
 

 
ELECTRICITY, CARBON AND WEATHER IN FRANCE 

WHERE DO WE STAND ? 
 
 

Sophie Chemarin 
Andreas Heinen 

Eric Strobl 
 
 
 

 
June 2008 

 
 

Cahier n° 2008-04 
 

 

 

                              ECOLE POLYTECHNIQUE                      
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 

 

DEPARTEMENT D'ECONOMIE 
Route de Saclay 

91128 PALAISEAU CEDEX 
(33) 1 69333033 

http://www.enseignement.polytechnique.fr/economie/  
mailto:chantal.poujouly@polytechnique.edu 

 
 

ha
l-0

03
40

17
1,

 v
er

si
on

 1
 - 

20
 N

ov
 2

00
8

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6841197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hal.archives-ouvertes.fr/hal-00340171/fr/
http://hal.archives-ouvertes.fr


 

 
ELECTRICITY, CARBON AND WEATHER IN FRANCE 

WHERE DO WE STAND ? 
 

Sophie Chemarin1  
Andreas Heinen2 

Eric Strobl3 
 
 
 
 

 
June 2008 

 
 

Cahier n° 2008-04 
 

 
 
 
Abstract: As a tool to fight long run changes in climate the European Union explicitly introduced the 

emission trading scheme (EU ETS) on January 1, 2005, which aimed at reducing carbon 
emission by 8% by 2012, and was designed to operate in two phases. Using data related to the 
first phase, this article investigates the role that the EU ETS plays in the power generation 
market by taking into account the existence of possible cross-spillovers between the French 
carbon and the French electricity spot markets, the spot prices of natural gas and of oil, and 
climatic conditions in France and elsewhere. Results show that there is no short run 
relationship between the electricity and carbon returns, while there is a long run relationship. 
However, this relationship suffers from a disequilibrium in that the electricity price readjust in 
the long run. We also find that while there are own mean and own volatility spillovers in the 
two markets, there are no cross own mean and own volatility spillovers, indicating that the 
electricity spot market and the carbon spot market are not integrated. Finally, results underline 
the limited impact of weather on the interconnection of these markets. 
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1 Introduction

Climate change is arguably the greatest environmental challenge that the world faces today. In

its latest assessment report the IPCC (2007) underlines the considerable progress that has been

made in understanding how climate is changing in space and in time. More specifically, it con-

cludes that ”warming of the climate system is unequivocal, as is now evident from observations

of increases in global average air and ocean temperature, widespread melting of snow and ice and

rising global average sea level”. It also points out that, although climate has always been chang-

ing, the likelihood of a human contribution to the current evolution and observed trend is ”more

likely than not”. Projections of future changes in climate emphasize, for the next two decades,

a warming of about 0.21◦C per decade, and ”even if the concentration of all greenhouse gases

had been kept constant at year 2000 level, a further warming of about 0.11C per decade would be

expected”(IPCC, 2007).

As a tool to fight such changes in climate the European Union explicitly introduced the emission

trading scheme (EU ETS) on January 1, 2005, which aimed at reducing carbon emission by 8%

by 2012. More specifically, it set caps for CO2 emissions for some 11,500 plants across the EU-25,

where, as noted by Reinaud (2007), installations have the flexibility to increase emissions above

their cap through the acquisition of emission allowances and the sale of unused ones. In this

regard, it is designed to operate in two phases, the first from 2005 to 2007, while the second

spans the period 2008 to 2012. Each of these phases corresponds to a National Allocation Plan

(NAP) which specifies the total number of emissions allowances allocated (free of charge) to the

individual installations covered by the scheme. Transactions of such allocated allowances are then

made possible through a an EU allowances (EUA) market (spot market) that provides a visible

price of CO2.

Importantly, as noted by the World Bank (2007), the first phase of the EU ETS can be viewed as

a ”pratical experiment to manage GHGs emissions” (World Bank (2007), p16). Thus researchers

are now, at the start of the second phase, presented with the prime opportunity of evaluating the

role that such a emission trading platform plays in the power generation market. As a matter of

fact, only a year after the launch of the EU ETS, there had already been clear signs of its success.

For instance, the World Bank’s latest report emphasizes that, among all the ”cap-and-trades”

regimes in the world (i.e., EU ETS, New South Wales, Chicago Climate Exchange, UK ETS),

the EU ETS is ”the largest carbon market by far” that combines environmental performance

and flexibility through trading (World Bank (2007), p11). For instance, the Caisse des Depots1

recorded 817, 9 Mt of CO2 at a total value of EUR 14, 6 billion of annual transaction in 2006
1The Caisse des Dépôts is a public financial institution that performs public-interest on behalf of the French

central, regional and local governments. It is also the French national greenhouse gas registry.
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(this represents an increase of 197% compared to 2005). However, the considerable volatility of

the observed price of carbon has also raised some concern. For example, in the first few months

of 2005 carbon allowances were traded at about EUR 7/tonne, rising to EUR 29/tonne in July,

and then falling to EUR 20/tonne a month later. By April 2006, daily prices had again risen

to over EUR 30/tonne, but fell to below EUR 10/tonne at the end of the month. Such rather

severe movements of the carbon price indicate a basic uncertainty in the underlying annual price

of abatement. In particular, the Caisse des Depots points out that far less abatement had been

needed in the first year than expected2. Moreover, a World Bank survey (2007) indicates that

the inability to bank unused allowances had also influenced the level of the carbon price.

Perrels, Malkönen and Honkatukia (2006) argue that the basic effect of the introduction of a

market such as the EUA on the cost of electricity (and thus on the wholesale and spot prices)

is quite straightforward: the cost of CO2 will exert a pressure on generators to increase prices

at the margin. As a matter of fact, Perrels et al. (2006) note that such a pass through of car-

bon prices into product prices (electricity and energy materials) has already been highlighted

by various empirical studies (Damailly and Quirion, 2006; Smale et al., 2006; Fezzi, 2006). For

example, Sijm et al. (2006) study the impact of free allowances of CO2 emissions on the price

of electricity. The authors note that for a power company emissions allowances are considered as

an opportunity cost that should be added to all the other marginal costs of the company. Using

empirical estimations for Germany and the Netherlands they show that power producers indeed

pass this opportunity cost to the price of electricity, and that the rate of such a pass-through

varies from 60 to 100%, where its (and thus the increase in electricity prices) mostly depends on

the power mix of the country. Hauch (2003), in contrast, uses a general equilibrium model to

study the consequences of reaching the emission reduction target in the Nordic electricity market,

in particular how it affects the cost of electricity, over the period 1995 to 2020. The author defines

marginal CO2-abatement curves in Denmark, Sweden, Norway and Findland, for the year 1995,

either when international electricity and/or emission permits trading is possible or not. He finds

that, to reduce emissions by 20%, the marginal cost should be equal to EUR 45/tCO2 when

there is no possibility of trading, EUR 39/tCO2 when free permits trading is possible, and EUR

23/tCO2 when both electricity and carbon trades are allowed. Moreover, when emissions trading

is possible, the paper estimates the evolution of the equilibrium price of permits: from EUR 60/t

in 2010, it raises to EUR 100/t in 2020. Also, using simulations The Energy Business Group3

found an increase of EUR 7MWh of the equilibrium price on several electricity markets (Germany,

Scandinavia, Spain and UK) due to the EU ETS, while OCDE/IAE (2007) noticed that the fall

by EUR 10/tCO2 in May 2006 was immediatly followed by a drop in wholesale electricity prices

of between EUR 5 − 10/MWh. However, all of these studies underline that it still remain diffi-
2see Tendance Carbone, n◦13, April 2007
3see Energy Business Group Report (2004)
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cult to assess the actual impact of such a new market since several electricity markets across EU,

as well as the price of commodities (i.e., natural gas, coal and oil), interact with the UE ETS prices.

Climate variability may also influence the relationship between electricity and carbon prices. More

precisely, rainfall impacts the electricity production of a country with regard to its energy mix,

and thus influences CO2 emissions. For example, the Spanish electricity market suffered from the

low level of rain in winter 2005 and had to replace the shortage in hydro-electric power by thermal

and fuel energy. Additionally, temperature may affect the demand side of the electricity market.

