ R and c1 ≤ c2 provided u1 = u2. Hence c is an index of ambiguity

aversion.

Variational preferences nest many of the models developed to study ambi-

guity in the decision theoretic, financial and economic literatures, in particular:

• the maxmin expected utility of Gilboa and Schmeidler [19]

V (X) = min
π∈P

Eπ(u(X)) (2)

which is obtained for c = δP , an indicator function of a convex compact

subset P of △ (c(π) = 0 if π ∈ P and c(π) = ∞ otherwise),

• the multiplier utility used by Hansen and Sargent [23] where

c(π | p) =

{
θ

∑
s πs log πs

ps
if π ≪ p

= ∞ otherwise

θ > 0 is a parameter of ambiguity aversion and the cost function π →∑
s πs log πs

ps
is the relative entropy between the probabilities π and p.

Utilities of type (1) also include the monetary utility functions which fulfill (1)

with u(x) = x. The opposite of a monetary utility function is a convex measure

of risk. Monetary utilities with cost function c = δP , the indicator function of

a convex compact subset P of △, V (X) = min
π∈P

Eπ(X) correspond to coherent

measures of risk and will be now on be called coherent monetary utilities.

Let P = dom c = {π : c(π) < +∞} be the set of effective priors. Then

V (X) = min
P
Eπ(u(X)) + c(π) (3)

For a fixed u, the more ambiguity aversion, the smaller c and the larger is P .
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3 Useful vectors, no-arbitrage and no-half line con-

cepts

In this section, we recall the concepts of useful and useless trading directions

and characterize the useful (useless) trading directions for a utility of type (3).

We then turn to the concepts of no-arbitrage prices and weak no-arbitrage

prices, as well as concepts of collective absence of arbitrage. We finally define

the no-half line condition.

3.1 Useful vectors

Let V be a utility of type (3). For X ∈ R
k, let

P̂ (X) = {Y ∈ R
k | V (Y ) ≥ V (X)}

be the set of contingent claims preferred to X and let R(X) be its asymptotic

cone (see Rockafellar [39], section 8). Since V is concave, by Rockafellar’s

theorem 8.7 in [39], R(X) is independent of X and called the set of useful

vectors for V . It will be denoted by R. We recall that

R = {W ∈ R
k | V (λW ) ≥ V (0), for all λ ≥ 0}.

The lineality space of V or set of useless vectors is defined by

L = {W ∈ R
k |V (λW ) ≥ V (0), for all λ ∈ R} = R ∩ (−R).

Using the concavity of V , we also have:

L = {W ∈ R
k |V (λW ) = V (0), for all λ ∈ R}.

Let us first consider the risk neutral case. For a > 0 and c : △ → [0,∞], let

V (X) = min
P
aEπ(X) + c(π), a > 0 (4)

The following proposition characterizes the set of useful vectors and the lineality

space for the risk neutral case. The proof may be found in Dana and Le Van

[14].

Proposition 1 Let V fulfill (4). We then have

R = {W ∈ R
k | Eπ(W ) ≥ 0, for all π ∈ P}

L = {W ∈ R
k | Eπ(W ) = 0, for all π ∈ P}

L = {0} if and only there exists π ∈ int P .
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It follows from proposition 1 that if the closure of P equals △, then R = R
k
+.

This is the case when the cost function is finite for probabilities absolutely con-

tinuous with respect to a strictly positive probability (entropy or Gini index ).

Let us next consider the risk averse case. We first show that V is the

minimum of a family of affine combinations of linear expectations over a set of

priors P̃ which is larger than P . Indeed, since u is concave and differentiable,

u(x) = min
z∈R

{u′(z)x + u(z) − u′(z)z}. (5)

We may therefore characterize V as follows.

Lemma 1 Let V fulfill (3) and u be non linear. For any X ∈ R
k, we have

V (X) = min
η

{
(Eπu

′(Z))

{
∑

s

πsu
′(zs)

Eπu′(Z)
xs +

γ(η)

Eπu′(Z)

}}
(6)

where η = (π,Z) ∈ P × R
k and γ(η) = Eπu(Z) − Eπ(u′(Z)Z) + c(π).

The above representation leads us to introduce a new set of priors which, in the

financial tradition, we call the risk adjusted set of priors,

P̃ =

{
p ∈ △ | ∃ π ∈ P, Z ∈ R

k s. t. ps =
πsu

′(zs)

Eπu′(Z)
, ∀ s = 1, . . . , k

}
(7)

Next proposition states some of the properties of P̃ . We use the following

notations. Let a = u
′

(+∞) and b = u
′

(−∞) be the asymptotic slopes of u and

t = a
b

be their ratio. Note that t = 0 if and only if a = 0 or b = +∞ while t = 1

if and only if the agent is risk neutral. For an expected utility maximizer, it

follows from Arrow-Pratt’s theorem that t is a measure of risk tolerance: the

more risk averse the agent and the smaller is t.

Proposition 2 1. P ⊆ P̃ . P̃ = P when the agent is risk neutral (t = 1),

when P =int△ or P = △.

2. The set P̃ is convex.

3. If t = 0, then P̃ = {p ∈ △ | ∃π ∈ P, π ≃ p}. If moreover, P∩int △ 6= ∅,

then int △ ⊆ P̃ .

4. The more ambiguous and more risk averse the agent and the larger is P̃ .

We may now characterize the useful vectors of an agent with a utility of

type (3). Assertion 1 of the next proposition says that the set of useful vectors

of a risk averse agent with a variational utility and set of priors P is the set
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of useful vectors of a risk-neutral agent with a variational utility and set of

priors P̃ . In particular, the set of useful vectors of a risk averse expected utility

maximizer is the set of useful vectors of a risk neutral ambiguous agent with

set of priors, the risk adjusted probabilitys of the prior. Next proposition is an

important step in the characterization of concepts of absence of arbitrage for

MMR utilities.

Proposition 3 Let V fulfill (3) with t < 1. Then

1. R = {W ∈ R
k | Ep(W ) ≥ 0, for all p ∈ P̃}

2. If t = 0 and P∩ int△ 6= ∅ or if P̄ = △, then R = R
k
+.

3. L = {W ∈ R
k | Ep(W ) = 0, for all p ∈ P̃}. L = {0} iff int P̃ 6= ∅.

It follows from propositions 2 and 3 that for a utility of type (3) the more

ambiguous and the more risk averse the agent, the larger is P̃ , the smaller are

the sets of useful and useless vectors.

