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Mean-field approximation of stochastic population processes in games

Michel Benäım∗

Institut de Mathématique
Université de Neuchâtel, Switzerland

Jörgen W. Weibull
Department of Economics

Stockholm School of Economics

May 14, 2009.

Abstract. We here establish an upper bound on the probability for
deviations of a Markov population process from its mean-field approximation.
The population consists of n distinct subpopulations of equal size N , where
each subpopulation is associated with a player role in a finite n-player game.
At discrete times t = 0, 1/N, 2/N, ... one individual is drawn at random from
the total population to review his or her pure strategy choice. We allow transi-
tion probabilities to depend smoothly on population size N and show that the
probability bound converges exponenially to zero as N →∞. This generalizes
a result in Benäım and Weibull (2003).

Many population models in game theory hypothesize a continuum of interacting
agents and describe the evolutionary selection process in terms of a system of ordinary
differential equations. These equations usually concern changes in population shares
associated with the different pure strategies in the game, and the changes are viewed
as aggregates of large numbers of individual strategy switches. In this so-called mass-
action interpretation, due to Nash (1950), individuals are randomly and recurrently
drawn to review their own choice of pure strategy, and mixed strategies are popula-
tion distributions over pure strategies, rather than randomizations implemented by
individual players. This population model was not formalized by Nash (1950), but
dynamic population models later emerged in evolutionary biology. Prime examples
are different versions of the replicator dynamics, see Taylor and Jonker (1978), Taylor
(1979) and Maynard Smith (1982). For wide classes of such population dynamics,
results have been obtained that establish connections with non-cooperative concepts
such as dominance, Nash equilibrium and strategic stability (see, e.g. Weibull (1995)).

∗Our research was supported by the Swiss National Foundation Grant 200020-120218 and by the
Alice and Knut Wallenberg Foundation.
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Mean-field approximation of stochastic population processes in games 2

An important question for the relevance of these results is whether these dynamics
are good approximations of the stochastic population processes that arise from indi-
vidual strategy revision in finite but large populations. In an earlier study, Benäım
and Weibull (2003), we addressed this question and established approximation re-
sults under the hypothesis that switching rates do not depend on population size.
However, robustness in this respect is desirable, since in applications switching prob-
abilities may well, to some extent, depend on population size, see Fudenberg et al.
(2006), Fudenberg and Imhof (2008) and Example 1 below.1 In this note, we gen-
eralize our previous result to allow for such dependence on population size.2 To the
best of our knowledge, the present result is the most general and powerful approxima-
tion for this class of Markov chains, giving an exponential upper bound on deviation
probabilities in bounded time intervals, a bound that permits asymptotic analysis by
way of the Borel-Cantelli Lemma.3 The present generalization is obtained by first
establishing a result for the stochastic process’ deviations from its finite-population
mean-field flow, before going to its deviation from its limit mean-field flow.

1. A class of stochastic processes

Consider a finite n-player game with player roles i ∈ I = {1, ...n}, finite pure strategy
sets Si = {1, ...,mi}, set of pure-strategy profiles S = ×iSi, mixed-strategy simplices

∆(Si) =

(
xi ∈ Rmi

+ :
X
h∈Si

xih = 1

)
, (1)

and polyhedron ¤(S) = ×i∆(Si) of mixed-strategy profiles x = (x1, ..., xn). The
polyhedron ¤(S) is thus a subset of Rm, for m =

P
imi. For each player role i there

is a subpopulation consisting of N individuals. Each individual is at every moment
in time associated with a pure strategy in her strategy set. An individual in pop-
ulation i who is associated with pure strategy h ∈ Si is called an h-strategist. At
times t ∈ T = {0, δ, 2δ, ...}, where δ = 1/N , and only then, exactly one individual
has the opportunity to change his or her pure strategy. This individual is randomly
drawn, with equal probability for all nN individuals, and with statistical indepen-
dence between successive draws. With this fixed relationship between population size
and period length, the expected time interval between two successive draws of one

1We are grateful to Drew Fudenberg for raising this issue.
2We also take the opportunity to correct a mistake in the statement of Lemma 1 in our previous

paper. The statement should be “For every T > 0 there exists...”, see Proposition 1 below. We are
grateful to Sergiu Hart for spotting the mistake.