As recently noticed in France, a drop of 1 degree Celcius of the temperature in winter increase to

the need of electricity (CDC, 2006) by 15, 000 MW. However, while there are a few studies (e.g.,

Energy Business Group, 2004; CDC, 2006) that investigate the relationship between temperature

and electricity trading or between rainfall and the carbon market, we are aware of only one that

examines the impact of weather on both markets. More specifically, Considine (2000) undertakes

an econometric analysis of the energy demand in the US and shows that warmer conditions reduce

both energy and demand for CO2 emissions in general. But, importantly, both electricity and

carbon emissions allowances are traded on financial markets (forward, futures and spot markets),

so that if there is indeed a link between the electricity sector’s activity, its emissions, and weather,

it has of yet to be explicitly quantified how such links simultaneously affect both organized mar-

kets (i.e., electricity spot and/or futures markets and the EUA market).

As it becomes clear, while there are now a growing number of studies relevant to the study of

the interaction between carbon and electricity market, there is a clear lack of a comprehensive

analysis of the simultaneous interaction between the price of carbon and the price of electricity.

In this paper we address this shortcoming by focusing on the French spot market of electricity

and carbon emissions allowances trades. More specifically, we explicitly take into acount the

existence of possible cross-spillovers between the French carbon market, the French electricity

spot market (Powernext Day-Ahead), the spot markets of natural gas and of oil, in regards to

climatic conditions in France and elsewhere. In this regard we avail of daily data of the electricty

market, both prior to and after the creation of the EUA market, daily carbon price data since the

creation of the EUA market, daily price data set on US Henry Hub, daily price data of European

Brent, and daily weather (rainfall and temperature) in France as well as other relevant European

countries that depend heavily on the French power generation. Our results show that there is no

short run relationship between the electricity and the carbon returns, while there is a long run

relationship between them. However, this relationship suffers from a desiquilibrium in that the

electricity price readjust in the long run. In others words, we show that electrcity returns respond

to carbon in the long run, but when taking the impact of weather on this relation into account,

the converse seems also to be possible. We also find that while there are own mean and own

volatility spillovers on the two markets, there are no cross own mean and own volatility spillovers,
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indicating that the electricity spot market and the carbon spot market are not integrated. Finally,

our results underline the limited impact of weather on the interconnection between these markets.

The remainder of the paper is organised as follows. Section 2 provides an overview of the de-

velopment and the characteristics of the French emissions trading platform. Section 3 describes

the data used in the paper. In Section 4 we outline our empirical model and presents the main

results. Finally, Section 5 concludes.

2 History and facts of the EU carbon market and key features

on the French trading platform

The first major cross-national step in fighting climate change was made in 1988 by governments

with the creation of the Intergovernmental Panel on Climate Change (IPCC), intended to generate

a greater understanding of the nature and potential impact of the problem. In it is first report,

written in 1990, the IPCC confirmed that climate change was indeed a reality and recommended

that countries should take action in the form of an international treaty. In this regard, the Kyoto

protocol, which defined mandatory targets for the world’s leading economies, was subsequently

signed in 1997 by 38 industrialized countries agreeing to reduce their 1990 levels of emissions

of greenhouse gases by a total of 5% between 2008 and 2012 (World Bank, 2007) and became

effective in 2005. As a tool to drive the implementation of the Kyoto Protocol and to regulate

industrial CO2 emissions in the EU bloc, the European Union established the EU Emissions

Trading Scheme (EU ETS) in 1995. This scheme regulated in its first phase 40% of EU emissions,

and was originally defined for large energy-using installations, namely energy production, metals,

construction materials, and paper4.

The World Bank survey (World Bank, 2007) has emphasized the efficiency of Phase 1 of the EU

ETS in reducing GHGs emissions. As a matter of fact, in 2005 they were more than 3% below

what had been allocated to countries that year, and data on 2006 emissions reinforce such a trend.

Indeed, The Caisse des Dépôts noticed in 2006 an excess of 30Mt of CO2, which represents 1.45%

of the initial allowances. As in 2005, the whole market was long5, and the countries with an excess

of allowances were also the same6: Poland (+28Mt), France (+22Mt), Czech Republic (+13 Mt),

Netherland (+10Mt). Six countries were short7: Denmark (66Mt), Slovenia (60,2Mt), Ireland

(-3Mt), Spain (-14Mt), Ialy (-26Mt) and UK (-46Mt). However, regarding the different industrial

sectors, only the power and heat sector registered, as in 2005, a shortfall. In 2007, such a trend
4The power and heat sector received 56% of all the allowances, the minerals and metal sectors received together

35% of them and finally, oil and gas industries got 13% of them.
5A market is long when there is an excess of allowances compared to the verified emissions of CO2
6see Tendance Carbone, n◦6, July 2006
7see Tendance Carbone, n◦6, July 2006
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seems to be reinforced, although one should wait for the publication of the compliance data (i.e.,

the verified level of emissions in 2007) in May 2008 to confirm this.

Since April 2006, the EUA market has shifted out of Phase 1 into Phase 2 allowances. Trading of

emissions allowances of the first phase closed on March, 30th, while those for Phase 2 had already

begun through futures contracts on the ECX platform prior this date. In May 2006, the volume

of such allowances accounted for about 20% of total volumes traded, while the price of the tonne

of CO2 was higher than during the first phase. The Caisse des Dépôts underlines that a tonne

of CO2 is sold at 22 euros for a delivery later than January 2008. With regard to the experience

of Phase 1, the annual cap for the second phase of the scheme is tighter and set at 5,8% below

2005 verified emissions. Moreover, to ensure continuity of the EU ETS, and to improve emissions

abatement by installations, banking of unused allowances is now allowed. Several other trends of

this scheme are likely to be observed in the future. In particular, the introduction of the aviation

sector should largely enhance the reduction of emissions up to 183 MtCO2 per year (World Bank,

2007).

It is noteworthy that during Phase 1 emissions allowances could be trading among several markets

in Europe - Powernext Carbon in France, EEX in Germany, ECX in Amsterdam and Londres,

Nordpool in Norway and EXAA in Austria - through spot contracts, futures contracts or Over

the Counter. In France, for example, Powernext Carbon was launched by Powernext in part-

nership with Euronext and the Caisse des Dépôts, and offers spot contracts to trade emissions

permits by tonnes of CO2 expressed in euros. Delivery of allowances can be made all over EU-25.

Permits can be traded continously, five days a week, from 9.00 am to 5.00 pm. In January 2005,

Powernext8 registered 33 active members on Powernext Carbon (banks, market intermediares

and energy providers), while this number increased to 49 by 2006. In 2005, the French trading

platform shared 59% of all the European organised market. In 2006, transaction volumes on the

market represented more than 65% of all the exchange in Europe. 31, 448 000 t of CO2 were

traded on Powernext Carbon, which is more than 125,000t a day9. Powernext also underlines

that average volume quadrupled between 2005 and 2006, whit high transactions volumes in May

2006 when the European Commission published the 2005 compliance data.

In order to implement Phase 2 of the EU ETS, in January 2008 Bluenext was launched by

Euronext and the Caisse des Dépôts as a ”world market of environmental assets”, and is now in

charge of the French carbon market platform. As Powernext Carbon, it proposes spot contracts

related to the allowances defined by the NAP of the phase 2 (EUA2), but also aims at developing

a futures market. Moreover, since carbon transactions can also be done through ”project-based
8see 2005 and 2006 Powernext activity assessment
9see Powernext 2006 activity assessment
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transactions”10, in which the buyer purchases emissions credits (CER) for a project that can

demonstrate GHG emissions reductions, derivatives products with underlying CER should also

soon be available on Bluenext. With 74 European members, this new market stands as the main

successor to Powernext Carbon to carry Phase 2 of the EUA market.

