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Guillaume Hollard1, Sébastien Massoni1†, and Jean-Christophe Vergnaud1

1CES, Université Paris 1
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Abstract

Since they have been increasingly used in economics, elicitation rules for sub-

jective beliefs are under scrutiny. In this paper, we propose an experimental design

to compare the performance of such rules. Contrary to previous works in which

elicited beliefs are compared to an objective benchmark, we consider a pure sub-

jective belief framework (confidence in own performance in a cognitive task and a

perceptual task). The performances of elicitation rules are assessed according to

the accuracy of stated beliefs in predicting success. For the perceptual task we also

compare stated beliefs to Signal Detection Theory predictions. We find consistent

evidence in favor of the Lottery Rule which provides more accurate beliefs and is

not sensitive to risk aversion. Furthermore the Free Rule, a simple rule with no

incentives, elicits relevant beliefs and even outperforms the Quadratic Scoring Rule.

Beside this comparison, we propose a belief formation model where we distinguish

between two stages in the beliefs: beliefs for decision making and confidence beliefs.

Our results give support to this model.

Keywords: Belief Elicitation, Confidence, Signal Detection Theory, Methodology,

Incentives, Experimental Economics

JEL Classification: D81 D84 C60 C91
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Résumé

Depuis que leur utilisation s’est répandue en économie, les règles d’élicitation font

l’objet d’une attention particulière. Dans ce papier, nous proposons une procédure

expérimentale pour comparer les performances de telles règles. Contrairement aux

travaux précédents dans lesquels les croyances élicitées sont comparées à des proba-

bilités objectives, nous considérons ici un cadre de croyances purement subjectives

(la confiance en sa propre performance dans une tache cognitive et une tache per-

ceptive). Les performances des règles sont jugées en fonction de la capacité des

croyances élicitées à prédire la réussite. Pour la tache perceptive, nous comparons

aussi les croyances élicitées aux prédictions issues de la détection de signal. Nos

résultats sont en faveur de la Lottery Rule qui élicite des croyances plus justes et

qui n’est pas dépendante de l’aversion au risque. De plus, la Free Rule, une simple

élicitation sans incitation, élicite des croyances pertinentes et offre mme de meilleurs

résultats que la Quadratic Scoring Rule. Au-delà de cette comparaison, nous pro-

posons un modèle de formation des croyances au sein duquel on distingue deux

niveaux de croyances : celle utilisées pour la décision et celles liées à la confiance.

Nos résultats supportent ce modèle.

Mots clés : Elicitation de croyances, confiance, Théorie de la détection de signal,

Méthodlogie, Incitations, Economie expérimentale
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1 Introduction

Suppose that agents have somewhere in their mind subjective beliefs about some uncertain

event. The history of beliefs’ elicitation is rich as researchers have long been interested in

this issue. In particular, following Cooke (1906) pathbreaking contribution, meteorologists

have formally investigated this question for more than a century1. Quite surprisingly,

it is only recently that economists have seriously investigated this issue. The current

number of works focusing on empirical elicitation of beliefs has been rapidly increasing.

For instance, Nyarko and Schotter (2002) study beliefs in experimental games, whereas

Dominitz and Manski (1997) and Manski (2004) used surveys in order to elicit individual

beliefs concerning significant personal events. There also exist a parallel literature in

psychology. In many experiments subjects are asked to report their belief that they

adequately performed a task. These particular type of beliefs are thus often refereed to

as confidence judgment or as metacognitive ability.

A common feature of these approaches is that they try to elicit ”true” beliefs. This

common goal however hides some differences across approaches. Meteorologist are mostly

interested in comparing beliefs across individuals. They had thus been looking for elic-

itation rules that shape beliefs so as to express them on a common scale. Following

the revealed preference approach, economists are interested in creating choice situations

in which beliefs can be inferred through costly actions. They are thus very attached to

elicitation rules that provide monetary incentives, so that subjects will loose money if

they do not report their true belief. As the most popular elicitation rule in meteorology,

namely the Quadratic Scoring Rule (QSR), does provide the kind of incentives economists

are looking for, it has been imported in economics and has remained the most popular

elicitation rule in experimental economics (see Gneiting and Raftery (2007) for a survey

on proper scoring rules). Note that, so far neither economists nor meteorologists paid

much attention to the type of reasoning that individuals may use to form their beliefs. In

contrast, psychological experiments in which beliefs are elicited try to understand how the

brain works when forming beliefs, or more precisely, when subjects are asked to provide

judgment on their own performance. The main concern is to understand the cognitive

process associated with the formation of beliefs (Dawes (1980), Baranski and Petrusic

(1994))). Furthermore, the common practice is to use simple ordinal scales (e.g. Likert

scales), without incentives. In what follows, we call this type of rule, ”free” rules.

Thus, despite a common interest in beliefs elicitation, existing approaches still rest on

1See Murphy (1998) for an history of the early developments of beliefs elicitation
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different elicitation rules. Does one of these approaches perform better than the others?

To tackle this question, we propose to compare the relative performance of elicitation

rules in an experimental setting in which subjects perform two tasks. The first one is a

quiz task quite common in economics and psychology to assess subjects overconfidence

(Lichtenstein and Fischhoff (1977), Lichtenstein, Fischhoff, and Phillips (1982), Wallsten

and Budescu (1983) or Camerer and Lovallo (1999), among others), the other task is a

classical perception task often used to measure confidence.The most widely used elici-

tation rules are the Quadratic Scoring Rule -in economics and meteorology- and simple

ordinal rules -in psychology-. However, there are growing methodological concerns about

elicitation rules2. In particular, the QSR was found to have some important limitations.

Thus we will consider a third elicitation rule into the analysis, called the Lottery Rule.

We also propose a set of criteria allowing for elicitation rules to be compared. We find

consistent evidence that the Lottery Rule outperforms both the QSR and the Free Rule

whatever the nature of the task to be performed.

At a more fundamental level, this papers also offers insights on the nature of belief

formation. Economists have often been concerned about the realism of their hypotheses

and this also applies in the case of subjective probabilities. Axiomatic decision theory just

argues that agents behave as if they maximize a subjective expected utility. Whether these

subjective beliefs do really exist -in the sense that they can be directly measured using

some physical device- remains an open question. However, Signal Detection Theory, a

widely used approach in neurophysiology, offers a simple model of how the brain processes

information. Applying this model to our data allows predicting confidence levels. We find

that a particular elicitation rule, the Lottery Rule, elicits precisely the kind of signals that

are assumed to be used in forming beliefs. So everything goes on as if the brain processes

some signals that encode the beliefs and that a particular elicitation rule is able to elicit

these signals. If such results are to be confirmed by further works, economists may well

be able to open the black box of belief formation.

This article is organized as follows: in Section 2 we introduce our experimental devices

with the psychometric and epistemic tasks and we set forth our beliefs formation models;

in Section 3 we describe the main properties and the experimental design of the Quadratic

Scoring Rule, the Lottery Rule and the Free Rule; in Section 4 we present the criteria

to compare elicitation rules; in Section 5, we use the data to perform this comparison;

2See Andersen, Fountain, Harrison, and Rutstrom (2010), Offerman, Sonnemans, Van de Kuilen, and
Wakker (2009), Palfrey and Wang (2009), Armentier and Treich (2010), Hao and Houser (2010), Hossain
and Okui (2010) or Kothiyal, Spinu, and Wakker (2010)
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in Section 6 we carry some further analysis and we suggest some interpretation of our

results; Section 7 concludes.

