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Département d’Économie, Ecole Polytechnique

1st June 2009

Abstract

One of the most prominent and consistent findings of the recent empirical literature
on fiscal policy is that investment expenditure is crowded-out by public spending in the
short-run. In this contribution, we address this empirical fact using a dynamic general
equilibrium model and show that the introduction of a habit-forming behavior plays a
major role in accommodating the observed negative relationship between investment and
government expenditure. Our numerical experiments point out the role of consumption
inertia in determining the reactions of the open economy: as habit persistence gets
stronger, a fiscal expansion crowds-out real consumption by a smaller amount and
investment by a larger one, while the current account enters into a greater deficit.
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William Barnett for very constructive suggestions and remarks which improve both content and exposition of a

previous draft. All remaining shortcomings are ours.
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1 Introduction

One of the most prominent and consistent findings of the empirical literature related to the

macroeconomic effects of fiscal shocks is that investment expenditure is crowded-out by public

spending in the short-run (see e. g. Blanchard and Perotti [2002], Mountford and Uhlig [2005],

Perotti [2005], Afonso and Sousa [2009]). However, the theoretical explanation of this empirical

fact remains unsatisfactory. While standard Keynesian theory would predict that crowding-out

occurs through increases in interest rates, Mountford and Uhlig [2005] find that empirically

“government spending shocks crowd out both residential and non-residential investment with-

out causing interest rates to rise”. Similarly, although the neo-classical Real Business Cycle

literature has the advantage of being based on sound theoretical foundations, as exemplified

by Baxter and King [1993], its predictions are also at odds with empirical facts as we shall

discuss below. In this paper, in contrast, we are able to provide a theoretical explanation of the

crowding-out of investment by relaxing the assumption of time separability in utility within a

Baxter and King type framework.

Open economy versions of Baxter and King’s [1993] model considering standard prefer-

ences find that consumption reacts strongly to a fiscal shock, investment is crowded-in, and

the current account enters in deficit due to capital accumulation (see e. g. , Karayalçin [1999]).

These conclusions come as a result of the assumption of time separable preferences implying

that the representative household chooses a perfect smoothing temporal path for real expen-

diture. Thus, after a balanced-budget fiscal expansion, consumption overreacts to the fall in

real disposable income which in turn releases enough resources for capital accumulation. Since

saving behavior plays a minor role, the investment boom drives the current account into deficit.

However, recent empirical results cast doubt over these three conclusions. First, according to

estimates documented by Perotti [2005], Afonso and Sousa [2009], a fiscal shock crowds-out

investment instead of boosting capital accumulation. Second, empirical evidence provided by

Mountford and Uhlig [2005], and corroborated by Afonso and Sousa [2009], reveals that pri-

vate consumption does not change significantly after a fiscal expansion. This finding suggests
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that consumption weakly reacts in the short-run, and thereby that the marginal propensity

to consume displays a small value. Third, estimates by Chinn and Prasad [2003] show that

an increase in fiscal deficit leads to a higher current account deficit in both developing and

industrialized countries. More specifically, empirical evidence documented by Freund [2005]

reveals that short-run current account deficits episodes are more associated with a decline in

savings than with an increase in investment.

Here we show that the introduction of a habit index into the utility function helps to improve

the predictive power of the Baxter and King [1993] model by modifying the chain of events

following a fiscal expansion. More precisely, higher fiscal spending financed by lump-sum taxes

reduces private wealth and induces agents to cut their real expenditure. However, since agents

wish to sustain their original standard of living, consumption reacts smoothly and savings fall.

At the same time, consumption inertia implies that the reduction in private demand is not large

enough to offset additional public spending such that investment is crowded-out. Whatever

the degree of habit persistence, the drop in savings always more than offsets the decline in

investment and thereby the open country experiences an initial current account deficit.

The remainder of the paper is organized as follows. In section 2, we develop a novel two-

good open economy model with habit formation. The macroeconomic equilibrium is analyzed

in section 3. Section 4 discusses the effects of a permanent fiscal expansion and provides

a sensitivity analysis which highlights the quantitative role of habit persistence. Section 5

concludes.

2 An Open Economy Model with Habit Formation

We consider a semi-small open economy that is populated by a large number of identical

households and firms that have perfect foresight and live forever. The country is assumed to

be semi-small in the sense that it is price-taker in international capital markets (i. e. , the world

interest rate r? is exogenous) but is large enough on world good markets to influence the price

of its export goods.

5
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2.1 Households

At each instant the representative household consumes domestic and foreign goods denoted by

cD and cF , respectively, which are aggregated by means of a CES function:

c =
[
ϕ

1
φ

(
cD

)φ−1
φ + (1− ϕ)

1
φ

(
cF

)φ−1
φ

] φ
φ−1

, (1)

where ϕ is the weight of the domestic good in the overall consumption bundle (0 < ϕ < 1)

and φ corresponds to the intratemporal elasticity of substitution between domestic and foreign

consumption goods. In line with Carroll, Overland and Weil [2000], agents care about both

current and past real consumption, denoted by c and s respectively, in deriving utility. The

representative household maximizes the following objective function:

U =
∫ ∞

0

1
1− ε

[
c

(s)γ

]1−ε

e−βtdt,=
∫ ∞

0

1
1− ε

[
(c)1−γ

(c

s

)γ]1−ε
e−βtdt, (2)

where β is the consumer’s discount rate, ε > 0 corresponds to the coefficient of relative risk

aversion, and γ > 0 stands for the weight attached to habits in utility. According to (2), agents

derive utility from a geometric weighted average of absolute and relative consumption where

γ is the weight of relative consumption. If γ = 0, the comparison of real consumption to the

reference stock turns out to be irrelevant and the case of time separability in preferences is

obtained. If γ > 0, then agents care about their relative consumption in deriving utility which

influences their consumption choices. They take into account that for a given change in their

current consumption, the consecutive adjustment of habits influences the marginal utility of

future consumption which modifies the intertemporal marginal rate of substitution and thereby

the allocation of real expenditure.

The habit stock denoted by s(t) is defined as a distributed lag on past real consumption:

s(t) = σ

∫ t

−∞
c (τ) e−σ(t−τ)dτ, (3)

where the parameter σ indexes the relative weight of recent consumption in determining the

reference stock s. Differentiating equation (3) w. r. t. time gives the law of motion of habit

stock:

ṡ(t) = σ [c(t)− s(t)] . (4)

6
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Intuitively, the larger is σ, the greater is the weight of consumption in the recent past in

determining the stock of habits, and the faster the reference stock adjusts to current expendi-

ture. By noting that habits coincide with real consumption in the long run, setting c = s into

the iso-elastic function (2) leads to a long-run intertemporal elasticity of substitution (IES)

denoted by ν = 1
[γ+ε(1−γ)] . Since the long-term IES under time non separable preferences is

higher than the standard IES 1/ε as long as the ε > 1, the steady-state change of consumption

is magnified.1

Households supply inelastically one unit of labor services and hold physical capital stock

for which they receive wage rate w(t) and the capital rental rate respectively. In addition, they

accumulate internationally traded bonds holding, b(t), that yields net interest rate earnings

r?b(t), expressed in terms of the foreign good. Denoting lump-sum taxes by T and the con-

sumption price index by pc, the flow budget constraint is equal to households’ real disposable

income less absorption:

ḃ(t) =
1

p(t)
{
r?p(t)b(t) +

(
rK(t) + δK

)
k(t) + w(t)− T − pcc(t)− I(t)

}
, (5)

where gross investment I is given by:

I(t) = k̇(t) + δKk(t). (6)

where δK ≥ 0 is a fixed depreciation rate.

Since c (.) is homothetic, the household’s maximization problem can be decomposed into two

stages. In the first stage, the representative household chooses the optimal levels of consumption

as well as investment in physical capital and foreign bonds. The cost-minimizing allocation of

real expenditure between domestic goods and imports can be decided at the second stage which

yields: cD = (1− αc) pcc and pcF = αcpcc, with αc the share of foreign goods in consumption

expenditure.

2.2 Firms

A large number of identical and perfectly competitive firms produce a final good which can

be consumed domestically, invested, or exported. They use physical capital k and labor n,
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according to a constant returns to scale production function, Y = F (k, n), which is assumed

to have the usual neoclassical properties of positive and diminishing marginal products. Profit

maximization gives the standard first order conditions according to which capital marginal

product is equal to the capital rental rate, i. e. , Fk = rK + δK , and labor marginal product is

equal to the the wage rate, i. e. , Fn = w.2

2.3 Government

The final agent in the economy is the government who finances public spending on the domestic

good gD and imports gF by raising lump-sum taxes T in accordance with the balanced budget

condition: gD + pgF = T .

3 Macroeconomic Equilibrium

First-Order Conditions

Denoting by λ and ξ the shadow prices of wealth and habits, the macroeconomic equilibrium

is defined by the following set of equations:

c−εs−γ(1−ε) + σξ = pc (p) λ/p, (7a)

λ̇ = λ (β − r?) , (7b)

ξ̇ = (β + σ) ξ + γc1−εs−[γ(1−ε)+1], (7c)

ṗ = p
(
rK − r?

)
, with rK = Fk − δK , (7d)

and dynamic equations (4), (5), (6), and appropriate transversality conditions. In order to

generate an interior solution, we require that β = r?. This standard assumption made in the

literature implies that the marginal utility of wealth, λ, will undergo a discrete jump when

individuals receive new information and must remain constant over time from thereon.

The dynamic efficiency condition (7d) asserts that the real exchange rate adjusts so as to

equalize the rate of return on domestic physical capital net of capital depreciation, i. e. , rK , to

the real rate of return on traded bonds, i. e. , r? + ṗ/p. The real exchange rate dynamics
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influence in turn the consumption temporal path by affecting the consumption-based real

interest rate. The law of motion for real consumption can be expressed in an interpretable

form by using static and dynamic optimality conditions (7a) and (7c). Differentiating (7a)

with respect to time, eliminating the shadow value of habits ξ(t) and substituting (7c), we

obtain the dynamic equation for c:

ċ

c
=

1
ε

[
1 + σξcεsγ(1−ε)

] [
r? + (1− αc)

ṗ

p
− ρ (c, s, p)

]
. (8)

Equation (8) restates the consumption Euler equation, which relates the optimal profile of

consumption to the difference between the consumption-based real interest rate, rc = r? +

(1− αc) ṗ
p , and the rate of time preference, denoted by ρ(t), which is variable over time.

Denoting exports by X, we impose a domestic good market clearing condition to fully

describe the macroeconomic equilibrium:3

F (k) = cD + X (p) + I + gD, (9)

where investment adjusts to equalize supply and aggregate demand along the transitional path.

Steady-State

The steady-state of the economy is obtained by setting ċ, ṡ, k̇, ṗ, ḃ = 0 and is defined by the

following set of equations:4

c̃ =
[(

β + σ

β + σ (1− γ)

)
pcλ̄

p̃

]− 1
γ+ε(1−γ)

, (10a)

F
(
k̃
)

= c̃D + X (p̃) + gD + δK k̃, (10b)

r?b̃ + X (p̃) /p̃− c̃F − gF = 0, (10c)

(
b̃− b0

)
= Φ1

(
k̃ − k0

)
+ Φ2 (s̃− s0) , (10d)

where the stock of habits s̃ must coincide with real consumption once the economy reaches

the steady-state. Equation (10b) restates that the production of domestic goods must be

exactly outweighed by a demand counterpart. Equation (10c) implies that in the steady-state

equilibrium, net foreign interest receipts from traded bonds holding must be exactly matched

by net exports. Finally, equation (10d) represents the linearized version of the intertermporal

9
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solvency constraint of the open economy according to which the net foreign asset position is

determined by both investment and consumption decisions.5

Equation (10a) determines the long-run level of real consumption. Whenever the relative

weight attributed to habit stock γ is positive, the long-run rate of change of c is influenced by

the long-term IES with time non separable preferences ν, which is higher than the inverse of

relative risk aversion 1/ε. Hence, after a reduction of private wealth, habit-forming consumers

experience a larger steady-state fall in consumption than a household displaying standard

preferences. More precisely, the closer to unity γ is, the larger is ν and the greater is the

long-run decrease in c for a given reduction in private wealth. The explanation is that as γ gets

closer to unity, households cut their real expenditure by a smaller amount in the short-run.

This behavior has a counterpart: they must reduce their real consumption by a greater amount

in the long-run as they decumulate financial wealth over the transition. Finally, a greater trade

openness softens the drop of real consumption by moderating the decrease in private wealth

measured in terms of the domestic good.

4 Fiscal Expansion and Adjustment of the Open Economy

In this section, we investigate the steady-state and dynamic effects of a permanent increase in

government spending on the domestic good gD.

4.1 Benchmark Parametrization

We briefly discuss the calibration by starting first with the parameters that are kept fixed

throughout the simulations. The parameter φ is set to 1.5. The parameter ϕ is set such

that the share of consumption of imported goods is approximately 19% of total expenditure

(see, e. g. , Corsetti and Müller [2006]). The world interest rate r?, is set at 4%. Exports are

assumed to take a power form: X (p) = γXpνX with γX > 0 a scaling parameter. The real

exchange rate elasticity of exports denoted by νX is set to 0.8. Government spending as a

share of GDP g/Y is assumed to be 20%. The import content of government expenditure is

10
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set to 10% (see Corsetti and Müller [2006]). The production function takes a Cobb-Douglas

form, Y = F (k) = kαK , with an output share of capital income, αK , set to 0.35. Finally, we

set δK at 5% so as to be consistent with a ratio investment-GDP roughly equal to 20%.

The critical parameters pertain to the weight of habits in utility, γ, and the speed of

adjustment, σ, in the determination of the reference stock. We set γ at 0.8 in line with

empirical estimates documented by Sommer [2007]. The relative-risk aversion parameter ε is

set at 2.5 which implies a long-run IES of ν = 1
γ+ε(1−γ) = 0.77 falling in the range of 0.5 and 1

of empirical estimates. Finally, we set σ at 0.5.

4.2 Steady-State Effects

We begin by examining the steady-state responses of a fiscal expansion, then turn to dynamic

effects. Quantitative estimation of the long-term and impact responses of key macroeconomic

variables are reported in Tables 1A and 1B respectively. We consider four alternative scenarios:

time preferences (γ = 0), benchmark parametrization (γ = 0.8, σ = 0.5), weak habits (γ = 0.3),

a faster speed of habits (σ = 0.9), a greater trade openness (ϕ = 0.5).6

Since the increase in government purchases is financed by a rise in lump-sum taxes in order

for the budget balanced condition to hold, a permanent fiscal expansion reduces households’

after-tax lifetime income. As agents feel poorer, they are induced to cut their real expenditure.

Real consumption is depressed further through an additional channel. An expansionary budget

policy triggers an excess of demand in the home good market which requires a larger steady-

state reduction in consumption. The associated long-term reduction in habits results in a

decrease in the stock of foreign assets as agents decumulate financial wealth to sustain their

original standard of living in the short-run. Additionally, in an open economy, a rise in gD

depresses further private demand through a long-term real exchange rate appreciation which

reduces exports.

Table 1A provides a sensitivity analysis regarding the long-term effects of a rise in gD. In line

with theoretical results, as habit persistence in consumption gets stronger, real consumption
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falls by a larger amount. Whereas consumers cut their expenditure by around -0.8% of initial

GDP if preferences are time separable (i. e. , γ = 0), pcc̃ declines by -0.81% if habits are weak

(i. e. , γ = 0.3) and by -0.85% for the benchmark parametrization (i. e. , γ = 0.8). Hence,

as γ gets closer to unity, the long-run IES gets larger such that private consumption drops

further in response to the fall in private wealth. Additionally, as trade openness increases, the

domestic content of consumption expenditure falls which in turn moderates sizeably the drop

in private wealth measured in terms of the domestic good, and thereby softens considerably

the reduction of consumption in the long-run.

——————————————————

< Please insert Table 1 about here >

——————————————————

4.3 Dynamic Effects

Impact Effects

Without habits, the short-run marginal propensity to consume (MPC) is equal to unity

such that at the time when fiscal expansion is implemented, real consumption falls by the same

amount than the decline in real disposable income, leaving savings unaffected. In contrast, as

long as people pay attention to relative consumption in deriving utility, the short-term MPC

turns out to be smaller than unity. Henceforth, real consumption initially falls but by less

than in the long-term. The explanation is that, facing a fall in their disposable income due to

higher lump-sum taxes, habit-forming consumers are aware that their standard of living will

be lower at the steady-state, which drives down the marginal utility of future consumption.

At the time the fiscal expansion is implemented, the stock of habits remains fixed. Hence, the

marginal utility of current consumption exceeds the marginal utility of future consumption,

which in turn provides a strong incentive to reallocate expenditure in the present. The rise in

the intertemporal marginal rate of substitution yields a smooth initial response of consumption

in line with empirical evidence provided by Mountford and Uhlig [2005] and Afonso and Sousa
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[2009]. For the benchmark parametrization, the first row of Table 1B shows that the cut in

real expenditure at time t = 0 is about 2.5 times smaller than in the long run.

One prominent and consistent findings of the recent empirical literature on fiscal policy is

that investment is crowded-out by public spending. As we shall see now, short-run consumption

inertia plays a major role in accommodating this empirical fact. To derive the initial response

of investment, we differentiate the market-clearing condition for the home good:

dI(0) = −Θdp(0)− (
cD/c

)
dc(0)− dgD. (11)

where Θ ≡ X
p

[
νX + cD

X φαc

]
> 0 captures the impact of a change of the real exchange rate on

exports and consumption. Equation (11) shows that the initial reaction of investment is the

result of two opposing effects. On the one hand, the fall in private demand (i. e. , exports and

private consumption) releases resources for capital accumulation (see the first and second terms

on the RHS of (11)). On the other hand, higher public purchases withdraw resources from the

private sector, which implies the possibility that investment falls in the short-term (see the

last term on the RHS of (11)). If preferences are time separable (i. e. , γ = 0), investment is

unaffected as the economy reaches its new steady-state immediately. In contrast, regardless

of the strength of consumption inertia, the short-term decline in private demand is not large

enough to compensate for the rise in gD. Hence, an excess of demand arises in the home goods

market which must be eliminated by a decumulation of physical capital. Interestingly, as can

be seen from the last column of Table 1B, trade openness plays a major role in determining

the size of the crowding-out as investment falls by about -0.1%, which is more than three times

smaller than in the benchmark scenario. The reason for this is that as the economy gets more

open, the real exchange appreciation crowds-out consumption by a smaller amount and exports

by a much larger one.