Remark 1 One can show (see Appendix) that the condition

Ep(W ) ≥ 0, for all p ∈ P̃ (8)

is equivalent to tEπ(W+) − Eπ(W−) ≥ 0, for all π ∈ P. (9)

where (W+)l = wl if xl ≥ 0 and (W−)l = −wl if wl ≤ 0. When P is a singleton,

(9) is the incomplete mean condition given by Bertsekas [6] and Hart [24].

3.2 No arbitrage prices

The second concept that we recall is that of a no-arbitrage price, a price for

which no agent can make costless unbounded utility nondecreasing purchases.

Definition 1 A price vector p ∈ R
k is a ” no-arbitrage price” for agent i if

p ·W > 0, for all W ∈ Ri\{0}. A price vector p ∈ R
k is a ” no-arbitrage price”

for the economy if it is a no-arbitrage price for each agent.

For A ⊆ R
d, we denote A0 the polar of A where we recall that A0 = {p ∈

R
d | p · A ≤ 0, for all X ∈ A}.

Let Si denote the set of non arbitrage prices for i. Then Si = −int(Ri)0.

A price vector p ∈ R
k is a ” no-arbitrage price” for the economy if and only if

p ∈ ∩iS
i = −∩iint(Ri)0. From Proposition 3, we may characterize the set of

no-arbitrage prices for agent i and for the economy. A no-arbitrage normalized

price for i is a strictly positive risk adjusted probability in P̃ i that fulfills (10)

below. A no-arbitrage normalized price for the economy is a strictly positive

common risk adjusted probability that fulfills (10) for each i.
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Proposition 4 Let V i fulfill (3) for each i. Then

1. the set of no-arbitrage prices for agent i is Si = cone int P̃ i.

2. If ti < 1, p ∈ int P̃ i if and only if

∃ π ∈ P i ∩ int △, Z ∈ R
k, ∀s, a < u′(zs) < b and ps =

πsu
′(zs)

Eπu′(Z)
. (10)

Hence Si 6= ∅ if and only if P i ∩ int△ 6= ∅.

If ti = 1, then Si 6= ∅ if and only if, int P i 6= ∅

3. The set of no-arbitrage prices for the economy is ∩
i
Si = cone ∩

i
int P̃ i.

4. Let I1 = {i | ti < 1} and I2 = {i | ti = 1}. Then ∩
i
Si 6= ∅ if and only

if, for any i ∈ I1, there exists πi ∈ P i∩ int △, Zi ∈ R
k with ui′(+∞) <

ui′(zi
s) < ui′(−∞) for all s and π ∈ ∩i∈I2int P i such that, for all i ∈

I1, j ∈ I1, s = 1, . . . , k,

πi
su

i′(zi
s)

Eπiui′(Zi)
=

π
j
su

j ′(zj
s)

Eπjuj ′(Zj)
= πs

Let us give a few simple sufficient conditions that insure the non-emptiness

of the set of no-arbitrage prices for the economy. A first condition is that agents

have an ”open” set of priors in common, a second is that all agents have some

prior (not necessarely common) that gives positive weight to each state of the

world and are infinitely risk averse.

Corollary 1 1. If ∩iint Pi 6= ∅, then ∩iS
i 6= ∅.

2. If ti = 0 and P i ∩ int∆ 6= ∅ for all i, then ∩iS
i =int R

k
+.

From proposition 4 assertion 2, if ti < 1, P i ∩ int△ 6= ∅ is a necessary and

sufficient for the non-emptiness of intP̃ i. When this condition is not satisfied,

there are states of the world that agent i considers as totally unlikely : P i and

P̃ i are in a facet of △ that we next define.

Lemma 2 Let P∩ int △ = ∅, then {l | πl = 0, for all π ∈ P} 6= ∅.

The set {l | πl = 0, for all π ∈ P} is the set of states of the world which are

irrelevant for the agent. None of her prior gives positive weight to those states.

Lemma 2 characterizes its non-emptyness. Let GP be its complement, |GP | be

its cardinal and

△GP
= {π ∈ △ |

∑

s∈GP

πs = 1} (11)

be the set of probabilities with support in GP . If P∩ int △ = ∅, by definition of

GP , P ⊆ △GP
and P̃ being absolutely continuous with respect to P, P̃ ⊆ △GP

.
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From proposition 4, Si 6= ∅ if and only if int P̃ i 6= ∅ or equivalently if and

only if Li = {0}. If P i ⊆ △G
Pi

, then Li = {X ∈ R
k, | xl = 0, for all l ∈ GP i}

and is therefore non empty. This leads us to introduce a weaker no-arbitrage

price concept due to Werner [41].

Definition 2 A price vector p ∈ R
k is a ” weak no-arbitrage price” for agent

i if p ·W > 0 for all W ∈ Ri\ Li. A price vector p ∈ R
k is a ”weak no-arbitrage

price” for the economy if it is a weak no-arbitrage price for each agent.

If p is a weak no-arbitrage price for i, then for every W ∈ Ri∩(Li)⊥\{0} and

W ′ ∈ Li, αW +βW ′ ∈ Ri\Li for every α > 0, β ∈ R. Hence p · (αW +βW ′) =

αp ·W + βp ·W ′ > 0 for every α > 0, β ∈ R. Therefore p ·W ′ = 0 for any

W ′ ∈ Li. In other words a ”weak no-arbitrage price” for i gives 0 value to any

useless trade for i. Let Si
w denote the set of weak no arbitrage prices for i. We

have the following characterization of Si
w where for a convex subset A ⊆ R

p,

the relative interior of A, ri A, is the interior which results when A is regarded

as a subset of its affine hull affA. Let I1 = {i | ti < 1}, I2 = {i | ti = 1} be

respectively the set of risk averse and risk neutral agents.

Proposition 5 Let V i fulfill (3) for each i. Then

1. Si
w = −ri(Ri)0 = cone ri P̃ i.

2. If ti < 1, p ∈ riP̃ i if and only if there exists πi ∈ P i with πi
s > 0 for

s ∈ GP i , πi
s = 0 for s 6∈ GP i

Zi ∈ R
|G

Pi |,∀s ∈ GP i , ai < ui′(zi
s) < bi, ps =

πsu
i′(zi

s)

Eπu
i′(Zi)

(12)

3. The set of weak no arbitrage prices for the economy is ∩iS
i
w = −∩iri(Ri)0 =

cone ∩i ri P̃ i.