2 Experimental devices for subjective beliefs

If agents have somewhere in their mind subjective beliefs that we try to elicit, then

obviously, the closer the elicited beliefs are to the ”true” one, the better is the rule. The

main problem is that the ”true” belief is in general not observable. Before presenting

our approach, we first explain why we do not consider the case in which an objective

probability is given. Until now most evaluation methods proposed have followed this

latter methodology. For instance, one elicits a subject’s beliefs concerning the possible

outcome of a dice roll. The quality of the rule is then measured by the difference between

the objective probability and the elicited beliefs. It is, for instance, the approach that

Armentier and Treich (2010) have followed to assess the QSR using various level of stakes,

either real or hypothetical. In a similar vein, Holt and Smith (2009) evaluate an explicit

and incentive scoring rule (the so-called Lottery Rule) in an experiment on Bayesian

updating. Note that these contributions do not compare different elicitation rules. So far

as we know, the only contributions doing so are Hossain and Okui (2010), who observe

that the rule they developed performs as well as the QSR, and Hao and Houser (2010) who

compare two variants of the Lottery Rule. Both contributions take objective probabilities

as a benchmark.

However, eliciting beliefs about objective probabilities might be misleading. First of

all, even in a situation of objective uncertainty, the result will depend on how well subjects

understand probability theory. If we assume that individuals deviate from the theory of

probabilities, then their beliefs could differ from the objective probabilities. In such a

case, a rule that allows for a perfect elicitation of individuals beliefs will be considered to

perform poorly. Moreover, an objective probability setting may force subjects to think in

terms of probabilities whereas they proceed differently in a subjective setting. In other

words, the quality of an elicitation rule in a subjective setting cannot be deduced from

its performance in an objective setting.

We thus face the following question: how the quality of elicited beliefs can be assessed

without knowing the subjective beliefs we try to elicit? One contribution in this paper

consists in answering this question. The key consists in submitting subjects to two suc-

cessive exercises, i.e. take a decision and then assess their confidence in the decision made

6
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through an elicitation rule. These sequences are repeated several times and trough two

experimental settings: a psychometric one and an epistemic one.

2.1 Psychometric model

Let us first consider the perceptual task, often used in psychophysics (Dawes (1980),

Baranski and Petrusic (1994)). The aim of this task is to compare the number of dots

contained in two circles (see Figure 2). The two circles are only displayed for a short frac-

tion of time, about one second, so that it is not really possible to count the dots. Subjects

have to tell which circle contains a higher number of dots and then, their confidence in

the choice made is elicited through an elicitation rule.

Figure 1: Perceptual task

We consider five levels of difficulty, i.e. bigger or smaller differences in the number

of dots in each circle. The difficulty of the task depends on the subject’s performance

and is calibrated so that at each level the success rate is the same for each subject, using

a psychophysics staircase (Levitt (1971)). Compared to the quiz questions, this setting

offers to control for the difficulty of the task according to individual skills. Furthermore,

as perceptual tasks are fast, it allows for a high number of trials.

A crucial feature of the perception setting is that it provides enough information to

predict confidence level. To do so, we use Signal Detection Theory. The starting point

of Signal Detection Theory is that most reasoning and decision making take place in the

presence of some uncertainty (Green and Swets (1966)). According to Signal Detection

Theory, subjects are assumed to receive a noisy signal provided by the sensory system

7
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which treats the stimuli, e.g. in our task subjects only get some noisy information about

the number of dots in each circle. In its most basic version, the model assumes that if

x is the number of dots, the vision system sends a quantitative signal y which follows

a normal law. Therefore, when observing two circles with respectively xL and xR dots

(where L and R stand for left and right), the brain receives two signals yL and yR. Given

the real difference x̃ = xL−xR, the brain receives a ỹ = yL−yR difference in signal which

follows a normal law N (xL − xR, σ
2
i ) where σi reflects the sensibility quality of agent i’s

vision system. Signal Detection Theory assumes that the brain system operates as if he

was able to run Bayesian analysis of perceptive signals. Thus, to make his guess, the

subject computes the posterior probabilities about the real difference x̃ given the signal

ỹ received: he guesses left in case Pr(x̃ ≥ 0|ỹ) ≥ .5.

We use this approach to predict the expected distribution of confidence3. The idea is

the following (see the appendix for more detail): given the signal received ỹ, the agent

forms beliefs about the real difference in dots using Bayes law and choose accordingly.

To apply Bayes law, we assume that the agent is aware of the probability distribution of

dots used during the task and of his own sensibility quality σi
4. We suppose then, that

confidence in one’s guess is closely related to the belief formed to make that decision.

Thus, from the distribution of signal ỹ given a certain x̃ we can estimate a distribution

of confidence p for each possible level of difficulty. Using the probability distribution of

dots, expected distributions of confidence can be predicted as well as the values of the

different criteria presented hereafter.

Figure 2 offers a representation of the way we assume the brain to process informa-

tion. One area is responsible for receiving the signal that is transmitted to a distinct

3See Galvin, Podd, Drga, and Whitmore (2003) and Fleming and Dolan (2010) for a similar approach.
4In the task, there was always a circle which contains 50 dots and the second circle contains 50± αj .

The choice of the 50 dots circle and of αj was randomized at each trial. In such a case, posteriors are
such that a subject guesses left if ỹ is positive. Five levels of difficulty were defined. Two were the same
for all subjects: l) level α0 = 0: the two circles contain 50 dots and success was randomly drawn, 2)
level α4 = 25: the second circle contains 75 dots and the difference of dots becomes so important that
this level leads to a sure choice. Three levels were intermediary and adapted to each subject. During
the training part, the medium difficulty level α2 was adjusted to a value in order to make the subject
succeed in 70% of the case at this level. That means that α2 is such that F (0|α2, σ

2

i ) = .3 where F is
the cumulative distribution for the normal law. The table of values indicates that σi = α2

.52
. The two

other levels were fixed respectively at α1 = α2

2
. and α3 = 2α2. Then predicted success rate at level α1

is 1 − F (0|α2

2
,
(
α2

.52

)2
) ≈ 0.60 and 1 − F (0|2α2,

(
α2

.52

)2
) ≈ 0.85 at level α3. In fact, the training part was

not perfect and during the main task the mean success rate for all subjects was in reality at 67.7% at
level α2. Then the model predicts that we should observe a 59% success rates at level α1 and 82 % at
level α3. Compared to the observed success rates which stand at 59% and 80% respectively, this model
appears to be quite robust.