Finally, from the fourth and fifth rows of Table 1B, the investment rate falls by 0.3% while

savings drops by 0.4% of initial GDP for the baseline calibration.7 Hence, the current account

enters into deficit. As expected, the worsening in the net foreign asset position is magnified as

trade openness increases due to the dramatic reduction of exports.
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—————————————————————–

< Please insert Figures 1(a), 1(b) about here >

—————————————————————–

Transitional Paths

The computed transitional paths for consumption and investment depicted in Figures 1(a)-

1(b) change dramatically in a habit-forming model. While the real exchange rate depreciation

(ṗ(0) > 0) raises the consumption-based real rate of interest, the rise in the time preference

rate ρ is large enough to lead to a decreasing temporal path for consumption over a first

phase. The gradual fall in the reference stock reduces ρ which decreases monotonically during

the entire phase of adjustment. By approaching its new lower steady-state value from above,

the adjustment of real consumption releases resources for capital accumulation. After t ' 9

periods, the capital stock reaches its lowest value. Investment is crowded-in since output Y

now exceeds the demand for the domestic good. Because the rate of return on domestic assets

starts its decrease, the rate of real exchange rate depreciation gets smaller.

After 11 periods, consumption equalizes its new lower steady-state level and keeps on

decreasing. At time t ' 20 periods, the declining time preference rate equalizes the slippery

slope side of the consumption-based real interest rate’s hump-shaped transitional path. At

this point, real consumption reaches its lowest level and starts increasing. While savings

rises, Figure 1(b) indicates that the current account stays always in deficit due to a positive

investment flow.

4.4 Habit Persistence and Crowding-Out of Investment

—————————————————————–

< Please insert Figures 2(a), 2(b) about here >

—————————————————————–

We conducted a sensitivity analysis by plotting the size of the fall in the investment rate

after a rise in gD by 1 percentage point of GDP against the weight of habits in utility γ and

14
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the speed of habits σ, allowing for these two parameters to vary from 0 to 0.95 and 0.3 to 2

respectively. These two parameters jointly determine the strength of consumption inertia in

the short-term. Figures 2(a) and 2(b) show that investment is crowded-out further by public

spending as habit persistence gets stronger. More specifically, as γ increases from 0.1 to 0.9,

the rate of investment declines from 0.04% to 0.35% of initial GDP. If γ is kept fixed to 0.8,

the corresponding decline is from 0.3% to 0.4% of initial GDP as σ increases from 0.5 to 1.5.

The explanation is that as γ gets closer to unity and σ gets larger, the short-run MPC gets

smaller. Hence, private demand falls by a lower amount. Consequently, investment must be

crowded-out further in the short-term to eliminate the greater excess of demand in the home

goods market.

5 Conclusion

For countries of the euro area or a country that is in a “liquidity trap”, fiscal policy may be the

sole instrument of stabilization policy that the government may employ. Surprisingly, however,

the exploration of the macroeconomic effects of fiscal policy has only recently received notable

attention in the empirical literature. In this regard, one of the empirical facts for which the

profession seems to be in agreement is that a rise in public spending has a negative impact on

investment. However, in seeking a theoretical justification for this apparent stylized fact, recent

conclusions by Mountford and Uhlig [2005] cast doubt over standard Keynesian explanation

as a possibility. Similarly, the standard open economy version of the neoclassical RBC model

predicts that investment would be crowded-in by public spending. In this paper, we show

that by introducing habit-forming behavior into a dynamic general equilibrium model, one

can broaden the predictive power of the standard neoclassical model in order to accommodate

the observed negative relationship between investment and public spending. More precisely,

habit-forming consumers, confronted with a fall in their disposable income, are unwilling to cut

their real expenditure by a large amount and thus prefer to reallocate their real consumption

towards the present. This consumption inertia then implies that investment is crowded-out
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by fiscal spending. The reason behind this is that because consumption reacts weakly, the

decline in private demand fails to offset the rise in public spending, which in turn causes a fall

in investment. As long as consumers care about habits in deriving utility, the drop in savings

always more than offsets the decrease in investment such that the open economy experiences

a short-term current account deficit.

We also shed light on the role of habit persistence in consumption in determining the size

of the crowding-out of investment via numerical experiments. These show that as habit persis-

tence gets stronger, the crowding-out effect of fiscal expansion is smaller for real consumption

and larger for investment. For example, in the case of the latter, the drop in the investment

rate falls from 0.04% to around 0.35% percentage points of GDP as the weight assigned to

habits in utility increases from 10% to 90%. Moreover, as consumption inertia rises, the fall in

savings gets larger as individuals wish to sustain their original standard of living, and thereby

the open economy experiences a greater current account deficit. Finally, as trade openness

increases, both investment and consumption are crowded-out by a smaller amount and exports

by a larger one which worsens further the net foreign asset position.

Notes

1If agents anticipate a steady-state fall in consumption, the intertemporal marginal rate of substitution gets

larger which provides an incentive for agents to reallocate consumption towards the present. Because the slope

of the indifference curves along a constant consumption path rises, individuals’ impatience increases. Therefore,

real consumption deviates from the usual perfectly smooth temporal profile and declines over time, whenever the

real interest rate is kept fixed. By shifting the time paths for consumption and thereby savings, the introduction

of habits affects the long-term response of consumption to a change of private wealth dictated by the long-run

IES denoted by ν.

2Since labor supply is inelastic and normalized to unity, employment will be dropped from the production

function.

3Since a rise in the relative price of foreign goods makes domestic goods cheaper, a real exchange rate

depreciation raises exports, i. e. , Xp (.) > 0.

4Linearizing the accumulation equation for habits (4), the dynamic equation for consumption (8), the accu-
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mulation equation for physical capital (9) (combined with (6)) and the dynamic equation for the real exchange

rate (7d), we obtain a four by four linearized system. Since the number of predetermined variables (s and k)

equals the number of negative eigenvalues, and the number of jump variables (c and p) equals the number of

positive eigenvalues, there exists a unique two-dimensional convergent path towards the steady-state.

5For all parametrization, we find that Φ1 < 0 and Φ2 > 0. Accordingly, a rise in k̃ or a decrease in s̃ leads

to a decumulation of traded bonds holding.

6Decreasing ϕ from 0.9 to 0.5 implies a rise in the import content of consumption expenditure from 15% to

55% and an increase in the exports-GDP ratio from 15% to 36%.

7Because consumption weakly reacts to the reduction of wealth when the expansionary budget policy is

implemented, the savings rate falls dramatically. As γ gets closer to 1 and σ gets larger, the short-term MPC

shrinks further. Hence, households are more reluctant to cut their real expenditure initially, and thus are more

willing to reallocate their consumption towards present by decumulating further the stock of financial wealth.
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Figure 2: Sensitivity of the Crowding-Out Effect to γ and σ

Table 1: Quantitative Effects of a Permanent Fiscal Expansion (in %)
Variablesa TS Pref. γ = 0 (γ = 0.8, σ = 0.5) (γ = 0.3) (σ = 0.9) (ϕ = 0.5)

A.Long-Term
Consumption pcc̃ -0.80 -0.85 -0.81 -083 -0.48

Cons. in home good c̃D -0.84 -0.86 -0.84 -0.85 -0.55

Exports X̃ -0.16 -0.14 -0.16 -0.15 -0.45
B.Short-Term

Consumption pcc(0) -0.80 -0.34 -0.63 -0.31 -0.17
Cons. in home good cD(0) -0.84 -0.49 -0.71 -0.46 -0.44

Exports X(0) -0.16 -0.19 -0.16 -0.18 -0.48
Investment rate I(0) 0.00 -0.32 -0.13 -0.36 -0.09

Savings rate S(0) 0.00 -0.43 -0.16 -0.47 -0.23
Current account ca(0) 0.00 -0.11 -0.04 -0.11 -0.15

aWe consider an increase in gD by 1 percentage point of GDP. All effects are scaled by initial GDP. TS
Pref.: time separable preferences.
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A Short-Run Static Solution

Solving the domestic goods market-clearing condition (9) for the rate of investment in capital

goods:

I = I
(
λ̄, c, p, k, gD

)
, (12)

where partial derivatives are given by

Ic =
∂I

∂c
= − (1− αc) pc < 0, (13a)

Ip =
∂I

∂p
= − (

Xp − pp′′c c
)

< 0, (13b)

Ik =
∂I

∂k
= Fk > 0, (13c)

IgD =
∂I

∂gd
= −1 < 0. (13d)

B Equilibrium Dynamics and Formal Solutions

In this section, making use of general forms for preferences and production function, we prove

that the dynamic system exhibits saddle-point stability.

(
ṡ, ċ, k̇, ṗ

)T
= J

(
s(t)− s̃, c(t)− c̃, k(t)− k̃, p(t)− p̃

)T
, (14)

where J is given by

J ≡




−σ σ 0 0

a21 δ + σ a23 a24

0 Ic r? Ip

0 0 p̃Fkk 0




, (15)

where we used the fact that Ik − δK = r? we let

Γ = ucs +
σ

δ + 2σ
uss > 0. (16)
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and

a21 =
δ + 2σ

ucc
Γ < 0, (17a)

a23 = − λ̄pc

p̃ucc
(1− αc) Fkk > 0, (17b)

a24 =
λ̄pc (δ + σ)

uccp̃2
(1− αc) < 0. (17c)

The sign of Γ depends on ucs. If the marginal utility of real consumption is sufficiently in-

creasing in stock of habits, the preferences of the representative consumer display adjacent

complementarity and Γ is positive (see Ryder and Heal [1973]). If ucs has a negative or a small

positive value, Γ is negative and preferences are said to display distant complementarity. We

assume that Γ is positive which holds for the utility function (??) as longer as γ > 0.

Saddle-Point Stability

Denoting by µ the eigenvalue, the characteristic equation for the matrix (15) of the lin-

earized system writes as follows:

µ4 + b1µ
3 + b2µ

2 + b3µ + b4 = 0, (18)

with

b1 = −trJ = −2r? < 0, (19a)

b2 = M2 = (r?)2 −
{

σ (δ + σ)
ucc

[
ucc +

(
δ + 2σ

δ + σ

)
Γ
]

+ p̃Fkk

[
Ip − Ic

λ̄pc

uccp̃2
(1− αc)

]}
≷ 0,(19b)

b3 = −M3 = r?

{
σ (δ + σ)

ucc

[
ucc +

(
δ + 2σ

δ + σ

)
Γ
]

+ p̃Fkk

[
Ip − Ic

λ̄pc

uccp̃2
(1− αc)

]}
> 0, (19c)

b4 = DetJ =
σ (δ + σ) p̃Fkk

ucc

{
Ip

[
ucc +

(
δ + 2σ

δ + σ

)
Γ
]
− Ic

λ̄pc

p̃2
(1− αc)

}
> 0, (19d)

where J is given by (15) and M2 and M3 are respectively the sum of all diagonal second and

third order minors of J (see Dockner and Feichtinger [1991], p. 45). The positive signs of (19c)

and (19d) stem from the following (imposed) inequality

ucs +
σ

δ + 2σ
uss < −

(
δ + σ

δ + 2σ

)
ucc. (20)

Imposing (20) ensures that adjacent complementarity is not too strong and that the dynamic

system exhibits a saddle point stability (see Becker and Murphy [1988]).
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The characteristic polynomial of degree four (18) can be rewritten as a characteristic poly-

nomial of second degree

θ2 +
b3

r?
θ + b4 with θ = µi (r? − µi) . (21)

By evaluating first the eigenvalues θ from the second order polynomial and then calculating µ

from the definition of θ, the four eigenvalues of the upper-left four by four sub-matrix in the

Jacobian are given by:

µi ≡ 1
2





r? ±

√√√√√(r?)2 + 2


 b3

r?
±

√(
b3

r?

)2

− 4b4








, i = 1, 2, 3, 4, (22)

with

µ1 < µ2 < 0 < r? < µ3 < µ4. (23)

and having the following properties

r? − µ1 = µ4, r? − µ2 = µ3. (24)

The determinant of matrix J given by (19d) is positive, i. e. a4 > 0. This is consistent

with there being either 2 negative and 2 positive roots, 4 positive, or 4 negative roots. Since

the trace of the matrix J is equal to 2r? = −a1 (which is positive) and the trace is equal

to the sum of eigenvalues, only the first two cases have to be considered. By Descartes rule

of signs, necessary and sufficient conditions for the characteristic equation to have just two

positive roots is that either a2 < 0 or a3 > 0. From (19c), a3 > 0 so we can exclude the case

of four positive roots. Since the system features two state variables, s and k, and two jump

variables, c and p, the equilibrium yields a unique stable saddle-path.

Following Dockner and Feichtinger [1991], the necessary and sufficient conditions for saddle-

point stability with real roots write as follows:

b3

r?
> 0, (25a)

0 < 4b4 ≤
(

b3

r?

)2

. (25b)
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The first condition (25a) holds if the inequality (20) is respected. Expression
(

b3
r?

)2
− 4b4 can

be rewritten as:

(
b3

r?

)2

− 4b4 =
{

σ (δ + σ)
ucc

[
ucc +

(
δ + 2σ

δ + σ

)
Γ
]
− p̃Fkk

[
Ip − Ic

λ̄pc

uccp̃2
(1− αc)

]}2

− 4
σ (δ + 2σ) Fkk

ucc
ΓIc

λ̄pc

uccp̃
(1− αc) R 0. (26)

As the second condition (25b) may quite plausibly not hold, the system (14) exhibits saddle-

point behavior (as we have shown previously) but the stable roots may be either real or complex.

In the former case, trajectories may be monotonic or humped. In the latter case, the dynamics

involve cyclical behavior. As we shall see later, for plausible values of σ, formal solution are

real-valued.

Formal Solutions

Setting the constants A3 = A4 = 0 to insure a converging adjustment for all macroeconomic

aggregates, the stable paths are given by:

s(t)− s̃ = A1e
µ1t + A2e

µ2t, (27a)

c(t)− c̃ = ω1
2A1e

µ1t + ω2
2A2e

µ2t, (27b)

k(t)− k̃ = ω1
3A1e

µ1t + ω2
3A2e

µ2t, (27c)

p(t)− p̃ = ω1
4A1e

µ1t + ω2
4A2e

µ2t, (27d)

where the eigenvectors ωi
j associated with eigenvalue µi are given by

ωi
2 =

(
σ + µi

σ

)
, (28a)

ωi
3 = − Ic (σ + µi) µi

σ [(r? − µi) µi + Ipp̃Fkk]
, (28b)

ωi
4 =

p̃Fkk

µi
ωi

3 = −p̃Fkk
Ic (σ + µi)

σ [(r? − µi)µi + Ipp̃Fkk]
. (28c)

We normalized ωi
1 to unity. The two constants write as follows

A1 =
dk̃ − ω2

3ds̃

ω2
3 − ω1

3

, A2 =
ω1

3ds̃− dk̃

ω2
3 − ω1

3

. (29)

To determine the signs of eigenvectors, we have to establish the signs of useful expressions.

The first one is straightforward:

a3

r?
>

√(a3

r?

)2
− 4a4 > 0. (30)
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Making use of (22), we can establish some conditions for the signs of the following expres-

sions:

µ1µ4 + Ipp̃Fkk ≶ 0 depending on wether p̃FkkIp ≶ σ (δ + σ) , (31a)

µ2µ3 + Ipp̃Fkk ≷ 0 depending on wether p̃FkkIp ≷ σ (δ + σ) . (31b)

Since for plausible (and a large range of) values of preferences and production-side parameters,

inequality 0 < p̃FkkIp < σ (δ + σ) numerically holds, we deduce that µ1µ4 + Ipp̃Fkk < 0 and

µ2µ3 + Ipp̃Fkk < 0 (see inequality (32b)).

From the discussion above, we assume thereafter that 0 < p̃FkkIp < σ (δ + σ) which implies

in turn:

(r? − µ1) µ1 + Ipp̃Fkk = µ4µ1 + Ipp̃Fkk < 0, (32a)

(r? − µ2) µ2 + Ipp̃Fkk = µ3µ2 + Ipp̃Fkk < 0. (32b)

In addition, the sign of eigenvector (σ + µ1) can be established as follows:

(σ + µ1) ≷ 0 depending on wether p̃FkkIp ≶ σ (δ + σ) . (33)

Imposing the inequality has the following implications for eigenvectors ω1
2 and ω2

2:

(σ + µ1) > 0, (σ + µ2) > 0 if p̃FkkIp < σ (δ + σ) , (34)

where it is straightforward to deduce that (σ + µ2) > 0 since µ1 < µ2 < 0.

Signs of Eigenvectors

We write out the four eigenvectors ωi, corresponding with stable eigenvalues µi with i = 1, 2,

to determine their signs:

ω1 =




1 (+)

(σ+µ1

σ

)
(+)

− Ic(σ+µ1)µ1

σ[(r?−µ1)µ1+Ipp̃Fkk] (+)

−p̃Fkk
Ic(σ+µ1)

σ[(r?−µ1)µ1+Ipp̃Fkk] (+)




, ω2 =




1 (+)

(σ+µ2

σ

)
(+)

− Ic(σ+µ2)µ2

σ[(r?−µ2)µ2+Ipp̃Fkk] (+)

−p̃Fkk
Ic(σ+µ2)

σ[(r?−µ2)µ2+Ipp̃Fkk] (+)




.

(35)
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Formal Solution for the Stock of Foreign Assets

Using the market clearing condition (9), we may express the current account equation given

by (5) in terms of net exports:

ḃ = r?b +
X (p)

p
− p′c (p) c− gF . (36)

where the term X/p− cF − gF represents the balance of trade measured in terms of the foreign

good.

We first linearize equation (36) around the steady-state:

ḃ(t) = r?
(
b(t)− b̃

)
+ Ω̃ (p(t)− p̃)− p′c (p̃) (c(t)− c̃) (37)

with

Ω̃ ≡ 1
p̃

[
X̃

p̃
(ν̃X − 1) + c̃F ν̃F

]
= −1

p̃

[
Ip +

X̃

p̃

]
> 0, (38)

where νX ≡ Xpp
X > 0 and νF = −p′′c p

p = φ (1− αc) > 0 represent respectively the elasticities

of domestic exports and imports. Expression (38) gives the net exports reaction expressed

in terms of the foreign good to a change in the real exchange rate. We assume that the

generalized version of the Marshall-Lerner condition, that is with an unbalanced trade balance,

holds. Hence, a rise in the relative price of import goods leads to an improvement of the trade

balance evaluated at the steady-state, so we set Ω̃ > 0. Second equality of (38) has been

obtained by substituting the expression of Ip which is equal to − (Xp − pp′′c c).