4. ∩iS
i
w 6= ∅ if and only if GP i is independent of i (GP i := G) and for

i ∈ I1, there exists πi ∈ P i with πi
s > 0 for s ∈ G, πi

s = 0, for s 6∈ G, Zi ∈

R
|G| with ui′(+∞) < ui′(zi

s) < ui′(−∞), for all s ∈ G and π ∈ ∩i∈I2ri

P i, πs > 0 for s ∈ G such that, for all (i, j) ∈ (I1)
2, s ∈ G

πi
su

i′(zi
s)

Eπiui′(Zi)
=

π
j
su

j ′(zj
s)

Eπjuj ′(Zj)
= πs

From proposition 5, a necessary condition for existence of weak no-arbitrage

prices is that agents agree on the irrelevant states of the world, those which have

no weight whatever prior they use.

Let us give simple sufficient conditions that insure the non-emptiness of the

set of weak no-arbitrage prices for the economy.
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Corollary 2 1. If ∩iri P i 6= ∅, then ∩iS
i
w 6= ∅.

2. Let GP i = G for all i. If ti = 0 and P i ∩ ri△G 6= ∅ for all i, then

∩iS
i
w =cone ri△G.

It follows from propositions 4 and 5 that when agents have utilities of type

(3), the more risk averse and the more uncertainty averse are the agents, the

larger are the sets of no-arbitrage and weak no-arbitrage prices.

3.3 Collective absence of arbitrage

We now turn to concepts of collective absence of arbitrage. From now on, a

feasible trade is anm−tupleW 1, . . . ,Wm withW i ∈ R
k for all i and

∑
iW

i = 0.

Let us recall the no-unbounded-arbitrage condition (NUBA) introduced by

Page [34] which requires inexistence of unbounded feasible trades which are

utility nondecreasing and the Weak No-Market-Arbitrage condition (WNMA),

introduced by Hart [24] which requires that feasible trades which are utility

nondecreasing be useless.

Definition 3 1. The economy satisfies the NUBA condition if
∑

iW
i = 0

and W i ∈ Ri for all i, implies W i = 0 for all i.

2. The economy satisfies WNMA if
∑

iW
i = 0 and W i ∈ Ri for all i implies

W i ∈ Li, for all i.

From proposition 3, we may now characterize the NUBA and WNMA condi-

tions.

Corollary 3 1. NUBA is equivalent to: there exists no feasible trade W 1, . . . ,Wm

with W i 6= 0 for some i that fulfills Eπ(W i) ≥ 0 for all i and π ∈ P̃ i.

2. WNMA condition is equivalent to : there exists no feasible trade W 1, . . . ,Wm

that fulfills Eπ(W i) ≥ 0 for all π ∈ P̃ i and for all i with a strict inequality

for some i and π ∈ P̃ i.

In the risk neutral case, the concepts introduced in this section ((weak) non

arbitrage price for an agent and for an economy, the NUBA and WNMA con-

ditions) take a simpler form that may be obtained by taking P i = P̃ i for all i

in propositions 4 and 5 and corollary 3.

3.4 The no-half line condition

Definition 4 Let V fulfill (3). A trade W ∈ R
k\{0} is a half-line if there

exists X ∈ R
k such that V (X + λW ) = V (X) for all λ ≥ 0.
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Obviously, if V has no-half line, then it may not have a useless vector. The

next lemma characterizes then no-half line condition in the case of a risk averse

expected utility maximizer and of a risk neutral MMR agent. Sufficient condi-

tions are provided for a risk averse MMR utility to have no-half lines as well as

necessary conditions. We use the following notation: for a given X ∈ R
k, let

P (X) = {π ∈ P | V (X) = Eπ(u(X)) + c(π)}

be the set of minimizing probabilities at X.

Lemma 3 1. Let V fulfill (4). Then V has no-half line if and only if

P (X) ⊆intP for any X ∈ R
k.

2. Let V fulfill (3). Assume that P (X) ⊆int△ for any X ∈ R
k and that

a < u′(x) for all x or u′(x) < b for all x (no risk neutrality at infinity).

Then V has no-half line.

3. If V has no-half line, then P (X) ⊆int△ for any X ∈ R
k. If V fulfills (2)

and has no-half line, then P ⊆int△.

4. Let V (X) = Eπ(u(X)). Then V has no-half line if and only if π ∈int△

and a < u′(x) for all x or u′(x) < b for all x.

When there is no risk aversion, the no half-line condition for MMR utilities

is fulfilled for example in the case of entropy but it is not fulfilled for utilities of

the type V (X) = minπ∈P Eπ(X), P convex compact since the minimizing prob-

abilities are at the boundary of P . When there is risk aversion, the no half-line

condition is fulfilled for Gilboa-Schmeidler’s utilities, V (X) = minπ∈P E((u(X))

if P ⊆int△ and if the agent is not risk neutral at infinity. For the multiplier

utility with risk aversion, it is fulfilled if the agent is not risk neutral at infinity.

Strictly concave utilities have no half-lines. The strict concavity of V is char-

acterized in lemma 7 in the appendix.

From lemma 3, the no half-line condition implies that P i∩int△ 6= ∅ for all

i. We now consider a weaker condition.

Definition 5 Let V fulfill (3) or (4) . A trade W ∈ R
k is a weak half-line if it

is a half-line and it does not belong to L.

As in lemma 3, we obtain:

Lemma 4 1. Let V fulfill (4). Then V has no weak half line if and only if

P (X) ⊆riP for any X ∈ R
k.

2. Let V fulfill (3). Assume that a < u′(x) for all x or u′(x) < b for all x

(no risk neutrality at infinity) and P (X) ⊆ ri△GP
for any X. Then V

has no weak half line.
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4 Existence of efficient allocations and equilibria

4.1 Concepts in equilibrium theory

Let us recall standard concepts in equilibrium theory.

Given (Ei)mi=1, an allocation (Xi)mi=1 ∈ (Rk)m is attainable if
∑m

i=1X
i = E.

The set of individually rational attainable allocations A((Ei)mi=1) is defined by

A((Ei)mi=1) =

{
(Xi)mi=1 ∈ (Rk)m |

m∑

i=1

Xi = E and V i(Xi) ≥ V i(Ei), ∀ i

}
.

The individually rational utility set U((Ei)mi=1) is defined by

U((Ei)mi=1) =
{
(v1, v2, ..., vm) ∈ R

m | ∃X ∈ A((Ei)mi=1) s. t. V i(Ei) ≤ vi ≤ V i(Xi), ∀ i
}
.