8

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.88

ha
ls

hs
-0

05
43

82
8,

 v
er

si
on

 1
 - 

6 
D

ec
 2

01
0



Figure 2: The psychometric model (perceptual task)

area in charge of forming beliefs. This signal is in turn used to assess confidence. Al-

though very simple this representation of the brain is supported by recent evidence in

neuroeconomics. For instance, Fleming, Weil, Nagy, Dolan, and Rees (2010) and Rounis,

Maniscalco, Rothwell, Passingham, and Lau (2010) provide evidence that the brain areas

responsible for performing the task and assessing confidence are distinct. We also know

that signal transmission from one area to another could be problematic. Del Cul, Bail-

let, and Dehaene (2007) indeed show that subjects may use subliminal signal to perform

adequately a task, i.e. they perform above chance, but are also unable to report accurate

beliefs, i.e. their beliefs are not distinct from pure guessing. We interpret this finding

as evidence that the brain adds some noise to the initial signals. Hence, our confidence

distributions’ predictions based on the SDT model are correct only if the noise is small.

An extremely noisy case would be a person whose confidence is completely disconnected

from beliefs.

Given this belief formation model, let us now explain why the choice of an elicitation

rule may matter. It may be the case that elicitation rules do not elicit the same beliefs.

They may elicit the beliefs formed at the decision stage or the confidence or something

else... An other problem may be that rules are more or less efficient in revealing confidence

signals. Indeed, it may depends on the physical type of these signals.

But then, how can we assess the relative performances of rules? First, even if the noise

occurring in the brain process between beliefs and confidence makes our SDT predictions

uncertain, if we find a good fit between elicited confidence and expected confidence this

brings support to the related rule. Second, the SDT model shows that subjects are accu-

9
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rate probability assessors of their success. Indeed, Bayes law implies that their beliefs are

equal to the real probability of success. Thus, we should observe in the data that subjects

are accurate probability assessors. Therefore, the subjects abilities to discriminate will

be our main criteria to compare the rules.

2.2 Epistemic model

In our epistemic design, subjects have to answer a quiz of general knowledge and logic

with ”yes” or ”no” answers. After each question, they have to give their level of confidence

about the accuracy of their response. This level of confidence is elicited by three different

eliciting rules presented in the next section. The main mechanism of the model could be

summarized by the Figure 3.

Figure 3: The epistemic model (quiz task)

We assume that, facing the quiz, the subject that takes his own level of knowledge as

a basis, has a subjective probability about the answer to the question (”Yes” or ”No”).

This subjective belief determines his decision. Then we elicit the confidence the subject

has in his answer. This two-steps protocol, often used in psychology, is representative of

real situations. We often have to make a choice between two alternatives. Our subjective

confidence in that choice determines the extent to which we commit to a path and we

hedge our bets. Asking how much one believe the right answer is ”Yes” allows for a direct

elicitation of subjective beliefs but this way of proceeding is not very natural.

Even if the epistemic and the psychometric tasks imply different brain areas, we assume

that the belief formation follows the same process. Thus, Figure 3 presents an adaptation

of the previous model to the epistemic task. Contrary to the perceptive task where we

10
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can rely on Signal Detection Theory, we do not know how beliefs correlate with success.

Yet we suppose that subjects are still good probability assessors. Indeed, we expect that

the more robust is one opinion, the more confident he is in his answer and the more likely

he is to be right. Thus the quality of judgment of the subjects is still a relevant criterion

for comparing rules.

Note that if the brain uses the same circuit to form beliefs in both perceptual and

epistemic tasks, then we should observe some relation between tasks. Those who are good

probability assessors in one task, should also be good in doing so in the other task. Such

results would support this belief formation model.

3 Elicitation rules

In this section, we will describe the three types of rule used, discuss their main theoretical

properties and present their experimental design.

3.1 Quadratic Scoring Rule

In experimental economics, the most commonly used rule is the Quadratic Scoring Rule 5.

In its most simple version, when only two outcomes ”success” or ”failure” are considered,

the Quadratic Scoring Rule rest on a score (or reward) of Ssuccess = 1−P 2
failure if ”success”

is the true state of nature and Sfailure = 1−P 2
success if ”failure” is the true state of nature

6. Remark that this standard theoretical presentation refers heavily to some subjective

probabilities a subject has in mind. As noted in the introduction, this explicit reference

is not necessary listed in the instructions provided to the subject.

Note also that this rule guarantees a sure payment when subjects report the same

probability for each possible outcome. Thus risk averse subjects may prefer a sure payment

5Nyarko and Schotter (2002), Offerman, Sonnemans, Van de Kuilen, and Wakker (2009), or Palfrey
and Wang (2009))

6Note that under this rule, a subject who reports a value of .5 for both probabilities will get a sure
score of 0.5. Suppose now that he reports a probability of success of .7, he thus gets a gamble with .7
chance to get 0.91 and .3 chance to get 0.51. This results in an expected gain of 0.79. This extends to
more general cases where there are n possible outcomes

Si(p) = α− β

n∑

k=1

(Ii,k − pk)
2

were Ii,k takes value 1 if i = k and 0 elsewhere.

11
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rather than a risky one. On a theoretical ground, it is well known that elicited beliefs

through QSR for risk averse subjects are below their subjective beliefs7.

In our experiment we use the Quadratic Scoring Rule given in Table 1.

Choice

Correct 10 9.98 9.90 9.78 9.60 9.38 9.10 8.78 8.40 7.98

Incorrect 0 0.98 1.90 2.78 3.60 4.38 5.10 5.78 6.40 6.98

7.5 6.98 6.40 5.78 5.10 4.38 3.60 2.78 1.90 0.98 0

7.5 7.98 8.40 8.78 9.10 9.38 9.60 9.78 9.90 9.98 10

Table 1: Quadratic Scoring Rule

Subjects can thus get a sure payment of 7.5e or take greater risks, e.g. receive 10e if

their choice is correct, but 0e if they fail. Note that the corresponding probability were

not reported. Indeed, subjects were not told that if their confidence were at a certain

probability level, then they should choose a particular column. We feel that this unusual

presentation is more in line with a revealed preference approach and reduces confusion

with the Free Rule.

3.2 Lottery Rule

In this experimental study, in order to elicit the level of confidence, we also use a pro-

cedure (henceforth, the Lottery Rule) whose principle is known for long (Arrow (1951),

Raiffa (1968), Winkler (1972), LaValle (1978) among others...) but rarely put in practice

(Grether (1992), Abdellaoui, Vossmann, and Weber (2005), Holt (2006), Holt and Smith

(2009) are some exceptions). Subjects are asked to report the beliefs about a given event,

say their probability of success in a given task. Now consider a first lottery, called the

task-lottery. According to the task lottery, the subject gets a positive reward, S, if he

succeeds and a smaller reward F < S, if he fails. If his subjective probability of success is

p, the subject should be willing to exchange his task lottery for any lottery that provides

a reward of S with probability q > p (and reward F with probability 1 − q). Let us

now consider the following mechanism: after the subject has reported a probability p, a

random number q is drawn. If q is smaller than p, the subject is paid according to the

7Nevertheless, recent papers try to correct the QSR from risk attitudes (Offerman, Sonnemans, Van de
Kuilen, and Wakker (2009), Andersen, Fountain, Harrison, and Rutstrom (2010), Kothiyal, Spinu, and
Wakker (2010)).
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task lottery. If q is greater than p, the subjects is paid according to a new lottery that

provides the same reward with probability q, called the bonus lottery.