Inserting the stable solutions for (p(t)− p̃) and (c(t)− c̃) given respectively by (27d) and

(27b), the solution for the current account writes as follows :

ḃ(t) = r?
(
b(t)− b̃

)
+ Ω̃

2∑

i=1

Aiω
i
4e

µit − p′c
2∑

i=1

Aiω
i
2e

µit. (39)

Solving the differential equation leads to:

b(t)− b̃ =
[(

b0 − b̃
)
− N1A1

µ1 − r?
− N2A2

µ2 − r?

]
er?t

+
N1A1

µ1 − r?
eµ1t +

N2A2

µ2 − r?
eµ2t, (40)

where

N1 = Ω̃ω1
4 − p′c

(
σ + µ1

σ

)
, N2 = Ω̃ω2

4 − p′c

(
σ + µ2

σ

)
. (41)
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Invoking the transversality condition for intertemporal solvency, i. e. equation (??), we

obtain the linearized version of the nation’s intertemporal budget constraint:

b0 − b̃ =
N1A1

µ1 − r?
+

N2A2

µ2 − r?
. (42)

For the national intertemporal solvency to hold, the terms in brackets of equation (40) must

be null, so the stable solution for net foreign assets finally reduces to

b(t)− b̃ =
N1A1

µ1 − r?
eµ1t +

N2A2

µ2 − r?
eµ2t. (43)

Inserting the values for the constants A1 and A2 given by equations (37), we obtain (af-

ter some tedious computations) the linearized version of the national intertemporal budget

constraint expressed as a function of initial stocks of capital and habits:

b̃− b0 = Φ1

(
k̃ − k0

)
+ Φ2 (s̃− s0) , (44)

with

Φ1 =
(µ1 − r?) N2 − (µ2 − r?) N1

(µ1 − r?) (µ2 − r?)
(
ω2

3 − ω1
3

) ≶ 0, (45a)

Φ2 =
(µ2 − r?) ω2

3N1 − (µ1 − r?) ω1
3N2

(µ1 − r?) (µ2 − r?)
(
ω2

3 − ω1
3

) > 0, (45b)

where
(
ω2

3 − ω1
3

)
> 0 is given by

ω2
3 − ω1

3 =
Ic (µ1 − µ2) {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]}

σ [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk]
=

(+)
(+)

> 0, (46)

where we have used the fact that µ3 − µ4 = µ1 − µ2 and µ1µ3 − µ2µ4 = r? (µ1 − µ2). The sign

of (46) stems from: µ1 − µ2 < 0, Ic < 0, together with

µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]

= [Ipp̃Fkk + µ1µ2] (σ + µ1) + µ2 [Ipp̃Fkk + µ1µ4] = (+) + (+) > 0, (47)

where [Ipp̃Fkk + µ1µ4] < 0 (see (32a)).

In addition, we have computed the following expressions:

(µ2 − r?) ω2
3N1 − (µ1 − r?) ω1

3N2

=
(1− αc) (pc)

2 Fkk

(
Ip + (1− αc) X̃

p̃

)

σ2 [(r? − µ1) µ1 + Ipp̃Fkk] [(r? − µ2) µ2 + Ipp̃Fkk]

× (σ + µ1) (σ + µ2) (µ2 − µ1) [r? − (µ1 + µ2)]
σ2 [(r? − µ1) µ1 + Ipp̃Fkk] [(r? − µ2) µ2 + Ipp̃Fkk]

=
(+)
(+)

> 0. (48)
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and

(µ1 − r?) N2 − (µ2 − r?) N1

= pcp̃Fkk

[
Ip + (1− αc)

X̃

p̃

] [
Ipp̃Fkk (µ2 − µ1) (σ + r?) + (σ + µ2)µ1 (µ4)

2 − (σ + µ1) µ2 (µ3)
2
]

p̃σ [(r? − µ1) µ1 + Ipp̃Fkk] [(r? − µ2) µ2 + Ipp̃Fkk]

+αcpc
µ3µ4 (µ2 − µ1) [Ipp̃Fkk [σ + (µ1 + µ2)] + µ1µ2 (σ + r?)]

p̃σ [(r? − µ1) µ1 + Ipp̃Fkk] [(r? − µ2) µ2 + Ipp̃Fkk]
≷ 0. (49)

By using the second equality of (38) and after some algebra, N1 and N2 can be rewritten

as follows

N1 = −pc

(
σ + µ1

σ

)



p̃Fkk

(
Ip + (1− αc) X̃

p̃

)
+ αcµ4µ1

p̃ [µ4µ1 + Ipp̃Fkk]



 ≶ 0, (50a)

= (−)×
{

(+) + (−)
(−)

}
.

N2 = −pc

(
σ + µ2

σ

)



p̃Fkk

(
Ip + (1− αc) X̃

p̃

)
+ αcµ3µ2

p̃ [µ3µ2 + Ipp̃Fkk]



 ≷ 0, (50b)

= (−)×
{

(+) + (−)
(−)

}
.

The signs of N1 and N2 remain undetermined since the numerator is the sum of a positive

term and a negative term. We do not impose any sign to expressions (50a)-(50a) but for all

parametrization, simulations indicate that N1 < 0 whereas N2 ≷ 0. The sign of N2 relies upon

the strength of habit persistence in consumption which size depends on γ and σ; furthermore,

its sign is quite sensitive to the intratemporal elasticity of substitution φ between cD and cF

since this parameter influences the magnitude of the first in square brackets (i. e. Ip), that is

the Marshall-Lerner condition.

We have computed an expression of Φ1 by making use of (49) and (46) in order to have an

analytical expression that allows to bring out the parameters which influences its size:

Φ1 = −
Fkk

[
Ip + (1− αc) X̃

p̃

] [
Ipp̃Fkk (µ2 − µ1) (σ + r?) + (σ + µ2) µ1 (µ4)

2 − (σ + µ1) µ2 (µ3)
2
]

(1− αc) µ3µ4 (µ1 − µ2) {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]}
+

1
p̃

(
αc

1− αc

)
≶ 0. (51)

In addition, we have evaluated Φ2 by making use of (48) and (46):

Φ2 =
pcFkk

[
Ip + (1− αc) X̃

p̃

]
(σ + µ1) (σ + µ2) [r? − (µ1 + µ2)]

σµ3µ4 {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]} =
(+)
(+)

> 0, (52)
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where the sign of (51) comes from the assumption of a low value of αc as data suggest it (close

to 20%). The sign of (52) has been determined by rewriting the term in square brackets located

in the denominator as follows:

µ1µ2σ (σ + r?) + Ipp̃Fkkσ [σ + (µ1 + µ2)]

= −µ1µ2 [Ipp̃Fkk + µ1µ4] + (σ + µ1) [µ1µ2 (σ + µ4) + Ipp̃Fkk (σ + µ2)] > 0,

where we used the fact that σ [σ + (µ1 + µ2)] = (σ + µ1) (σ + µ2) − µ1µ2 and σ (σ + r?) =

σ [σ + (µ1 + µ4)] = (σ + µ1) (σ + µ4)− µ1µ4.

Formal Solution for the Stock of Financial Wealth

Financial wealth measured in terms of the domestic good, a(t), is equal to the sum of the

stock of foreign assets, p(t)b(t), measured in terms of the foreign good and the capital stock.

The law of motion for financial wealth (S(t) = ȧ(t)) is given by:

ȧ(t) = rK(t)a(t) + w(t)− pc (p(t)) c− T, (53)

where lump-sump taxes cover overall government spending, i. e. T = gD +pgF . Remembering

that w = Fn and rK = Fk − δK , and linearizing (53) in the neighborhood of the steady-state,

we get:

ȧ(t) = r? (a(t)− ã) + Fkkp̃b̃
(
k(t)− k̃

)
− pc (c(t)− c̃)− (

c̃F + gF
)
(p(t)− p̃) , (54)

where we used the fact that r̃K ≡ Fk − δK = r? at the steady-state; we used property Fkn =

− k
nFkk of the linear homogenous function and a ≡ pb + k to rewrite Fkkã + Fkn as Fkkp̃b̃.

By inserting the stable solutions, using the fact that ωi
3 = µi

p̃Fkk
ωi

4, and rearranging terms,

the solution for the stock of financial wealth writes as follows:

ȧ(t) = r? (a(t)− ã)−
2∑

i=1

[
(r? − µi) b̃ +

X̃

p̃

]
ωi

4Aie
µit − pc

2∑

i=1

Aiω
i
2e

µit, (55)

where we used the fact that
(
c̃F + gF

)
= r?b̃ + X̃

p̃ .

Solving the differential equation leads to:

a(t)− ã =
[
(a0 − ã)− S1A1

µ1 − r?
− S2A2

µ2 − r?

]
er?t +

S1A1

µ1 − r?
eµ1t +

S2A2

µ2 − r?
eµ2t, (56)
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where

S1 = −
[
µ4b̃ +

X̃

p̃

]
ω1

4 − pcω
1
2 < 0, (57a)

S2 = −
[
µ3b̃ +

X̃

p̃

]
ω2

4 − pcω
2
2 < 0, (57b)

with ω1
4 >, ω2

4 > 0, ω1
2 > 0, ω2

2 > 0.

Invoking the transversality condition for intertemporal solvency, we get the linearized ver-

sion of the households’ intertemporal budget constraint:

a0 − ã =
S1A1

µ1 − r?
+

S2A2

µ2 − r?
. (58)

For the intertemporal solvency to hold, the terms in brackets of equation (58) must be null, so

as the stable solution for the stock of financial wealth finally reduces to:

a(t)− ã =
S1A1

µ1 − r?
eµ1t +

S2A2

µ2 − r?
eµ2t. (59)

C Steady-State Changes of Government Spending Shocks

C.1 Steady-State Changes

Totally differentiating equations (10) yields in matrix form




[
ucc +

(
δ+2σ
δ+σ

)
Γ
]

pcλ̄(1−αc)
p̃2 −pc

p̃ 0 0

0 0 0 Fkk 0

−pc −
(
c̃F + gF − r?b̃

)
0 r? p̃r?

Ic Ip 0 r? 0

−Φ2 0 0 −Φ1 1







dc̃

dp̃

dλ̄

dk̃

db̃




=




0

0

dgD + p̃dgF

dgD

db0 − Φ1dk0 − Φ2ds0




, (60)
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where
(
c̃F + gF − r?b̃

)
= X̃/p̃.

Before turning to long-run changes, we introduce some useful properties we will use later:

(σ + µ1) (σ + µ2) = σ [σ + (µ1 + µ2)] + µ1µ2 > 0, (61a)

µ3µ4 = (r? − µ1) (r? − µ2) = r? [r? − (µ1 + µ2)] + µ1µ2 > 0. (61b)

Wa calculate the determinant D which is given by:

D ≡ Fkk
pc

p̃

{
−p̃Ipr

?Φ2 + pc

[
Ip + (1− αc)

(
c̃F + gF − r?b̃

)]}
,

≡ Fkk
pc

p̃

{
−p̃Ipr

?Φ2 + pc

[
Ip + (1− αc)

X̃

p̃

]}
, (62)

= (−)× (−) > 0,

where we used the market-clearing condition, i. e. c̃F + gF − r?b̃ = X̃/p̃ (see eq (10b)). To

determine the sign of the determinant D, we have rewritten the term in square brackets as

follows by making use of properties (61):

−p̃Ipr
?Φ2 + pc

[
Ip + (1− αc)

X̃

p̃

]

= pc

[
Ip + (1− αc)

X̃

p̃

]{
µ1µ2µ3µ4σ (σ + r?)

σµ3µ4 {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]}

+
Ipp̃Fkk {σµ3µ4 [σ + (µ1 + µ2)]− r? [r? − (µ1 + µ2)] (σ + µ1) (σ + µ2)}

σµ3µ4 {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]}
}

,

= pc

[
Ip + (1− αc)

X̃

p̃

]
µ1µ2

{
(σ + µ1) (σ + µ2) Ipp̃Fkk + µ3µ4 [σ (σ + r?)− Ipp̃Fkk]

σµ3µ4 {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]}
}

,

= pc

[
Ip + (1− αc)

X̃

p̃

]
µ1µ2

{
(σ + µ1) (σ + µ2) Ipp̃Fkk

σµ3µ4 {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]}

+
µ3µ4 {(σ + µ1) (σ + µ4)− [µ1µ4 + Ipp̃Fkk]}

σµ3µ4 {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]}
}

, (63)

= (−)×
{

(+)
(+)

}
< 0,

and by computing some useful expressions:

σµ3µ4 [σ + (µ1 + µ2)]− r? [r? − (µ1 + µ2)] (σ + µ1) (σ + µ2)

= µ1µ2 [(σ + µ1) (σ + µ2)− µ3µ4] , (64a)

σ (σ + r?)− Ipp̃Fkk

= (σ + µ1) (σ + µ4)− [µ1µ4 + Ipp̃Fkk] > 0. (64b)
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Domestic Good gD

The long-run effects after an unanticipated permanent increase in government expenditure

on the domestic good are obtained from the total differential of the equilibrium system (10)

with respect to gD:

dc̃

dgD
=

ds̃

dgD
= −Fkk

D

pc

p̃

(
Ip +

X̃

p̃

)
= −(+)

(+)
< 0, (65a)

dp̃

dgD
= −Fkk

D

pc

p̃
(p̃r?Φ2 − αcpc) ≷ 0, (65b)

dλ̄

dgD
= −Fkk

D

pcλ̄ (1− αc)
p̃2

(p̃r?Φ2 − αcpc)− Fkk

D

[
ucc +

δ + 2σ

δ + σ
Γ
] (

Ip +
X̃

p̃

)
≷ 0,(65c)

dk̃

dgD
= 0, (65d)

db̃

dgD
= −Fkk

D

pc

p̃
Φ2

(
Ip +

X̃

p̃

)
= −(+)

(+)
< 0, (65e)

where the determinant D > 0 is given by (65), Φ2 > 0 (see (52)), Ip + X̃
p̃ =

− X̃
p̃

[
νX + νf

p̃c̃F

X̃
− 1

]
< 0, and we have computed the following expression:

p̃r?Φ2 − αcpc

=
pcIpp̃Fkk {r? [r? − (µ1 + µ2)] (σ + µ1) (σ + µ2)− αcµ3µ4σ [σ + (µ1 + µ2)]}

σµ3µ4 {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]}

+
pcp̃Fkk (1− αc) X̃

p̃ (σ + µ1) (σ + µ2) r? [r? − (µ1 + µ2)]− pcαcµ1µ2µ3µ4σ (σ + r?)

σµ3µ4 {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]}

=
pcp̃Fkk (σ + µ1) (σ + µ2)

[
(1− αc) (µ3µ4 − µ1µ2)

(
Ip + X̃

p̃

)
+ αcµ1µ2Ip

]

σµ3µ4 {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]}
− pcαcµ1µ2µ3µ4 {(σ + µ1) (σ + µ4)− [µ1µ4 + Ipp̃Fkk]}

σµ3µ4 {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]} , (66)

=
(+)
(+)

− (+)
(+)

≷ 0,

with (µ3µ4 − µ1µ2) > 0 and

r? [r? − (µ1 + µ2)] (σ + µ1) (σ + µ2)− αcµ3µ4σ [σ + (µ1 + µ2)]

= (σ + µ1) (σ + µ2) [(1− αc)µ3µ4 − µ1µ2] + αcµ1µ2µ3µ4,

(1− αc)µ3µ4

(
Ip +

X̃

p̃

)
− µ1µ2

[
Ip + (1− αc)

X̃

p̃

]

= (1− αc) r? [r? − (µ1 + µ2)]

(
Ip +

X̃

p̃

)
+ αcµ1µ2Ip < 0.
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The sign of (66) is ambiguous leaving the directions of steady-state changes (65b) and (65c)

undetermined.

The sign of dλ̄
dgD

is not clear-cut like in the standard model assuming TS preferences.

Intuitively, an increase in lump-sum taxes is necessary to finance the additional public spending

which in turn reduces unambiguously the disposable income of agents when expressed in terms

of the domestic good, that is r?p̃b̃ + Ỹ − T . However, because the long-run real exchange rate

appreciation raises the disposable income measured in terms of the foreign good by increasing

domestic output net of taxes, the sign of the change in the equilibrium value of the marginal

utility of wealth dλ̄ is not clear-cut, like in the time separability utility case. Since for all

parametrization, the marginal utility jumps upward after a fiscal expansion, we assume now

and thereafter that λ̄ rises.

While the representative agent’s disposable income may rise or fall when expressed in terms

of the foreign good, due to a possibly real exchange rate’s long-run decline, when it is measured

in terms of the domestic good, that is r?p̃b̃ + F
(
k̃
)
− T , the disposable income of individuals

falls unambiguously due to the rise in lump-sum taxes, T , and the long-run fall in traded

bonds’ holding, b̃, keeping in mind that the capital stock, k̃, remains unchanged in the long-

run. Consequently, the marginal utility of wealth expressed in terms of the domestic good

unambiguously rises after an unexpected permanent increase in government spending, that is:

d
dp

[
pcλ̄

p̃

]
=

pc

p̃

dλ̄

dgD
− λ̄pc (1− αc)

p̃2

dp̃

dgD
,

= −Fkk

D

[
ucc +

δ + 2σ

δ + σ
Γ
](

Ip +
X̃

p̃

)
> 0.

Import Good gF

The long-run effects after an unanticipated permanent increase in government expenditure

on the foreign good are obtained from the total differential of the equilibrium system (10) with
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respect to gF :

dc̃

dgF
=

ds̃

dgF
= −Fkk

D
pcIp = −(+)

(+)
< 0, (67a)

dp̃

dgF
= −Fkk

D
(1− αc) (pc)

2 = −(−)
(+)

> 0, (67b)

dλ̄

dgF
= − p̃Fkk

D

{[
(1− αc) pc

p̃

]2

λ̄ + Ip

[
ucc +

δ + 2σ

δ + σ
Γ
]}

= −(−)
(+)

> 0, (67c)

dk̃

dgF
= 0, (67d)

db̃

dgF
= −Fkk

D
pcIpΦ2 = −(+)

(+)
< 0, (67e)

where D > 0 is given by (65).

C.2 The Two-Step Solution Procedure

In this section, we calculate the signs of the partial derivatives of the steady-state functions

obtained in the first step of the two-step solution procedure by totally differentiating equa-

tions (10a) to (10b) without the intertemporal budget constraint, equation (10d). Totally

differentiating equations (10a)-(10b) yields in matrix form:



[
ucc +

(
δ+2σ
δ+σ

)
Γ
]

pcλ̄(1−αc)
p̃2 0 0

0 0 Fkk 0

−pc −
(
c̃F + gF − r?b̃

)
r? p̃r?