Definition 6 Given (Ei)mi=1, an attainable allocation (Xi)mi=1 is efficient (or

Pareto optimal) if there does not exist (X ′i)mi=1 attainable such that Vi(X
′
i) ≥

Vi(Xi) for all i with a strict inequality for some i. It is individually rational

efficient if it is efficient and V i(Xi) ≥ V i(Ei) for all i.

Definition 7 A pair (X∗, p∗) ∈ A((Ei)mi=1) × R
k\{0} is a contingent Arrow-

Debreu equilibrium if

1. for each agent i and Xi ∈ R
k, V i(Xi) > V (Xi∗) implies p∗ ·Xi > p∗ ·Xi∗,

2. for each agent i, p∗ ·Xi∗ = p∗ · Ei.

4.2 Necessary and sufficient conditions

We first characterize the existence of efficient allocations and of equilibria under

the condition that the utilities do not contain half-lines (or weak half-lines).

They follow from theorem 1 and 2 in the appendix and propositions 3 4 and 5.

Let I1 = {i | ti < 1} be the set of risk averse agents and I2 = {i | ti = 1} the

set of risk neutral agents.

Proposition 6 Let V i fulfill (3). Then the following assertions are equivalent:

1. ∩
i
int P̃ i 6= ∅ with P̃ i = P i for any i ∈ I2,

2. For any i ∈ I1, there exist πi ∈ P i∩ int △, and Zi ∈ R
k with ai <

ui′(zi
s) < bi for all sand π ∈ ∩i∈I2int P i such that for all i ∈ I1, j ∈

I1, s = 1, . . . , k, we have

πi
su

i′(zi
s)

Eπiui′(Zi)
=

π
j
su

j ′(zj
s)

Eπjuj ′(Zj)
= πs
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3. there exists no feasible trade W 1, . . . ,Wm with W i 6= 0 for some i and

Eπ(W i) ≥ 0 for all π ∈ P̃ i and for all i.

Any of the above assertions implies any of the following assertion:

4. there exists an individually rational efficient allocation for any distribution

of initial endowments,

5. there exists an equilibrium for any distribution of initial endowments.

If furthermore V i has no half-line for all i, all these assertions are equivalent

and any equilibrium price is a no-arbitrage price.

We now assume that P i∩int△ = ∅ for some i. From section 3.2, Gc
P i = {l |

πl = 0, for all π ∈ P i} 6= ∅ and Li = {X ∈ R
k | xs = 0, for all s ∈ GP i}. Next

proposition follows from theorem 2 in the appendix and section 3.

Proposition 7 Let V i fulfill (3). The following assertions are equivalent:

1. ∩iri(P̃ i) 6= ∅ with P̃ i = P i for any i ∈ I2,

2. GP i = G and for i ∈ I1, there exists πi ∈ P i∩ ri△GP
, Zi ∈ R

|G| with

ui′(+∞) < ui′(zi
s) < ui′(−∞), for all s ∈ G and π ∈ ∩i∈I2ri P i such that,

for all (i, j) ∈ (I1)
2, s ∈ G

πi
su

i′(zi
s)

Eπiui′(Zi)
=

π
j
su

j ′(zj
s)

Eπjuj ′(Zj)
= πs

3. there exists no feasible trade W 1, . . . ,Wm fulfilling Eπ(W i) ≥ 0 for all

π ∈ P̃ i and for all i with a strict inequality for some i and π ∈ P̃ i.

Any of the above conditions implies that

4. there exists an individually rational efficient allocation for any distribution

of initial endowments,

5. there exists an equilibrium for any distribution of initial endowments.

If furthermore V i has no weak half-line for all i, all these assertions are equiv-

alent and any equilibrium price is a weak no-arbitrage price.

Remark 2 Under the hypotheses of proposition 7, if there exists an equilibrium

for some distribution of initial endowments, then there exists an equilibrium for

any distribution of initial endowments. Indeed as the equilibrium price is a weak

no-arbitrage price, assertion 1 of proposition 7 is fulfilled.
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Proposition 7 may in particular be applied to the case of risk neutral agents

where P̃ i = P i for all i. Restricting attention to statements 1, 3, 4, 5 and assum-

ing furthermore that utilities have no weak half-line for all agents, we obtain

a strengthened version of theorem 1 in Dana and Le Van [14]. It follows from

propositions 6 and 7 that if agents have utilities of type (3), the more risk averse

and the more uncertainty averse are the agents, the more likely are efficient al-

locations to exist.

4.3 Necessary conditions for existence of efficient allocations

This subsection is of interest only if V i has a weak half-line for some i. We give

necessary conditions for existence of an efficient allocations or of an equilibrium

for some aggregate endowment E.

Proposition 8 Let V i fulfill (3 ) for each i. If there exists an efficient alloca-

tion for some distributions of endowments (Ei)mi=1, then

1. ∩
i
P̃ i 6= ∅,

2. there exist no feasible trade W 1, . . . , W n fulfilling Eπ(W i) > 0, ∀π ∈ P̃ i,

3. For any distribution of endowments (Ei)mi=1, the individually rational util-

ity set U((Ei)mi=1) is bounded.

4.4 Some examples

The purpose of this subsection is double. Since the necessary and sufficient

conditions that we provided for existence of efficient allocations in propositions

6 and 7 were expressed in terms of the risk adjusted sets of priors, our first

purpose is to provide sufficient conditions for existence of efficient allocations

in terms of priors and utility indices. Our second purpose is to show that the

assumption of a common prior is neither sufficient nor necessary for existence

of efficient allocations.

Corollary 4 Assume that V i fulfills (3) for all i and that ∩
i
ri P i 6= ∅. Then

there exists efficient allocations. In particular, if P i is independent of i, there

exists equilibria for any distribution of endowments (Ei)mi=1.

The first assertion follows from corollary 2, the second from the fact that any

convex set has non empty relative interior.

In the previous corollary, we assumed existence of a common prior. The

next proposition shows that if agents are all infinitely risk averse a common

prior is nor sufficient nor necessary for existence of efficient allocations.
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Proposition 9 Assume that V i fulfills (3) with ti = 0 for all i.

1. Assume that P i ∩ int△ 6= ∅ for all i. Then ∩
i

int P̃ i =int△ and there

exists equilibria for any distribution of endowments (Ei)mi=1.

2. Let GP i be independent of i and G = GP i . Assume that P i ∩ ri△G 6= ∅

for all i. Then there exist equilibria for any distribution of endowments.

The previous proposition applies in particular to the case of agents with single

heterogeneous beliefs.

