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Indeterminacy and business-cycle fluctuations in a
two-sector monetary economy with externalities1

Stefano BOSI

EQUIPPE, University of Lille 1

Kazuo NISHIMURA
Institute of Economic Research, Kyoto University

and

Alain VENDITTI

CNRS - GREQAM and EDHEC

Abstract: We consider a two-sector economy with money-in-the-utility-function and
sector-specific externalities. We provide conditions on technologies leading to the existence
of local indeterminacy for any value of the interest rate elasticity of money demand, pro-
vided the elasticity of intertemporal substitution in consumption is large enough. Moreover,
we show that the occurrence of multiple equilibria is intimately linked with the existence of
a flip bifurcation and period-two cycles.

Keywords: Money-in-the-utility-function, two-sector economy, sector-specific external-
ities, indeterminacy, period-two cycles, sunspot equilibria.
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1This paper is dedicated to 65 year-old birthday of our dear friend and great scientist,
Saber Elaydi.
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1 Introduction

Endogenous business-cycle fluctuations through the existence of local in-
determinacy are known to occur in monetary growth models in which the
central bank is assumed to follow an exogenous money growth rule. Par-
ticular examples are provided by Fukuda [6], Matsuyama [7] and Wood-
ford [12] within optimal growth models with money-in-the-utility-function
(MIUF). Local indeterminacy means that there exists a continuum of equi-
libria starting from the same initial condition, all of which converging to
the same attractor such as a steady state. It is now well-known that local
indeterminacy is a sufficient condition for the existence of endogenous fluc-
tuations generated by purely extrinsic shocks on beliefs which do not affect
the fundamentals, i.e. preferences and technologies.2 Indeed, in presence
of local indeterminacy, randomizing beliefs over a continuum of equilibrium
paths generates new stochastic equilibria derived from shocks on expecta-
tions. These expectations-driven fluctuations are no longer based on exoge-
nous shocks on fundamentals and represent a convincing rationale to explain
macroeconomic volatility through alternative propagation mechanisms.

Formally, local indeterminacy arises when the stable manifold has dimen-
sion greater than the number of predetermined variables (i.e., determined
the period before and currently taken as given). Within traditional MIUF
models, the competitive equilibrium is described by a system of implicit
difference equations of order 2 in the capital stock k, namely in kt, kt+1

and kt+2, and order 1 in real money balances m, namely in mt and mt+1.
Typically, at any time t ≥ 0, we have kt, the current capital stock, as the pre-
determined variable, and mt and kt+1, respectively, the current real balances
and the future capital stock, as the two forward variables (i.e., depending
on future decisions).3

As a result, as soon as the stable manifold has dimension greater or
equal to 2, there exists a continuum of converging equilibrium paths, and
the steady state is locally indeterminate. In this case, two kinds of local
indeterminacy may arise:

- A local indeterminacy of order 1 when the stable manifold is two-
dimensional. In a given neighborhood of the steady state, the intersection
of the plane defined by the forward variables mt and kt+1 with the stable
manifold determines a one-dimensional manifold which is the set of multiple
starting points for as many equilibrium paths converging to the steady state.

2See Azariadis [1], Cass and Shell [4], Shell [10], Woodford [11].
3Indeed, while the stock of money Mt is a predetermined variable, the real money

balances mt = qtMt depend on a relative price qt which is a forward variable.
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- A local indeterminacy of order 2 when the stable manifold is three-
dimensional. In this case, in a given neighborhood of the steady state, the
intersection of the plane defined by mt and kt+1 with the stable manifold
determines a two-dimensional local manifold which is the set of multiple
starting points for as many converging equilibrium paths.

Most of the results available in the literature can be derived from MIUF
growth models. For instance, Feenstra [5] has shown that a cash-in-advance
economy can be viewed as a particular case of the MIUF approach, provided
that the real balances in the utility function follow a cash-in-advance (CIA)
timing.4 In this case, the preferences are assumed to depend on the cash
the household has before entering the goods market, i.e. the stock of money
accumulated in the previous period and available before buying new goods.
In this context, there is no room for local indeterminacy of order 2, but
indeterminacy of order 1 arises provided the interest elasticity of real money
demand is low enough, a condition which is hard to justify empirically.