Ic Ip r? 0







dc̃

dp̃

dk̃

db̃




=




pc

p̃ dλ̄

0

dgD + p̃dgF

dgD




, (68)

where
(
c̃F + gF − r?b̃

)
= X̃/p̃.

The determinant of the system matrix is given by:

G ≡ Fkkp̃r?

{[
ucc +

(
δ + 2σ

δ + σ

)
Γ
]

Ip − pcλ̄ (1− αc)
p̃2

Ic

}
< 0. (69)

From system (68), we can calculate the partial derivatives of the following steady-state
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functions:

k̃ = F−1
k (r?) , (70a)

s̃ = c̃ = m
(
λ̄, gD, gF

)
, (70b)

p̃ = p
(
λ̄, gD, gF

)
, (70c)

b̃ = b
(
λ̄, gD, gF

)
, (70d)

with

mλ̄ ≡ ∂c̃

∂λ̄
=

Fkk

G
Ippcr

? =
(+)
(−)

< 0, (71a)

mgD ≡ ∂c̃

∂gD
= −Fkk

G

pcλ̄ (1− αc)
p̃

r? =
(+)
(−)

< 0, (71b)

mgF ≡ ∂c̃

∂gF
= 0, (71c)

pλ̄ ≡ ∂p̃

∂λ̄
= −Fkk

G
Icpcr

? =
(−)
(−)

> 0, (71d)

pgD ≡ ∂p̃

∂gD
= −Fkkp̃r?

G

[
ucc +

(
δ + 2σ

δ + σ

)
Γ
]

=
(+)
(−)

< 0, (71e)

pgF ≡ ∂p̃

∂gF
= 0, (71f)

bλ̄ ≡ ∂b̃

∂λ̄
=

Fkk

G

(pc)
2

p̃

[
Ip + (1− αc)

X̃

p̃

]
=

(+)
(−)

< 0, (71g)

bgD ≡ ∂b̃

∂gD
=

Fkk

G

{[
ucc +

(
δ + 2σ

δ + σ

)
Γ
][

Ip + (1− αc)
X̃

p̃

]
− p2

c λ̄ (1− αc)
p̃2

αc

}
,(71h)

= (+)× {(+)− (+)} ≷ 0,

bgF ≡ ∂b̃

∂gF
=

p̃Fkk

G

{[
ucc +

(
δ + 2σ

δ + σ

)
Γ
]

Ip − p2
c λ̄ (1− αc)

p̃2
Ic

}
, (71i)

= (+)× {(+)− (−)} > 0,

where Ic < 0, Ip < 0.

In the second step, we obtain the equilibrium value of the marginal utility of wealth by

inserting the functions for c̃ = s̃, p̃ and b̃ into the economy’s intertemporal budget constraint

(equation (10d)), keeping in mind that k̃ = constant:

[
b
(
λ̄, gD, gF

)− b0

]
= Φ1

(
k̃ − k0

)
+ Φ2

(
m

(
λ̄, gD, gF

)− s0

)
. (72)

which yields to

λ̄ = g
(
s0, k0, b0, g

D, gF
)

(73)
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where partial derivatives are given by:

dλ̄

dgD
≡ λgD = −bgD − Φ2mgD

bλ̄ − Φ2mλ̄

> 0, (74a)

dλ̄

dgF
≡ λgF = − bgF

bλ̄ − Φ2mλ̄

> 0, (74b)

dλ̄

db0
≡ λn =

1
bλ̄ − Φ2mλ̄

< 0, (74c)

dλ̄

dk0
≡ λk = − Φ1

bλ̄ − Φ2mλ̄

< 0, (74d)

dλ̄

ds0
≡ λs = − Φ2

bλ̄ − Φ2mλ̄

> 0, (74e)

where we used the fact that mgF = 0 and the signs of (74a) and (74b) correspond to these of

(65c) and (67c).

D Graphical Constructions of Stable Manifolds

We start the investigation of transitional dynamics by evaluating the constants after a govern-

ment spending shock, gj (with i = d, f):

A1

dgj
= − ω2

3

ω2
3 − ω1

3

ds̃

dgj
> 0, i = d, f, (75a)

A2

dgj
=

ω1
3

ω2
3 − ω1

3

ds̃

dgj
< 0, i = d, f, (75b)

where ω1
3 > 0, ω2

3 > 0, ds̃/dgj < 0 (for i = d, f).

From (75), we deduce the following property:

A2

dgj
= −ω1

3

ω2
3

A1

dgj
, i = g, f. (76)

D.1 Stable Manifold in the (k, p)-space

The stable solution is given by the following system of equations

k(t)− k̃ = ω1
3A1e

µ1t + ω2
3A2e

µ2t, (77a)

p(t)− p̃ = ω1
4A1e

µ1t + ω2
4A2e

µ2t. (77b)

Demarcation Lines
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Time derivatives of solutions (77a) and (77b) and elimination of A1e
µ1t and A2e

µ2t leads

to a new linear differential equation system for k(t) and p(t)

k̇(t) =
[
µ1ω

1
3ω

2
4 − µ2ω

2
3ω

1
4

ω1
3ω

2
4 − ω2

3ω
1
4

](
k(t)− k̃

)
−

[
ω1

3ω
2
3 (µ1 − µ2)

ω1
3ω

2
4 − ω2

3ω
1
4

]
(p(t)− p̃) , (78a)

ṗ(t) =
[
ω1

4ω
2
4 (µ1 − µ2)

ω1
3ω

2
4 − ω2

3ω
1
4

](
k(t)− k̃

)
−

[
µ1ω

1
4ω

2
3 − µ2ω

2
4ω

1
3

ω1
3ω

2
4 − ω2

3ω
1
4

]
(p(t)− p̃) . (78b)

The new differential equation system has two stable roots µ1 < 0 and µ2 < 0 with µ1 < µ2 < 0;

hence the steady-state is a stable node in (k, p)-space.

From (78), we determine the slopes of demarcation lines:

dp

dk

∣∣∣∣
k̇=0

=
µ1ω

1
3ω

2
4 − µ2ω

2
3ω

1
4

ω1
3ω

2
3 (µ1 − µ2)

=
(−)
(−)

> 0, (79a)

∂k̇

∂p
= −ω1

3ω
2
3 (µ1 − µ2)

ω1
3ω

2
4 − ω2

3ω
1
4

= −(−)
(+)

> 0, (79b)

dp

dk

∣∣∣∣
ṗ=0

=
ω1

4ω
2
4 (µ1 − µ2)

µ1ω1
4ω

2
3 − µ2ω2

4ω
1
3

=
(−)
(0)

= −∞, (79c)

∂ṗ

∂k
=

ω1
4ω

2
4 (µ1 − µ2)

ω1
3ω

2
4 − ω2

3ω
1
4

=
(−)
(+)

< 0, (79d)

where µ1 − µ2 < 0 and we have computed the following expressions:

µ1ω
1
3ω

2
4 − µ2ω

2
3ω

1
4

=
p̃Fkkω

1
3ω

2
3 (µ1 + µ2) (µ1 − µ2)

µ1µ2
=

(−)
(+)

< 0, (80a)

µ1ω
1
4ω

2
3 − µ2ω

2
4ω

1
3 = 0, (80b)

ω1
3ω

2
4 − ω2

3ω
1
4

=
p̃Fkkω

1
3ω

2
3 (µ1 − µ2)

µ1µ2
=

(−)
(+)

< 0. (80c)

Making use of expressions (80), the system (78) may be rewritten as follows:

k̇(t) = Θ1

(
k(t)− k̃

)
+ Θ2 (p(t)− p̃) , (81a)

ṗ(t) = Θ3

(
k(t)− k̃

)
, (81b)
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with

Θ1 =
µ1ω

1
3ω

2
4 − µ2ω

2
3ω

1
4

ω1
3ω

2
4 − ω2

3ω
1
4

=
(−)
(+)

< 0,

Θ2 =
ω1

3ω
2
3 (µ1 − µ2)

ω1
3ω

2
4 − ω2

3ω
1
4

= −(−)
(+)

> 0,

Θ3 =
ω1

4ω
2
4 (µ1 − µ2)

ω1
3ω

2
4 − ω2

3ω
1
4

= p̃Fkk < 0,

Θ4 =
µ1ω

1
4ω

2
3 − µ2ω

2
4ω

1
3

ω1
3ω

2
4 − ω2

3ω
1
4

= 0,

where the multipliers Θi (i = 1, 2, 3, 4) can be interpreted as partial speeds of adjustment

towards the steady-state.

Fiscal Expansion and Trajectories

The slope of the trajectory at time t is obtained by differentiating the system of equations

(77) with respect to time t and dividing the resulting expressions:

dp(t)
dK(t)

=
µ1ω

1
4A1e

µ1t + µ2ω
2
4A2e

µ2t

µ1ω1
3A1eµ1t + µ2ω2

3A2eµ2t
=

µ1ω
1
4A1e

(µ1−µ2)t + µ2ω
2
4A2

µ1ω1
3A1e(µ1−µ2)t + µ2ω2

4A2
. (82)

The slope of the trajectory at the initial point can be calculated from (82) by setting t = 0,

substituting the constants A1 and A2 given by (37) and taking into account that dk̃ = 0:

(
dp

dk

) ∣∣∣∣
t→0

=
µ1ω

1
4A1/dgD + µ2ω

2
4A2/dgD

µ1ω1
3A1/dgD − µ2ω2

3A2/dgD
,

=
µ1ω

1
4ω

2
3 − µ2ω

2
4ω

1
3

ω1
3ω

2
3 (µ1 − µ2)

=
(0)
(−)

= 0. (83)

Letting time tend towards infinity, i. e. t →∞, in equation (82), one obtains the slope of

the trajectory approaching the steady-state:

(
dp

dk

) ∣∣∣∣
t→∞

=
ω2

4

ω2
3

=
(+)
(+)

> 0. (84)

We compare the slope of the demarcation line k̇ = 0 with the slope of the trajectory

approaching the steady-state in the (k, p)-space:

(
dp

dk

) ∣∣∣∣
t→∞

− dp

dk

∣∣∣∣
k̇=0

= −µ2

(
ω1

3ω
2
4 − ω2

3ω
1
4

)

ω1
3ω

2
3 (µ1 − µ2)

= −(−)
(−)

< 0, (85)

where ω1
3ω

2
4 − ω2

3ω
1
4 > 0 is given by (80c). From (94), we can deduce the following inequality:

0 <

(
dp

dk

) ∣∣∣∣
t→∞

<
dp

dk

∣∣∣∣
k̇=0

. (86)
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Transitional Dynamics for p(t) and k(t)

We calculate the initial changes of the real exchange rate and the investment in physical

capital.

A Rise in Government Spending on the Domestic Good

Setting t = 0 into (77b), differentiating with respect to gD, and noting that dk̃
dgD

= 0, the

real exchange rate appreciates initially following an unanticipated permanent rise in government

spending on the domestic good:

dp(0)
dgD

=
dp̃

dgD
+ ω1

4

A1

dgD
+ ω2

4

A2

dgD
,

=
dp̃

dgD
+

[
ω1

3ω
2
4 − ω2

3ω
1
4

ω2
3 − ω1

3

]
ds̃

dgD
,

= −Fkk

D

pc

p̃

{
(p̃r?Φ2 − αcpc) +

[
ω1

3ω
2
4 − ω2

3ω
1
4

ω2
3 − ω1

3

](
Ip +

X̃

p̃

)}
< 0, (87)

where we have rewritten the term in square brackets to determine its sign:

(p̃r?Φ2 − αcpc) +
[
ω1

3ω
2
4 − ω2

3ω
1
4

ω2
3 − ω1

3

](
Ip +

X̃

p̃

)

=
µ4ω

1
3

[
µ3ω

2
4

(
Ip + X̃

p̃

)
+ p̃r?N2

]
− µ3ω

2
3

[
µ4ω

1
4

(
Ip + X̃

p̃

)
+ p̃r?N1

]

µ3µ4

(
ω2

3 − ω1
3

)

− αcpcµ3µ4

(
ω2

3 − ω1
3

)

µ3µ4

(
ω2

3 − ω1
3

)

=
p̃Fkkω

1
3ω

2
3

(
Ip + X̃

p̃

)
(µ3 − µ4) + p̃r?p′c

[(σ+µ1

σ

)
µ3ω

2
3 −

(σ+µ2

σ

)
µ4ω

1
3

]

µ3µ4

(
ω2

3 − ω1
3

)

− αcpcµ3µ4

(
ω2

3 − ω1
3

)

µ3µ4

(
ω2

3 − ω1
3

)

=
pcIcp̃Fkk (σ + µ1) (σ + µ2)

{
αcµ3µ4 (µ1 − µ2) Ip − µ1µ2 (µ3 − µ4)

[
Ip + (1− αc) X̃

p̃

]}

σ2 [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk] µ3µ4

(
ω2

3 − ω1
3

)

− αcpcµ3µ4Ic (µ1 − µ2) σ {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]}
σ2 [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk]µ3µ4

(
ω2

3 − ω1
3

)

= −pcIcµ1µ2

{ p̃Fkk (σ + µ1) (σ + µ2) (µ3 − µ4)
[
Ip + (1− αc) X̃

p̃

]

σ2 [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk] µ3µ4

(
ω2

3 − ω1
3

)

− αcµ3µ4 (µ1 − µ2) {[µ1µ4 + Ipp̃Fkk]− (σ + µ1) (σ + µ4)}
σ2 [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk]µ3µ4

(
ω2

3 − ω1
3

)
}

, (88)

= (+)×
{

(−)
(+)

− (+)
(+)

}
< 0,

where we used the definition of Φ2 (see (50b)) and collected terms to obtain the first line; then
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we have evaluated the term in square brackets as follows to determine the second line:

µ3ω
2
4

(
Ip +

X̃

p̃

)
+ p̃r?N2

= −
[
µ2ω

2
4

(
Ip +

X̃

p̃

)
+ p̃r?p′c

(
σ + µ2

σ

)]
,

µ4ω
1
4

(
Ip +

X̃

p̃

)
+ p̃r?N1

= −
[
µ1ω

1
4

(
Ip +

X̃

p̃

)
+ p̃r?p′c

(
σ + µ1

σ

)]
,

(
σ + µ1

σ

)
µ3ω

2
3 −

(
σ + µ2

σ

)
µ4ω

1
3

=
Ic (σ + µ1) (σ + µ2) Ipp̃Fkk (µ1µ4 − µ2µ3)

σ2 [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk]
=

(+)
(+)

> 0,

p̃FkkIp (σ + µ1) (σ + µ2)− µ1µ2σ (σ + r?)− Ipp̃Fkkσ [σ + (µ1 + µ2)]

= µ1µ2 [Ipp̃Fkk − σ (σ + r?)]

= µ1µ2 {[µ1µ4 + Ipp̃Fkk]− (σ + µ1) (σ + µ4)} < 0.

Finally by developing the terms in square brackets, using the two last expressions, collecting

terms, and rearranging, we obtain (88).

We turn to the investigation of transitional dynamics. Differentiate the stable solution for

k(t) and for p(t) w.r.t time, one obtains the capital stock and the real exchange transitional

dynamics:

k̇(t) = µ1ω
1
3

A1

dgD
dgD

︸ ︷︷ ︸
(−)

eµ1t + µ2ω
2
3

A2

dgD
dgD

︸ ︷︷ ︸
(+)

eµ2t, (89a)

ṗ(t) = µ1ω
1
4

A1

dgD
dgD

︸ ︷︷ ︸
(−)

eµ2t + µ2ω
2
4

A2

dgD
dgD

︸ ︷︷ ︸
(+)

eµ2t, (89b)

where ω1
3 > 0, ω2

3 > 0, ω1
4 > 0, ω2

4 > 0, A1

dgD
> 0, A2

dgD
< 0 (see (75)).

In a first place, we have to determine the initial changes of investment and the real exchange
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rate once it has jumped by setting t = 0 into (89):

dk̇(0)
dgD

= µ1ω
1
3

A1

dgD
+ µ2ω

2
3

A2

dgD
,

=
[

ω1
3ω

2
3

ω2
3 − ω1

3

]
(µ2 − µ1)

ds̃

dgD
< 0, (90a)

dṗ(0)
dgD

= µ1ω
1
4

A1

dgD
+ µ2ω

2
4

A2

dgD
,

= −
[
µ1ω

1
4ω

2
3 − µ2ω

2
4ω

1
3

ω2
3 − ω1

3

]
ds̃

dgD
= 0, (90b)

where we have substituted the expressions of constants given by (75) and made use of (80b)

to determine (90b).

In a second place, we investigate in more details the condition of the non-monotonic ad-

justment of the investment in physical capital. More specifically, we must determine wether

there exists a critical value of time, t = t̂ > 0, such that investment , i. e. I
(
t̂
)

= k̇
(
t̂
)

= 0.

Solving the first line of (90a), we obtain:

t̂ =
1

µ1 − µ2
ln

[
−µ2ω

2
3A2/dgD

µ1ω1
3A1/dgD

]
, (91)

where µ1 − µ2 < 0 and the necessary condition for t̂ > 0 corresponds to:

0 < −µ2ω
2
3A2/dgD

µ1ω1
3A1/dgD

< 1 ⇔ dk̇(0)
dgD

< 0. (92)

If the condition (92) holds, the stock of physical capital initially decreases before reaching a

turning point at time t̂. Subsequently, investment turns to be positive and the stock of capital

goods increases towards its unchanged steady-state level.

Regarding the transitional path followed by the real exchange rate, it is convenient to

rewrite (89b) by using the fact that ωi
4 = p̃Fkk

µi
ωi

3 and property (76):

ṗ(t) = −p̃Fkkω
1
3

A1

dgD
dgD

(
1− e(µ1−µ2)t

)
eµ2t > 0. (93)

From (87) and (93), we deduce that the relative price of the foreign good jumps initially

downward and then the real exchange rate depreciates along a stable monotonic transitional

path.