3 Data

3.1 Electricity and carbon spot prices data

Launched in 2001, Powernext is France’s first power exchange that proposes financial products to

energy providers to manage price risks and volume risks. On Powernext Day-Ahead, participants

can trade, from the day before until one hour before delivery, contracts that commit them to

inject into or withdraw from the French transmission network a volume of electricity through-

out a given hour (or a block of hours), at market price. Then, the contracted electricity can

be delivered at any point within the French transmission network. The underlying factor of the

financial contracts proposed on such a market is the electricity traded on day d for delivery on

the same day or on the following day on 24 individual hours. On Powernext Day-Ahead Auction

contracts are auction traded, where the auction is at 11.00 a.m. CET, seven days a week, while on

Powernext Day-Ahead Continuous and Intraday, contracts are traded continuously. In this study,

we use data regarding Powernext Day-Ahead Auction, which allows us to concentrate orders for

each hourly period, and gives us the definition of a unique price for every hour of the following

day. Our dataset of this market gathers hourly spot prices (on 24 hours) from 26/11/2001 to

28/12/2007. On each day, a weighted average is also available which is the price series that we

use for our empirical analysis.

Across Europe EU alowances are traded among several plateforms or markets. In France, from

2005 to 2007, allowances were traded on Powernext Carbon. This is a spot market on which CO2

permits are continuously traded five days a week, from 9.00 a.m. to 5.00 p.m. Our dataset on

this market gathers closing prices from 24/06/05 to 28/12/07.

3.2 Climatic data

Regarding climate data, we use daily rain data in France (nrainf ) from 01/01/1990 to 07/11/2006.

These data, provided by Meteo France, cover five towns (Paris, Strasbourg, Lyon, Bordeaux and

Marseille) that should represent the different parts of the country. Temperature indices, provided

by Nextweather, are also available for several European countries: France (from 01/01/1976

to 31/07/06), UK (from 01/01/1996 to 31/07/06), Germany (from 01/01/1996 to 31/07/06),

Switzerland (from 01/01/1994 to 31/07/06), Belgium (from 01/01/1994 to 31/07/06), Italy (from
10see World Bank (2007) for more details on such projects
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01/01/1994 to 31/07/06), Netherlands (from 01/01/1994 to 31/07/06), Spain (from 01/01/1994

to 31/07/06) and Portugal (from 01/01/1994 to 31/07/06). These indices are defined as follows.

For each country, Meteo-France calculates the average of the temperatures at the representative

regional weather station weighted by the regional population. This demographic information

represents a fair approximation of the weight of the regional economic activity. Thus, these indices

represent a quality reference allowing one to anticipate and to describe local and geographical more

wider meteorological changes. Note that following Pardo, Menue, Valo (2002), we choose to model

temperature as a deviation from 18 degrees celcius. Thus, HDDi, will represent the variations

of temperature above 18 degrees celcius in the country i (i.e., HDDi = Ti − 18) and CDDi the

deviations below 18 degrees celcius (i.e., CDDi = 18− Ti).

3.3 Others commodities data

Regarding others commodities variables that could interact with both the prices of electricity

and carbon, we choose to work on data with oil and natural gas. More precisely, for oil, we

use daily spot prices of European Brent Crude, one of the major classifications of such kind of

fuel. Moreover, oil production from Europe, Africa and the Middle East flowing West tends to be

priced relative to this oil. Brent blend is a light crude oil mainly used to produce gasoline, and was

originally traded on the open-outcry International Petroleum Exchange in London, but since 2005

has been traded on the electronic IntercontinentalExchange (ICE). Spot prices set on brent are

denominated in US/barrel. Our sample covers the period from 20/05/87 to 29/01/08. However,

as European daily data on spot prices for natural gas (Zeebrugge hub) were not available before

2006, we decide to use spot prices relative to the the US gas hub; Henry Hub. It is the pricing

point for natural gas contract traded on the New York Mercantile Exchange. Spot prices set at

Henry Hub are denominated in USD/mmbtu (millions of British Thermal Units). Our sample

covers period from 01/11/1993 to 29/01/2008.

3.4 Summary statistics

Overall, as our analysis is conditionned by the availability of both weather and carbon data, the

sample under study covers period from 24/06/05 to 31/07/06.

In Figure 1 we depict the evolution of the carbon and electricity prices over our sample period.

Examining the first phase of the EUA market, several comments can be made with regard to

the volatility of the price of carbon. From January until July 2005, the market became increas-

ingly more operational, although with only a limited number of actors. While the large energy

providers were already trading, the others sectors were not ready to enter into the market. Then,

from August 2005 to March 2006, the market grew substantially. The price of carbon reached an

equilibrium level around EUR 25/t, that resulted from an increase of both the price of natural gas
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Figure 1: Powernext Day-Ahead price and Powernext Carbon price

during winter, and the demand of allowances in the electricity sector. In February 2006, the spot

price was equal to EUR 26,19, which was the highest monthly average, and continued increasing

up to EUR 29,43 on April 24th. Such a trend can be explained by a limited decrease in the

spread between gas and coal prices, which was not enough compared to the price of carbon to in-

cite electricity providers not to resort to coal. Moreover, the negotiations which took place during

these months on the allocated allowances regarding the phase 2 of the market also limited the of-

fer on the carbon marlet (i.e., the industrials with an excess of allowances preferred to keep them).

In May 2006 the price of carbon fell from its highest level to EUR 13,19. This huge drop (i.e.,

around 65%) is mainly due to the announcement on May 15th of the compliance data for 2005,

and the global long position taken by several countries. More precisely, starting from this date,

all the actors on the EUA market had the same information concerning the level of emissions in

2005 in the different countries, sectors, and installations, which explain the increase of 51% of the

spot price (it reached EURO 16,47 in June 2006). This ”krach test”11 underlines the negative

effects of a scheme which does not allow actors to keep their unused allowances between the two

phases of the market, and thus prevents any possibility of arbitrage. Another unexpected shock
11see Tendance Carbone, n◦3, May 2006
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hit the market in September 2006, where from the 19th to the 26th, the spot price fell down to

EUR 12 due to the instability of the commodities market. Indeed, in the preceding month there

was a reversal in oil and natural gas prices, which decreased below USD 60/barrel for oil and 52,5

pence/therm for gas prices set at Zeebrugge hub and below USD 5/mmbtu for prices set on the

NYMEX-Henry hub (see figure below).
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Figure 2: Commodities spot prices from 2005 to 2007

As shown by Figures, the electricity price also suffered from considerable variability. Day-head

prices headed upwards during the July heat wave and displayed high volatility. The biggest spike

took the baseload price to EUR 234,448/MWh on July 26th. Subsequently prices were mostly

low and stable over autumn and the beginning of winter. In mid-September the eletricity spot

price stood at below EURO 50/MWh.

In the following months and until the end of the phase 1, the carbon price decreased, falling to

EUR 1/t in February 2007 to EUR 0,02/t in December 2007. Such a continuous drop is explained

both by institutional reasons and weather conditions. Indeed, due to the excess of allowances in

most of the countries after the 2006 compliance, and to the non-storability of these allowances,

trades of contracts of Phase 2 on the futures market were preferred to trades on the spot market.

Indeed, since October 2006, spot prices related to Phase 1 and prices of futures contracts related

to Phase 2 appear to be no longer correlated. Moreover, during the same period, a high level of

rain, temperatures above the seasonal average, and a drop in natural gas prices also limited the

demand of allowances and reinforce the downwards trend of the carbon price.

However, although the carbon price suffered during this first phase from high volatility, the volume
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of the registered transactions increased over the three years: from 262 millions of tonnes in 2005,

it reached 818 millions of tonnes in 2006 and finally 1,5 billions in 2007. Moreover, this price

also provided a real signal to the industry and allowed installations to be prepared for the second

phase of the market, where the price of carbon is already higher than the one observed during

the first phase.

4 Econometrics modelisation of both markets and results

Contributions to the study of the electricity markets appear to point out the relevance of the mul-

tivariate approach to modelling the relationship between prices and volatilities of such markets.

More generally, as noted by Bauwens, Laurent and Rombouts (2006), it is the most obvious ap-

plication of these models in so far as they provide the appropriate framework to study issues such

as: ”Is the volatility of a market leading the volatility of others markets? [or] Does a shock on a

market increase the volatility on another market? 12”. As an exemple of such contributions, Wor-

thington, Kay-Spratley and Higgs (2005) study the transmission of the prices and price volatility

in several Australian electricity spot markets (the national as well as four regional markets). They

underline that using MGARCH models is useful in capturing the effect on volatility of both inno-

vation and lagged volatility shocks and in investigating the volatility persistence and mean price

transmissions in the interconnected markets.