The Lottery Rule is very much in the line with the Becker-DeGroot-Marshak (1964)

mechanism and does provide incentives to truthfully reveal p. To make this clear, suppose

that the subject thinks the probability is p but reports a lower probability r. If the

randomly chosen q is lower than r, the subject is paid according to the task lottery. If

q > p, the subject benefits from the exchange of the lottery task to the bonus lottery. The

interesting case arises when r < q < p. The subject is thus paid according to the bonus

lottery, that has a lower probability of winning than the task lottery. So, the subject

is worse off. Therefore underreporting p makes the subject worse off with a positive

probability. Now consider a subject who overreports by stating a r above p. Again, the

interesting case arises when r > q > p. In such a situation, the subject will not benefit

from the bonus lottery and end up with the task lottery that has a lower probability

of winning. So overreporting leads to an expected loss. Hence, the subject has then

incentives to truthfully report his best estimates.

The true advantage of the Lottery Rule is that incentives are provided regardless of

subjects’ risk aversion8. Nevertheless, its main problem is that this rule is quite compli-

cated and thus cognitively demanding. It is then of a particular interest to test whether

the complexity of the Lottery Rule is indeed a problem.

In the experimental design, the Lottery Rule is implemented using a 0 to 100 scale,

with steps of 5 (see Figure 4). The subjects received detailed explanations about the

mechanism. The objective probability is determined using a uniform distribution between

40 and 100. Note that the nature of the distribution does not have any impact on the

nature of provided incentives. Subjects receive 10e for a correct answer if they are paid

on the basis of the task lottery. If they benefited from the bonus lottery, a random draw

determine whether they win. Remark that in such a case, their payment does not depend

any longer on the quality of their answer. A favorable draw also leads to a payment of

10e.

3.3 Free Rule

The Free Rule just requires the subjects to report their beliefs, without relating any

monetary consequences to stated probabilities. Nothing is done to provide incentives.

8More details and a formalization can be found in Karni (2009). Nevertheless Kadane and Winkler
(1988) argue that this elicitation rule may not permit beliefs to be disentangled from utilities if the agents’
wealth is correlated with the event. For the tasks we consider, this problem does not hold.
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p

0

100

50

25

75

Confidence

Lottery 1

Keep their bet
p > l1

Get a lottery ticket
p < l1

Lottery 2

Loose
l2 > l1

Win
l2 < l1

Figure 4: Lottery Rule

The strong advantage of such a rule is of course its simplicity. It is the less cognitively

demanding one, especially comparing to the two previous ones.

The Free Rule is widely used in psychology and neurosciences. In particular, exper-

iments that involve scanning the subjects are very sensitive to response times, as the

duration of the experiment is limited and requires a high number of trials to obtain sta-

tistically significant results. Thus, the Free Rule is particularly attractive as beliefs are

elicited in a very short period of time. It is also the case that psychologists are much

less concerned by incentives than economists. So providing incentives for beliefs elici-

tation sometimes seems pointless, especially if incentives come at the price of a higher

complexity.

Under the Free Rule (see Figure 5), the subject justh as to choose a level of confidence

between 0 and 100 (with steps of 5). Payments are only based on responses, whatever

the accuracy of elicited beliefs. A correct answer to the selected quiz question provides a

payment of 10e (0 if uncorrect).

4 Methods for comparing elicitation rules

In this section, we first present the three statistical tools we use to measure the quality

of judgment and to compare elicitation rules and then we introduce the last criterion

14
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0 1005025 75

Confidence

Figure 5: Free Rule

based on Signal Detection Theory. Even if one does not agree with the model proposed

in section 2, comparing rules on the basis of the quality of probability assessment is still

meaningful on a pure statistical basis. It is always better to use rules that allow for

accurate forecasting.

4.1 Calibration

To measure the accuracy of judgment, the most commonly used criterion is the distance

between the mean predicted success rate and the actual one. This is the so called cal-

ibration criterion. Well calibrated stated beliefs are those which, on average, exhibit a

small distance between predicted and actual success rate. The measure of calibration is

relatively straightforward. Consider a subject who stated beliefs about n events, pi, being

his stated probability for event Ei, xi being the indicator variable that takes value 1 if he

accurately predicts event Ei.

calibration index =
1

n

n∑

i=1

(pi − xi)

A null value indicates that the subject is perfectly calibrated. A positive calibration

indicates that the subject is overconfident, while a negative one denotes underconfidence.

Note that by construction, the confidence predicted by the Signal Detection Model exhibits

a perfect calibration p̃.

As we are interested in self-confidence related beliefs, we expect to find some over-

confidence in our data. It is thus likely that individuals predict higher success rate that

the one they really obtain. Indeed, it is common to consider that overconfidence and

thus, miscalibration is a distinctive trait of many people (Camerer and Lovallo (1999),

Biais, Hilton, Mazurier, and Pouget (2005), Blavatskyy (2009), Clark and Friesen (2009)).

Asking for correct calibration is thus questionable.
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4.2 Discrimination

Another important criterion to compare elicitation rules is discrimination. The ability

to discriminate refers to the capacity of individuals to make a distinction between the

probability of occurrence of two events. A subject that provides the same probability

whatever the events will have a very low discrimination ability. It is important to note that

such a subject might however be well calibrated if he reports for each trial a probability

equals to his average success rate. Calibration and discrimination are thus two distinct

notions, that both measure the accuracy of stated beliefs.

The corresponding statistical measure is given by the area under the ROC curve.

Receiver Operating Characteristics (ROC) analysis is a graphical technique to visualize,

organize and select classifiers according to their performance (Green and Swets (1966),

Hanley and McNeil (1982))9. Here, a classifier is a dichotomous criteria based on a given

level of confidence. Consider for example the classifier associated with the level of 0.7.

This classifier will predict that each task that received a level of confidence higher than 0.7

will be classify as a success, while those with lower confidence will be classified as a failure.

Such a classifier is not perfect. It sometimes predicts success when it should not, these

are called the false positives. This allows the true positive rate to be computed (TPR),

i.e. the fraction of predicted successes that are correctly predicted, and the false positive

rate (FTP), i.e. the fraction of failures that are incorrectly predicted. Each classifier can

then be represented on a two dimensional (TPR, FTP) space. Each level of confidence

provides a point in this space. One can then fit a curve that relates these points, which

is called the ROC curve. The area under the ROC curve (ROC Area) provides a measure

of discrimination that is, the ability of the elicited confidence to correctly classify trials

according to success or failure. To understand the meaning of the ROC area, we consider

the situation in which trials are already correctly classified into two groups (success and

failure) and we pick randomly a pair of trials, one from the success group and one from

the failure group. The trial with the higher confidence should be the one from the success

group. The area under the curve is the percentage of randomly drawn pairs for which

this is true (that is, confidence correctly classifies trials in the random pair).

One advantage of the ROC analysis is that it uses confidence level only ordinally. For

instance, if a subject is good at ranking his confidence but has some problem to give

absolute values, his ROC Area can still be high. For our purposes, we prefer this latter

criterion as it really catches the quality of the elicited confidence in terms of forecasting.

9See Kaivanto (2006) for an application in economics
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4.3 Composite index

One important measure of overall performance in the accuracy of a judgment is the Brier

Score (Brier (1950)). Following previous notation, the Brier Score is given by

BS =
1

n

n∑

i=1

(pi − xi)
2.