A Rise in Government Spending on the Foreign Good
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Setting t = 0 into (77b), differentiating with respect to gF , and noting that dk̃
dgF

= 0,

the real exchange rate depreciates on impact following an unanticipated permanent rise in

government spending on the foreign good:

dp(0)
dgF

=
dp̃

dgF
+ ω1

4

A1

dgF
+ ω2

4

A2

dgF
,

= −
[

Ic

(
ω2

3 − ω1
3

)
+

(
ω1

3ω
2
4 − ω2

3ω
1
4

)
Ip

Ip

(
ω2

3 − ω1
3

)
]

ds̃

dgF
,

=

{
(Ic)

2 (µ1 − µ2) µ1µ2 [Ipp̃Fkk − σ (σ + r?)]
(σ)2 [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk] Ip

(
ω2

3 − ω1
3

)
}

ds̃

dgF
,

=
{

Icµ1µ2 {[µ1µ4 + Ipp̃Fkk]− (σ + µ1) (σ + µ4)}
σIp {µ1µ2 (σ + r∗) + Ipp̃Fkk [σ + (µ1 + µ2)]}

}
ds̃

dgF
=

(+)
(−)

× (−) > 0, (94)

where we used the following relationship

dp̃

dgF
= − Ic

Ip

ds̃

dgF
, (95)

and (80c) to obtain the second line. Then we have rewritten the following expressions:

Ic

(
ω2

3 − ω1
3

)
+

(
ω1

3ω
2
4 − ω2

3ω
1
4

)
Ip

=
(Ic)

2 (µ1 − µ2) µ1µ2 [Ipp̃Fkk − σ (σ + r?)]
(σ)2 [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk]

=
(+)
(+)

> 0, (96a)

Ipp̃Fkk − σ (σ + r?) (96b)

= [µ1µ4 + Ipp̃Fkk]− (σ + µ1) (σ + µ4) < 0, (96c)

and substituted the expression of
(
ω2

3 − ω1
3

)
given by (46) to obtain (94).

From (94) and (67b), the real exchange rate depreciates (i. e. p rises) in the short-run and

the long-run. We have now to evaluate if the real exchange rate initially overshoots or not its

steady-state value. Substituting (95) into (94), we have to evaluate if the following inequality

holds or not :

0 < −µ1µ2 {[µ1µ4 + Ipp̃Fkk]− (σ + µ1) (σ + µ4)}
σ {µ1µ2 (σ + r∗) + Ipp̃Fkk [σ + (µ1 + µ2)]} < 1. (97)

By making use of (47), it is straightforward to show that the inequality above holds since by

rearranging terms, we get

(σ + µ1)
{

µ2 [µ1µ4 + Ipp̃Fkk] +
[
−µ1 (µ2)

2 + σIpp̃Fkk

]}
> 0.
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We turn to the investigation of transitional dynamics following a rise in government spend-

ing on the foreign good. Differentiate the stable solution for k(t) and for p(t) w.r.t time, one

obtains the capital stock and the real exchange transitional dynamics:

k̇(t) = µ1ω
1
3

A1

dgF
dgF

︸ ︷︷ ︸
(−)

eµ1t + µ2ω
2
3

A2

dgF
dgF

︸ ︷︷ ︸
(+)

eµ2t, (98a)

ṗ(t) = µ1ω
1
4

A1

dgF
dgF

︸ ︷︷ ︸
(−)

eµ2t + µ2ω
2
4

A2

dgF
dgF

︸ ︷︷ ︸
(+)

eµ2t, (98b)

where ω1
3 > 0, ω2

3 > 0, ω1
4 > 0, ω2

4 > 0, A1

dgF
> 0, A2

dgF
< 0 (see (75)).

In a first place, we have to determine the initial changes of investment and the real exchange

rate once it has jumped by setting t = 0 into (89):

dk̇(0)
dgF

= µ1ω
1
3

A1

dgF
+ µ2ω

2
3

A2

dgF
,

=
[

ω1
3ω

2
3

ω2
3 − ω1

3

]
(µ2 − µ1)

ds̃

dgF
< 0, (99a)

dṗ(0)
dgD

= µ1ω
1
4

A1

dgF
+ µ2ω

2
4

A2

dgF
,

= −
[
µ1ω

1
4ω

2
3 − µ2ω

2
4ω

1
3

ω2
3 − ω1

3

]
ds̃

dgF
= 0, (99b)

where we have substituted the expressions of constants given by (75) and made use of (80b)

to determine (99b).

In a second place, we investigate in more details the condition of the non-monotonic ad-

justment of the investment in physical capital. More specifically, we must determine wether

there exists a critical value of time, t = t̂ > 0, such that investment reaches a turning point,

i. e. I
(
t̂
)

= k̇
(
t̂
)

= 0. Solving (98a), we obtain:

t̂ =
1

µ1 − µ2
ln

[
−µ2ω

2
3A2/dgF

µ1ω1
3A1/dgF

]
, (100)

where µ1 − µ2 < 0 and the necessary condition for t̂ > 0 corresponds to:

0 < −µ2ω
2
3A2/dgF

µ1ω1
3A1/dgF

< 1 ⇔ dk̇(0)
dgF

< 0. (101)

If the condition (101) holds, the stock of physical capital initially decreases before reaching a

turning point at time t̂. Subsequently, investment turns to be positive and the stock of capital

goods increases towards its unchanged steady-state level.
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Finally, we have to determine the condition according to which the real exchange rate

transitional path displays a non-monotonic pattern. We have to evaluate wether there exists

a critical value of time, t = t̄ > 0, such that the relative price of the foreign good reaches a

turning point, i. e. ṗ (t̄) = ṗ (t̄) = 0. Solving (98b), we obtain:

t̄ =
1

µ1 − µ2
ln

[
−µ2ω

2
4A2/dgF

µ1ω1
4A1/dgF

]
, (102)

where µ1 −mu2 < 0 and the necessary condition for t̄ > 0 corresponds to:

0 < −µ2ω
2
4A2/dgF

µ1ω1
4A1/dgF

< 1 ⇔ dṗ(0)
dgF

< 0. (103)

Since ṗ(0) = 0 (and ṗ(t) > 0), the condition (103) does not hold, and the real exchange rate

adjusts monotonically.

Regarding the transitional path followed by the real exchange rate, it is convenient to

rewrite (98b) by using the fact that ωi
4 = p̃Fkk

µi
ωi

3 and property (76):

ṗ(t) = −p̃Fkkω
1
3

A1

dgF
dgF

(
1− e(µ1−µ2)t

)
eµ2t > 0. (104)

From (94) and (104), we deduce that the relative price of the foreign good jumps initially

upward and then the real exchange rate depreciates along a stable monotonic transitional

path.

D.2 Stable Manifold in the (k, b)-space

The stable solution is given by the following system of equations:

k(t)− k̃ = ω1
3A1e

µ1t + ω2
3A2e

µ2t, (105a)

b(t)− b̃ =
N1A1

µ1 − r?
eµ1t +

N2A2

µ2 − r?
eµ2t. (105b)

Demarcation Lines

Time derivatives of solutions (105a) and (105b) and elimination of A1e
µ1t and A2e

µ2t leads
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to a new linear differential equation system for k(t) and b(t)

k̇(t) =
(µ1 − r?) µ1ω

1
3N2 − (µ2 − r?) µ2ω

2
3N1

(µ1 − r?) (µ2 − r?)∆k

(
k(t)− k̃

)

−
[
ω1

3ω
2
3 (µ1 − µ2)

∆k

](
b(t)− b̃

)
, (106a)

ḃ(t) =
N1N2 (µ1 − µ2)

(µ1 − r?) (µ2 − r?)∆k

(
k(t)− k̃

)

−
[
µ1 (µ2 − r?)ω2

3N1 − µ2 (µ1 − r?)ω1
3N2

(µ1 − r?) (µ2 − r?)∆k

] (
b(t)− b̃

)
, (106b)

where

∆k =
(µ1 − r?) ω1

3N2 − (µ2 − r?) ω2
3N1

(µ1 − r?) (µ2 − r?)
=

(−)
(+)

< 0. (107)

The new differential equation system has two stable roots µ1 < 0 and µ2 < 0 with µ1 < µ2 < 0;

hence the steady-state is a stable node in (k, b)-space.

From (106), we determine the slopes of demarcation lines:

db

dk

∣∣∣∣
k̇=0

=
µ1 (µ1 − r?)ω1

3N2 − µ2 (µ2 − r?) ω2
3N1

(µ1 − r?) (µ2 − r?) ω1
3ω

2
3 (µ1 − µ2)

=
(?)
(−)

≶ 0, (108a)

∂k̇

∂n
= −(µ1 − r?) (µ2 − r?) ω1

3ω
2
3 (µ1 − µ2)

(µ1 − r?) ω1
3N2 − (µ2 − r?) ω2

3N1
= −(−)

(−)
< 0, (108b)

db

dk

∣∣∣∣
ḃ=0

=
N1N2 (µ1 − µ2)

µ1 (µ2 − r?)ω2
3N1 − µ2 (µ1 − r?) ω1

3N2
=

(?)
(−)

≶ 0, (108c)

∂ḃ

∂k
=

N1N2 (µ1 − µ2)
(µ1 − r?)ω1

3N2 − (µ2 − r?) ω2
3N1

=
(?)
(−)

≶ 0, (108d)

(µ1 − r?)ω1
3N2 − (µ2 − r?) ω2

3N1 < 0 (see (48)). Several signs of expressions remain unde-

termined. The numerical analysis indicate that N1 < 0 and N2 > 0 for the benchmark

parametrization, although N2 may change of sign by assuming a small φ (higher but close to

unity).
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We have computed several expressions as follows:

µ1 (µ1 − r?) ω1
3N2 − µ2 (µ2 − r?) ω2

3N1

=
(µ1 − µ2)ω1

3ω
2
3

µ1µ2Ic

pc

p̃

{
p̃Fkk

(
Ip + (1− αc)

X̃

p̃

)
µ2 (µ1 − µ3)

−µ1µ4

[
p̃Fkk

(
Ip + (1− αc)

X̃

p̃

)
+ αcµ2µ3

]}
= (+)× [(+) + (?)] ≷ 0, (109a)

µ1 (µ2 − r?) ω2
3N1 − µ2 (µ1 − r?) ω1

3N2

=
pcIc (σ + µ1) (σ + µ2) µ1µ2 (µ2 − µ1)

[
p̃Fkk

(
Ip + (1− αc) X̃

p̃

)
+ αcµ3µ4

]

σ2 [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk]
, (109b)

=
(−)
(+)

< 0,

where
[
(µ2)

2 µ3 − (µ1)
2 µ4

]
< 0 (see inequality (23)). To determine expression (109a), we

used the fact that µ3
1 − µ3

2 = (µ1 − µ2)
[
(µ1 + µ2)

2 − µ1µ2

]
and

(
µ3

1 − µ3
2

) − r?
(
µ2

1 − µ2
2

)
=

(µ1 − µ2) [µ1µ2 − (µ1µ4 + µ2µ3)]. According to equation (50b), if N2 > 0, then
[
p̃Fkk

(
Ip + (1− αc) X̃

p̃

)
+ αcµ2µ3

]
> 0 and equation (109a) is positive. Otherwise, if N2 < 0,

the sign of (109a) remains ambiguous.

Fiscal Expansion and Trajectories

The slope of the trajectory at time t is obtained by differentiating the system of equations

(105) with respect to time t and dividing the resulting expressions:

db(t)
dk(t)

=
µ1

N1A1
µ1−r? eµ1t + µ2

N2A2
µ2−r? eµ2t

µ1ω1
3A1eµ1t + µ2ω2

3A2eµ2t
=

µ1
N1A1
µ1−r? e(µ1−µ2)t + µ2

N2A2
µ2−r?

µ1ω1
3A1e(µ1−µ2)t + µ2ω2

3A2
. (110)

The slope of the trajectory at the initial point can be calculated from (110) by setting t = 0,

and substituting the constants A1 and A2 given by (75):

(
db

dk

) ∣∣∣∣
t→0

=
µ1

N1
µ1−r?

A1

dgD
+ µ2

N2
µ2−r?

A2

dgD

µ1ω1
3

A1

dgD
+ µ2ω2

3
A2

dgD

,

= −µ1 (µ2 − r?) ω2
3N1 − µ2 (µ1 − r?) ω1

3N2

(µ1 − r?) (µ2 − r?) ω1
3ω

2
3 (µ2 − µ1)

(111)

= −(−)
(+)

> 0,

where we have substituted the expressions of constants (see (75)). The term located in the

numerator is given by (109b).

Letting time tend towards infinity, i. e. t → ∞, in equation (110), and keeping in mind
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that µ1 − µ2 < 0, one obtains the slope of the trajectory approaching the steady-state:

(
db

dk

) ∣∣∣∣
t→∞

=
N2

(µ2 − r?) ω2
3

=
(?)
(−)

≶ 0. (112)

Finally, it is convenient to compare the slope of the demarcation line k̇ = 0 with the slope

of the trajectory approaching the steady-state in the (k, b) space:

db

dk

∣∣∣∣
k̇=0

−
(

db

dk

) ∣∣∣∣
t→∞

= −µ2

[
(µ2 − r?) ω2

3N1 − (µ1 − r?) ω1
3N2

]

(µ1 − r?) (µ2 − r?) ω1
3ω

2
3 (µ1 − µ2)

= −(−)
(−)

< 0, (113)

where µ1 − µ2 < 0 and (µ2 − r?) ω2
3N1 − (µ1 − r?) ω1

3N2 > 0 is given by (48). From (113), we

can deduce the following inequality:

db

dk

∣∣∣∣
k̇=0

<

(
db

dk

) ∣∣∣∣
t→∞

< 0. (114)

Numerical Analysis, Case N2 > 0

Since the numerical analysis (for benchmark parametrization, see Table ??) allows for

dispelling the ambiguity regarding the signs of several expressions:

N1 < 0, N2 > 0, Φ1 < 0,

µ1 (µ1 − r?) ω1
3N2 − µ2 (µ2 − r?) ω2

3N1 > 0,

we are able to indicate the signs of the slopes of demarcation lines and trajectories:

db

dk

∣∣∣∣
k̇=0

=
µ1 (µ1 − r?) ω1

3N2 − µ2 (µ2 − r?) ω2
3N1

(µ1 − r?) (µ2 − r?) ω1
3ω

2
3 (µ1 − µ2)

=
(+)
(−)

< 0, (115a)

db

dk

∣∣∣∣
ḃ=0

=
N1N2 (µ1 − µ2)

µ1 (µ2 − r?) ω2
3N1 − µ2 (µ1 − r?) ω1

3N2
=

(+)
(−)

< 0, (115b)

∂ḃ

∂k
=

N1N2 (µ1 − µ2)
(µ1 − r?) ω1

3N2 − (µ2 − r?) ω2
3N1

=
(+)
(−)

< 0, (115c)
(

db

dk

) ∣∣∣∣
t→∞

=
N2

(µ2 − r?) ω2
3

=
(+)
(−)

< 0. (115d)

Since the slopes of the demarcation lines k̇ = 0 and ḃ = 0 are both negative, we have to

compare them:

db

dk

∣∣∣∣
k̇=0

− db

dk

∣∣∣∣
ḃ=0

=

[
µ1 (µ1 − r?) ω1

3N2 − µ2 (µ2 − r?) ω2
3N1

]
(µ1 − µ2) N1N2

µ1µ2

[
(µ1 − r?) ω1

3N2 − (µ2 − r?) ω2
3N1

]2 (116)

=
(−)
(+)

< 0,
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µ1 (µ1 − r?)ω1
3N2 − µ2 (µ2 − r?) ω2

3N1 > 0 if N1 < 0 and N2 > 0.

In addition, we have to compare the slope of the demarcation line ḃ = 0 with the slope of

the trajectory when the system approaches the steady-state:

(
db

dk

) ∣∣∣∣
t→∞

− db

dk

∣∣∣∣
ḃ=0

=
µ2N2

[
(µ2 − r?) ω2

3N1 − (µ1 − r?) ω1
3N2

]

(µ2 − r?) ω2
3

[
µ1 (µ2 − r?) ω2

3N1 − µ2 (µ1 − r?) ω1
3N2

] (117)

=
(−)
(+)

< 0,

where we referred to expressions (48) and (109b) to determine the sign of (117).

From (115a), (115b), and (115d) and (113), (116) and (117), we deduce the following

inequalities:

db

dk

∣∣∣∣
k̇=0

<

(
db

dk

) ∣∣∣∣
t→∞

<
db

dk

∣∣∣∣
ḃ=0

< 0. (118)

Transitional Dynamics for b(t)

We turn now to the investigation of the transitional dynamics for the stock of international

assets.

Government Spending Shocks

In a first place, we have to determine the initial reaction of the current account. At this

end, we differentiate the two-dimensional stable solution for b(t) w.r.t time, evaluate at t = 0

and differentiate w.r.t gj . with i = d, f One obtains the initial response of the current account

following an unanticipated permanent rise in government expenditure on the domestic good:

dḃ(0)
dgj

= µ1
N1

µ1 − r?

A1

dgj
+ µ2

N2

µ2 − r?

A2

dgj
i = d, f

= −
[

µ1 (µ2 − r?) ω2
3N1 − µ2 (µ1 − r?) ω1

3N2

(µ1 − r?) (µ2 − r?)
(
ω2

3 − ω1
3

)
]

ds̃

dgj
, i = d, f (119)

= −(−)
(+)

× (−) < 0,

where we have substituted the expressions of constants (see (75)); we used expression (109b)

and that fact that
(
ω2

3 − ω1
3

)
> 0 (see (46)) to determine the sign of (119). From (119), the

current account unambiguously deteriorates at time t = 0.

Along the stable path, the current account evolves according to the following dynamic
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equation:

ḃ(t) = µ1
N1

µ1 − r?

A1

dgj
dgj

︸ ︷︷ ︸
(−)

eµ1t + µ2
N2

µ2 − r?

A2

dgj
dgj

︸ ︷︷ ︸
(?)

eµ2t, i = d, f, (120)

where N1 < 0 (for all parametrization), N2 ≷ 0, µ1 < µ2 < 0, A1/dgj > 0, and A2/dgj < 0.