3For other stochastic approximation results, see Kurtz (1981), Benveniste et al. (1990), Duflo
(1996), Kushner and Yin (1997), Benäım (1999) and Benäım and Le Boudec (2008).
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Mean-field approximation of stochastic population processes in games 3

and the same individual is n, independently of the population size N . We will call
the times t ∈ T transition times - the only times when a transition can take place.
For each N ∈ N , let XN =

­
XN (t)

®
t∈T be a Markov chain, with finite state space

¤N(S), defined as follows. First, ¤N(S) is the subset (“grid”) of points x ∈ ¤(S)
such that Nxih is a nonnegative integer for each i ∈ I and h ∈ Si. Secondly, for
every player role i and pair (h, k) ∈ S2i of pure strategies for that role, there exists a
continuous function phNik : ¤(S)→ [0, 1] such that phNik (x) = 0 if xik = 0 and

Pr

∙
XN

i (t+
1

N
) = xi +

1

N

¡
ehi − eki

¢
| XN(t) = x

¸
= phNik (x) (2)

for all i ∈ I, h, k ∈ Si, N ∈ N and x ∈ ¤N(S). Here phNik (x) is the conditional prob-
ability, given the current population state x, that a k-strategist in player population
i will be drawn for strategy revision and switch to pure strategy h. Thus, for any
v = (v1, ..., vn) ∈ Rm:

Pr

∙
XN(t+

1

N
) = x+

1

N
v | XN(t) = x

¸
=

½
phNik (x) if vi = ehi − eki and vj = 0 ∀j 6= i
0 otherwise

For any player role i ∈ I and pure strategy h ∈ Si, and any population size N ,
the expected net increase in the subpopulation of h-strategists, from one transition
time to the next, and conditional upon the current state x, is

FN
ih (x) =

X
k 6=h

phNik (x)−
X
k 6=h

pkNih (x) . (3)

It follows from the probability specification above that FN
ih :¤(S)→ R is bounded,

with
P

h F
N
ih (x) ≡ 0 and FN

ih (x) ≥ 0 if xih = 0. We view each function FN as a
mapping from E to E, where E = RM , for M = m− n, is the tangent space of the
polyhedron ¤(S).4 We assume that every function FN , for N ∈ N, is bounded and
locally Lipschitz continuous, that there for every compact set C ⊂ E exists a common
Lipschitz constant λ for all functions FN , and, moreover, that FN → F uniformly.
Then also F is bounded and locally Lipschitz continuous.
We are interested in deterministic continuous-time approximation of Markov chains

XN in the class defined above, when the population size N is large, and thus the time
interval δ = 1/N between successive transition times is short. The key element for
such approximation is the vector field FN : E → E defined above, which, for short

4Recall that ¤(S) is the Cartesian product of n unit simplices, ∆(Si), and that the latter is a
subset of a hyperplan in Rmi . Hence, the dimension of E is M = m− n.
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Mean-field approximation of stochastic population processes in games 4

time intervals, gives the expected net increase in each population share during the
time interval, per time unit.5 The associated system of mean-field equations,

ẋih = FN
ih (x) ∀i ∈ I, h ∈ Si, x ∈ E (4)

define this limiting dynamic. In force of the Picard-Lindelöf Theorem, the system (4)
of first-order ordinary differential equations has a unique solution through every point
x in E (see, e.g., Hale (1969)). Moreover, as noted above, the sum of all population
shares in each population remains constant over time, and no population share can
turn negative. Hence, the system of equations (4) defines a solution mapping ξN :
R × ¤(S) → E that leaves each mixed-strategy simplex ∆(Si), and hence also the
polyhedron ¤(S) of mixed-strategy profiles, invariant. In other words, the system of
differential equations determines a solution for all times t ∈ R, and if the initial state
is in ¤(S), then also all future states are in ¤(S).6 We will call ξN the flow induced
by FN . Similarly, let ξ be the flow induced by the limit vector field F .
Let || · ||∞ denote the L∞-norm on E = RM . Then ||X̂N(t)−ξN(t, x)||∞ represents

the deviation of the interpolated Markov chain from the deterministic approximation
solution ξN at time t, measured as the largest deviation in any population share at
time t:

||X̂N(t)− ξN(t, x)||∞ = max
i∈I,h∈Si

¯̄̄
X̂N

ih(t)− ξNih(t, x)
¯̄̄
. (5)

The random variable

DN
N (T, x) = max

0≤t≤T
||X̂N(t)− ξN(t, x)||∞ (6)

is thus the maximal deviation in any population share, from the flow induced by FN

through x, during a bounded time interval [0, T ].
Likewise, the random variable

DN(T, x) = max
0≤t≤T

||X̂N(t)− ξ(t, x)||∞ (7)

is the maximal deviation in any population share, from the flow ξ induced by F
through x, during the same time interval.