Corollary 5 Let V i fulfill (3) with ti = 0 and P i = {πi} with πi ∈ int△ for

all i and πi 6= πj for all (i, j) Then ∩
i

int P̃ i =int△ and there exists equilibria

for any distribution of endowments (Ei)mi=1.

5 Link with the literature

We end the paper by comparing our existence results for markets with short-

selling and the characterization of efficient allocations for given aggregate en-

dowments that one can obtain without referring to the literature on equilibrium

with shortselling. Let P be a set of prior, X ∈ R
k and let

P̃ (X) =

{
p ∈ △ | ∃ π ∈ P (X), s. t. ps =

πsu
′(xs)

Eπu′(X)
, ∀ s = 1, . . . , k

}
(13)

be the set of risk adjusted probabilities of the set of minimizing probabities at

X. We may then state:

Proposition 10 Let V i fulfill (3) for all i be given. The allocation (X̄i)mi=1 is

efficient for some aggregate endowment E ∈ R
k if any of the equivalent following

conditions are fulfilled:

1. ∩
i
P̃ i(X̄i) 6= ∅,

2. there exists no feasible trade (W i)mi=1 such that EπW
i > 0 for all π ∈

P̃ i(X̄i) and all i.

Let us first remark that the above characterization was used in proposi-

tion 8 to give necessary condition for existence of efficient allocations for any

distribution of endowments.

Let us next compare assertion 1 of proposition 10 with assertion 2 of propo-

sitions 6 or 7. In proposition 10, the common risk adjusted probability is

minimizing at X̄i for each i. If V i has no half-line and is risk neutral, from

lemma 3 assertion 1, the minimizing probabilities are in int P while if the agent

is risk averse, from assertion 3, they are in int△. In assertion 2 of proposition 6,
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πi ∈intP if the agent is risk neutral and πi ∈int△ if the agent is risk averse but

πi need not be a minimizing probability at Zi. Hence if agents utilities have no

half line, the condition ∩
i
P̃ i(X̄i) 6= ∅ implies that the intersections of the inte-

riors of the risk adjusted priors is non empty and the existence of an allocation

for any distribution of endowments. When utilities have half-lines, assertion 2

of proposition 6 and assertion 1 of proposition 10 are both sufficient conditions

but assertion 1 of proposition 10 depends on (X̄i)mi=1 which is unknown.

The conditions of proposition 10 also characterizes efficiency of interior al-

locations when the set of assets is bounded below (consumption models) and

have been used already in a large number of papers including Billot et ali [7],

Dana [11], [11], Epstein and Wang [15], Kajii and Ui [28], Rigotti and Shannon

[37] and Rigotti et ali [38]. When the set of assets is R
k
+, the issue of existence

of equilibrium is a trivial matter. In infinite dimension, existence of efficient

allocations when the set of assets is bounded below is easier to obtain than

existence of equilibria. For a general discussion, see Mas-collel and Zame[31],

for the MEU case, see Dana [11] and Rigotti et ali [38].

The equivalence between the two conditions of proposition 10 and possible

generalizations are also proven in papers on the no-trade: Samet [40], Kajii and

Ui [27], Man-Chung Ng [30].

6 Proofs

6.1 Proof of lemma 1

For any η = (π,Z), let γ(η) = Eπu(Z) − Eπ(u′(Z)Z) + c(π). We then have

(Eπu
′(Z))

{
∑

s

πsu
′(zs)

Eπu′(Z)
xs +

γ(η)

Eπu′(Z)

}
=

∑

s

πsu
′(zs)xs + γ(π,Z)

≥ min
π

{
min

Z

{
∑

s

πsu
′(zs)xs + γ(π,Z)

}}

= min
π

{
∑

s

πsu(xs) + c(π)

}
= V (X)

where the last equality follows from (5). Hence

min
η

{
(Eπu

′(Z))

{
∑

s

πsu
′(zs)

Eπu′(Z)
xs +

γ(η)

Eπu′(Z)

}}
≥ V (X)

Conversely, by definition of γ, we have for any π ∈ P

∑

s

πsu(xs) + c(π) =
∑

s

πsu
′(xs)xs + γ(π,X)

≥ min
(π,Z)

∑

s

πsu
′(zs)xs + γ(π,Z)

17

ha
ls

hs
-0

04
70

67
0,

 v
er

si
on

 1
 - 

7 
Ap

r 2
01

0



hence,

V (X) ≥ min
(π,Z)

∑

s

πsu
′(zs)xs+γ(π,Z) = min

η

{
(Eπu

′(Z))

{
∑

s

πsu
′(zs)

Eπu′(Z)
xs +

γ(η)

Eπu′(Z)

}}

proving lemma 1.

6.2 Proof of proposition 2

To prove that P ⊆ P̃ , it suffices to take Z constant in (7).

To prove assertion 2, let

Q̃ =
{
λ(πsu

′(zs))s ; λ ≥ 0, π ∈ P,Z ∈ R
k
}

be the cone generated by P̃ . Since P̃ = Q̃ ∩ △, it suffices to prove that Q̃ is

convex. To this end, let λ(πsu
′(zs))s ∈ Q̃, λ′(π′s(u

′(z′s))s ∈ Q̃ and α ∈ (0, 1).

Then for any s,

(αλπs + (1 − α)λ′π′s)u
′(+∞) ≤ αλπsu

′(zs) + (1 − α)λ′π′su
′(z′s)

≤ (αλπs + (1 − α)λ′π′s)u
′(−∞).

Hence, there exists ζs which satisfies

(αλπs + (1 − α)λ′π′s)u
′(ζs) = αλπsu

′(zs) + (1 − α)λ′π′su
′(z′s).

Define ν = αλπ+(1−α)λ′π′

αλ+(1−α)λ′
. Then, ν ∈ P and for any s,

αλπsu
′(zs) + (1 − α)λ′π′su

′(z′s) = (αλ+ (1 − α)λ′)νsu
′(ζs).

proving the convexity of Q̃.

To prove assertion 3, from its definition P̃ ⊆ {p ∈ △ | ∃π ∈ P, π ≃ p}. If

u′(∞) = 0 or u′(−∞) = +∞, then for any p ≃ π with π ∈ P , there exists λ > 0

such that

u′(∞) < λ
ps

πs

< u′(−∞)

and thus, there exists Z ∈ R
k such that, for all s ∈ Iπ, ps

πs
= u′(zs)

Eπu′(Z) , hence

P̃ = {p ∈ △ | ∃π ∈ P, π ≃ p}. If there exists π ∈ P∩ int △, then P̃ contains

int △ the set of strictly positive probabilities which are equivalent to π.