D.3 Stable Manifold in the (b, p)-space

The stable solution is given by the following system of equations:

p(t)− p̃ = ω1
4A1e

µ1t + ω2
4A2e

µ2t, (121a)

b(t)− b̃ =
N1A1

µ1 − r?
eµ1t +

N2A2

µ2 − r?
eµ2t. (121b)

Demarcation Lines

Time derivatives of solutions (121a) and (121b) and elimination of A1e
µ1t and A2e

µ2t leads

to a new linear differential equation system for p(t) and b(t):

ṗ(t) =
(µ1 − r?) µ1ω

1
4N2 − (µ2 − r?) µ2ω

2
4N1

(µ1 − r?) (µ2 − r?)∆b
(p(t)− p̃)

−ω1
4ω

2
4 (µ1 − µ2)

∆b

(
b(t)− b̃

)
, (122a)

ḃ(t) =
N1N2 (µ1 − µ2)

(µ1 − r?) (µ2 − r?)∆b
(p(t)− p̃)

−
[
µ1 (µ2 − r?) ω2

4N1 − µ2 (µ1 − r?) ω1
4N2

(µ1 − r?) (µ2 − r?)∆b

](
b(t)− b̃

)
, (122b)

where

∆b =
(µ1 − r?) ω1

4N2 − (µ2 − r?) ω2
4N1

(µ1 − r?) (µ2 − r?)
=

(−)
(+)

< 0. (123)

The new differential equation system has two stable roots µ1 < 0 and µ2 < 0 with µ1 < µ2 < 0;

hence the steady-state is a stable node in (b, p)-space.

From (122), we determine the slopes of demarcation lines:

dp

db

∣∣∣∣
ṗ=0

=
(µ1 − r?) (µ2 − r?) ω1

4ω
2
4 (µ1 − µ2)

µ1 (µ1 − r?) ω1
4N2 − µ2 (µ2 − r?) ω2

4N1
=

(−)
(+)

< 0, (124a)

∂ṗ

∂b
= −(µ1 − r?) (µ2 − r?) ω1

4ω
2
4 (µ1 − µ2)

(µ1 − r?) ω1
4N2 − (µ2 − r?) ω2

4N1
= −(−)

(−)
< 0, (124b)

dp

db

∣∣∣∣
ḃ=0

=
µ1 (µ2 − r?) ω2

4N1 − µ2 (µ1 − r?) ω1
4N2

N1N2 (µ1 − µ2)
=

(−)
(?)

≶ 0, (124c)

∂ḃ

∂p
=

N1N2 (µ1 − µ2)
(µ1 − r?) ω1

4N2 − (µ2 − r?) ω2
4N1

=
(?)
(−)

≶ 0. (124d)
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We have computed several expressions as follows:

µ1 (µ1 − r?) ω1
4N2 − µ2 (µ2 − r?)ω2

4N1

= p̃Fkk

[
(µ1 − r?)ω1

3N2 − (µ2 − r?)ω2
3N1

]
> 0, (125a)

(µ1 − r?) ω1
4N2 − (µ2 − r?) ω2

4N1

= −p̃Fkk
(µ2 − r?) µ1ω

2
3N1 − (µ1 − r?) µ2ω

1
3N2

µ1µ2
= (+)× (−)

(+)
< 0, (125b)

µ1 (µ2 − r?) ω2
4N1 − µ2 (µ1 − r?)ω1

4N2

=
ω1

4ω
2
4

Icp̃Fkk

pc

p̃

{
µ3

[
p̃Fkk

(
Ip + (1− αc)

X̃

p̃

)
+ αcµ1µ4

]

+µ2

[
p̃Fkk

(
Ip + (1− αc)

X̃

p̃

)
+ αcµ3µ4

]}
= (+)× [(−) + (−)] < 0. (125c)

We used the fact that ωi
4 = p̃Fkk

µi
ωi

3 > 0 to rewrite (125a) and (125b). The sign of (125b) follows

from the following inequality (µ1 − r?)ω1
3N2 − (µ2 − r?) ω2

3N1 < 0. The sign of (125b) follows

from (109b). Regarding the sign of (125c), the first term in square brackets has an ambiguous

sign. Since for all parametrization, numerical results indicate that N1 < 0, we thus assume

that the following inequality holds such that
[
p̃Fkk

(
Ip + (1− αc) X̃

p̃

)
+ αcµ1µ4

]
< 0.

Fiscal Expansion and Trajectories

The slope of the trajectory at time t is obtained by taking the time derivative of the system

of equations (121) and dividing the resulting expressions:

dp(t)
db(t)

=
µ1ω

1
4A1e

µ1t + µ2ω
2
4A2e

µ2t

µ1
N1A1
µ1−r? eµ1t + µ2

N2A2
µ2−r? eµ2t

=
µ1ω

1
4A1e

(µ1−µ2)t + µ2ω
2
4A2

µ1
N1A1
µ1−r? e(µ1−µ2)t + µ2

N2A2
µ2−r?

. (126)

The slope of the trajectory at the initial point can be calculated from (126) by setting t = 0,

and substituting the constants A1 and A2 given by (75):

(
dp

db

) ∣∣∣∣
t→0

=
µ1ω

1
4

A1

dgD
+ µ2ω

2
4

A2

dgD

µ1
N1

µ1−r?
A1

dgD
+ µ2

N2
µ2−r?

A2

dgD

= 0, (127)

where we have substituted the expressions of constants (see (75)) and used the fact that ωi
4 =

p̃Fkk
µi

ωi
3 (with i = 1, 2).

Letting time tend towards infinity, i. e. t → ∞, in equation (126), and keeping in mind

that µ1 − µ2 < 0, one obtains the slope of the trajectory approaching the steady-state:

(
dp

db

) ∣∣∣∣
t→∞

=
(µ2 − r?) ω2

4

N2
=

(−)
(?)

≶ 0. (128)
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We have to consider two cases, according to wether N2 ≷ 0. Assuming that N2 > 0, we

get:

dp

db

∣∣∣∣
ḃ=0

=
(−)
(+)

< 0,
∂ḃ

∂p
=

(+)
(−)

< 0,

(
dp

db

) ∣∣∣∣
t→∞

=
(−)
(+)

< 0. (129)

Since the locus ṗ = 0 and ḃ = 0 are both negatively sloped, we have to estimate wether ṗ = 0

is steeper or not than ḃ = 0. Thus, we subtract (124c) from (124a):

dp

db

∣∣∣∣
ṗ=0

− dp

db

∣∣∣∣
ḃ=0

=
µ1µ2

[
(µ1 − r?) ω1

4N2 − (µ2 − r?) ω2
4N1

]2

[
µ1 (µ1 − r?) ω1

4N2 − µ2 (µ2 − r?) ω2
4N1

]
(µ1 − µ2) N1N2

=
(+)
(+)

> 0. (130)

From (130), we can deduce that the locus ḃ = 0 is steeper than the locus ṗ = 0.

In addition, we have to compare the slope of the demarcation line ṗ = 0 with the slope of

the trajectory when the system approaches the steady-state:

(
dp

db

) ∣∣∣∣
t→∞

− dp

db

∣∣∣∣
ṗ=0

=
µ2 (µ2 − r?) ω2

4

[
(µ1 − r?) ω1

4N2 − (µ2 − r?) ω2
4N1

]

N2

[
µ1 (µ1 − r?)ω1

4N2 − µ2 (µ2 − r?) ω2
4N1

] (131)

=
(−)
(+)

< 0,

where we referred to expressions (125a) and (125b) to determine the sign of (131).

From (124a), (124c), (128), (130), and (131), we deduce the following inequalities in the

case N2 > 0:

dp

db

∣∣∣∣
ḃ=0

<

(
dp

db

) ∣∣∣∣
t→∞

<
dp

db

∣∣∣∣
ṗ=0

< 0. (132)

Instead, by assuming that N2 < 0, we get:

dp

db

∣∣∣∣
ḃ=0

=
(−)
(−)

> 0,
∂ḃ

∂p
=

(−)
(−)

> 0,

(
dp

db

) ∣∣∣∣
t→∞

=
(−)
(−)

> 0. (133)

In addition, we have to compare the (positive) slope of the demarcation line ḃ = 0 with the

(positive) slope of the trajectory when the system approaches the steady-state:

(
dp

db

) ∣∣∣∣
t→∞

− dp

db

∣∣∣∣
ṗ=0

= −µ2

[
(µ1 − r?) ω1

4N2 − (µ2 − r?) ω2
4N1

]

N1N2 (µ1 − µ2)

= −(+)
(−)

> 0, (134)

where the sign follows from equation (125b) and the fact that the case N2 < 0 is considered.
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From (124a), (124c) and (134), we can deduce the following inequalities in the case N2 < 0:

dp

db

∣∣∣∣
ṗ=0

< 0 <

(
dp

db

) ∣∣∣∣
t→∞

<
dp

db

∣∣∣∣
ḃ=0

. (135)

The Pattern of the Transitional Path in the (b, p)-space

To investigate in more details the conditions under which the stock of foreign bonds adjusts

non monotonically, we have to determine wether there exists a critical value of time, denoted

by t = t̃ > 0, such that the stock of traded bonds reaches a turning point along the stable

trajectory, i. e. ca
(
t̃
)

= ḃ
(
t̃
)

= 0. Setting (120) equal to zero and solving for t̃, we get:

t̃ =
1

µ1 − µ2
ln

[
−µ2 (µ1 − r?) N2A2/dgj

µ1 (µ2 − r?) N1A1/dgj

]
, (136)

where N1 < 0 for all parametrization and N2 ≷ 0.

In the case N2 > 0, the critical value of time along the transitional path does not exist

since the term in square brackets is negative.

Unlike, in the case N2 < 0, there exists a critical value of time, t = t̃ > 0, such that the

stock of international assets reaches a turning point along the trajectory under the necessary

condition:

µ1
N1

µ1 − r?

A1

dgj
+ µ2

N2

µ2 − r?

A2

dgj
< 0. (137)

In conclusion, regardless of the sign of N2, the current account unambiguously deteriorates

at time t = 0. If N2 < 0, the current account turns positive at time t̃ while the stock of

international assets starts growing to its new lower steady-state level. Instead, if N2 > 0,

traded bonds holding falls monotonically and the current account stays in deficit while its size

in absolute terms decreases.

D.4 Stable Manifold in the (s, c)-space

The stable solution is given by the following system of equations

s(t)− s̃ = A1e
µ1t + A2e

µ2t, (138a)

c(t)− c̃ = ω1
2A1e

µ1t + ω2
2A2e

µ2t. (138b)
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Demarcation Lines

Time derivatives of solutions (138a) and (138b) and elimination of A1e
µ1t and A2e

µ2t leads

to a new linear differential equation system for s(t) and c(t)

ṡ(t) =
[
µ1ω

2
2 − µ2ω

1
2

∆c

]
(s(t)− s̃)−

[
µ1 − µ2

∆c

]
(c(t)− c̃) , (139a)

ċ(t) =
[
ω1

2ω
2
2 (µ1 − µ2)

∆c

]
(s(t)− s̃)−

[
µ1ω

1
2 − µ2ω

2
2

∆c

]
(c(t)− c̃) , (139b)

with

∆c =
µ2 − µ1

σ
> 0. (140)

The new differential equation system has two stable roots µ1 < 0 and µ2 < 0 with µ1 < µ2 < 0

(see (23)); hence the steady-state is a stable node in (s, c)-space.

From (139), we determine the slopes of demarcation lines:

dc

ds

∣∣∣∣
ṡ=0

=
µ1ω

2
2 − µ2ω

1
2

µ1 − µ2
= 1, (141a)

∂ṡ

∂c
= σ > 0, (141b)

dc

ds

∣∣∣∣
ċ=0

=
ω1

2ω
2
2 (µ1 − µ2)

µ1ω1
2 − µ2ω2

2

=
(σ + µ1) (σ + µ2)
σ [σ + (µ1 + µ2)]

=
σ [σ + (µ1 + µ2)] + µ1µ2

σ [σ + (µ1 + µ2)]
= 1 +

µ1µ2

σ [σ + (µ1 + µ2)]
=

(+)
(?)

, (141c)

∂ċ

∂s
= −(σ + µ1) (σ + µ2)

σ
< 0, (141d)

where the sign of the slope of the demarcation line ċ = 0 remains undetermined. More specifi-

cally, its sign depends crucially upon the degree of habit persistence in consumption, reflected

by |µ1|, and the price-elasticity of export demand, νX . For plausible values of parameters for

preferences, production function, and export function, we find that σ + (µ1 + µ2) > 0 and we

will assume that this inequality holds from thereon.

Since the demarcation lines ċ = 0 and ṡ = 0 have positive slopes, we have to compare their

magnitudes:

dc

ds

∣∣∣∣
ṡ=0

− dc

ds

∣∣∣∣
ċ=0

= − µ1µ2

σ [σ + (µ1 + µ2)]
< 0. (142)

from which we deduce the following inequality:

0 <
dc

ds

∣∣∣∣
ṡ=0

= 1 <
dc

ds

∣∣∣∣
ċ=0

. (143)
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Fiscal Expansion and Trajectories

The slope of the trajectory at time t is obtained by differentiating the system of equations

(138) with respect to time t and dividing the resulting expressions:

dc(t)
ds(t)

=
µ1ω

1
2A1e

µ1t + µ2ω
2
2A2e

µ2t

µ1A1eµ1t + µ2A2eµ2t
=

µ1ω
1
2A1e

(µ1−µ2)t + µ2ω
2
2A2

µ1A1e(µ1−µ2)t + µ2A2
. (144)

The slope of the trajectory at the initial point can be calculated from (144) by setting t = 0,

and substituting the constants A1 and A2 given by (75)

(
dc

ds

) ∣∣∣∣
t→0

=
µ1ω

1
2

A1

dgD
+ µ2ω

2
2

A2

dgD

µ1
A1

dgD
+ µ2

A2

dgD

=
[
µ1ω

1
2ω

2
3 − µ2ω

2
2ω

1
3

µ1ω2
3 − µ2ω1

3

]
=

(−)
(−)

> 0, (145)

where expressions in the numerator and the denominator of (145) write as follows:

µ1ω
1
2ω

2
3 − µ2ω

2
2ω

1
3

= −Icµ1µ2 (µ1 − µ2) (σ + µ1) (σ + µ2) [r? − (µ1 + µ2)]
σ2 [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk]

= −(+)
(+)

< 0, (146a)

µ1ω
2
3 − µ2ω

1
3

= −Icµ1µ2 (µ2 − µ1) {[µ1µ4 + Ipp̃Fkk]− (σ + µ1) (µ4 − µ2)}
σ [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk]

= −(+)
(+)

< 0, (146b)

where we used the fact that µ1µ4 − µ2µ3 = (µ1 − µ2) [r? − (µ1 + µ2)] and

Ipp̃Fkk + µ1µ2 − σ [r? − (µ1 + µ2)] = [µ1µ4 + Ipp̃Fkk]− (σ + µ1) (µ4 − µ2) < 0.

Letting time tend towards infinity, i. e. t →∞, in equation (144), one obtains the slope of

the trajectory approaching the steady-state:

(
dc

ds

) ∣∣∣∣
t→∞

= ω2
2 =

(
σ + µ2

σ

)
> 0, (147)

with 0 <
(σ+µ2

σ

)
< 1. Thus we can infer the following inequality:

0 <

(
dc

ds

) ∣∣∣∣
t→∞

<

(
dc

ds

) ∣∣∣∣
ṡ=0

. (148)

We compare the slope of the trajectory at the initial point with the slope of the trajectory

approaching the steady-state:

(
dc

ds

) ∣∣∣∣
t→0

−
(

dc

ds

) ∣∣∣∣
t→∞

=
µ1 (µ1 − µ2) ω2

3

µ1ω2
3 − µ2ω1

3

=
(+)
(−)

< 0, (149)
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µ1ω
2
3 − µ2ω

1
3 < 0 is given by (146b). From (149), we can deduce the following inequality:

0 <

(
dc

ds

) ∣∣∣∣
t→0

<

(
dc

ds

) ∣∣∣∣
t→∞

. (150)

Finally, we compare the slope of the trajectory at the initial point with the slope of the

demarcation line ṡ = 0:

(
dc

ds

) ∣∣∣∣
t→0

−
(

dc

ds

) ∣∣∣∣
ṡ=0

=
(µ1)

2 ω2
3 − (µ2)

2 ω1
3

σ
(
µ1ω2

3 − µ2ω1
3

) =
(+)
(−)

< 0, (151)

(µ1)
2 ω2

3 − (µ2)
2 ω1

3 > 0 and µ1ω
2
3 − µ2ω

1
3 < 0.

From (143), (149) and (151), we deduce the following inequality:

0 <

(
dc

ds

) ∣∣∣∣
t→0

<

(
dc

ds

) ∣∣∣∣
t→∞

<
dc

ds

∣∣∣∣
ṡ=0

= 1 <
dc

ds

∣∣∣∣
ċ=0

. (152)

Transitional Dynamics for s(t) and c(t)

We turn now to the investigation of the transitional dynamics for the stock of habits and

the real consumption.

Government Spending Shocks

The stable solution for c(t) is given by:

c(t) = c̃ +
(

σ + µ1

σ

)
A1e

µ1t +
(

σ + µ2

σ

)
A2e

µ2t,

where we have substituted the expressions of eigenvectors ω1
2 and ω2

2. Setting t = 0, differ-

entiating with respect to gj (with i = d, f), and substituting the constants given by (75), we

obtain the initial response of real consumption following an unanticipated permanent rise in

government spending:

dc(0)
dgj

=
dc̃

dgj
+

(
σ + µ1

σ

)
A1

dgj
+

(
σ + µ2

σ

)
A2

dgj

= −
[

µ1ω
2
3 − µ2ω

1
3

σ
(
ω2

3 − ω1
3

)
]

dc̃

dgj
= −(−)

(+)
× (−) < 0, i = d, f (153)

where ω2
3 − ω1

3 > 0 and µ1ω
2
3 − µ2ω

1
3 < 0 is given by (146b).

Equation (153) indicates that real consumption falls initially as in the long-run. In addition,

we have to evaluate the magnitude of the initial change w. r. t. the long-run variation. At this

end, we determinate if the numerator is lower or higher than the denominator. Using (46) and
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(146b), we can rewrite the term in square brackets, appearing in expression (153) of the initial

change of the real consumption, as follows:

−
[

µ1ω
2
3 − µ2ω

1
3

σ
(
ω2

3 − ω1
3

)
]

= −µ1µ2 {[µ1µ4 + Ipp̃Fkk]− (σ + µ1) (µ4 − µ2)}
σ {µ1µ2 (σ + r?) + Ipp̃Fkk [σ + (µ1 + µ2)]}

=
µ1µ2 {[µ1µ4 + Ipp̃Fkk]− (σ + µ1) (µ4 − µ2)}

µ1µ2 {[µ1µ4 + Ipp̃Fkk]− (σ + µ1) (σ + µ4)} − (σ + µ1) (σ + µ2) Ipp̃Fkk
, (154)

=
(−)
(−)

> 0,

where Ic and (µ2 − µ1) cancel to obtain the first line and we have rewritten the term in square

brackets located in the denominator as follows:

µ1µ2σ (σ + r?) + Ipp̃Fkkσ [σ + (µ1 + µ2)]

= (σ + µ1) [µ1µ2 (σ + µ4) + (σ + µ2) Ipp̃Fkk]− µ1µ2 [µ1µ4 + Ipp̃Fkk] > 0, (155)

where we used the fact that σ (σ + r?) = (σ + µ1) (σ + µ4) − µ1µ4 and σ [σ + (µ1 + µ2)] =

(σ + µ1) (σ + µ2)− µ1µ2.

