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Abstract

We consider a model of interdependent efforts, with linear and possibly asym-

metric interaction. We examine how a variation of the intensity of interaction

affects aggregate effort. We show that the relevant information is given by the

transposed system.
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Strategic interaction plays an important role in economics, and the study of inter-

dependencies between individual efforts can be relevant for policy intervention. One

central theme is how the sum of individual efforts varies with the intensity of interac-

tion. This note considers systems of interacting efforts, where efforts are nonnegative

and continuous, and interactions are linear. Under symmetric interaction, it is well-

known that raising cross-effects generates an increase of the sum of individual efforts

(Ballester, Calvó-Armengol and Zénou [2006]).1 This intuitive result is based on the

(also well-known) existence of a potential function associated with the game, the value

of which is, at equilibrium, the sum of efforts. However, when interactions are asymmet-

ric, there is in general no potential function. How does the introduction of asymmetry

affect this result? This note addresses this issue. We show that, to assess the impact

of an increase of cross-effects on the sum of efforts, one has to examine the solution

of the transposed system. When the solution of the transposed system is nonnegative,

increasing cross-effects always induces an increase of the sum of efforts. In contrast,

when the solution of the transposed system admits a negative component, there always

exists a perturbation of the interaction that increases cross-effects and that generates

a decrease of the sum of efforts, and we build such a perturbation. We then present

sufficient conditions to guarantee that the solution of the transposed system is positive.

Finally, we distinguish between raising cross-effects and raising complementarities, the

difference of which is economically meaningful when efforts are substitutes.

We consider a society N = {1, · · · , n}. Let X = (x1, · · · , xn), with xi ∈ R+ for all

i, be a column-vector of efforts, and let x =
∑n

i=1 xi denote the sum of components of

profile X, what we call aggregate effort. Consider a square matrix Γ, with γii ∈ R∗+ and

γij ∈ R for all i, j, j 6= i. When γij < 0 (resp. γij > 0), agent j’s effort is a strategic

complement (resp. substitute) to agent i’s effort. Note that our formulation allows for

mixed effects. Let A = (a1, a2, · · · , an), with ai ∈ R∗+. We consider systems of first

order conditions (FOC) of the form:{
γiixi +

∑
j 6=i γijxj = ai if ai −

∑
j 6=i γijxj > 0

xi = 0 if ai −
∑

j 6=i γijxj ≤ 0
(1)

1This result holds under low level of interaction. Bramoullé, Kranton and d’Amours (2010) recently

complemented this result under large interaction.
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This linear system of FOCs may arise in many contexts, like synergistic efforts with

linear quadratic utilities (Ballester, Calvó-Armengol and Zénou [2006]), local pub-

lic goods (Bramoulé and Kranton [2007]), Cournot oligopolies (Bramoullé, Kranton

and D’Amours [2010]), or for describing equilibrium consumptions in pure exchange

economies with positional goods (Ghiglino and Goyal [2010]), pricing with local net-

work externalities (Bloch and Quérou [2009]), risk taking under informal risk sharing

(Belhaj and Deröıan [2009]). Our setting allows an idiosyncratic component ai.

Interior solutions of the above system of FOCs are such that ∂xi

∂xj
=
−γij

γii
, we call intensity

of interaction the quantity | ∂xi

∂xj
|. Symmetric interaction thus arises when

γij

γii
=

γji

γjj
for

all i, j. Conform to Ballester, Calvó-Armengol and Zénou (2006), raising cross-effects

is formally defined as follows:

Definition 1 A perturbation Θ = [θij] raises cross-effects if θij ≤ 0 for all i, j.

When θij < 0, the complementarity that agent j exerts on agent i’s effort is increased

(or the substitutability is decreased). When θii < 0, agent i’s sensitiveness to others’

efforts is increased.2 Ballester, Calvó-Armengol and Zénou (2006) consider the impact

of an increase of cross-effects under symmetric interaction. They focus on low interac-

tion, which guarantees a unique and interior equilibrium. Examining the case where

ai = a for all i, they show that an increase of cross-effects enhances aggregate effort

(Ballester et al. [2006, Theorem 2 pp. 1409]). Their result can be formulated as follows

(we normalize A to J , where J is the column-vector of ones, without loss of generality):

Theorem 1 (derived from Ballester, Calvó-Armengol and Zénou 2006) Consider

two invertible and symmetric matrices Γ and Γ′, such that Γ′ = Γ + Θ with Θ ≤ 0.

If both Γ−1 and Γ′−1 are well defined and nonnegative, then the interior equilibria

X = Γ−1J and X ′ = Γ′−1J are such that x′ ≥ x.