To prove the last assertion, clearly the more ambiguous the agent, the larger is

P and hence the larger is P̃ . Let us show that the more risk averse the agent,

the larger is P̃ . Indeed, if v is more risk averse than u, then from Arrow’s Pratt

theorem, v = ψ ◦ u with ψ concave. Let P̃u and P̃v be the sets of risk adjusted

priors associated to u and v. Assume that p ∈ P̃u. Then there exists π and

Z ∈ R
k such that, for all s ∈ Iπ,

u′(+∞) ≤
ps

πs
Eπu

′(Z) ≤ u′(−∞) (14)
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If v′(+∞) = 0 or if v′(−∞) = ∞, then from assertion 2,

P̃v = {p ∈ △ | ∃π ∈ P, π ≃ p}, hence p ∈ P̃v. Let us therefore assume that

0 < v′(+∞) < v′(−∞) <∞. We first obtain from (14) that

1 ≤
ps

πs

Eπu
′(Z)

u′(+∞)
≤
u′(−∞)

u′(+∞)

Since 0 < v′(+∞) and v′(+∞) = u′(+∞)ψ′(u(+∞)), we have u′(+∞) > 0 and

ψ′u((+∞)) > 0, therefore

v′(−∞)

v′(+∞)
=
ψ′(u(−∞))

ψ′(u(+∞))

u′(−∞)

u′(+∞)
>
u′(−∞)

u′(+∞)

since ψ is concave but not linear on u(R). Hence

1 ≤
ps

πs

Eπu
′(Z)

u′(+∞)
<
v′(−∞)

v′(+∞)

Let λ = v′(+∞)Eπu′(Z)
u′(+∞) , we obtain that

v′(+∞) < λ
ps

πs
< v′(−∞)

and thus, there exists Z ′ ∈ R
k such that, for all s ∈ Iπ, ps

πs
= v′(z′s)

Eπv′(Z′) which

proves that p ∈ P̃v.

6.3 Proof of proposition 3

We first prove assertion 1. From (6), if W is a useful vector, then for any (π,Z)

and any λ > 0, we have:

(Eπu
′(Z))

{
∑

s

(
πsu

′(zs)

Eπu′(Z)
(λws)

)
+

γ(π,Z)

Eπu′(Z)

}
≥ V (0).

Dividing by λ and letting λ go to +∞, we obtain:

∑

s

πsu
′(zs)

Eπu′(Z)
ws ≥ 0, ∀(π,Z)

Conversely, if
∑

s
πsu′(zs)
Eπu′(Z)ws ≥ 0, ∀(π,Z), then for any λ > 0,

(Eπu
′(Z))

{
∑

s

(
λwsπsu

′(zs)

Eπu′(Z)

)
+

γ(π,Z)

Eπu′(Z)

}
≥ γ(π,Z)

and hence V (λW ) ≥ V (0), ∀λ ≥ 0 and W is useful. Assertion 2 follows from

assertion 3 of proposition 2. Assertion 3 is obvious.
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6.4 Proof of remark 1

(8) is equivalent to
∑

l πlu
′

(xl)wl ≥ 0 for every X ∈ R
k and π ∈ P . Letting xl

go to +∞ for any l such that wl ≥ 0 and xl go to −∞ ∀ l such that wl < 0 and

dividing by b, we obtain (9). Conversely, since, for any X ∈ R
k and π ∈ P ,

b

E(u′(X))

∑

l

πlu
′

(xl)wl ≥
b

E(u′(X))




∑

{l | wl≥0}

πltwl +
∑

{l | wl<0}

πlwl




(9) implies (8).

6.5 Proof of proposition 4

In order to determine no-arbitrage prices and prove proposition 4, we need to

characterize int P̃ . In the case t = 1, we have intP̃=int P . In the next lemma,

we characterize intP̃ in the case t < 1.

Lemma 5 Let V fulfill (3) with t < 1. Then p ∈ intP̃ if and only if it satisfies

∃ π ∈ P ∩ int △, Z ∈ R
k, s.t. ∀s, a < u′(zs) < b, and ps =

πsu
′(zs)

Eπu′(Z)
(10)

Proof : Let us first show that if p satisfies (10), then p ∈ intP̃ . Indeed, we

have ps = πsu′(zs)
Eπu′(Z) for any s. For any ε ∈ R close to 0, we can find z′s such that

ps+ε
1+kε

= πsu′(z′s)
Eπu′(Z′) . Indeed, since a < psEπu′(Z)

πs
< b for ε small enough, we have

a <
(ps+ε)Eπu′(Z)

πs(1+kε) < b. Thus there exists z′s such that (ps+ε)Eπu′(Z)
πs(1+kε) = u′(z′s). We

then have Eπu
′(Z) = Eπu

′(Z ′) which implies that ps+ε
1+kε

= πsu′(z′s)
Eπu′(Z′) . In other

words, there exists an open set containing p which is included in P̃ . Hence, p ∈

int P̃ .

Since P̃ is convex, to prove the converse, from Rockafellar’s theorem 6.4, when

int P̃ 6= ∅, p ∈ int P̃ if and only if, for every p′ ∈ P̃ , there exists p” ∈ P̃ such

that p = αp′′ + (1 − α)p′ with α ∈]0, 1[. Consider a p′ that verifies (10). Let

λ′ = 1
Eπ′u′(Z′) and λ′′ = 1

Eπ′′u′(Z′′) . From the proof of Proposition 2 assertion 2,

we have that ps = u′(zs)πs

Eπ(u′(Z)) with

πs =
αλ′′π′′s + (1 − α)λ′π′s
αλ′′ + (1 − α)λ′

a < u′(zs) =
αλ′′π′′su

′(z′′s ) + (1 − α)λ′π′su
′(z′s)

αλ′′π′′s + (1 − α)λ′π′s
< b

Since π′ ∈ P ∩ int △, π ∈ P ∩ int △ . Hence (10) is fulfilled.

Let us now prove proposition 4. Given a subset A, let cl A be its closure.

To prove assertion 1, from proposition 3, Ri = {W ∈ R
k | Eπ(W ) ≥ 0, for all π ∈
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P̃ i}. Hence (Ri)0 is the closed cone generated by P̃ i. Since P̃ i is convex, Si =

int cl cone P̃ i. Since cone P̃ i is convex, int cl cone P̃ i = int cone P̃ i and

Si = int cone P̃ i = cone intP̃ i.

The first part of assertion 2, follows from lemma 5.