In this paper we consider a two-sector economy with MIUF and CIA
timing but we assume also some sector-specific externalities in production.
We provide less stringent conditions on the preferences for the occurrence
of multiple equilibria. On the one hand, we show that local indeterminacy
of order 2 requires a large enough elasticity of intertemporal substitution
in consumption, a low enough interest elasticity of real money demand,
and a consumption good sector capital intensive at the private level but
labor intensive at the social level. On the other hand, when the elasticity of
intertemporal substitution in consumption is decreased, or when the interest
elasticity of real money demand is increased, we prove the occurrence of local
indeterminacy of order 1 through a flip bifurcation.

The paper is organized as follows: The next section sets up the basic
model, defines the intertemporal equilibrium and proves the existence of
a unique steady state. In section 3, we provide our main results on local
indeterminacy. Section 4 contains concluding comments and all the proofs
are gathered into a final appendix.

2 The model

2.1 Technology

There are two goods: a consumption good, c, and a capital good, k. Each
good is assumed to be produced with a Cobb-Douglas technology which

4See for instance Carlstrom and Fuerst [3] and Woodford [12].
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contains some sector specific externalities. We denote by c and y the outputs
of sectors c and k, and by ec and ey the corresponding external effects. The
private production functions are thus defined as:

c = ecK
α1
c Lα2

c , y = eyK
β1
y L

β2
y (1)

The externalities ec and ey depend on K̄i and L̄i, which denote the average
use of capital and labor in sector i = c, y, and are equal to

ec = K̄a1
c L̄

a2
c , ey = K̄b1

y L̄
b2
y (2)

with ai, bi ≥ 0, i = 1, 2. We assume that these economy-wide averages are
taken as given by individual firms. At the equilibrium, all firms of sector
i = c, y being identical, we have K̄i = Ki and L̄i = Li. Denoting α̂i = αi+ai,
β̂i = βi + bi, the social production functions are defined as

c = Kα̂1
c Lα̂2

c , y = K β̂1
y L

β̂2
y (3)

We assume in the following that α̂1 + α̂2 = 1 and β̂1 + β̂2 = 1 so that the
returns to scale are constant at the social level, and decreasing at the private
level.

Total labor is given by Lc+Ly = `, and the total stock of capital is given
by Kc +Ky = k. We assume complete depreciation of capital in one period
so that the capital accumulation equation is yt = kt+1.5 Optimal factor
allocations across sectors are obtained by solving the following program:

max
Kc,t,Lc,t,Ky,t,Ly,t

ectK
α1
ct L

α2
ct

s.t. kt+1 = eytK
β1
yt L

β2
yt

kt = Kct +Kyt

ect, eyt given

Denote by pt, wt and rt respectively the price of the capital good, the wage
rate of labor and the rental rate of the capital good at time t ≥ 0, all in
terms of the price of the consumption good. The Lagrangian is:

Lt = ectK
α1
ct L

α2
ct + wt(`t − Lct − Lyt) + rt(kt −Kct −Kyt)

+ pt

[
eytK

β1
yt L

β2
yt − kt+1

] (4)

For any given (kt, kt+1), solving the first order conditions gives input de-
mand functions K̃c = Kc(kt, kt+1, ect, eyt), L̃c = Lc(kt, kt+1, ect, eyt), K̃y =

5Full depreciation is introduced in order to simplify the analysis.
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Ky(kt, kt+1, ect, eyt), L̃y = Ly(kt, kt+1, ect, eyt). We then define the produc-
tion frontier as

ct = T (kt, kt+1, ect, eyt) = ectK̃
α1
ct L̃

α2
ct

Using the envelope theorem we derive:

rt = T1(kt, kt+1, ect, eyt), pt = −T2(kt, kt+1, ect, eyt) (5)

where T1 = ∂T/∂kt and T2 = ∂T/∂kt+1. The wage rate is then obtained as
wt = T (kt, kt+1, ect, eyt)− rtkt + ptyt.