Proof of theorem 1. Since matrices are invertible, and inverse matrices are non-

negative, the interior equilibria to both systems, X and X ′, exist. Then the following

sequence of equalities holds:

x′ = X ′TJ = X ′TΓX = X ′T (Γ′ −Θ)X = X ′TΓ′X −X ′TΘX

2For instance, if Ui(X) = xi − cix2
i +

∑
j gijxixj , with gij ∈ R, a perturbation raising cross-effects

can both lower ci and increase gij .
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By symmetry of Γ′, X ′TΓ′X = (Γ′X ′)TX = x. In total, x′ ≥ x. �

Remark. As stated here the theorem is a little bit more general than as stated in

Ballester, Calvó-Armengol and Zénou (2006), in two respects. First, the original theo-

rem holds under additional condition entailing uniqueness of the equilibrium. Second,

the original theorem supposes that γii is constant across agents.

The following theorem addresses the same issue under asymmetric interaction. We

consider now system (1) with differentiated levels of ai:

Theorem 2 Consider two matrices Γ and Γ′, such that Γ′ = Γ + Θ, and such that

both Γ−1 and Γ′−1 are well defined and nonnegative. Every perturbation Θ that raises

cross-effects (meaning Θ ≤ 0) induces x′ ≥ x if and only if the solution to ΓTY = J is

nonnegative.

Proof of theorem 2. The following lemma is adapted from Farkas’s lemma.

Lemma 1 Let M be an n× n matrix. The equation MTY = J admits a nonnegative

solution if and only if, for all Z ∈ Rn such that MZ ≥ 0, we have z ≥ 0.

Only if. Since inverse matrices are nonnegative, both systems admit an interior

solution, X and X ′. Basically, Γ(X ′ −X) (= A− A−ΘX ′) = −ΘX ′. As X ′ > 0, we

have −ΘX ′ ≥ 0. If the solution to ΓTY = J is nonnegative, lemma 1 applies (setting

M = Γ and Z = X ′ −X) and thus x′ ≥ x.

If. Consider X ≥ 0 solution of ΓX = A, and suppose that the system ΓTY = J

admits a solution containing a negative component. By lemma 1, there exists a profile

Z = (z1, · · · , zn) such that ΓZ > 0 while z < 0. Denote β = ΓZ for convenience. We

will show that there exists a matrix Θ ≤ 0, and vector X ′ = (Γ + Θ)−1A ≥ 0, such

that x′ < x.

Consider ε ∈ R+
∗ . Define Θ = [θij], with θij = θi for all i, j, with

θi =
−εβi∑

j xj + ε
∑

j zj
(2)

Then Θ ≤ 0 for ε small enough (the denominator is positive for small values of ε). By

construction, we have Θ(X+ε·Z) = −ε·ΓZ. Define X ′ = X+ε·Z, the latter condition

4

ha
ls

hs
-0

05
20

32
7,

 v
er

si
on

 1
 - 

22
 S

ep
 2

01
0



writes ΘX ′ = Γ(X−X ′). Hence, X ′ is the solution of the system (Γ + Θ)X ′ = A, with

ε small enough to ensure X ′ ≥ 0. Since X ′ −X = ε · Z, z < 0 implies x′ < x. �

Theorem 2 indicates that raising cross-effects can lead to a decrease in the sum of

efforts. Moreover, to guarantee that an increase of cross-effects fosters aggregate effort,

the intensity of strategic interaction of the transposed system should be low enough. In

contrast, no condition is imposed on the intensity of interaction of the original system

(although solutions of the original system and the transposed system are related).

Note that the linear part of system (1) is written ΓX = A, while the comparative

statics is based on the system ΓTY = J . That is, idiosyncratic constants ai play no

role in the comparative statics. It is also worth noting that the perturbation Θ can be of

arbitrary magnitude, provided that solutions are positive.3 The above analysis extends

straightforwardly to local perturbations around equilibria containing corner solutions,

even in case of multiple equilibria. Indeed, theorem 2 holds when the perturbation

keeps unchanged the set of corner agents. Moreover, we obtain:4

Corollary 1 Suppose that system (1) admits one interior solution X and one solution

with corners X ′. If ΓTY = J admits a nonnegative solution, x < x′.

Proof of corollary 1. Since X ′ admits a corner, suppose without loss of generality

that x′1, x
′
2, · · · , x′p > 0, and x′p+1, x

′
p+2, · · · , x′n = 0. Consider the profile Γ(X ′ − X).