The Murphy Decomposition (Murphy (1972), Yates (1982)) shows that the Brier Score

aggregates a calibration and a discrimination index. Indeed, it can be expressed as:

BS = f(1− f)−
1

n

∑

p∈P

Np(fp − f)2 +
1

n

∑

p∈P

Np(p− fp)
2

where f =
∑n

i=1 (xi) is the mean success rate, P is the set of possible probability judg-

ments, Np is the number of times that the confidence category p is used and fp is the mean

success rate in that class. The first term is the variance of the outcome variable which

is independent of the judgment, the second term is a discrimination index measuring the

ability of the hit rate around the overall base rate (f) and the last term is a calibration

index which measures the difference between the observed hit rate (fp) and the stated

confidence. Note that contrary to the ROC analysis, confidence levels are used cardinally.

4.4 Distance between expected and elicited beliefs

The last criterion only holds in the psychometric setting. As we can predict using Signal

Detection Theory the expected distribution of confidence for each subject, we can compare

it to the elicited distribution of confidence. We compute a Chi-Square distance between

the two distributions that allows for the comparison of two distributions. Formally the

distance is computed as following:

χ2 =
∑

p∈P

(Np − Ep)
2

Ep

where Ep and Np are respectively the expected and the observed number of the confidence

level p occurrence. Then, for each rule we can compare these distances between observed

and predicted distribution of confidence and identify which rule is the closest to the

theoretical predictions.
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5 Results

Before moving to comparative results, we will describe the main characteristics of the

experiment and give some descriptive statistic stated confidences results.

5.1 Experimental design

The experiment took place in June and October 2009 at the Laboratory of Experimen-

tal Economics in Paris (LEEP). Subjects were recruited using LEEP’s database. Most

subjects were students from all fields. The experiments last for about 90 minutes. Sub-

jects were paid 19 e on average. This computer-based experiment uses Matlab with the

Psychophysics Toolbox version 3 (Brainard (1997)) and has been achieved on computers

with 1024x768 screens.

Payments comprise three parts. The cognitive tasks are paid according to a standard

procedure to avoid edging problems: one question is randomly selected at the end of the

experiment and payments are computed according to the elicitation rule used. The case

of the perceptual task is different, as each successful trial is rewarded according to the

elicitation rule used (reward is 10cts for the Free and the Lottery Rules). Subjects also

received a show-up fee of 5 e.

Our protocol enables us to investigate learning effects as we consider three sets of

tasks. The same rule is used all along the session. The first block is composed of 36 quiz

questions. Beliefs are elicited but no feedback is provided. Then subjects move on 100

trials of the perceptual task in which they get direct feedback (both on their accuracy and

on their use of the rule). This should help subjects to improve their use of the elicitation

rule. The third block is composed of 36 quiz questions, which are similar to the ones

used in the first block, i.e. with no feedback. As we would like to compare the relative

performance in the first and the third block, quiz questions were chosen so that they could

be compared (similar subjects and similar success rates).

In each session, all beliefs were elicited using the same rule. We ran two session for

each rule, that allowed to collect data for 35 to 38 subjects for each rule. As we mostly

compare results between sessions, our design is a simple 3× 1 one.

5.2 Confidence data

As a preliminary step, we perform some descriptive analysis to draw a general picture

of elicited beliefs. In Figure 6, we represent the cumulative probability distributions of
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elicited confidence for both tasks and for each rule. The results for all subjects are pooled.

Figure 6: Cumulative probability distribution of confidence for each rule

It is clear that while the Lottery Rule and the Free Rule provide close cumulative

distribution, the Quadratic Scoring Rule curve differs significantly from the two others.

The difference is due to the fact that the QSR has a strong tendency to display stated

probabilities concentrated on two values, 50% and 100%: almost two third of elicited

probabilities range between these two values, this is twice as much as for the two other

rules.

Let us now turn to a crude survey of how subjects, taken together, do judge themselves.

Figure 7 compares the predicted success rate to the actual success rate, according to stated

beliefs. A strong result, i.e. that applies for the three rules, is that subjects are globally

overconfident. More precisely, the difference between expected and observed success rates

increases for high level of stated confidence. Pooling all the tasks for which subjects stated

a 100% probability of success leads to an actual success rate of about 78%. In contrast,

low confidence (around 50%) leads to actual success rates that are roughly in line with

expected ones. Even if the three rules are similar, some differences are worth being noted.

None of the rules provides strictly increasing curves. It is not always the case that a 5%

increase in stated probability leads to increase in the associated success rate. The most

dramatic case is that of the QSR, for which there is not significant differences among

stated probabilities in the range [65, 95]. On average, any such probability leads to an
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approximate rate of success of 67%.
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Figure 7: Matching between confidence and accuracy
This figure represents for the three rules the mean accuracy for each level of confidence between 50 and 100 with step of

5. We can see that the Lottery Rule and the Free Rule have a more regular and almost linear increasing function than the

Quadratic Scoring Rule which takes on average a same level of accuracy for the intermediate level of confidence.

Conversely, we also observe the classical ”hard-easy” effect (Lichtenstein and Fischhoff

(1977)), that is, overconfidence for hard task and underconfidence in easy task. In Figure

8, we draw the mean success rate and confidence values for each question of the quiz. We

clearly see on the left-hand side of the figure that high overconfidence is associated with

the most difficult quiz questions and on the right, underconfidence with the less difficult

questions. Note that some questions are misleading e.g. 80% of the subjects are pretty

sure that they got the correct answer and thus stated high confidence, while in fact they

were wrong. The Figure 8 provides some indication about the frequency of such questions.

Removing these misleading questions will thus diminish overconfidence by almost half.

The ”hard-easy” effect is also observed for the perceptual task. Note that the Signal

Detection Model predicts such an effect. Indeed, since subjects form belief on the basis

of a Bayesian analysis of noisy signals, they are overconfident when the difficulty is high

(α0 or α1) as erroneous signals emerge and are underconfident when the difficulty is low

(α3 or α4). In Table 2, we report the observed and predicted confidence as well as the

observed success rate.
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Figure 8: Ranked success rate and overconfidence to quiz questions
This figure shows the level of mean accuracy for each question of the quiz. The circle corresponds to general knowledge

questions and the diamond to logical questions. The red bar is the level of over/under confidence depending on the direction

(up/down) of this bar. As we can expect, we find an ”hard-easy effect”, i.e. a greater overconfidence for more difficult sets

of questions and some underconfidence for easy questions.

Observed mean confidence Predicted mean confidence Success rate
LR QSR FR LR QSR FR LR QSR FR

α0 71% 69% 72% 64% 63% 64% 45% 52% 50%
α1 72% 71% 74% 64% 64% 64% 60% 60% 58%
α2 72% 73% 74% 66% 65% 66% 69% 67% 67%
α3 77% 76% 78% 71% 69% 70% 82% 79% 80%
α4 94% 96% 94% 95% 95% 91% 100% 100% 100%

Table 2: Observed and predicted mean confidence. (Std. in brackets)

Notice that the Signal Detection Model predicts very small differences in mean confi-

dence for the three more difficult levels while success rates range from around 50% (α0)

to 70% (α2). Empirically, these predictions are confirmed for the three rules.