4.1 The model

Following the literature (Bauwens, Laurent and Rombouts (2006), Silvennoinen et al. (2007) and

Tsay (2005)), the traditional multivariate GARCH model is characterized as follows. Consider a

stochastic vector process rt with dimension N × 1 such that Ert = 0 . Let Ft−1 denote the infor-

mation set generated by the observed series. We assume that rt is conditionally heteroskedastic:

rt = H
1/2
t ηt

given the information set Ft−1, where the N × N matrix Ht = [hijt] is the conditional variance

matrix of rt and ηt is an iid vector error process such that Eηtη
′
t = I.

Several constraints have to be combined to parameterise a MGARCH model. As noted by Sil-

vennoinen and Teräsvirta (2007), it has to be flexible enough to represent the dynamics of the

conditionnal variances and covariances, but also sufficiently parsimonious to allow for an easy

estimation of the model and interpretation of its parameters. The positive definitivness needs

also to be taken into account. Finally, several approaches or categories for constructing multivari-

ate GARCH models are distinguished: a direct generalization of the univariate GARCH model
12Bauwens et al. (2006), p.79
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(Bollerslev, 1990), a linear combinations of univariate GARCH models, in which the covariance

matrix Ht is modelled directly (this category includes VEC and BEKK models), and nonlinear

combinations of univariate GARCH models, in which one should model the conditional variances

and correlations instead of straightforward modelling of the conditional covariances matrix (this

category includes the Constant Conditional Correlation (CCC) model and the Dynamic Condi-

tional Correlation (DCC) model).

The BEKK (Baba, Engle, Kraft and Kroner) parameterisation discussed by Engle and Kroner

(1995) guarentees that Ht (variance-covariance matrix)is positive definite . The BEKK model is

written as:

Ht = C∗′C∗ + ΣK
k=1Σ

q
i=1A

∗′
kiεt−iε

′
t−iA

∗
ki + ΣK

k=1Σ
q
j=1G

∗′
kjHt−jG

∗
kj (1)

where C is a lower triangular matrix and Aki and Gkj are k × k parameter matrices.

Since Ht is positive definite, the BEKK model allows for dynamic dependance between the volatil-

ity series. In others words, causalities in variances can be modelled. However, due to the quadratic

form of the BEKK model, the parameters are not identifiable without further restriction and, as

noted by Tsay (2005) and Tse and Tsui (2002), limited experience shows that many of the esti-

mated parameters are statistically insignificant. In this regard, Bollerllev, Engle and Wooldridge

(1988) suggested a multivariate GARCH model where matrices A and G are diagonal. Contrary

to the full BEKK model, under this framework less parameter remain to be estimated, and no

checks are needed to ensure the positive definitiviness of the covariance matrix (Pekka, Anti,

2005). Moreover, further restrictions could be applied to the full BEKK model. For example, the

estimation can be done assuming a t-distribution (T-BEKK) instead of a normal distribution,

which allows one to capture asymetric effects (Pekka and Antti, 2005).

Other kinds of MGARCH model’s specification are developed and might be relevant in our study,

in particular the Constant Conditional Correlation model (CCC model) suggested by Bollerslev

(1990) and the Dynamical Conditionnal Correlation GARCH model (DCC- GARCH) proposed

by Engle (2002). As quoted by Gourieroux (1997), the CCC-model assumes that all conditional

correlations are time-invariant (i.e., they are constant) and conditional variances are modelled by

univariate GARCH models. The model is given by Bauwens et al. (2006):

Ht = DtRDt = (ρij

√
hiithhjjt)

Dt = diag(
√

h11t,
√

h22t, ...,
√

hNNt)

R = ρij , avec ρiit = 1,∀i.
(2)

where Dt is a k × k matrix with conditional standard deviations on the diagonal and R is the

correlations matrix. And, hiit = ωi + αε2i,t−1 + βihii,t−1,∀i = 1, ..., N.
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While this model provides several relevant interpretations, in particular it allows one to easily

compare correlations from a sub-period to another, the main assumption of time-invariant corre-

lation has been rejected by several empirical studies (see Tse and Tsui, 2002). Moreover, studies

on electricity markets also underline the weaknesses of this model. As an example, Pekka and

Antti (2005) conclude that it is the worst candidate in parameterizing the MGARCH model in

their study of the Australian electricity markets.

A possible extension of the model is the DCC model proposed by Engle (2002), which ensures

time-independency of the conditional correlation matrix and also guarantees positive definitivness

under simple conditions on the parameters. The dynamic correlation model differs from the CCC

model only in allowing R to be time varying (Bauwens et al., 2006):

Ht = DtRtDt

Dt = diag(
√

h11t,
√

h22t, ...,
√

hNNt)

Rt = (diagQt)−
1
2 Qt(diagQt)−

1
2

(3)

where, Qt is a N ×N symetric, positive definite matrix such that:

Qt = (1− α− β)Q + αut−1u
′
t−1 + βQt−1.

where Q is the symetric, positive definite matrix (N ×N) of unconditional variances-covariances.

ut = (u1t, u2t, ..., uNt)is the column vector of standardized residues of N assets at date t. αand β

are non negative scalars such that α + β < 1.

Overall, Engle (2002) emphasizes that DCC estimators have the flexibility of univariate GARCH

models without the complexity of traditional multivariate GARCH.

Literature on electricity organised markets often used MGARCH model to further investigate

the functioning of these markets. This paper extends this literature by considering the existence

of possible cross-spillovers between the carbon spot market (Bluenext EUA) and the electricity

spot market (Powernext Day-Ahead), as well as the impact of weather conditions and other

commodities’ spot prices on such a joint process. A reading of the literature leads one to conclude

that modelling prices and prices volatility through multivariate GARCH models is the relevant

approach.

4.2 Econometrics results

In line with our discussion above, the analysis performed are based on the estimation of a bivariate

GARCH model to examine the joint process relating the daily spot prices for the Powernext Day-

Ahead market and the Powernext Carbon market. However preliminary tests (i.e., tests of the

stationary and the cointegration of the time series under study) as well as several estimations
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(i.e., definition of the conditional expected returns equation) need to be done before turning to

the estimation of a multivariate GARCH model.

4.2.1 Preliminary tests

In order to define the best way to investigate the dynamic interactions between the two spot

prices, one should first check the stationnarity and the cointegration of these prices. Indeed, if

both prices are stationnary, we could directly work on prices (i.e., VAR in levels). On the contrary,

if they are not stationnary, that means that there is definite positive or negative trend over time.

Taking the first difference then allows to remove this trend in the series. Moreover, if the two

spot prices are also cointegrated, one could theme define a cointegrated VAR to study interactions

between variables, rather than a simple VAR in difference.

The stationary of the variables is investigated by means of the augmented Dickey Fuller test

(ADF), which uses the autoregressive model specified below:

δyt = αyt−1 + δ0 + δ1t + Σk=1p− 1β∆yt−k + εt

where,yt is an element of the p-dimensional vector Yt of the time series under study and εt is a

white noise process. The null hypothesis (H0) of non-stationary (called unit root) is given by

α = 0. The test for a unit root is based on the t-stat on the coefficient of the lagged dependent

variable, yt−1. If this is greater than the critical value, then the null hypothesis of a unit root

is rejected, and the variable is taken to be stationary. According to table 1, for the case of the

carbon variable the ADF t-stat is lower than the critical value at 1%, 5% and 10%, and thus one

cannot reject the null hypothesis implying that the price of carbon is not stationary. However,

with regard to the electricity variable, the null hypothesis is rejected at all standard significance

levels, and thus the price of electricity can be considered to be stationary.