Basically, [Γ(X ′ −X)]i = ai − ai = 0 for all i ≤ p, while for all i > p, [Γ(X ′ −X)]i =

[ΓX ′]i − [ΓX]i; recalling that [ΓX ′]i > ai and [ΓX]i = ai, we obtain in total that

Γ(X ′ − X) ≥ 0 with at least one positive component. Then we can apply lemma 1

with M = Γ and Z = X ′ −X, and we are done. �

To illustrate, consider the matrices Γ =


1 .3 .3

.7 1 .3

.7 .3 1

, Θ =


−.02 −.02 −.02

−.001 −.001 −.001

−.001 −.001 −.001

,

and assume A = J . We have XΓ ' (.79, .34, .34) and XΓT ' (−.11, .79, .79). Since

3This is irrespective of multiplicity of equilibria. Indeed by linearity there is a unique interior

equilibrium.

4Corollary 1 complements some recent results about encapsulated corners found in Bramoullé,

Kranton and D’Amours (2010) in the context of symmetric interaction.
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XΓT contains a negative component, there exist some perturbation that both raises

cross-effects and that lowers aggregate effort. The perturbation Θ is one: indeed, we

find xΓ ' 1.477 and xΓ+Θ ' 1.476.

Positive solutions in games with strategic substitutes. Theorem 2 suggests the

interest of obtaining conditions guaranteeing positive solution to ΓTY = J . Consider a

nonnegative matrix M with positive diagonal. Define matrix GM = [gij], with gii = 0

and gij =
mij

mii
for all i, j 6= i, and define profile BM = (b1, · · · , bn) such that bi = 1

mii
.

Let ρ(.) denote the greatest modulus of eigenvalues of any square matrix. We consider

the following properties:

Property 1 If Q is a nonnegative square matrix with null diagonal, ρ(Q) < 1.

Property 1, applied to the matrix GΓT , guarantees that the system ΓTY = J admits

a unique and interior solution (and that this solution can be developed as a series of

powers of the matrix GΓT ).

Property 2 If M is a nonnegative square matrix with positive diagonal,
∑

j 6=i
mij

mjj
≤ 1

for all i.

Next lemma elaborates upon these two properties to guarantee a positive solution:

Lemma 2 Consider a nonnegative square matrix M with positive diagonal. If GM

satisfies property 1 and M satisfies property 2, the solution to MY = J is postitive,

and belongs to (0, B).

Proof of lemma 2. The system MY = J can be written (I + GM)Y = BM . As

ρ(GM) < 1, the solution exists and can be written Y =
∑∞

k=0(−GM)kBM (see Herstein

and Debreu [1953], and Ballester, Calvó-Armengol and Zénou [2006]). Rearranging,

we find

Y =

( ∞∑
k=0

G2k
M

)
· (I −GM)BM (3)

The series
∑∞

k=0G
2k
M converges since Y is finite. Since M is nonnegative, [G2k

M ]ij ≥ 0

for all k, i, j. The solution is positive if and only if (I −GM)BM > 0, which happens
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to be property 2 applied to matrix M . Moreover, a solution of (I + GM)Y = BM is

also written Y = BM − GMY . Since M ≥ 0, we have GM ≥ 0. Thus, Y > 0 implies

Y < BM . �

From lemma 2 we deduce immediately:

Corollary 2 When Γ is nonnegative, if GΓT satisfies property 1 and ΓT satisfies prop-

erty 2, the solution to ΓTY = J is positive.

Note that when γii = γ for all i, which is the case of Ballester, Calvó-Armengol and

Zénou (2006), property 2 applied to the matrix Γ is a condition of diagonal dominance,

and this implies ρ(GΓT ) < 1.5 Hence, the diagonal dominance of a nonnegative matrix

Γ implies an interior solution to system (1).6 Note also that if γ = 1 for all i, the

solution to system (1) belongs to (0, 1).

Raising complementarities. The intensity of interaction in the perturbed system

is
−(γij+θij)

γii+θii
. When all Γ’s off-diagonal elements are negative, i.e. the game contains

only strategic complements, raising cross-effects increases the intensity of interaction,

and thus raises complementarities. In opposite, when Γ is nonnegative, raising cross-

effects no longer implies a decrease of substitutability in the sense that the intensity of

interaction is not necessarily reduced. This motivates the following definition:

Definition 2 In a game with strategic substitutes, a perturbation Θ = [θij] raises

complementarities if θij ≤ 0 for all i, j 6= i and θii ≥ 0.

However, the perturbations adapted to this context generate no clear-cut prediction

about aggregate effort. The problem is simply seen when considering perturbations

that only affect the diagonal of the matrix Γ. Basically, raising complementarities (i.e.

decreasing the intensity of interaction) by only increasing the diagonal of the matrix

Γ entails less aggregate effort if the solution of the transposed system ΓTY = J is

nonnegative.7 This result is easily explained. The linear system ΓTY = J is also

5Note that ρ(GΓT ) = ρ(GΓ).

6What is usually known is that diagonal dominance implies uniqueness of the solution, not that it

is interior.