5.3 Quality of judgment

We turn now to the statistical index of quality judgment. Table 3 provides some measures

using the statistical index described above. The QSR performs better in terms of calibra-

tion, as it displays a lower degree of overconfidence than the two other rules. This result

is a weak support for QSR since it is plagued by risk aversion and since overconfidence
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is well established. The QSR is likely to generate an underestimated overconfidence. As

expected from Figure 7, the Lottery Rule provides a better discrimination than the QSR

with an area under the ROC curve of 0.6401. Using the composite index, Lottery Rule

clearly outperforms the two other rules with a Brier Score of 0.2245. The more stricking

results is that the Free Rule appears slightly better than the QSR.

Rule Overconfidence ROC Area Brier Score

LR 0.0822 (.0057) 0.6401 (.0070) 0.2245
QSR 0.0668 (.0061) 0.6300 (.0073) 0.2262
FR 0.1065 (.0060) 0.6305 (.0074) 0.2259

(LR - QSR) +0.0153 (0.0329) +0.0101 (0.3186) -0.0017 (0.0026)
(LR - FR) -0.0243 (0.0017) +0.0096 (0.3458) -0.0014 (0.0314)
(QSR - FR) -0.0396 (0.0000) -0.0005 (0.9608) +0.0003 (0.3830)

Table 3: Comparison of rules
This table (as the following) summarizes the values and the tests of differences of the three criteria used to evaluate the

accuracy of confidence for the three rules. For each rule, we have the level of overconfidence with the standard deviation,

the area under the ROC curve (with s.d.) and the value of the Brier Score. Then, we compare the rules by pairs and we

find the level of difference for each criteria. We perform a test of difference: for the overconfidence and the Brier Score we

test the significance of the inequality between the rules (t-test with the p-value in parenthesis); and for the ROC Area we

test the significance of the equality between the rules (Chi-square test with p-value in parenthesis).

One may wonder whether this ranking is robust to learning effects. The QSR and

the Lottery Rules are cognitively demanding and we expect their performance to increase

with practice. Our experiments is designed so as to offer subjects the opportunity to learn

using feedback. Remember that we use three blocks of questions. The second one relates

to the perceptual task with feedback. The idea was to use this task as a training phase

for the elicitation rule. Therefore, we can compare beliefs’ accuracy in the first and third

block (where the tasks to be performed are quiz questions of similar difficulty). The Table

4 provides details about the learning effect under the three different rules. It compares

the relative performance in the two sets of quiz questions. The overall effect is limited and

its direction is unclear. If learning occurs, we should observe more accurate results, i.e.

better calibration or better discrimination. Our results does not support this view. The

most significant effect, if any, is found for the Lottery Rule. The Brier Score increases

from 0.2464 to 0.2548, mainly because calibration is not as good as in the first part. This

does not completely rule out the possibility that subjects indeed learn as another effect,

e.g. subjects get tired, might work in the opposite direction. But even if this is the case,

we can conclude that none of the rules display a clear advantage in terms of learning.
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Tasks Brier Score Overconfidence ROC Area
LR Q1 0.2464 0.1117 (.0131) 0.6158 (.0154)
LR Q2 0.2548 0.1326 (.0130) 0.6318 (.0151)

LR (Q2 - Q1) +0.0084 (0.0000) +0.0209 (0.1282) +0.0160 (0.4594)

QSR Q1 0.2607 0.0786 (.0142) 0.5770 (.0161)
QSR Q2 0.2589 0.0934 (.0141) 0.5949 (.0157)

QSR (Q2 - Q1) -0.0018 (0.1842) +0.0148 (0.2295) +0.0179 (0.4270)

FR Q1 0.2586 0.1510 (.0137) 0.6143 (.0158)
FR Q2 0.2590 0.1448 (.0138) 0.5885 (.0161)

FR (Q2 - Q1) +0.0004 (0.4177) -0.0062 (0.3741) -0.0258 (0.2533)

Table 4: Learning: cognitive tasks

5.4 Perceptual data

The superiority of the Lottery Rule and the Free Rule over QSR is confirmed when we

compare stated confidence to the Signal Detection Model predictions. Indeed, let us

consider for the perceptual task the cumulative probability distributions for each rule

and for the Signal Detection Model predictions (all subjects pooled) drawn in Figure 9.

Contrary to the QSR, the shapes of the LR and the FR curves follow the Signal Detection

Model.

Figure 9: Cumulative probability distribution of confidence for each rule and SDT
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The difference between the QSR curve and the three others is also due to the con-

centration of probabilities around 50% and 100% with again almost two third of elicited

probabilities that take these values. Note that SDT predicts that only 24% of stated con-

fidence should take these two values (see Table 12 in appendix)10. This visual feeling is

confirmed when we compute the Chi-Square distance between the observed and predicted

confidence distribution for each group of subjects. To get a fixed idea about the distance

values, we also provide the distance between the predicted confidence and the uniform

distribution on [50%; 100%] as well as the distance between the predicted confidence and

a Dirac measure that puts a probability of 1 on 100%. Results are given in Table 5.

Chi-square distance btw. pred. confid. and... LR (n=38) QSR (n=35) FR (n=35)
...observed confidence distribution 0.20 1.17 0.80
...a uniform distribution 0.29 0.31 0.28
...a Dirac measure δ100% 5.29 5.97 6.08

Table 5: Chi-square distance between confidence distributions

The Lottery Rule clearly outperforms the QSR in its ability to fit with predicted

confidence11. Further analysis confirms this result.

For the perceptual task, subjects go through a training phase during which an auto-

matic adjustment of difficulty was done so as to make the subjects succeed at 70% for

the medium difficulty level. This adjusment was not perfect and during the main task

subjects’ success rate differs with a overall mean success of 71.2% (67.7% for the medium

level), a standard deviation of mean success equal to 6% and a mean success ranging from

56% to 86%. Accordingly, the Signal Detection Model predicts that mean confidence

should be lower for those whose the task was more difficult given their abilities (see ap-

pendix for detail). Therefore, we should find a correlation between elicited and predicted

mean confidence. In the Table 6, we give the observed and predicted mean confidence

values as well as the correlation between observed and predicted mean confidence.

We observe a significant correlation between the observed and predicted mean confi-

dence (at a level of 10%) only for the Lottery Rule while there is no correlation for the

QSR.

10The percentage of elicited confidence concentrated on 50% and 100% is 27% for LR, 35% for FR and
65% for QSR

11Despite its weaknesses, the QSR performs decently in terms of discrimination because it permits to
correctly classify easy trials (difficulty levels α3 and α4) and difficult trials (difficulty levels α0 and α1).
We guess that QSR discrimination performance would be lower for a hard task without low levels of
difficulty.
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Nb Observed mean confidence Predicted mean confidence Correlation
LR 38 77% (9%) 72% (5%) 0.30*
QSR 35 77% (10%) 71% (4%) 0.02
FR 35 79% (9%) 71% (7%) 0.12

Table 6: Observed and predicted mean confidence. (Std. in brackets) (* means signifi-
cance at 10%)

The Signal Detection Model also predicts that those for which the task was more

difficult given their ability should have a lower discrimination index, either measured by

the ROC area or by the Brier score. Therefore, we expect to find correlations between

mean success rates and discrimination indexes. Furthermore, we should also observe

correlations between observed and predicted discrimination indexes. Clearly, we see in

Table 7 that the levels of correlation are poorer for the QSR than for the two other rules.