To prove that intP̃ i 6= ∅ if and only if P i ∩ int△ 6= ∅, assume first intP̃ i 6= ∅.

From (7), P i ∩ int△ 6= ∅. Conversely, if P i ∩ int△ 6= ∅, let π ∈ P i∩ int △, then

π ∈ int P̃ i. If ti = 1, then int P̃ i =int P i.

To prove assertion 3, the set of no-arbitrage prices for the economy

∩
i
Si = ∩

i
int coneP̃ i = cone ∩

i
intP̃ i

The last assertion follows from assertions 2 and 3.

6.6 Proof of corollary 1

To prove assertion 1 that allows for risk neutral agents, if ti < 1, let Zi be

constant in (10) with ai < ui′(zi
s) < bi. We obtain that intP i ⊆ intP̃ i. Hence

∩iint Pi 6= ∅ imply ∩iint P̃i 6= ∅. From proposition 4, assertion 3, ∩iS
i 6= ∅.

To prove the second assertion, from proposition 2 assertion 3, int P̃ i =int△,

therefore Si = int R
k
+ for all i and ∩iS

i =int R
k
+.

6.7 Proof of lemma 2

Assume on the contrary that for any l, there exists π(l) ∈ P such that π(l)l > 0.

Let λ ∈ int △. Then ν =
∑

s λsπ(s) ∈ P∩ int△, a contradiction.

6.8 Proof of proposition 5

We first characterize riP̃ .

Lemma 6 Let V fulfill (3) with t < 1. Then p ∈riP̃ if and only

∃π ∈ P ∩ ri△GP
,∃Z ∈ R

k,∀s ∈ GP , a < u′(zs) < b, and ps =
πsu

′(zs)

Eπu′(Z)

If t = 0, then ri P̃ = ri △GP
.

Proof : Observe that, p ∈ ri P̃ iff pl > 0 iff l ∈ GP , hence πl > 0 iff l ∈ GP .

Without loss of generality, one can assume that GP = Ω and be reduced to

lemma 5.

Let us now prove proposition 5. The proofs of assertions 1 and 3 which follow

from Allouch et al [1] are similar to those of proposition 3 assertions 1 and 2

in Dana and Le Van [14] changing P i into P̃ i for all i. The second assertion
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follows from lemma 6.

Let us prove that ∩iS
i
w 6= ∅ implies that GP i = GP j for any i, j. Indeed

∆G
Pi

= ∆G
Pj

if and only if GP i = GP j . Furthermore ∆G
Pi

6= ∆G
Pj

if and

only if ri∆G
Pi

∩ ri∆G
Pj

= ∅. Indeed if π ∈ ri∆G
Pi

∩ ri∆G
Pj

, then πs >

0,∀s ∈ GP i ∪ GP j and
∑

s∈∆ πs ≥
∑

s∈G
Pi∪G

Pj
πs >

∑
s∈G

Pi
πs = 1, hence a

contradiction. The converse is obvious. Hence ∩iS
i
w 6= ∅ implies ∆G

Pi
= ∆G

Pj
.

The remaining part of the proposition follows directly from lemma 6.

6.9 Proof of corollary 2

From assertion 2 of proposition 5 with pi = πi and Z constant,we obtain that

riPi ⊆riP̃ i which proves the first assertion. To prove the second, ri P̃ i =ri△G.

Hence Si
w =cone ri△G for all i and ∩iS

i
w =cone ri△G.

6.10 Proof of lemma 3

Let V fulfill (4) and have no half-line. Then for every X ∈ R
k and W 6= 0

useful, there exists λ ≥ 0 such that

0 < V (X + λW ) − V (X) ≤ Eπ(X + λW −X) = λEπ(W )

for any π ∈ P (X). Hence π is a no-arbitrage price. From corollary ??,

P (X) ⊆intP for any X ∈ R
k. Conversely assume that P (X) ⊆intP or equiv-

alently that any π ∈ P (X) is a no-arbitrage price for any X ∈ R
k and that

there is a half-line. Then there exists X ∈ R
k and W 6= 0 useful such that

V (X + λW ) = V (X) for all λ ≥ 0. Let πλ ∈ P (X + λW ). We then have

0 ≥ Eπλ
(X + λW −X) = λEπλ

(W )

contradicting the fact that πλ is a no-arbitrage price.

Assume that V fulfill (3) and that V has a half-line. Then there exists X ∈ R
k

and W 6= 0 useful such that V (X + λW ) = V (X) for all λ ≥ 0. Let πλ ∈

P (X + λW ). We then have

0 ≥ Eπλ
(u(X + λW ) − u(X)) ≥ Eπλ

(u′(X + λW )λW )

Since W is useful, from proposition 3, Eπλ
(u′(X + λW )λW ) ≥ 0, hence

Eπλ
(u′(X + λW )W ) = 0

Assume now that P (X) ⊆int△ for any X ∈ R
k. Since πλ ⊆int△ and u′ > 0,

W+ 6= 0 and W− 6= 0. If a < u′(x) or u′(x) < b for all x, then we have

0 > aEπλ
(W+) − bEπλ

(W−) contradicting (9) of remark 1.

Let us now show that if V has no-half line, then P (X) ⊆int△ for any X ∈ R
k.

Indeed if V has no-half line, for any X ∈ R
k and any W ∈ R

k useful, there
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exists λ > 0 such that 0 < V (X + λW ) − V (X). Thus for any π ∈ P (X), we

have

0 < V (X + λW ) − V (X) ≤ Eπ(u′(X)λW )

Hence Eπ(u′(X)W ) > 0 for any W useful in particular for any W ≥ 0, W 6= 0.

Hence π is strictly positive. If V fulfills (2), then any π ∈ P fulfills π ∈

P (a), a ∈ R, hence P ⊆int△ .

Assume that V (X) = Eπ(u(X). From assertion 2, π ∈int△ and no risk neu-

trality is a sufficient condition for no half-line. From assertion 3, if V has no

half-line, then π ∈int△ and Eπ(u′(X)W ) > 0 for any non zero useful vector

W and any X ∈ R
k. If there is risk neutrality at infinity, then there exists c, d

such that u′(x) = b for all x ∈] −∞, d] and u′(x) = a for all x ∈ [c,∞[. Thus

we must have

aEπ(W+) − bEπ(W−) > 0, for all W 6= 0useful

However any W 6= 0 such that aEπ(W+) − bEπ(W−) = 0 is useful and violates

the strict inequality, hence we obtain a contradiction.

6.11 Proof of lemma 4

If L = {0}, we are brought down to Lemma 3. So, let us assume that L 6= {0}.