2.2 Preferences

The economy is populated by a large number of identical infinitely-lived
agents. We assume without loss of generality that the total population
is constant. In each period t ≥ 0, each consumer receives income from
capital and labor, and monetary lump-sum transfers from the government.
His expenditures concern the consumption good, the investment good and
money for the next period t + 1. Let us then denote by Mt the stock of
money at time t. In each period t ≥ 0, the representative agent is subject
to the budget constraint

q̂tct + p̂tkt+1 +Mt+1 = r̂tkt + ŵt +Mt + τ̂t (6)

where q̂t is the price of the consumption good, p̂t is the price of the in-
vestment good, r̂t is the rental rate of capital, ŵt is the wage rate and τ̂
is the nominal lump-sum transfers issued by the government. Choosing the
consumption good as the numéraire, i.e. dividing equation (6) by q̂t, gives
a reformulation of the budget constraint

ct + ptkt+1 + qtMt+1 = rtkt + wt + qtMt + τt (7)

with pt = p̂t/q̂t, qt = 1/q̂t, rt = r̂t/q̂t, wt = ŵt/q̂t and τt = τ̂t/q̂t. Money in
real terms is thus given by qtMt.

The per-period utility function of the representative agents depends on
consumption c and real money balances qM. With the CIA timing, the
amount of money that facilitates trading at time t corresponds to the cash
the household has in advance of goods-market trading, namely

Mt = Mt (8)

Let us then denote real money balances at time t by mt = qtMt.
We assume that the utility function is additively-separable between con-

sumption and real money balances:

U(c,m) = u(c) + v(m)

4
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Assumption 1. u(c) and v(m) are C2, increasing, concave and satis-
fies the boundary conditions limc→0 u

′(c) = +∞, limm→0 v
′(m) = +∞,

limc→+∞ u
′(c) = 0, limm→+∞ v

′(m) = 0.

Notice that the production frontier T (k, y, ec, ey) gives the maximum pro-
duction level of the consumption good which will be entirely consumed by
the representative agent, i.e. ct = T (kt, kt+1, ect, eyt). The intertemporal
maximisation program of the representative agent is then as follows

max
{ct,kt+1,Mt+1}+∞t=0

+∞∑
t=0

δt[u(ct) + v(qtMt)]

s.t. ct + ptkt+1 + qtMt+1 = rtkt + wt + qtMt + τt

k0,M0 given

(9)

where δ ∈ (0, 1] denotes the discount factor.

2.3 Intertemporal equilibrium

The generalised Lagrangian corresponding to the intertemporal optimization
problem (9) is

L =
+∞∑
t=0

δt[u(ct) + v(qtMt)]

+
+∞∑
t=0

δtλt[rtkt + wt + qtMt + τt − ct − ptkt+1 − qtMt+1]

(10)

with λ the non-negative Lagrange multiplier associated with constraint (7).
The first-order conditions with respect to ct, kt+1 and Mt+1 are given by

λt = u′(ct) (11)
λtpt = δλt+1rt+1 (12)
λtqt = δqt+1[λt+1 + v′(qt+1Mt+1)] (13)

with rt and pt as defined by (5). By manipulating (11)-(13), we get the
standard Euler equation

u′(ct)pt = δu′(ct+1)rt+1 (14)
and the arbitrage condition between consumption and real balances

u′(ct)qt = δqt+1[u′(ct+1) + v′(qt+1Mt+1)] (15)

From the input demand functions defined in Section 2.1 together with
the external effects (2) considered at the equilibrium, we define the equi-
librium factors demand functions K̂c = K̂c(kt, kt+1), K̂y = K̂y(kt, kt+1),

5
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L̂c = L̂c(kt, kt+1), L̂y = L̂y(kt, kt+1) so that êc = êc(kt, kt+1) = K̂a1
c L̂

a2
c and

êy = êy(kt, kt+1) = K̂b1
y L̂

b2
y . From (5), prices now satisfy

r(kt, kt+1) = T1(kt, kt+1, êc(kt, kt+1), êy(kt, kt+1))

p(kt, kt+1) = −T2(kt, kt+1, êc(kt, kt+1), êy(kt, kt+1))
(16)

and the consumption level at time t is given by

c(kt, kt+1) = T (kt, kt+1, êc(kt, kt+1), êy(kt, kt+1)) (17)

In order to complete the definition of the intertemporal equilibrium, we
need to specify the supply of money. Government follows a simple monetary
rule: in each period it issues lump-sum transfers of money balances at the
constant rate θ−1 > 0, so that in period t the supply of money M s

t satisfies
M s
t = θtM s

0 , with M s
0 = M0 the initial amount of money balances. Thus

nominal transfers are given by τt = (θ−1)qtM s
t . We then get the first order

conditions (14), (15) evaluated at êc and êy, namely the Euler equation

u′(c(kt, kt+1))p(kt, kt+1)= δu′(c(kt+1, kt+2))r(kt+1, kt+2, ) (18)

and the arbitrage condition between consumption and real balances

u′(c(kt, kt+1))mt = δ
θmt+1[u′(c(kt+1, kt+2)) + v′(mt+1)] (19)