Because (σ + µ4) > (µ4 − µ2) (since (σ + µ2) > 0), the first term in square brackets in

the denominator of (154) is higher than numerator. Therefore, real consumption decreases

instantaneously after a permanent fiscal expansion, but by a lower amount than in the long-

run. This behavior is due to the existence of habit persistence in consumption which makes

agents reluctant to reduce strongly their real consumption and incites them to decumulate

financial wealth in order to maintain their habitual standard of living. We can summarize our

discussion with the following inequality:

dc̃

dgj
<

dc(0)
dgj

< 0, i = d, f. (156)

Differentiate the stable solution for s(t) and for c(t) w. r. t. time, we get the temporal

paths followed by habits and real consumption:

ṡ(t) = µ1
A1

dgj
dgj

︸ ︷︷ ︸
(−)

eµ1t + µ2
A2

dgj
dgj

︸ ︷︷ ︸
(+)

eµ2t, i = d, f, (157a)

ċ(t) = µ1

(
σ + µ1

σ

)
A1

dgj
dgj

︸ ︷︷ ︸
(−)

eµ1t + µ2

(
σ + µ2

σ

)
A2

dgj
dgj

︸ ︷︷ ︸
(+)

eµ2t, i = d, f, (157b)
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where A1/dgj > 0 and A2/dgj < 0 (see (75)). At a first sight, from (157), the transitional

paths for c(t) and s(t) may be monotonic or non-monotonic.

Evaluate (157a) and (158c) at time t = 0, we obtain the initial changes of s and c once real

consumption jumped:

dṡ(0)
dgj

= µ1
A1

dgj
︸ ︷︷ ︸

(−)

+µ2
A2

dgj
︸ ︷︷ ︸

(+)

,

= −
[
µ1ω

2
3 − µ2ω

1
3

ω2
3 − ω1

3

]
ds̃

dgj
= −(−)

(+)
× (−) < 0, (158a)

dċ(0)
dgj

= µ1

(
σ + µ1

σ

)
A1

dgj

︸ ︷︷ ︸
(−)

+µ2

(
σ + µ2

σ

)
A2

dgj

︸ ︷︷ ︸
(+)

, (158b)

= −
[

µ1 (σ + µ1) ω2
3 − µ2 (σ + µ2) ω1

3

σ
(
ω2

3 − ω1
3

)
]

dc̃

dgj
= −(−)

(+)
× (−) < 0, (158c)

with
(
ω2

3 − ω1
3

)
> 0, and

µ1 (σ + µ1) ω2
3 − µ2 (σ + µ2) ω1

3

= −Icµ1µ2 (σ + µ1) (σ + µ2) (µ1 − µ2) [r? − (µ1 + µ2)]
σ [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk]

= −(+)
(+)

< 0, (159)

where we used the fact that µ1µ4 − µ2µ3 = [r? − (µ1 + µ2)] > 0.

We investigate in more details the condition of the non-monotonic adjustment of the ref-

erence stock and the real consumption. Adopting the same procedure than previously, there

exists a critical value of time, t = t́ > 0, such that the habit stock reaches a turning point, i. e.

ṡ
(
t́
)

= ṡ
(
t́
)

= 0. Solving the first line of (98a), we obtain:

t́ =
1

µ1 − µ2
ln

[
−µ2A2/dgj

µ1A1/dgj

]
, i = d, f, (160)

where µ1 − µ2 < 0 and the necessary condition for t́ > 0 corresponds to:

0 < −µ2A2/dgj

µ1A1/dgj
< 1 ⇔ dṡ(0)

dgj
< 0. i = d, f. (161)

If the condition (161) holds, the stock of habits initially decreases before reaching a turning

point at time t́. Subsequently, accumulation of habits turns to be positive and the reference

stock increases towards its new lower steady-state level, i. e. s overshoots its long-term value.
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Regarding real consumption’s transitional path, there exists a critical value of time, t =

t̆ > 0, such that the real consumption reaches a turning point, i. e. ċ
(
t̆
)

= 0. Solving the first

line of (98a), we obtain:

t̆ =
1

µ1 − µ2
ln

[
−µ2ω

2
2A2/dgj

µ1ω1
2A1/dgj

]
, i = d, f, (162)

where µ1 − µ2 < 0 and the necessary condition for t̆ > 0 corresponds to:

0 < −µ2ω
2
2A2/dgj

µ1ω1
2A1/dgj

< 1 ⇔ dċ(0)
dgj

< 0. i = d, f. (163)

If the condition (163) holds, the real consumption initially decreases before reaching a turning

point at time t̆. Subsequently, the real consumption rises towards its new lower long-run level.

Finally, because µ1 < µ2 < 0, and (σ + µ1) > 0, (σ + µ2) > 0, we have 0 < ω1
2 < ω2

2 which

implies in turn that µ2ω2
2A2/dgj

µ1ω1
2A1/dgj

> µ2A2/dgj

µ1A1/dgj
. Thus, we deduce the following inequality:

0 < t̆ < t́. (164)

In words, the trajectory cuts first the demarcation line ċ = 0 at time t̆, and then cuts the

demarcation line ṡ = 0 at time t́ and finally the dynamic system approaches the steady-state.

D.5 Non-monotonic Transitional Paths and the Range of Dates

In this section, we determine analytically the range of dates, i. e. the time at which the dy-

namics of key economic variables change of direction as they follow non-monotonic transitional

paths. More specifically, we have four dates, say respectively t̂, t̆, t́ and t̃ at which invest-

ment, real consumption, accumulation of consumption experience and current account change

of sign. The range of dates is not a crucial task but rather allows for a more rigorous discussion

of transitional paths. We have already shown that t̆ < t́ (see (164)). We have now to compare

t̂ with t́ and t̆ by making use of their expressions given respectively by (91), (160) and (162).

For the inequality t̂ < t́ to hold, the following condition must be satisfied

0 < −µ2A2/dgj

µ1A1/dgj
< −µ2ω

2
3A2/dgj

µ1ω1
3A1/dgj

< 1. (165)
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It is straightforward to show that this necessary condition is respected if ω2
3 − ω1

3 > 0. From

(46), the latter inequality holds such that t̂ < t́.

For the inequality t̂ < t̆ to hold, the following condition must be satisfied:

0 < −µ2ω
2
2A2/dgj

µ1ω1
2A1/dgj

< −µ2ω
2
3A2/dgj

µ1ω1
3A1/dgj

< 1. (166)

It is straightforward to show that this necessary condition is respected if ω1
2ω

2
3−ω2

2ω
1
3 > 0. We

have computed the following expression to determine its sign:

ω1
2ω

2
3 − ω2

2ω
1
3

=
Ic (σ + µ1) (σ + µ2) (µ1 − µ2) [µ1µ2 + Ipp̃Fkk]

σ2 [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk]
=

(+)
(+)

> 0. (167)

Since inequality (166) holds, we can deduce the following time range for turning points:

0 < t̂ < t̆ < t́ < t̃. (168)

From (168), we can deduce that investment in physical capital changes of sign before real

consumption which itself changes of sign before accumulation of habits.

D.6 Dynamics for the Rate of Time Preference

As have underlined previously, the specification of a habit-forming behavior implies a variable

time preference rate. Following an unanticipated permanent fiscal expansion, the time pref-

erence rate rises initially and then decreases over time toward its steady-state value, δ. The

reaction of ρ reflects the temporary gap between the marginal utility of current real expense and

the marginal utility of future real expense. In this section, we provide an analytical treatment

of the adjustment of the time preference rate following a permanent fiscal expansion.

The solution for the time preference rate is obtained by linearizing (??) in the neighborhood

of the steady-state and using the fact that ρ̃ = δ:

ρ(t) = δ +
p̃

pcλ̄
(δ + σ) ucc (c(t)− c̃) +

p̃

pcλ̄
(δ + 2σ) Γ̃ (s(t)− s̃) +

p̃

pcλ̄
(δ + σ)

pcλ̄ (1− αc)
p̃2

(p(t)− p̃) ,

= δ +
p̃

pcλ̄
(δ + σ) ucc

[
Ξ1A1e

µ1t + Ξ2A2e
µ2t

]
, (169)
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where

Ξ1 = ω1
2 +

(δ + 2σ) Γ̃
(δ + σ) ũ11

+
pcλ̄

p̃ũ11

(1− αc)
p̃

ω1
4 = − (δ + 2σ) Γ̃

(δ + σ) ũ11

µ1

(δ + σ − µ1)
< 0, (170a)

Ξ2 = ω2
2 +

(δ + 2σ) Γ̃
(δ + σ) ũ11

+
pcλ̄

p̃ũ11

(1− αc)
p̃

ω2
4 = − (δ + 2σ) Γ̃

(δ + σ) ũ11

µ2

(δ + σ − µ2)
< 0, (170b)

with Γ > 0. To determine the signs of Ξ1 and Ξ2, we made use of the second line of

(J − µiI4×4) ωi
j = 0.

We estimate the initial reaction of the time preference rate by evaluating (169) at time

t = 0 and by differentiating w. r. t. gj :

dρ(0)
dgj

=
p̃

pcλ̄
(δ + σ)ucc

[
Ξ1

A1

dgj
+ Ξ2

A2

dgj

]
,

= − p̃

pcλ̄

(δ + 2σ) Γ̃
(δ + σ − µ1) (δ + σ − µ2)

(
ω2

3 − ω1
3

)

×
[
µ1µ2

(
ω2

3 − ω1
3

)− (δ + σ)
(
µ1ω

2
3 − µ2ω

1
3

) ] ds̃

dgj
> 0, (171)

where ω2
3−ω1

3 > 0 (see (46)) and µ1ω
2
3−µ2ω

1
3 < 0 see (146b)). We have substituted the expres-

sions of constants given by (75) and made use of (170) to determine (171). From (171), the time

preference rate rises initially giving rise to a decreasing temporal path for real consumption

(see (??)).

We estimate now the initial change of the time preference rate by differentiating (169)

w. r. t. time t, evaluating this at time t = 0, and differentiating w. r. t. gj

dρ̇c(0)
dgj

=
p̃

pcλ̄
(δ + σ)ucc

[
µ1Ξ1

A1

dgj
+ µ2Ξ2

A2

dgj

]
,

= − p̃

pcλ̄

(δ + 2σ) Γ̃
(δ + σ − µ1) (δ + σ − µ2)

(
ω2

3 − ω1
3

)

×
[
µ1µ2

(
µ1ω

2
3 − µ2ω

1
3

)− (δ + σ)
(
µ2

1ω
2
3 − µ2

2ω
1
3

) ] ds̃

dgj
< 0, (172)

where µ2
1ω

2
3−µ2

2ω
1
3 > 0 since ω2

3 > ω1
3 and µ2

1 > µ2
2. After its upward jump, the time preference

decreases. Performing a similar procedure than previously, it is straightforward to show that

the possibility of a non-monotonic adjustment rests on the condition of an initial positive

change of the time preference rate. Since this condition does not hold (see (172)), we can infer

that the time preference rate, ρ(t), decreases monotonically along the stable trajectory.
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E Welfare Analysis

In this section, we investigate the welfare effects of an unanticipated permanent rise in gov-

ernment spending, gj , falling on the domestic good (i = d) or the foreign good (i = f). We

denote by φ the instantaneous welfare:

φ(t) = u (c(t), s(t)) , (173)

and by U its discounted value over an infinite horizon:

U =
∫ ∞

0
φ(t) exp (−δt) dt. (174)

From (10a), the steady-state value of real consumption is given by:

c̃ =
[(

δ + σ

δ + σ (1− γ)

)
pcλ̄

p̃

]− 1
γ+ε(1−γ)

. (175)

Differentiating the felicity function (??) w. r. t. c and s and evaluate at the steady state using

(175), this yields to:

ũc = c̃−[γ+ε(1−γ)] =
(

δ + σ

δ + σ (1− γ)

)
pcλ̄

p̃
> 0, (176a)

ũs = −γc̃−[γ+ε(1−γ)] = −γ

(
δ + σ

δ + σ (1− γ)

)
pcλ̄

p̃
= −γũc < 0, (176b)

where a tilde over partial derivatives indicate that they are evaluated at the steady-state.

Furthermore, we have computed several useful expressions:

∆1 ≡ ũc

(
σ + µ1

σ

)
+ ũs =

(
δ + σ

δ + σ (1− γ)

)
pcλ̄

p̃

[
σ (1− γ) + µ1

σ

]
< 0, (177a)

∆2 ≡ ũc

(
σ + µ2

σ

)
+ ũs =

(
δ + σ

δ + σ (1− γ)

)
pcλ̄

p̃

[
σ (1− γ) + µ2

σ

]
> 0, (177b)

where we imposed the following condition which holds from plausible values of parameters (as

indicated by numerical analysis):

σ (1− γ) + µ1 < 0, σ (1− γ) + µ2 > 0. (178)

E.1 Instantaneous Welfare Effects

We first linearize the instantaneous utility function (??) in the neighborhood of the steady-

state:

φ(t) = φ̃ + uc (c̃, s̃) (c(t)− c̃) + us (c̃, s̃) (s(t)− s̃) , (179)
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with φ̃ given by

φ̃ = u (c̃, c̃) , (180)

where we used the fact c̃ = s̃.

By substituting solutions for s(t) and c(t), we obtain the two-dimensional stable solution

for instantaneous welfare:

φ(t) = φ̃ +
[
ũc

(
σ + µ1

σ

)
+ ũs

]
A1e

µ1t +
[
ũs

(
σ + µ2

σ

)
+ ũs

]
A2e

µ2t, (181)

where a tilde indicates that the variable is evaluated at the steady-state, that is ũc = uc (c̃, c̃)

and ũs = us (c̃, c̃).

We investigate the initial reaction of instantaneous welfare. We evaluate (181) at time t = 0

and differentiate this w. r. t. gj :

dφ(0)
dgj

= (ũc + ũs)
ds̃

dgj
+ ∆1

A1

dgj
+ ∆2

A2

dgj
,

= −ũc

[
µ1ω

2
3 − µ2ω

1
3

σ
(
ω2

3 − ω1
3

)
]

ds̃

dgj
= ũc

dc(0)
dgj

< 0, i = d, f, (182)

where µ1ω
2
3 − µ2ω

1
3 < 0 (see (146b)) and ω2

3 − ω1
3 > 0 (see (46)). The last equality has been

obtained by inspecting expression (153) that gives the initial reaction of real consumption.

Differentiate (180) w. r. t. gj , one obtains the long-run change of instantaneous welfare:

dφ̃

dgj
= (ũc + ũs)

dc̃

dgj
< 0, i = d, f. (183)

As longer as 0 ≤ γ < 1, an unexpected permanent fiscal expansion (regardless of the good on

which the fiscal expansion falls) induces a fall in the steady-state value of φ triggered by the

long-run fall in real consumption.

By making use of (182) and (183), we make the comparison between the size of initial

change of φ and the size of its long-run change:

dφ(0)
dgj

− dφ̃

dgj
= −ũc

{
ω2

3 [σ (1− γ) + µ1]− ω1
3 [σ (1− γ) + µ2]

σ
(
ω2

3 − ω1
3

)
}

ds̃

dgj
< 0, i = d, f. (184)

According to (184), following a fiscal expansion, instantaneous welfare falls initially by a larger

amount than in the long-run. This is due to the fact that the habit stock is initially predeter-

mined and does not change at time t = 0.
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Along the transitional path, φ rises towards its new long-run level:

φ̇(t) = µ1∆1
A1

dgj
dgjeµ1t + µ2∆2

A2

dgj
dgjeµ2t > 0, i = d, f, (185)

where we took the time derivative of the the stable solution for φ(t) (given by (181)). The

sign follows from the fact that ∆1 < 0 and ∆2 > 0. From (185), along the stable adjustment,

instantaneous welfare rises towards its new lower long-run level.

According to (184), whatever the size of the weight γ attached to the reference stock, s, the

short-run response of φ overshoots its new steady-state value, i. e. φ(0) < φ̃. Since the habit

stock is initially predetermined, s(0) = s0, the initial change of instantaneous welfare is only

driven by the variation of real consumption at time t = 0 which induces welfare losses. Over

time, the positive impact of the gradual fall in the habit stock upon φ more than outweighs

the negative impact of the progressive decrease in c. This effect in reflected by the first term

on the right-hand side of (185). As we have shown previously (in section D.4), there exists a

time at which the real consumption together with the consumption experience start increasing.

Reflected by the second term on the right-hand side of (185), this adjustment has a positive

impact on instantaneous welfare.

E.2 Overall Welfare Effects

Until now, we have analyzed the instantaneous welfare implications of an unanticipated perma-

nent fiscal expansion, say at different points of times. To address welfare effects in a convenient

way within an intertemporal-maximizing framework, we have to evaluate the discounted value

of (173) over the agent’s infinite planning horizon. We will see that the sluggish adjustment in

welfare that arises from consumption inertia enters in sharp contrast with the immediate jump

of welfare prevailing with time separable preferences.

In order to have a correct and comprehensive measure of welfare, we calculate first the

discounted value of instantaneous welfare over the entire planning horizon

U =
ũ

δ
+

[
ũc

(σ+µ1

σ

)
+ ũs

]

δ − µ1
A1 +

[
ũc

(σ+µ2

σ

)
+ ũs

]

δ − µ2
A2. (186)
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The first term on the right hand-side of (186) represents the capitalized value of instantaneous

welfare evaluated at the steady-state. The second and the third term on the right hand-side of

(186) vanish whenever preferences are time separable.