1. From proposition 1, intP = ∅ and P ⊂ △GP
. Assertion 1 follows from the

argument of assertion 1 of lemma 3 replacing W ∈ R by W ∈ R − {L}, int by

ri.

2. From assertion 2 of proposition 4, P∩ int△ = ∅. This implies that P ⊂ △GP
.

Assume W is a halfline. Then there exists X ∈ R
k and W 6= 0 useful such that

V (X + λW ) = V (X) for all λ ≥ 0. Let πλ ∈ P (X + λW ). We then have

0 ≥ Eπλ
(u(X + λW ) − u(X)) ≥ Eπλ

(u′(X + λW )λW )

Since W is useful, from proposition 3, Eπλ
(u′(X + λW )λW ) ≥ 0, hence

Eπλ
(u′(X + λW )W ) = 0

By the argument of assertion 2 of lemma 3, we obtain that ws = 0, ∀s ∈ GP ,

hence W ∈ L. In other words, there are no weak half-lines.

6.12 Existence of equilibrium theorems

6.12.1 A review of existence of equilibrium theorems

In order to prove propositions 6 and 7, we start this section by recalling two

theorems on existence of equilibrium with short-selling.
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Theorem 1 Let V i fulfill (3) for each i. Then the following assertions are

equivalent:

1. ∩
i
Si 6= ∅

2. NUBA is fulfilled,

3. the set of individually rational attainable allocations A is compact.

Any of the previous assertions implies any of the following assertions:

4. there exists an individually rational efficient allocation for any distribution

of initial endowments,

5. there exists an equilibrium for any distribution of initial endowments.

If V i has no half-line for every i, then assertions 1-5 are equivalent and furthe-

more, any equilibrium price is a no-arbitrage price.

Proof : See e.g. Page and Wooders [36], Dana et al [12].

Theorem 2 Let V i fulfill (3) for each i. Then the following assertions are

equivalent.

1. ∩
i
Si

w 6= ∅

2. WNMA is fulfilled.

Any of the previous assertions implies any of the following assertions:

3. The individually rational utility set U is compact,

4. there exists an individually rational efficient allocation for any distribution

of initial endowments,

5. there exists an equilibrium for any distribution of initial endowments.

If V i has no weak half-line for every i, then assertions 1-5 are equivalent and

furthemore, any equilibrium price is a no-arbitrage price.

Proof : See e.g. Page et al [35], Allouch et al [1].

Theorem 1 obviously make stronger requirements than theorem 2. It is

particularly useful when the utilities are strictly concave.
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6.12.2 Strict concavity of V

We now provide necessary and sufficient condition for V that fulfill (3) to be

strictly concave.

Lemma 7 Let V fulfill (3). Then V is strictly concave if and only if P (X) ⊆int△

for any X ∈ R
k and u is strictly concave. If V fulfills(2), then V is strictly

concave if and only if u is strictly concave and P ⊆int△.

Proof : Let us prove that if P (X) ⊆int△ for any X ∈ R
k and u is strictly

concave, then V is strictly concave. Indeed, let X,Y ∈ R
k, X 6= Y, λ ∈]0, 1[

and π ∈ P (λX + (1 − λ)Y ). We then have

V (λX + (1 − λ)Y ) = Eπ(u(λX + (1 − λ)Y )) + c(π)

> λEπ(u(X)) + (1 − λ)Eπ(u(Y )) + c(π)

≥ λV (X) + (1 − λ)V (Y ),

proving the desired assertion. Conversely if V is strictly concave, then restrict-

ing attention to constants, we first obtain that u is strictly concave. As V has

no half-line, from the proof of lemma 3, we obtain that P (X) ⊆int△ for any

X ∈ R
k. Clearly if V fulfills (2), P ⊆int△.

6.13 Proof of proposition 8

The proof of assertion 1 is as that of assertion 1 of proposition 1 in Dana and

Le Van [14]. We now prove assertion 2. Assume on the contrary that there

exists an efficient allocation (Xi)mi=1 for some distribution of endowments and a

feasible trade W 1, . . . ,Wm which satisfy Eπ(W i) > 0 for all i and π ∈ P̃ i. For

any i, for any πi ∈ P i and Zi ∈ R
k , we have

∑

s

πi
su

i′(zi
s)w

i
s > 0.

In particular, we have, for any π ∈ argmin π∈P iEπ(ui(Xi +W i)) + ci(π),

V i(Xi +W i) − V i(Xi) ≥ Eπiui′(Xi +W i)W i > 0

contradicting the Pareto optimality of (Xi)mi=1.

To prove assertion 3, let (Ei)mi=1 be fixed. For any (zi) ∈ U((Ei)mi=1), there

exists (X1,X2, ...,Xm) ∈ A((Ei)mi=1) such that

V i(Ei) ≤ zi ≤ V i(Xi), for all i. (15)
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From assertion 1, if there exist an efficient allocation, there exists π̃ ∈ ∩
i
P̃ i.

Hence there exists (X̄i, πi) with πi ∈ P i such that π̃j :=
ui′ (x̄i

j)π
i
j

E
πi (ui′ (X̄i))

for all i.

Let us show that if (X1,X2, ...,Xm) ∈ A((Ei)mi=1), then Eπ̃(Xi) is bounded.

We first show that it is bounded below. Indeed

V i(Xi) = min
P i

Eπu
i(Xi) + ci(π) ≤ Eπiui(Xi) + ci(πi)

≤ Eπi(ui(X̄i)) + Eπi

(
ui′(X̄i)(Xi − X̄i)

)
+ ci(πi)

= Eπi(ui(X̄i) + Eπi(ui′(X̄i))Eπ̃(Xi − X̄i) + ci(πi)

Thus,

mi =
V i(Ei) − ci(πi) − Eπi(ui(X̄i))

Eπiui′(X̄i)
+ Eπ̃(X̄i) ≤ Eπ̃(Xi).

Since for all i, Eπ̃(Xi) is bounded below by mi, it is bounded above by

M i = Eπ̃(E) −
∑

l 6=im
l. From (15), we thus have

zi ≤ V i(Xi) ≤ Eπi(ui(X̄i)) + (M i − Eπ̃X̄
i)Eπiui′(X̄i) + ci(πi) for all i

and U((Ei)mi=1) is bounded.

6.14 Proof of proposition 10

The first assertion is proven as in the proof of proposition 8 assertion 1. The

equivalence between the two assertions follows from Samet [40] since P̃ i(X̄i) is

compact for every i.
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