In terms of investigating possible co-integration between the carbon and electricity prices, the

Johansen approach proposes to maximize the likelihood function over a subset of parameters,

treating the other parameters as known. Defining r as the number of cointegrating vectors, Jo-

hansen suggests a sequential test (trace test) to estimate their possible existence. Table 2 shows

that the first null hypothesis of ”no cointegrating vectors” is rejected for by standard confidence

levels. The next hypothesis of ”at most one cointegrating vector” is similarly rejected for critical

value at 5% and 10% significance levels. Thus the cointegration tests seems to suggest that there

is at least one cointegrating vector between our two price series.

Our finding with regard the existence of vector(s) of cointegration appear to point out the limited

efficiency of using a methodology based on VAR-models in levels to study the dynamic interac-

tions between the two spot prices. Two main ways could be developed in order to perform our
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estimations. First, we could specify VAR-models in differences, and thus work on the returns of

the spot prices, i.e., focus on the differences of the log of these returns instead of directly working

on the spot prices. Second, we could specify a cointegrated VAR. We investigate both of these

two methods below.

4.2.2 Definition and estimation of the conditional expected return equation

VAR-models in differences do not allow to isolate any possible long-run relationship that might

exist between variables. Define Rc
t and Re

t as the log returns at period t related to the spot prices

of respectively carbon and electricity. To study the existence of such a long run relationship

between the two variables, we first ran the following regression:

Rc
t = α + βRe

t + εt (4)

Results (table 3) show that an increase of the carbon price leads to an increase of the electricity

price (i.e., α > 0 and β > 0). In the long term, however, carbon and electricity prices seem to be

related .

Let us now turn to the VAR-models. Such an approach allows one to define the equation that

accommodates each market’s own returns to the return of the other market lagged one period.

The VAR-model is defined as follows, and the estimated coefficients are presented in table 4.

Rc
t = α + a11R

c
t−1 + a12R

e
t−1 + εt (5)

Re
t = α + a21R

c
t−1 + a22R

e
t − 1 + εt (6)

The two markets exhibit a significant own mean spillover from their own lagged return. Regarding

the carbon market, the mean spillover is positive and thus an increase of EUR 1/t of CO2 in the

return related to the spot prices will cause an increase of EUR 0,23/t of CO2 in the return over

the next day. On the contrary, on the electricity spot market, the mean spillover is negative, and

thus an increase of EUR 1/MWh in the return will lead to a decrease of EUR 0,29/MWh in the

returns over the next day. Indeed, the Granger tests exhibit a significant causality between each

dependent variable and its lagged value (see table 5). However, there are no significant lagged

mean spillovers from one spot market to another. Such a result indicates that in the short run

on average changes in returns in the electricity spot market are not associated with changes in

returns in the carbon spot market and vice versa.

For a more realistic modelling of the market one should arguably also take into account the

potential impact of weather variations on the two markets. The estimations below extend the

VAR-model previously defined by including as exogenous variables temperature indices of France,

Belgium, Germany, Italy, Netherlands, Portugal, Spain and Switzerland, as well as rainfall in
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France. Tables 6 and 7 display the estimated coefficients of this exercise. Here again the two

markets exhibit a significant own mean spillover from their own lagged return - an increase of

EUR 1/t of CO2 or of EUR 1/MWh in returns will lead to an increase of respectively EUR 0,21/t

of CO2 and EUR 0,54/MWh in returns over the next day-, but no significant cross effects between

the two markets. Regarding the impact of climate variables, neither rainfall and temperature in

France nor temperature in others countries have an influence on carbon returns. However, the

estimation of the electricity returns at date t, exhibits a significant but low impact of the variable

HDDs. In others words, warmer conditions in Spain lead to an increase of EUR 0,05/MWh of

the electricity returns on the French spot market.

Our general results are robust to the inclusion of other commodities’ spot markets (i.e., oil and

natural gas market ) into the VAR-model (see tables 8 to 11). The estimations ran underline a

positive own mean spillover on the carbon spot market (EUR +0,21/t of CO2 over the next day)

and a negative one on the electricity spot market (EUR -0,34/MWh over the next day), but no

significant cross effects between these two markets is apparent. Regarding the other commodities’

markets, the results show a negative own mean spillover on the oil market (USD -0,19/barrels

over the next day) but no such effect on the natural gas market. Nevertheless, a significant cross

mean spillover effect appears with the oil market when estimating the natural gas returns. In

others words, on average short-run returns changes on the oil spot market are associated with

returns changes over the next day on the natural gas spot market (USD -0,23/mbtu). Finally,

temperature as well as rain do not have any influence on carbon and gas returns, while, as previ-

ously mentioned, warmer temperature in Spain leads to higher expected returns on the electricity

market, and a similar effect is found with regard to warmer temperature in France, Germany

(Belgium and Portugal) on the oil market. However such impacts are very low, they range from

USD -0,005/barrels to USD +0,05/barrels.

As previously mentioned, another way to investigate the dynamic interaction between carbon and

electricity spot markets is to perform a cointegrated VAR model, using the errors terms of the

previous VAR in differences models as an additional variable. The cointegrated VAR, i.e., the so

called error correction mechanism model, allows one to investigate the changes in the variables on

lags (i.e. returns), as well as the deviations from the long term relation between these variables.

The ECM model is written as follows:

∆Rc
t = αc + A11∆Rc

t−1 + A12∆Re
t−1 + δ1εt−1 (7)

∆Re
t = αe + A21∆Rc

t−1 + A22∆Re
t−1 + δ2εt−1 (8)

Coefficients estimations are given in Tables 12 and 13. Results first of all show that there is no

short run relationship between carbon and electricity returns (i.e., A12 and A21 are not significant
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and thus equal to zero). They also point out the existence of a disequilibrium between the two

spot prices. As εt > 0, it seems that carbon prices are too high relative to electricity prices in

equilibrium. In such a case, two possibilities may arise to re-establish the long run relationship:

either the carbon price decreases or the electricity price increases. In our case, as δ2 is significant,

while δ1 equals to zero, it seems that electricity is doing the adjustment rather that carbon.

Importantly, however, when including weather proxies as exogenous variables into the ECM (see

tables 14 and 15), δ1 becomes significant and δ2 zero. Given that now, in taking weather conditions

into account, there is still no short run relationship between carbon and electricity returns, it would

appear that in the long run it is carbon rather than electricity that is doing the adjustment to be

in equilibrium.

4.2.3 Estimations of bivariate GARCH

We next employ a bivariate GARCH model to study the joint processes related to daily rates of

returns on both the electricity and carbon markets. The conditional variance-covariance equations

described in the previous section capture the volatility and the cross-volatility spillovers among the

two markets studied. Tables 10 to 12 present the estimated coefficients for the variance-covariance

matrix of equations regarding three possible parameterisations of our bivariate GARCH model:

full BEKK, CCC and DCC. Coefficients of the variance-covariance equations quantify the effects

of the lagged own and cross innovations and of the own and cross-volatility spillovers to the in-

dividual returns for both electricity and carbon markets, indicating the presence of ARCH or

GARCH effects.

In the BEKK models the parameters a11 and a22 also indicate the presence of own-innovation

spillovers effects in both markets and these effects range from 0.0106 to 0.907 on the carbon spot

market, and from 0.148 to 0.335 on the electricity market. Regarding the different models, all of

them exhibit significant ARCH effects. Indeed, both in the CCC and DCC models, the ARCH

parameters α1 and α2 are significant. Own volatility spillovers (i.e., g11 and g22) are significant

on both markets in the BEKK’s estimations. This means that past volatility shocks on a market

has a significant effect on the future volatility of this market. Also, the GARCH parameters are

significant in the CCC and DCC models. GARCH effects seem to appear in the two markets.

Nevertheless, according to the BEKK estimations, there is no cross-volatility spillovers between

the two markets.

However, none of the models used exhibit any cross-innovation effects between carbon and electric-

ity markets. Regarding the BEKK model’s estimations, there might be a possible cross-innovation

effect from the electricity market to the carbon market, meaning that past innovations in the elec-

tricity market exert an influence of the carbon market, while the contrary is not significant. Such

17

ha
l-0

03
40

17
1,

 v
er

si
on

 1
 - 

20
 N

ov
 2

00
8



a result would be consistent with those of the ECM model. One may want to note, however, that

such an effect is only very weakly statistically significant.