For instance, the predicted correlation between the mean success rate and ROC area for

the LR group is 0.8439 and 0.4855 for the predicted and observed beliefs while these

correlations are respectively 0.9082 and 0.0074 for the QSR group. It is even worse for

correlation between predicted and observed ROC area as there is not any correlation at

all for the QSR group. Among the two other rules, the Lottery Rule rule performs slightly

better than the Free Rule.

Correlation Nb Mean succ./ROC Mean succ./Brier ROC obs/pre Brier Obs/pre

LR
Pred.
Obs.

38
0.8439***
0.4855***

-0.8728***
-0.8633***

0.4951*** 0.7825***

QSR
Pred.
Obs.

35
0.9082***
0.0074

-0.8700***
-0.4253**

-0.0143 0.4272**

Free
Pred.
Obs.

35
0.9455***
0.3498**

-0.9336***
-0.7761***

0.4617*** 0.7680***

Table 7: Correlation between mean success rate, ROC Area and Brier score (observed
and predicted) for the task perception (*** means a level of significance at 1%. ** means
a level of significance at 5%)

6 Further results and interpretation

Existing work in psychology and neuroscience puts forward some regularities about con-

fidence. If SDT happens to be a good model of the way subjects processes information,
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there are a few additional predictions that can be tested. For instance, Fleming, Weil,

Nagy, Dolan, and Rees (2010) and Rounis, Maniscalco, Rothwell, Passingham, and Lau

(2010) provide evidence revealing that the brain areas responsible for performing the task

and assessing confidence are distinct. Therefore the simple description of the brain pro-

cess depicted on Figure 2 and 3 accounts for empirical evidence. Everything goes as if

subjects receive a noisy signal that is first used to perform the task, then transmitted

-up to some noise- to another area responsible for assessing confidence. If we follow the

two models proposed in Figures 2 and 3, discrimination ability reflects how well the brain

areas responsible for performing the task are connected to the brain areas responsible for

assessing confidence.

For some subjects we do indeed observe that the mismatch occurs: subject unable

to discriminate have their confidences disconnected from subjective beliefs. This raises

the question of whether subjects who are good at discriminating on one task are also

good when proceeding another task. There are some experimental evidence showing that

people are overconfident over domains even if their levels of overconfidence may vary with

the domain, and that more overconfident people in one domain tend also to be more

overconfident in other domain (West and Stanovich (1997)). For discrimination, evidence

are scarce but according to Bornstein and Zickafoose (1999), it seems also to be the case

that discrimination abilities export across domains. In Table 8, we report our findings on

the correlation between tasks for calibration and discrimination.

Corr. btw. Quiz and Perception All (104) LR (38) QSR (34) FR (32)
Calibration 0.57*** 0.47*** 0.69*** 0.49***
ROC area 0.27*** 0.35** 0.15 0.33*

Table 8: Correlation between tasks

For all rules, we find some high correlations for calibration. For discrimination, we

find significant correlation only for the Lottery Rule and for the Free Rule. Note that

SDT predicts that subjects cannot have a high ROC area if their task was hard in the

perceptual task. Thus, to measure the subject intrinsic discrimination ability, we must

take into account the predicted ROC area which stands for benchmark value. So we

created a ROC performance attainment measure defined as follows:

ROC pa =
ROCarea(observed)− 0.5

ROCarea(predicted)− 0.5
.
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We expect this variable to correlate with the ROC area observed for the quiz task. In

Table 9 we report these correlations.

All (104) LR (38) QSR (34) FR (32)
Corr. btw. quiz ROC area and ROC pa 0.10 0.31* 0.00 0.07

Table 9: Correlation between ROC in Quiz and ROC performance in Perception.

Significant correlation remains only for the Lottery Rule. Thus discrimination ability

seems more domain specific than calibration ability. Note also, that the choice of elicita-

tion rule strongly matters. Indeed, the Lottery Rule results confirms our conjecture on

intrinsic discrimination ability while the QSR results invalidates it.

Calibration and discrimination are two statistically independent aspect of judgment

ability. We may wonder whether subjects who are more able on one dimension, do so

in the other. Table 10 indicates correlations between calibration and discrimination for

subjects whose overconfidence is below 30%12.

Corr. btw. Calibration and ROC area All (104) LR (38) QSR (34) FR (32)
All task -0.14 -0.06 -0.35** -0.01
Quizz task -0.20** -0.17 -0.39** -0.18
Perception task -0.11 -0.07 -0.14 -0.12

Table 10: Calibration versus discrimination

We find significant correlation only for the Quiz task and this arises from the result

obtained using the QSR. Because of the poor overall performance of the QSR, we may

conclude that calibration and discrimination abilities are independently distributed in the

population.

To sum up, we find that the LR matches the prediction of SDT and also satisfies some

additional properties. We interpret this as supporting the view that LR indeed elicits

signals that are correlated with the ones uses by the brain to assess confidence. On the

whole, our results supports the model set forth in Section 2. An intriguing question is

then to figure out why the LR fits so well, while another rule like QSR does not. A

possible interpretation is that for the LR -as well as the Free Rule- subjects are directly

asked to report the beliefs they consciously have in mind. In contrast, the QSR requires

12We exclude outlayers because they correspond to subjects who always choose extreme confidence and
therefore were highly miscalibrated and discriminated poorly
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the subjects to take the monetary rewards into account. They need to evaluate for each

level of confidence how high they should bet. At the very least, subjects have to perform

some additional computing to achieve a good decision. This extra computation is likely

to introduce some additional noise into the signal we are trying to elicit. But we also

learn from the post-wagering literature, that rules in which subjects are asked to set their

wages themselves -like the QSR- are dependent on some economic variables, typically

risk aversion. Reviewing current evidence, Fleming and Dolan (2010) conclude that ”the

complex interaction between objective stimulus visibility, wager size and the subsequent

willingness to gamble casts doubt on the assertion (Persaud, McLeod, and Cowey (2007))

that post-decision wagering is a direct index of subjective awareness, despite its intuitive

nature.”

7 Conclusion

Both our experimental settings provide consistent evidence: the choice of a particular

elicitation rule does matter. The Lottery Rule performs particularly well according to

the discrimination index. The Lottery Rule also matches remarkably well the predictions

made using Signal Detection Theory. Furthermore, the Lottery Rule has the theoretical

advantage to be not sensitive to risk aversion. All in all, we find little support for the

use of the QSR in economics. The Free Rule performed well. Although it elicits a bit

less accurate beliefs, it is the simplest rule that can be implemented. Thus elicitation

rules which ask subjects to report their feelings in terms of a visual metric outperform

elicitation rules which are based on a revealed preference approach through the choice of

stakes. The fact that incentives are not so important supports the view that there exist

pure subjective beliefs that are disconnected from utility values.