In order to derive the overall (des)accumulated welfare following an unanticipated perma-

nent increase of government expenditure, we differentiate (178) w.r.t gj :

dU

dgj
=

ũc + ũs

r?

ds̃

dgj
− ω2

3

ω2
3 − ω1

3

[
ũc

(σ+µ1

σ

)
+ ũs

]

(r? − µ1)
ds̃

dgj

+
ω1

3

ω2
3 − ω1

3

[
ũc

(σ+µ2

σ

)
+ ũs

]

(r? − µ2)
ds̃

dgj

=

[
µ2µ4ω

1
3 − µ1µ3ω

2
3

r?µ3µ4

(
ω2

3 − ω1
3

)
] [(

1 +
δ

σ

)
ũc + ũs

]
ds̃

dgj
< 0, (187)

where we have evaluated the following expression to determine the sign of (187)

µ2µ4ω
1
3 − µ1µ3ω

2
3

= −r?
(
µ1ω

2
3 − µ2ω

1
3

)
+ µ1µ2

(
ω2

3 − ω1
3

)

=
Icµ1µ2 (µ1 − µ2) {(σ + µ1) [µ3µ4 + Ipp̃Fkk]− µ3 [µ1µ4 + Ipp̃Fkk]}

σ [µ1µ4 + Ipp̃Fkk] [µ2µ3 + Ipp̃Fkk]
, (188)

=
(+)
(+)

> 0,

where we have substituted expressions (46) and (146b) to determine (188). From (187), a

permanent rise in government spending, gj , leads to a reduction of total welfare.

The long-term change in total welfare is equal to

dŨ

dgj
=

ũc + ũs

δ

ds̃

dgj
< 0, (189)

where δ = r? and ũc + ũs > 0 according to assumption [H3] described in section 2.

We turn now to the computation of the two-dimensional stable solution for total welfare.

At some date t, total welfare is given by

U(t) =
∫ ∞

t
φ(t)e−δ(ν−t)dν (190)

Substituting the solution for φ(t) and integrating, we get

U(t)− Ũ =

[
ũc

(σ+µ1

σ

)
+ ũs

]

δ − µ1
A1e

µ1t +

[
ũc

(σ+µ2

σ

)
+ ũs

]

δ − µ2
A2e

µ2t, (191)
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where we used the fact that Ũ = ũ/δ. Differentiate (191) w. r. t. to time t, total welfare evolves

as follows along the stable trajectory after an unanticipated permanent fiscal expansion:

U̇(t) = µ1

[
ũc

(σ+µ1

σ

)
+ ũs

]

δ − µ1

A1

dgj
︸ ︷︷ ︸

(+)

dgjeµ1t +

[
ũc

(σ+µ2

σ

)
+ ũs

]

δ − µ2

A2

dgj
︸ ︷︷ ︸

(+)

dgjeµ2t > 0, (192)

where A1/dgj > 0 and A2/dgj < 0 are given by (75),
[
ũc

(σ+µ1

σ

)
+ ũs

]
< 0 and

[
ũc

(σ+µ2

σ

)
+ ũs

]
> 0 are given by (177). From (187), (189) and (192), overall welfare falls

abruptly at time t = 0, then rises towards its new lower long-run level, Ũ .

F Savings

Formal Solution for the Stock of Financial Wealth

Financial wealth measured in terms of the domestic good, p(t)a(t), is equal to the sum

of the stock of foreign assets measured in terms of the foreign good, p(t)b(t), and the capital

stock. The law of motion for financial wealth (S(t) = ȧ(t)) is given by:

p(t)ȧ(t) = r?p(t)a(t) + w − pc (p(t)) c− Z, (193)

with Z = gD + pgf . Linearize (193) in the neighborhood of the steady-state:

p̃ȧ(t) = r?p̃ (a(t)− ã)− pc (c(t)− c̃)−
(
w − c̃D − gD

)

p̃
(p(t)− p̃) ,

= r?p̃ (a(t)− ã)− pc (c(t)− c̃) +
(
r?ã− c̃F + gF

)
(p(t)− p̃) , (194)

where w ≡ F (k)− Fk (k) and
(
w − c̃D − gD

)
= p̃

(
c̃F + gF − r?ã

)
.

Inserting the stable solutions for (p(t)− p̃) and (c(t)− c̃) given respectively by (27d) and

(27b), the solution for the current account writes as follows :

p̃ȧ(t) = r?p̃ (a(t)− ã) + Υ̃
2∑

i=1

Aiω
i
4e

µit − pc

2∑

i=1

Aiω
i
2e

µit. (195)

where we set Υ̃ =
(
r?ã− c̃F + gF

)
.

Solving the differential equation leads to:

a(t)− ã =
[
(a0 − ã)− S1A1

µ1 − r?
− S2A2

µ2 − r?

]
er?t +

S1A1

µ1 − r?
eµ1t +

S2A2

µ2 − r?
eµ2t, (196)
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where

S1 =
1
p̃

{
Υ̃ω1

4 − pcω
1
2 − Fkkk̃ω1

3

}
, S2 =

1
p̃

{
Υ̃ω2

4 − pcω
2
2 − Fkkk̃ω2

3

}
. (197)

Dynamics of savings is the result of conflictory forces such that the signs of S1 and S2 remain

undetermined. Over a first phase, the three effects play in the same direction and induce a

decumulation of financial wealth. First, as longer as Υ̃ is positive, the real exchange rate de-

preciation lowers financial wealth by reducing the real wage. Second, as longer as consumption

remains higher than its steady-state level, this consumption behavior impinges negatively on

savings. Third, a transitorily lower capital stock raised the marginal production of physical

capital and reduces the wage. At some date, real consumption equalizes its steady-state value

from above. This overshooting behavior impinges positively on savings and may eventually

more than outweighs the two other effects such that households accumulate financial wealth.

Invoking the transversality condition for intertemporal solvency, we obtain the linearized

version of the nation’s intertemporal budget constraint:

a0 − ã =
S1A1

µ1 − r?
+

S2A2

µ2 − r?
. (198)

For the national intertemporal solvency to hold, the terms in brackets of equation (196) must

be null, so the stable solution for net foreign assets finally reduces to

a(t)− ã =
S1A1

µ1 − r?
eµ1t +

S2A2

µ2 − r?
eµ2t. (199)

G Functional Forms: Some Analytical Expressions

G.1 Functional Forms and the Steady-State

Consumption-Side

The utility function is of the CRRA form:

u (c, s) =
1

1− ε

( c

sγ

)1−ε
, (200)

where the parameter ε corresponds to the coefficient of relative risk aversion and the parameter

γ indexes the importance of habit formation in the instantaneous utility function.
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First and second partial derivatives of the instantaneous utility function are as follows:

uc = c−εs−γ(1−ε) > 0, (201a)

us = −γc1−εs−[γ(1−ε)+1] < 0, (201b)

ucc = −εc−(1+ε)s−γ(1−ε) < 0, (201c)

uss = γ [γ (1− ε) + 1] c1−εs−[γ(1−ε)+2] < 0 if and only if ε >
1 + γ

γ
, (201d)

ucs = −γ (1− ε) c−εs−[γ(1−ε)+1] > 0 if and only if ε > 1. (201e)

We give some useful expressions using the functional form: (200):

ũc +
σ

δ + σ
ũs = c̃−[ε+γ(1−ε)] δ + σ (1− γ)

δ + σ
> 0, (202a)

σ (δ + σ)
ũ11

[
ũ11 +

δ + 2σ

δ + σ
Γ̃
]

=
σ

ε
[γ + ε (1− γ)] [δ + σ (1− γ)] > 0, (202b)

−

[
ũc + σ

δ+σ ũs

]
[
ũ11 + δ+2σ

δ+σ Γ̃
]
c̃

= 1/ [γ + ε (1− γ)] , (202c)

− pcλ̄

p̃ũ11c̃
= − ũc + σ

δ+σ ũs

ũ11c̃
=

[δ + σ (1− γ)]
ε (δ + σ)

> 0, (202d)

−σ (δ + 2σ)
ũ11

Γ̃ =
σγ

ε
{σε− (1− ε) [δ + σ (1− γ)]} > 0. (202e)

where a tilde indicates that the instantaneous utility is evaluated at the steady state, c̃ = s̃,

and Γ is defined by (??).

We assume that the representative household maximizes a CES function given by:

c (., .) =
[
ϕ

1
φ

(
cD

)φ−1
φ + (1− ϕ)

1
φ

(
cF

)φ−1
φ

] φ
φ−1

(203)

with φ > 0 the intratemporal elasticity of substitution between consumption of domestic and

foreign goods, given total expenditure measured in terms of traded goods:

E ≡ cD + pcf . (204)

At the first stage, the household minimizes the cost, E(t) = cD(t) + p(t)cF (t), for a given level

of subutility, c(t), where p(t) is the relative price of the foreign good or the real exchange rate.

For any chosen c(t), the optimal basket (cD(t), cF (t)) is a solution to:

pc (p(t)) c(t) = min
{cD(t),cF (t)}

{
cD(t) + p(t)cF (t)(t) : c

(
cD(t), cF (t)

) ≥ c(t)
}

. (205)
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The subutility function c (.) is linear homogeneous implies that the total expense in consump-

tion goods can be expressed as E(t) = pc (p(t)) c(t), with pc (p(t)) is the unit cost function

dual (or consumption-based price index) to c. The unit cost dual function, pc (.), is defined as

the minimum total expense in consumption goods, E, such that c = c
(
cD(t), cF (t)

)
= 1, for a

given level of the real exchange rate, p. Its expression is given by

pc =
[
ϕ + (1− ϕ) p1−φ

] 1
1−φ

. (206)

The minimized unit cost function depends on the real exchange rate and is expressed in terms

of the domestic good. It has the following properties:

p′c = (1− ϕ) p−φ
[
ϕ + (1− ϕ)p1−φ

] φ
1−φ

> 0, (207a)

p′′c = φ (1− ϕ) p−(1+φ)
[
ϕ + (1− ϕ) p1−φ

] φ
1−φ

[
(1− ϕ) e1−φ

ϕ + (1− ϕ) p1−φ
− 1

]
< 0, (207b)

= φp′cp
−1

[
(1− ϕ) e1−φ

ϕ + (1− ϕ) p1−φ
− 1

]
.

Intra-temporal allocations between non tradable goods and tradable goods follow from Shep-

pard’s Lemma (or the envelope theorem) applied to (205):

cF = p′cc, and
pcf

pcc
= αc, (208a)

cD =
[
pc − pp′c

]
c, and

cD

pcc
= (1− αc) , (208b)

with the shares of the foreign and the domestic goods in consumption expenditure are given

respectively by

αc =
(1− ϕ) p1−φ

ϕ + (1− ϕ) p1−φ
, , (209a)

1− αc =
ϕ

ϕ + (1− ϕ) p1−φ
. (209b)

By combining equations (207b) and (210), we can rewrite the term −p′′cp/p′c as follows:

−p′′cp
p′c

> 0, (210)

where φ (1− αc) represents the elasticity of consumption in the foreign good with respect to

the real exchange rate.
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Production-Side

We assume that the production function takes the Cobb-Douglas form:

Y = f (k) = kαK , (211)

where αK corresponds to the capital share.

Export Function

As in Turnovsky and Sen [?], the country may be able to influence the real exchange rate.

This influence is captured by an export function, X (p) which takes a power form:

X = X (p) = γXpνX , (212)

where γX > 0 is a constant and νX represents the price elasticity of the home country’s export.

Note that in the limiting case, of a perfectly elastic export demand function, i. e. νX = +∞,

the real exchange rate is equal to unity.

By making use of the functional form for the export function (212), we can rewrite the

partial derivative of the investment function with respect to the real exchange rate:

Ip = − (
Xp − pp′′c c

)
,

= − [
νX (X/p) + φ (1− αc) cF

]
< 0, (213)

where we made use of (210).

Finally, we evaluate at the steady-state the net export reaction function with respect to the

real exchange rate (given by (38)) by substituting the functional form for the export function

(eq (212)):

Ω̃ ≡ −1
p̃

[
Ip +

X̃

p̃

]
=

X̃

p̃2

[
νX + φ (1− αc)

p̃c̃F

X̃
− 1

]
> 0. (214)

Steady-State
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The steady-state (10) can be rewritten as follows:

c̃ =
[(

δ + σ

δ + σ (1− γ)

)
pcλ̄

p̃

]− 1
γ+ε(1−γ)

, (215a)

c̃ = s̃, (215b)

k̃ =
(αK

r?

) 1
1−αK , (215c)

k̃αK = (1− αc) pc (p̃) c̃ + X0 (p̃)νX + gD, (215d)

b̃ = −
[

k̃αK − pc (p̃) c̃− gD − p̃gF

p̃r?

]
, (215e)

b̃− Φ1k̃ − Φ2s̃ = b0 − Φ1k0 − Φ2s0. (215f)

By using the functional form (200) for preferences, the short-run static condition (??)

determines the steady-state value of real consumption as we can see from (215a) which indicates

that c̃ depends on the equilibrium value of the marginal utility of wealth and the real exchange

rate. From (215b), the reference stock must coincide with the real consumption in the long-

run. The equality between the marginal product of physical capital and the world interest rate

allows to determine the long-term level of k. To obtain expression (215c) of the steady-state

value of the capital stock, we made use of the functional form for production given by (211).

Equation (224) corresponds to the steady-state value of the real exchange rate which

is determined by the means of the market-clearing condition (10b) together with the pro-

duction function (211) and export function (212). Consumption of the domestic good,

c̃D = (1− αc) pc (p̃) c̃ is obtained by combining (209b), (206) and (215a). Expression (215d)

shows that the long-term value of the real exchange rate depends on the steady-state values of

the physical capital stock and the real consumption given respectively by (215c) and (215a).

The current account equilibrium in the long-run allows for determining the stock of traded

bonds given by (215e) as a function of: the steady-state endogenous values like the real con-

sumption, c̃, the real exchange rate, p̃ and the capital stock k̃ on the one hand, and on the

other hand the exogenous variables like government spending on the domestic good, gD and

the foreign good, gF , and the world interest rate, r?.

Independently from the linearized version of the intertemporal solvency condition (215f),
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the system of equations (215a) and (215e) can be solved for λ̄ and the government policy

parameters, gD and gF . Substituting the steady-state values of the stock of habits, i. e. s̃ =

c̃ = m
(
λ̄, gD, gF

)
, and the long-term value of the stock of international assets, i. e. b̃ =

b
(
λ̄, gD, gF

)
into the solvency condition (215f), we are able to determine the equilibrium value

of the marginal utility of wealth such that (215f) holds.

Furthermore, the steady-state values of consumption in the domestic good and the foreign

good can be written as follows:

c̃D = (1− αc) pcc̃ = ϕ
[
ϕ + (1− ϕ) p̃1−φ

] φ
1−φ

c̃, (216a)

c̃F =
αcpcc̃

p̃
= (1− ϕ) p̃−φ

[
ϕ + (1− ϕ) p̃1−φ

] φ
1−φ

c̃. (216b)

G.2 Eigenvectors and Real Eigenvalues

The Linearized Matrix

Making use of functional forms described in section G.1, the linearized matrix (15) can be

rewritten as follows:

J ≡




−σ σ 0 0

a21 δ + σ a23 a24

0 − (1− αc) pc r? a34

0 0 p̃Fkk 0




, (217)

with

a21 = −γ

ε
{σε− (1− ε) [δ + σ (1− γ)]} , < 0, (218a)

a23 =
[δ + σ (1− γ)]

ε (δ + σ)
c̃DFkk

pc
> 0, (218b)

a24 = − [δ + σ (1− γ)]
ε

(1− αc) c̃

p̃
< 0. (218c)

a34 = −1
p̃

[
νXX̃ + φ (1− αc) p̃c̃F

]
< 0. (218d)

Determinant and Condition for Real Roots

The determinant J of the matrix of the linearized system denoted by b4 (given by (19d))

can be rewritten as by making use of the functional forms for the production function, the
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export function, and real consumptio aggregator function:

Det J = b4 =
σ

ε
[δ + σ (1− γ)]Fkk

{
[γ + ε (1− γ)] Ipp̃− (1− αc) c̃D

}
> 0, (219)

where we have substituted (202b), (202d), and used the fact that Ic = − (1− αc) pc and

c̃D = (1− αc) pcc̃. Performing a similar procedure, we can evaluate the term b3/r? (given by

(19c)):

b3

r?
=

σ

ε
[γ + ε (1− γ)] [δ + σ (1− γ)] + Fkk

[
p̃Ip − (1− αc) c̃D [δ + σ (1− γ)]

ε (δ + σ)

]
> 0.(220)

and the condition (26) for real roots:

(
b3

r?

)2

− 4b4 =
{

σ

ε
[γ + ε (1− γ)] [δ + σ (1− γ)]− Fkk

[
p̃Ip − (1− αc) c̃D [δ + σ (1− γ)]

ε (δ + σ)

]}2

+ 4
σγ

ε
{σε− (1− ε) [δ + σ (1− γ)]} [δ + σ (1− γ)]

ε (δ + σ)
Fkk (1− αc) c̃D ≷ 0, (221)

with Ip given by equation (213) and Fkk evaluated at the steady-state can be written as follows:

Fkk = −r? (1− αK)
k̃

.

Eigenvalues

We write out the two stable and the two unstable eigenvalues:

µ1 ≡ 1
2





r? −

√√√√√(r?)2 + 2


 b3

r?
+

√(
b3

r?

)2

− 4b4








< 0, (222a)

µ2 ≡ 1
2





r? −

√√√√√(r?)2 + 2


 b3

r?
−

√(
b3

r?

)2

− 4b4








< 0, (222b)

µ3 ≡ 1
2





r? +

√√√√√(r?)2 + 2


 b3

r?
−

√(
b3

r?

)2

− 4b4








> 0, (222c)

µ4 ≡ 1
2





r? +

√√√√√(r?)2 + 2


 b3

r?
+

√(
b3

r?

)2

− 4b4








> 0, (222d)

where b3/r?, (b3/r?)2 − 4b4 are given by (220) and (221) respectively.

If preferences are time separable, the smallest eigenvalue and the highest eigenvalue simplify

as follows:

µγ=0
1 = −σ < 0, µγ=0

4 = r? + σ > 0. (223)
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Eigenvectors

Eigenvector ωi
2 writes as follows:

ω1
2 =

(
σ + µ1

σ

)
> 0, (224a)

ω2
2 =

(
σ + µ2

σ

)
> 0, (224b)

Eigenvector ωi
3 writes as follows:

ω1
3 =

(1− αc) pc (σ + µ1) µ1

σ [µ1µ4 + Ipp̃Fkk]
> 0, (225a)

ω2
3 =

(1− αc) pc (σ + µ2) µ2

σ [µ2µ3 + Ipp̃Fkk]
> 0, (225b)

Eigenvector ωi
4 writes as follows:

ω1
4 =

p̃Fkk

µ1
ω3

1 > 0, (226a)

ω2
4 =

p̃Fkk

µ2
ω3

2 > 0, (226b)

where the signs of ω1
2, ω2

2, ω2
3 and ω2

4 stem from the following condition that we imposed:

Ipp̃Fkk < σ (σ + δ) ,

with δ = r?.
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