7Γ(X ′−X) = −ΘX ′, and since Θ ≥ 0, −ΘX ′ ≤ 0. Then, if the solution to ΓTY = J is nonnegative,

lemma 1 (setting M = Γ and Z = X ′ −X) induces that x′ ≤ x.
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written

yi +
∑
j 6=i

γji
γii
yj =

1

γii
, for all i (4)

Increasing γii has two opposite effects: it decreases the ratio
γji

γii
but it also increases

the quantity 1
γii

. The latter effect dominates. Hence, imposing θii > 0 contributes to

decrease aggregate effort, while θij > 0 contributes to enhance aggregate effort. There-

fore, in a game with strategic substitutes, a perturbation that increases the diagonal

of Γ and decrease its off-diagonal elements has in general an ambiguous impact on

aggregate effort.

However, under some circumstances, it is possible to sign the variation of aggregate

effort. The next lemma gives conditions under which the diagonal effect (θii) dominates

(resp. is dominated by) the off-diagonal effect (θij). The conditions make the link

between the perturbation and the minimum and maximum effort levels at equilibrium:

Lemma 3 Consider two real numbers ql, qh such that 0 < ql ≤ qh. Consider a system

(1) that admits an interior solution X such that xi ∈ (ql, qh) for all i, and a perturbation

Θ that raises complementarities. Last, suppose that ΓTY = J admits a nonnegative

solution. If θii ≥ qh
ql

∑
j 6=i |θij| for all i, the perturbation induces a decrease of aggregate

effort. If θii ≤ ql
qh

∑
j 6=i |θij| for all i, the perturbation induces an increase of aggregate

effort.

Proof of lemma 3. Consider profile Γ(X ′ −X) = −ΘX ′. Line i writes:

−[ΘX ′]i = −θiix′i +
∑
|θij|x′j (5)

As ql ≤ x′j ≤ qh for all j,

−θiiqh + ql
∑
j 6=i

|θij| ≤ −[ΘX ′]i ≤ −θiiql + qh
∑
j 6=i

|θij| (6)

If θii ≥ qh
ql

∑
j 6=i |θij|, we have −[ΘX ′]i ≤ 0, while if θii ≤ ql

qh

∑
j 6=i |θij|, we find

−[ΘX ′]i ≥ 0. Then lemma 1 applies in both cases (with M = Γ and Z = X ′−X) and

we are done. �

Using lemma 3, we finally provide an economic example in which it is possible to

sign the variation of aggregate effort. Consider δ ∈ (0, 1), and a bi-stochastic matrix
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Λ = [λij]. Suppose that the matrix Γ = Γ0, with γ0
ii = λii, γ

0
ij = δλij. Also, set ai = 1

for all i. One possible corresponding economic situation is risk taking under informal

risk sharing (Belhaj and Deröıan [2009]). System (1) becomes:{
λiixi + δ

∑
j 6=i λijxj = 1 if 1− δ

∑
j 6=i λijxj > 0

xi = 0 if 1− δ
∑

j 6=i λijxj ≤ 0
(7)

Recall that GΛ denotes the null diagonal matrix such that gij =
λij

λii
.

Corollary 3 Suppose that Γ0 is diagonal dominant, i.e. λii >
δ

1+δ
for all i, and

consider a perturbation Θ that raises complementarities. If θii ≥ 1
δ

∑
j 6=i |θij| for all i,

the perturbation induces a decrease of aggregate effort. If θii ≤ δ
∑

j 6=i |θij| for all i, the

perturbation induces an increase of aggregate effort.

Proof of corollary 3. We show that diagonal dominance of Γ0, combined with row-

stochasticity of Λ, implies xi ∈ (1, 1
δ
). Indeed, the first equation of system (7) is written

xi + δ
∑
j 6=i

λij
λii
xj =

1

λii
(8)

Define wi = xi − 1
δ
. Given that

∑
j 6=i λij = 1 − λii, we obtain (I + δGΛ)W = −1−δ

δ
J .

Since λii >
δ

1+δ
for all i, and recalling that Λ is row-stochastic, the matrix I + δGΛ

basically satisfies property 2. Moreover, note that δρ(GΛ) < 1 (the sum over every

row in matrix GΛ is smaller than 1). We can then apply lemma 2 to the system

(I + δGΛ)Ŵ = J . This means that ŵi ∈ (0, 1) for all i. But we have W = −1−δ
δ
Ŵ ,

which entails that wi ∈ (−1−δ
δ
, 0) for all i. And thus xi ∈ (1, 1

δ
).

Second, since Λ is bi-stochastic, ΛT is row-stochastic. Then, we deduce that diagonal

dominance of Γ0, combined with row-stochasticity of ΛT , implies that the solution to

(Γ0)TY = J is positive. Applying therefore lemma 3 with Γ = Γ0, ql = 1 and qh = 1
δ
,

the corollary follows directly. �
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