5 Conclusion and perspectives

This paper has investigated the existence of possible interactions between carbon and electric-

ity spot markets on the French trading platforms over the period June 2005 to July 2006. The

sample under study is a part of the phase 1 of the EU ETS, which covers the period from June

2005 to December 2007. One may want to note in this regard that our sample leave apart the

period in which the price continuously fell mainly because of institutional reasons. Indeed, from

October 2006 actors on the market arguably completely lost interest during the first phase of the

spot market, and the price of carbon was not able to provide any incentives. However, while the

sample under study might perceived to be limited, it does represent a period during which the

market was able to send a ”price signal” to CO2 actors, where there were considerable variations

in climate, as well as market and institutional shocks.

Our unit roots tests confirm that Powernext electricity spot prices are stationnary, as has been

found for others trading plateforms (Worthington et al. (2005), Pekka, Antti (2005), De Vanis,

Walls (1999), Byström (2003)), while Powernext carbon spot prices are not stationary. The coeffi-

cients of the conditional mean returns equation estimated through VAR always indicate that both

markets are integrated, suggesting that electricity and carbon returns could be forecasted using

lagged returns information from each market itself. However, since no significant cross effects

are highlighted by the results, it is not possible to forecast returns on a specific market using

information from the other market. Moreover, results from the ECM model emphasize a lack of

a short run relationship between the two markets, as well as the existence of a disequilibrium

between the two spot prices in the long run. Taking other commodities’ markets into account,

results also point out the lack of mean cross effect between carbon market, and oil or natural gas

markets. Finally, our paper highlights the limited impact of climate variations on both electricity

and carbon returns. Nevertheless, unsurprisingly, we found the existence of both own and cross

effects between several commodities market (i.e., gas and oil).

A range of bivariate GARCH models are used to investigate the magnitude of own and cross

volatility spillovers between the carbon and the electricity returns. Own volatility spillovers are

significant, indicating the presence of ARCH effects. Regarding estimations of the CCC and DCC

models, GARCH parameters are also significant, while according to the BEKK’s model, there are

no significant cross volatility spillovers. Such results seem to indicate the presence of GARCH

effects, and thus the inefficiency of both markets, although this is not clear-cut. However, ac-

cording to the BEKK model, the electricity spot market and the carbon spot market are not
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integrated, and shocks or innovations in a particular market do not exert any influence on the

volatility of returns. Thus, the conclusions regarding integration clearly depend on the choice

model and hence the differences in underlying assumptions between these.

One other main conclusion highlighted by our results is the limited or the lack of influence of

weather variables on electricity and carbon returns. Regarding rain data in France, such lack

of impact on carbon returns is mainly explained by the minor role of hydropower in the energy

mix of the country. Indeed, in France, 80% of the electricity production is due to nuclear energy,

and the pluviometry of the country thus mostly influences the production through the cooling of

nuclear generators. More surprising is the lack of relationship between temperature in France and

electricity returns, although there is a significant relation between the temperature in France and

the quantity of electricity traded on Powernext (see table 19). However, results also underline a

positive relationship between warmer conditions in Spain and electricity returns in France. As

the electricity production in Spain is largely dependant on hydropower, in previous years the

country had to replace the lack of hydroelectricity due to a low level of rainfall by thermal or fuel

power and by imports. Thus an increase of power demand due to warmer temperature (i.e., air

conditioning) may had led to an increase of electricity imports from France (and elsewhere), and

thus to an increase in the electricity returns on Powernext market.

As previously noted, our findings underline the likelihood that there is no returns or shocks dif-

fusion between the French carbon and electricity markets, as well as other commodities’ spot

markets. Such a result may not be surprising given that the carbon and the electricity markets

studied are national markets, while Brent oil and Henry Hub natural gas are traded worldwide.

But, taking into account such prices into our analysis allowed for a arguably better estimation of

the residual in the VAR and ECM models, and thus of the bivariate GARCH.

Finally, all of our results have to be digested with some caution, since the return and volatility

interrelationships between these separate markets might be understated by mis-specification in the

data. Nevertheless, all of the estimations performed in this paper emphasize the impact of the rules

that control the functioning of the EU market. Since the first phase was an experimental phase

of the market, it was perhaps not such a bad thing that carbon market and others commodities

market were not interconnected. Regarding the instability of the carbon market during this first

phase, such a disconnection between markets that should have interacted with it have clearly

prevented other commodities’ market to suffer from unexpected shocks that are not linked to

their own functioning. However, if neither climate variations nor commodities returns can explain

the lack of interrelationship between electricity and carbon markets, it thus seems that the absence

of the possibility of arbitrage during the first phase on the carbon market enabled the interaction

with electricity market as others commodities market do. In others words, if carbon market
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should be considered as a commodity market, the rules enforce during the first phase do not allow

any speculative behaviours. This limits the liquidity of the market but also reduces the efficiency

of the carbon price to act as an incentive to limit CO2 emissions. One may contentiously hope

that the second phase will provide a completely different role for the carbon market by combining

environmental performance to trading opportunities in order to enhance both its liquidity and its

maturity.
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Annex

- Tests of stationnarity and cointegration

ADF test for unit root variable ADF t-statistic Number of lags

Carbon -2.384796 1

Electricity -4.405369 1

ADF test for unit root variable 90% 95% 99%

Critical value -3.446 -2.842 -2.573

Table 1: Augmented Dickey Fuller Test

H0 Trace statistic Eigen statistic Crit. Value 90% Crit. Value 95% Crit. Value 99%

r¡=0 24.912 19.405 12.297 14.264 18.520

r¡=1 5.508 5.508 2.705 3.841 6.635

Table 2: Johansen MLE estimations

- Long term relationship between carbon and electricity returns

The estimated model is:

Rc
t = α + βRe

t + εt

Dependent Variable Carbon

Variable Coefficient t-statistic t-probability

α 2.457842 17.158938 0.000000

β 0.150639 4.258736 0.000028

Table 3: Cointegrating relationship in level between carbon and electricity spot returns
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- VAR models in difference

The estimated model is:

Rc
t = α + a11R

c
t−1 + a12R

e
t−1 + εt

Re
t = α + a21R

c
t−1 + a22R

e
t − 1 + εt

Dependent Variable Carbon

Variable Coefficient t-statistic t-probability

Carbon lag1 (a11) 0.232804 3.909581 0.000117

elect lag1 (a12) 0.001226 0.070609 0.943762

constant -0.001105 -0.358529 0.720231

Dependent Variable Electricity

Variable Coefficient t-statistic t-probability

Carbon lag1 (a21) 0.103118 0.480601 0.631194

elect lag1 (a22) -0.292568 -4.677589 0.000005

constant 0.000314 0.028240 0.977492

Table 4: VAR model between carbon and electricity returns

- Granger causality tests

Dependent Variable Carbon

Variable F-value Probability

Carbon 15.284820 0.000117

Electricity 0.004986 0.943762

Dependent Variable Electricity

Variable F-value Probability

Carbon 0.230977 0.631194

Electricity 21.879838 0.000005

Table 5: Granger causality tests
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- VAR model in difference with weather variables as exogenous variables

The estimated model is:

Rc
t = α + a11R

c
t−1 + a12R

e
t−1 + πfnrainf,t + ΣihiHDDi,t + ΣiciCDDi,t + εt

pour i=f, b, g, i, n, p, s, ch.

Dependent Variable Carbon

Variable Coefficient t-statistic t-probability

Rc
t−1 0.214281 3.494350 0.000562

Re
t−1 -0.003819 -0.212342 0.832013

nrainf -0.005492 -1.282608 0.200817

HDDf -0.001179 -0.185035 0.853351

HDDb 0.002543 0.900584 0.368677

HDDg 0.000751 0.116751 0.907151

HDDi 0.000124 0.056359 0.955101

HDDn 0.000988 0.304341 0.761121

HDDp -0.001068 -0.237334 0.812592

HDDs -0.000115 -0.013816 0.988988

HDDch 0.000281 0.075897 0.939561

CDDf -0.005239 -1.395486 0.164108

CDDb 0.003804 1.300074 0.194773

CDDg -0.000084 -0.038907 0.968996

CDDi -0.002737 -0.764818 0.445101

CDDn 0.003076 0.750327 0.453763

CDDp -0.001803 -0.370129 0.711600

CDDs 0.000781 0.305727 0.760067

CDDch 0.003518 1.622114 0.106039

constant -0.019425 -1.374986 0.170367

Table 6: VAR model between carbon and electricity returns with weather variables as exogenous variables
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The estimated model is:

Re
t = α + a21R

c
t−1 + a22R

e
t−1 + πfnrainf,t + ΣihiHDDi,t + ΣiciCDDi,t + εt

pour i=f, b, g, i, n, p, s, ch.