Example 1. Suppose that (a) every individual has the same probability of being
drawn for strategy revision, (b) the revising individual draws another individual in his

5There are N transition times per time unit and N individuals in each player population.
6More exactly: ξ(0, x) = x for all x, ∂

∂tξih(t, x) = Fih [ξ(t, x)] for all i, h, x and t, and ξi(t, x) ∈
∆(Si) for all i ∈ I, x ∈ ¤(S), and t ∈ R. The time domain of the solution mapping ξ can be taken
to be the whole real line in force of the compactness of ¤(S).
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Mean-field approximation of stochastic population processes in games 5

or her own player subpopulation, and (c) depending on the information then available
about her own and the other individual’s payoffs, imitates the other individual. Then
(3) holds for all N ≥ 2, with

phNik (x) =
xik
n
· Nxih
N − 1 · q

h
ik(x),

where qhik (x) is the conditional imitation probability from pure strategy k to pure
strategy h. If all functions qhik : E → [0, 1] are Lipschitz continuous, then

FN
ih (x) =

1

n (1− 1/N)

"X
k 6=h

xikq
h
ik(x)−

X
k 6=h

xikq
k
ih(x)

#
xih

so all functions FN are bounded, have a common Lipschitz constant, and converge
uniformly to the function F defined by setting 1/N = 0 in this formula.

2. Mean-field approximation of DN
N (T, x)

Let Uk, for k ∈ N, be the difference between the step taken by the Markov chain XN

between periods k and k + 1, per time unit, and the vector field FN at the state:

Uk =
1

δ

£
XN((k + 1)δ)−XN(kδ)

¤
− FN(XN(kδ)) , (8)

where δ = 1/N is the length of a period. Let Fk, k ∈ N denote the sigma-field
generated by

©
XN(0), . . . ,XN(kδ)

ª
. The following result provides a useful upper

bound on the difference Uk. Let h., .i denote the inner product in the tangent space of
the polyhedron of mixed-strategy profiles: hx, yi =

PM
i=1 xiyi for any vectors x, y ∈ E.

Lemma 1. Let ΓN = (
√
2 +

°°FN
°°
2
)2. For any θ ∈ RM :

E(ehθ,Uki|Fk) ≤ eΓN ||θ||
2
2/2

Proof. By definition of Uk it is easy to verify that

||Uk||2 ≤ max
i,h,k

||ehi − eki ||2 +
°°FN

°°
2
=
p
ΓN (9)

Let g(t) = logE(ethθ,Uki|Fk). The function g : R → R is convex and satisfies g(0) =
g0(0) = 0, g00(t) ≤ ||θ||22ΓN . Therefore g(1) ≤ ||θ||22ΓN/2.
We are now in a position to state and prove our result for DN

N (T, x):
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Mean-field approximation of stochastic population processes in games 6

Lemma 2. For every T > 0 there exists a scalar c > 0 such that, for any ε > 0, and
any N large enough:

Pr
£
DN

N (T, x) ≥ ε | XN(0) = x
¤
≤ 2Me−ε

2cN ∀x ∈ ¤N(S)

Proof. In order to prove this, let λN be the Lipschitz constant of FN on the
compact set ¤(S) ⊂ E, with respect to the L∞-norm, let k·k2 denote the L2-norm,
and let

°°FN
°°
2
be the maximum of

°°FN (x)
°°
2
on ¤(S). Let Uk, for k ∈ N, be as

defined above, and let U : R+ → E be the map defined by U(t) = Uk for kδ ≤ t <
(k + 1)δ. Likewise, let X̄N be the continuous-time (right-continuous) step process
generated by the Markov chain XN : X̄N(t) is defined for all t ∈ R+ by X̄N(t) =
XN(kδ) for kδ ≤ t < (k + 1)δ. Suppose that XN(0) = x ∈ ¤(S). Then

X̂N(t)− x =

Z t

0

£
FN(X̄N(s)) + U(s)

¤
ds (10)

=

Z t

0

h
FN(X̂N(s)) + FN(X̄N(s))− FN(X̂N(s)) + U(s)

i
ds .