Another interesting result is the high heterogeneity we find in individual’s discrimi-

nation abilities. In our experiment discrimination ability -as measured by the ROC area-

ranges from 0.51 to 0.79. In other words some subjects are almost unable to discriminate

at all, while others perform remarkably well. However, subjects with low discrimination

abilities perform as well as high discrimination abilities’ subjects, i.e. their success rates

are not statistically different. This important variability across individuals is confirmed

by recent neuroeconomic findings (Fleming, Weil, Nagy, Dolan, and Rees (2010), Rounis,

Maniscalco, Rothwell, Passingham, and Lau (2010)). They find that discrimination abil-

ity is linked to how well the brain areas responsible for performing the task are connected
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with the brain areas responsible for assessing confidence. The ability to discriminate is

also independent from their calibration ability. Formally, calibration and discrimination

are statistically independent: one can be very well calibrated without discriminating well

and vice versa. In economics, most research focus on overconfidence (Camerer and Lovallo

(1999), Biais, Hilton, Mazurier, and Pouget (2005), Blavatskyy (2009), Clark and Friesen

(2009)). So far discrimination has not received much attention while it is certainly as

important as calibration to explain economic behavior.

8 Appendix

8.1 Signal detection model

We detail here how we apply the Signal Detection Theory to induce subjective beliefs.

8.1.1 The basis for the prediction of confidence distribution

Let us consider for instance a subject who receives a signal ỹ = yL− yR > 0. The signal ỹ

follows a Normal Law with a mean equals to the real difference in dots x̃ = xL − xR and

a variance σ2
i where σi reflects the sensibility quality of the subject. We assume that the

subjects’ brain is aware of the quality of his vision system and of the distribution of dots

used during the task. We then apply a Bayesian analysis. First, notice that since the

priors are symmetric between left and right, if the subject receives a positive signal he will

believe with a probability above .5 that the real signal is positive, i.e P (x̃ ≥ 0|ỹ ≥ 0) ≥ .5

and thus he guesses left. In the following, we suppose that the subject confidence in

guessing right is equal to his belief.

Thus, given a value ỹ, the subject confidence in winning is equal to

P (ỹ) = Proba(x̃ = xL − xR > 0|ỹ) + .5Proba(x̃ = xL − xR = 0|ỹ).

The second term catches the probability of evenness between xL and xR so that the subject

wins with a .5 probability. By Bayes law,

P (ỹ) =
Proba(ỹ|x̃ > 0).Proba(x̃ > 0) + .5Proba(ỹ|x̃ = 0).Proba(x̃ = 0)

Proba(ỹ)

Under the assumption that the brain is aware of the distribution of dots used during
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the task, then:

Proba(x̃ = 0) = Proba(x̃ = ±αi) = Proba(x̃ = ±25) = .2

and thus

P (ỹ) =

(
∑

j=0,..,4

f (ỹ|x̃ = αj)

)

(
∑

j=0,..,4

f (ỹ|x̃ = αj)

)
+

(
∑

j=0,..,4

f (ỹ|x̃ = −αj)

)

with f the density function of the normal law.

Similar computation for a negative signal −ỹ shows that P (−ỹ) = P (ỹ). We note that

confidence P (ỹ) is strictly increasing in |ỹ|. Then, the probability to observe a confidence

level p̃ is the probability that the brain receives a signal ỹ such that P (|ỹ|) = p̃. Given

αj, the density function for the confidence p̃ is equal to

g(p̃) = .5

(
f (ỹ|x̃ = αj) + f (−ỹ|x̃ = αj)+

f (ỹ|x̃ = −αj) + f (−ỹ|x̃ = −αj)

)
for ỹ ≥ 0 such that P (|ỹ|) = p̃

In the experiment, confidence was elicitated with a path of 5%. We proceed similarly

for the prediction of confidence. Hence, we suppose that an elicitated confidence of 50 %

corresponds to an underlying confidence between 50% and 52.5%, of 55 % corresponds to

an underlying confidence between 52.5% and 57.5% and so on .....Therefore, given αj, the

probability of observing p ∈ {.55; .60; ...} is

Q(p|αj) =

p̃=p+.025∫

p̃=p−.025

g(p̃)dp̃.

and overall, the predicted distribution of confidence is given by

Q(p) = .2
∑

j=0,..,4

Q(p|αj).

By construction, the predicted confidence reflects perfect calibration, that is, the mean

success rate is equal to p̃ when confidence is p̃:

Proba (Correct Guess|p̃) = Proba (x̃.ỹ > 0|p̃)+.5Proba(x̃ = 0|p̃) = p̃ for ỹ such that P (|ỹ|) = p̃.
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For our estimates, we make the approximation that when pooling confidence, we also

have perfect calibration, i.e:

Proba (Correct Guess|p) = p for p ∈ {.50; .55; .60; ...; 1}

8.1.2 Implementation details

The model is applied at an individual level. The first step is to estimate for each individual

his ability σi. His ability is revealed through his success rate at levels αj=1,..,4. At level

αj, we observe ni,j trials and ri,j successes. We compute σi such that

∑

j=1,..,4

ni,j .F (0|αj, σ
2
i ) =

∑

j=1,..,4

ri,j

The following table gives the descriptive statistics for the σi.

Nb Mean Std. Dev. Min;Max
σi 108 7.95 5.30 2.8 ;50.5

Table 11: Ability of subjects

From σi, we can compute for each i and level αj the confidence distribution on p ∈

{.55; .60; ...}:

Qi(p|αj) =

p̃=p+.025∫

p̃=p−.025

g(p̃)dp̃.

The overall confidence distribution is then computed using the observed levels’ fre-

quencies:

Qi(p) =
∑

j=0,..,4

ni,j

100
.Qi(p|αj).

Some descriptive statistics for the confidence distribution are given in the Figure 10.

Given these confidence distributions, we can calculate the predicted judgment qual-

ity index. Calibration is not really an issue since predicted mean confidence, predicted

mean success and observed mean success should be very close by construction. The only

divergence comes from the fact that empirical success rate at level α0 may not be exactly

50% because of a low number of trials and of the approximation done in the estimation

of confidence. We can check in the Table 12 that it is indeed the case.
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Figure 10: SDT prediction of confidence distribution

Difference btw... Nb Mean Std. Dev. Min;Max
predicted and observed mean success 108 .00 .02 -.04;.07
predicted mean success and predicted mean confidence 108 -.00 .01 -.02;.02

Table 12: Consistency of prediction

For discrimination, to calculate predicted area under the ROC curve we first estimate

predicted True Positive Rate and False Positive Rate at each cutpoint. For instance, if

we consider fix confidence level p as a cutpoint, TPR is given by:

Proba(Confidence > p|Success) =

Predicted mean success−
∑
p′≤p

p′.Qi(p
′)

Predicted mean success

and FPR is defined by:

Proba(Confidence > p|Failure) =

∑
p′>p

(1− p′).Qi(p
′)

Predicted mean failure
.

Given estimation of TPR-FPR at each cutpoint p ∈ {.50; .55; .60; ...; 1}, a predicted

ROC Area can be computed for each subject.

Finally, the computation of predicted Brier Score by subject is done using the following

formula: ∑

p∈{.50;.55;.60;...;1}

Qi(p).
[
p (p− 1)2 + (1− p).p2

]
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The Table 13 gives a summary of the values obtained

Nb Mean Std. Dev. Min;Max
ROC Area 108 .72 .05 .55;.83
Brier score 108 .18 .03 .12;.25

Table 13: Predicted ROC area and Brier score
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