Dependent Variable Electricity

Variable Coefficient t-statistic t-probability

Rc
t−1 0.115813 0.538988 0.590375

Re
t−1 -0.349906 -5.552244 0.000000

nrainf -0.015921 -1.061096 0.289670

HDDf -0.012672 -0.567518 0.570872

HDDb 0.003571 0.360944 0.718446

HDDg 0.008306 0.368605 0.712734

HDDi 0.006215 0.803988 0.422168

HDDn -0.002005 -0.176245 0.860244

HDDp 0.001436 0.091052 0.927525

HDDs 0.057462 1.978698 0.048947

HDDch 0.013114 1.011276 0.312862

CDDf 0.010231 0.777721 0.437469

CDDb -0.005905 -0.575846 0.565237

CDDg -0.010452 -1.389855 0.165809

CDDi -0.009396 -0.749280 0.454393

CDDn -0.003746 -0.260775 0.794481

CDDp -0.007447 -0.436321 0.662981

CDDs 0.004707 0.525924 0.599407

CDDch 0.007493 0 .986094 0.325041

constant -0.070772 -1.429655 0.154065

Table 7: VAR model between carbon and electricity returns with weather variables as exogenous variables
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- VAR models in différence between eletricity, carbon, natural gas and oil returns

with weather variables as exogenous variables

The estimated model is:

Rc
t = α + a11R

c
t−1 + a12R

e
t−1 + a13R

ng
t−1 + a14R

o
t−1 + πfnrainf,t + ΣihiHDDi,t + ΣiciCDDi,t + εt

where, Ro
t et Rng

t are oil and gas returns andt i=f, b, g, i, n, p, s, ch.

Dependent Variable Carbon

Variable Coefficient t-statistic t-probability

Rc
t−1 0.215549 3.490593 0.000570

Re
t−1 -0.003706 -0.205226 0.837564

Rng
t−1 -0.021738 -0.306598 0.759407

Ro
t−1 -0.005377 -0.034749 0.972308

nrainf -0.005569 -1.292586 0.197357

HDDf -0.001356 -0.211086 0.832993

HDDb 0.002583 0.908929 0.364270

HDDg 0.000896 0.138229 0.890172

HDDi 0.000199 0.089163 0.929024

HDDn 0.000943 0.288832 0.772951

HDDp -0.000984 -0.217279 0.828170

HDDs -0.000016 -0.001897 0.998488

HDDch 0.000263 0.070735 0.943666

CDDf -0.005188 -1.372403 0.171178

CDDb 0.003784 1.287570 0.199096

CDDg -0.000097 -0.044769 0.964327

CDDi -0.002706 -0.750203 0.453843

CDDn 0.003248 0.780512 0.435834

CDDp -0.001961 -0.398517 0.690592

CDDs 0.000791 0.308530 0.757938

CDDch 0.003487 1.600106 0.110848

constant -0.019699 -1.386014 0.166987

Table 8: VAR model between carbon, electricity, oil and natural gas returns with weather variables as
exogenous variables
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The estimated model is:

Re
t = α + a21R

c
t−1 + a22R

e
t−1 + a23R

ng
t−1 + a24R

o
t−1 + πfnrainf,t + ΣihiHDDi,t + ΣiciCDDi,t + εt

where, Ro
t et Rng

t are oil and gas returns andt i=f, b, g, i, n, p, s, ch.

Dependent Variable Electricity

Variable Coefficient t-statistic t-probability

Rc
t−1 0.146028 0.679404 0.497515

Re
t−1 -0.348122 -5.538160 0.000000

Rngct−1 -0.406892 -1.648777 0.100459

Ro
t−1 lag1 -0.391750 -0.727387 0.467675

nrainf -0.017724 -1.181959 0.238354

HDDf -0.016144 -0.722274 0.470807

HDDb 0.004661 0.471269 0.637863

HDDg 0.010655 0.472520 0.636971

HDDi 0.007511 0.967987 0.333994

HDDn -0.002819 -0.248197 0.804187

HDDp 0.002778 0.176198 0.860282

HDDs 0.060714 2.087805 0.037836

HDDch 0.012801 0.989785 0.323244

CDDf 0.011697 0.889080 0.374821

CDDb -0.006165 -0.602645 0.547295

CDDg -0.010863 -1.447233 0.149094

CDDi -0.009347 -0.744551 0.457248

CDDn 0.000172 0.011890 0.990523

CDDp -0.010962 -0.640060 0.522725

CDDs 0.004905 0.549494 0.583161

CDDch 0.006982 0.920389 0.358264

constant -0.076827 -1.552995 0.121700

Table 9: VAR model between carbon, electricity, oil and natural gas returns with weather variables as
exogenous variables
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The estimated model is:

Rng
t = α + a31R

c
t−1 + a32R

e
t−1 + a33R

ng
t−1 + a34R

o
t−1 + πfnrainf,t + ΣihiHDDi,t + ΣiciCDDi,t + εt

where, Ro
t et Rng

t are oil and gas returns andt i=f, b, g, i, n, p, s, ch.

Dependent Variable Henry Hub natural gas

Variable Coefficient t-statistic t-probability

Rc
t−1 0.071762 1.280544 0.201550

Re
t−1 0.002110 0.128738 0.897669

Rng
t−1 0.019650 0.305381 0.760332

Ro
t−1 -0.235320 -1.675804 0.095037

nrainf -0.004831 -1.235677 0.217748

HDDf -0.000243 -0.041756 0.966727

HDDb 0.000044 0.016973 0.986472

HDDg -0.006813 -1.158767 0.247666

HDDi 0.002349 1.161226 0.246667

HDDn -0.000518 -0.174808 0.861373

HDDp 0.004598 1.118396 0.264480

HDDs 0.006453 0.851101 0.395535

HDDch 0.003353 0.994507 0.320945

CDDf 0.000674 0.196460 0.844411

CDDb 0.001522 0.570479 0.568869

CDDg -0.001495 -0.763761 0.445735

CDDi 0.001812 0.553736 0.580259

CDDn 0.004217 1.116771 0.265173

CDDp -0.005257 -1.177367 0.240178

CDDs -0.003040 -1.306257 0.192675

CDDch -0.002174 -1.099216 0.272740

constant -0.002720 -0.210880 0.833154

Table 10: VAR model between carbon, electricity, oil and natural gas returns with weather variables as
exogenous variables
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The estimated model is:

Rp
t = α + a41R

c
t−1 + a42R

e
t−1 + a43R

ng
t−1 + a44R

o
t−1 + πfnrainf,t + ΣihiHDDi,t + ΣiciCDDi,t + εt

where, Ro
t et Rng

t are oil and gas returns andt i=f, b, g, i, n, p, s, ch.