Since ξN(t, x)− x =
R t
0
FN(ξN(s, x))ds, we obtain

||X̂N(t)− ξN(t, x)||∞ ≤ λN

∙Z t

0

(||X̂N(s)− ξN(s, x)||∞)ds+ 2δT
¸
+Ψ(T ) , (11)

where

Ψ(T ) = max
0≤t≤T

||
Z t

0

U(s)ds||∞ . (12)

Grönwall’s inequality implies

DN
N (T, x) = max

0≤t≤T
||X̂N(t)− ξN(t, x)||∞ ≤ [Ψ(T ) + 2δλNT ] eλNT . (13)

Thus, for δ ≤ ε
4λNT

e−λNT ,

Pr
£
DN

N (T, x) ≥ ε
¤
≤ Pr

h
Ψ(T ) ≥ ε

2
e−λNT

i
. (14)

Our next goal is to estimate the probability on the right-hand side. For k ∈ N, let

Zk(θ) = exp

Ã
k−1X
i=0

hθ, δUii−
Γ

2
kδ2||θ||22

!
. (15)
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Mean-field approximation of stochastic population processes in games 7

According to lemma 1, (Zk(θ))k∈N is a supermartingale. Thus, for any β > 0

Pr

"
max
0≤k≤n

hθ,
n−1X
i=0

δUii ≥ β

#
≤ Pr

∙
max
0≤k≤n

Zk(θ) ≥ exp
µ
β − ΓN

2
||θ||22nδ2

¶¸
≤ exp

µ
ΓN
2
||θ||22nδ2 − β

¶
. (16)

Let u1, . . . , uM be the canonical basis of E = RM , ε > 0, and u = ±ui for some i. Set
β = ε2/(ΓNnδ

2) and θ = (β/ε)u. Then

Pr

"
max
0≤k≤n

hu,
k−1X
i=0

δUii ≥ ε

#
= Pr

"
max
0≤k≤n

hθ,
k−1X
i=0

δUii ≥ β

#
(17)

≤ exp(
−ε2

2ΓNnδ2
) .

It follows that

Pr [Ψ(T ) ≥ ε] ≤ 2M exp

µ
−ε2
2δΓNT

¶
. (18)

Therefore,

Pr
h
Ψ(T ) ≥ ε

2
e−λNT

i
≤ 2M exp

µ
−ε2 e

−2λNT

8δΓNT

¶
(19)

= 2M exp
£
−ε2cNN

¤
, (20)

where

cN =
e−2λNT

8ΓNT
=

e−2λNT

8T (
√
2 + kFNk2)2

Hence, the claim in the lemma holds for any c ∈ (0, γ), where

γ = lim inf
N→∞

e−2λNT

8T (
√
2 + kFNk2)2

(21)

is positive by our hypotheses about the sequence
¡
FN
¢
.

3. Mean-field approximation of DN(T, x)

We now turn to the stochastic variable DN(T, x). By Grönwall’s inequality,

lim
N→∞

max
0≤t≤T

||ξ(t, x)− ξN(t, x)||∞ = 0
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Mean-field approximation of stochastic population processes in games 8

Hence, for any ε > 0 there exists a Nε such that

max
0≤t≤T

||ξ(t, x)− ξN(t, x)||∞ < ε/2

for all N ≥ Nε. Hence, by the Triangle Inequality, for such N , the event

AN =
©
ω ∈ Ω : DN(T, x) ≥ ε | XN(0) = x

ª
implies the event

BN =
©
ω ∈ Ω : DN

N (T, x) ≥ ε/2 | XN(0) = x
ª

that is, AN ⊂ BN , and hence Pr (AN) ≤ Pr (BN). Our main result follows immedi-
ately from Lemma 2 above:

Proposition 1. For every T > 0 there exists a scalar c > 0 such that, for any ε > 0,
and any N large enough:

Pr
£
DN(T, x) ≥ ε | XN(0) = x

¤
≤ 2Me−ε

2cN ∀x ∈ ¤N(S).

Remark 1. The claim holds for any c ∈ (0, γ/4), where γ > 0 is defined in equation
(21).

Remark 2. It is easily verified that propositions 1-5 in Benäım and Weibull (2003)
hold also under the new, weaker hypothesis.
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