Dependent Variable Brent oil

Variable Coefficient t-statistic t-probability

Rc
t−1 0.002226 0.089969 0.928384

Re
t−1 0.001828 0.252555 0.800822

Rng
t−1 0.041738 1.468927 0.143120

Ro
t−1 -0.192762 -3.108624 0.002099

nrainf 0.000552 0.319447 0.749656

HDDf 0.005599 2.175687 0.030523

HDDb 0.002339 2.054144 0.041010

HDDg -0.005363 -2.065786 0.039888

HDDi -0.000377 -0.421851 0.673499

HDDn -0.000735 -0.562196 0.574490

HDDp -0.004523 -2.491253 0.013384

HDDs 0.004488 1.340399 0.181342

HDDch -0.000180 -0.121148 0.903672

CDDf 0.001111 0.733424 0.463992

CDDb -0.000373 -0.317027 0.751490

CDDg 0.000556 0.643403 0.520557

CDDi -0.000636 -0.440341 0.660074

CDDn 0.001214 0.728048 0.467271

CDDp -0.001188 -0.602485 0.547402

CDDs -0.000339 -0.330122 0.741586

CDDch 0.000513 0.586989 0.557745

constant -0.002158 -0.378844 0.705128

Table 11: VAR model between carbon, electricity, oil and natural gas returns with weather variables as
exogenous variables
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- ECM Model

The estimated model is:

∆Rc
t = αc + A11∆Rc

t−1 + A12∆Re
t−1 + δ1εt−1

Dependent Variable Carbon

Variable Coefficient t-statistic t-probability

∆Rc
t−1 0.234243 3.922677 0.000112

∆Re
t−1 -0.002994 -0.164628 0.869362

εt−1 -0.002698 -0.872353 0.383806

constant (αc) -0.018761 -0.920177 0.358317

Table 12: ECM estimations

The estimated model is:

∆Re
t = αe + A21∆Rc

t−1 + A22∆Re
t−1 + δ2εt−1

Dependent Variable Electricity

Variable Coefficient t-statistic t-probability

∆Rc
t−1 0.076853 0.364098 0.716075

∆Re
t−1 -0.229713 -3.573902 0.000418

εt−1 0.036644 3.351572 0.000921

constant (αe) 0.238859 3.314320 0.001047

Table 13: ECM estimations
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- ECM model with weather variables

The estimated model is:

∆Rc
t = αc + A11∆Rc

t−1 + A12∆Re
t−1 + δ1εt−1 + pifnrainf,t + ΣihiHDDi,t + ΣiciCDDi,t

with i=f, b, g, i, n, p, s, ch.

Dependent Variable Carbon

Variable Coefficient t-statistic t-probability

∆Rc
t−1 0.173202 2.738157 0.006626

∆Re
t−1 -0.002766 -0.154836 0.877077

εt−1 0.078830 2.374547 0.018332

dummy cret -0.034321 -0.657132 0.511705

nrainf -0.005706 -1.338825 0.181854

HDDf -0.003525 -0.550557 0.582433

HDDb 0.001890 0.671285 0.502664

HDDg 0.001966 0.307011 0.759092

HDDi 0.000107 0.048780 0.961134

HDDn 0.001183 0.366603 0.714228

HDDp 0.000268 0.059413 0.952671

HDDs -0.002827 -0.340327 0.733898

HDDch 0.000932 0.252831 0.800608

CDDf -0.005275 -1.414711 0.158408

CDDb 0.002899 0.989654 0.323308

CDDg 0.000435 0.203102 0.839222

CDDi -0.003221 -0.905240 0.366217

CDDn 0.002392 0.582334 0.560871

CDDp -0.000696 -0.142794 0.886569

CDDs 0.000994 0.391638 0.695662

CDDch 0.003151 1.460004 0.145555

constant -0.013035 -0.912619 0.362329

Table 14: ECM estimations with weather variables
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The estimated model is:

∆Re
t = αe + A21∆Rc

t−1 + A22∆Re
t−1 + δ2εt−1 + pifnrainf,t + ΣihiHDDi,t + ΣiciCDDi,t

with i=f, b, g, i, n, p, s, ch.

Dependent Variable Electricity

Variable Coefficient t-statistic t-probability

∆Rc
t−1 0.147811 0.669008 0.504113

∆Re
t−1 -0.353780 -5.670693 0.000000

εt−1 -0.075565 -0.651665 0.515221

dummy cret -0.458598 -2.513834 0.012577

nrainf -0.018628 -1.251419 0.211961

HDDf -0.009893 -0.442341 0.658628

HDDb 0.003504 0.356243 0.721962

HDDg 0.006974 0.311743 0.755498

HDDi 0.006253 0.817614 0.414362

HDDn -0.003018 -0.267828 0.789054

HDDp 0.000378 0.024035 0.980844

HDDs 0.060217 2.075675 0.038955

HDDch 0.011684 0.907653 0.364943

CDDf 0.011543 0.886198 0.376369

CDDb -0.005933 -0.579862 0.562534

CDDg -0.009851 -1.315935 0.189411

CDDi -0.009707 -0.781045 0.435521

CDDn 0.001185 0.082552 0.934274

CDDp -0.011386 -0.669173 0.504007

CDDs 0.003992 0.450386 0.652826

CDDch 0.008099 1.074217 0.283769

constant -0.068742 -1.377877 0.169483

Table 15: ECM estimations with weather variables
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- Bivariate GARCH models

BEKK model

The estimated model is:

Ht = C∗′C∗ + Σ2
k=1Σ

2
i=1A

∗′
kiεt−iε

′
t−iA

∗
ki + Σ2

k=1Σ
2
j=1G

∗′
kjHt−jG

∗
kj

Coefficient Coefficient t-statistic t-probability

ω11 0.012404 5.976141 0.000000

ω12 0.013167 0.654153 0.513594

ω22 0.024107 1.561290 0.119676

a11 0.902227 6.978659 0.000000

a12 0.170062 0.798225 0.425471

a21 -0.052327 -2.634401 0.008936

a22 0.335440 5.812263 0.000000

g11 0.513341 5.612157 0.000000

g12 -0.191037 -1.309161 0.191640

g21 0.006933 0.586260 0.558211

g22 0.939849 61.073762 0.000000

Table 16: BEKK model’s estimations
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CCC model

The estimated model is:
Ht = DtRDt = (ρij

√
hiithhjjt)

Dt = diag(
√

h11t,
√

h22t)

R = ρij , avec ρiit = 1,∀i, j = 1, 2.

Coefficient Coefficient t-statistic t-probability

ω1 0.013454 263.691488 0.001294

α1 0.010691 0.051720 0.000723

β1 0.022105 0.203466 0.007480

ω2 0.823766 1254.005459 0.300238

α2 0.335525 7.958680 0.000485

β2 0.573554 14.021427 0.000000

ρ 0.944524 16.078167 0.292687

Table 17: CCC model’s estimations

DCC model

The estimated model is:
Ht = DtRtDt

Dt = diag(
√

h11t,
√

h22t)

Rt = (diagQt)−
1
2 Qt(diagQt)−

1
2

Coefficient Coefficient t-statistic t-probability

ω1 0.000166 3.251809 0.001297

α1 0.707145 3.417274 0.000733

β1 0.292853 2.695553 0.007482

ω2 0.000682 1.042311 0.298229

α2 0.148950 3.533903 0.000484

β2 0.851048 20.859998 0.000000

α 0.000002 0.000256 0.999796

β 0.000002 0.000001 0.999999

Table 18: DCC model’s estimations

35

ha
l-0

03
40

17
1,

 v
er

si
on

 1
 - 

20
 N

ov
 2

00
8



- Régression (OLS) between electrcity quantity and weather variables The estimated

model is:Qt = ifnrainf,t + ΣihiHDDi,t + ΣiciCDDi,t, with i=f, b, g, i, n, p, s, ch.

Dependent Variable Electricity: daily volume of transactions

Variable Coefficient t-statistic t-probability

nrainf -2935.255499 -2.155764 0.032042

HDDf 389.386812 0.193101 0.847035

HDDb 1942.049008 2.229504 0.026655

HDDg 5437.149330 2.703506 0.007324

HDDi 714.941683 1.016220 0.310492

HDDn 3786.612639 3.735902 0.000231

HDDp -377.166000 -0.269297 0.787920

HDDs -4287.349613 -1.629746 0.104395

HDDch -5409.848947 -4.896817 0.000002

CDDf 3903.772103 3.241572 0.001348

CDDb -503.542387 -0.533930 0.593857

CDDg 1298.868502 1.881441 0.061056

CDDi -2193.597799 -1.930246 0.054690

CDDn 6175.568770 4.739864 0.000004

CDDp -6927.810023 -4.473434 0.000012

CDDs 4304.784334 6.123840 0.000000

CDDch 4934.581495 8.382901 0.000000

Table 19: Impact of weather on the quantity of electricity traded
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