Any solution {(kt,mt)}+∞t=0 which also satisfies the transversality condi-
tions

lim
t→+∞

δtu′(c(kt, kt+1))p(kt, kt+1)kt+1 = 0 (20)

lim
t→+∞

δtu′(c(kt, kt+1))mt = 0 (21)

is called an equilibrium path.

2.4 Steady state

A steady state is defined as kt = k∗ and mt = m∗ for all t. Along
a stationary equilibrium, we have indeed a decreasing path for the price
of money balances qt+1/qt = 1/θ which is associated with the expansion
of money supply Mt+1/Mt = θ so that real money balances mt remain
constant. Notice also that the steady state value of consumption c∗ is
directly obtained from k∗ through the production frontier, namely c∗ =
T (k∗, k∗, êc(k∗, k∗, êy(k∗, k∗)) ≡ T ∗. The stationary levels of capital k∗ and
real money balances m∗ are obtained as solutions of

r(k,k)
p(k,k) = δ−1 and v′(m)

u′(c) = θ−δ
δ > 0 (22)

6
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Notice that the stationary capital stock k∗ only depends on the charac-
teristics of the technologies and is independent from the per-period utility
function. As a result, once the existence of k∗ is ensured, we get c∗ = T ∗

and the stationary real money balances m∗ are directly obtained from the
per-period utility function associated with money holding. Then we get the
following conclusion:

Proposition 1. Under Assumption 1, there exists a unique steady state
(k∗,m∗).

Proof : See Appendix 5.1

In the following, (k∗,m∗) will be called the Modified Golden Rule.

3 Main results

In order to provide a clear-cut local stability analysis of the equilibrium paths
in a neighborhood of the Modified Golden Rule, we specify the per-period
utility function with respect to consumption as follows:

u(c) = c1−σ

1−σ
with σ ≥ 0. Hence, the elasticity of intertemporal substitution in consump-
tion is given by εc = 1/σ.

With such a formulation, we derive the characteristic polynomial build-
ing on some results provided in Nishimura and Venditti [8]. Let us introduce
the interest elasticity of real money demand evaluated at the steady state:

εm = − v′(m∗)
v′′(m∗)m∗ > 0 (23)

Linearizing equations (18) and (19) around (k∗,m∗) gives:

Proposition 2. The characteristic polynomial is

P(x) =
(
x− θεm

θεm−(θ−β)

) [(
x− α2

δ(α2β1−α1β2)

)(
x− β̂1−α̂1

α̂2

)
− σ

(
(1−δβ1)(α̂2α1β2+α̂1α2β1)+δβ1α1β2

α̂2(1−δβ1)(α2β1−α1β2) x− (1−δβ1)α̂1α2+δβ̂1α1β2

δα̂2(1−δβ1)(α2β1−α1β2)

)
(x− 1)

]
≡ (x− Λ) P̃(x)

Proof : See Appendix 5.2.

Proposition 2 shows that the first characteristic root x1 = Λ depends
on the properties of the utility derived from money holding, while the two
others, x2 and x3, depend on the parameters of the technologies and σ.

Let us start with the first characteristic root x1. The following Lemma
provides a precise characterization:

7
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Lemma 1. Under Assumption 1, x1 ∈ (−1, 0) if and only if εm ∈ (0, (θ −
β)/2θ).

Proof : Obvious from Proposition 2.

Let us consider now the two other roots x2 and x3. Note that if the
utility function is linear in consumption, i.e. σ = 0, these two roots are

x2 = α2
δ(α2β1−α1β2) , x3 = β̂1−α̂1

α̂2
< 1

We then have
x2 ∈ (−1, 0) ⇔ α1β2 − α2β1 > α2/δ

x3 ∈ (−1, 1) ⇔ β̂1 > α̂1 − α̂2

(24)

These conditions have clear economic interpretations. Based on the pri-
vate and social production functions as defined respectively by (1) and (3),
factor intensities are determined by the parameters of the Cobb-Douglas
technologies. If α1β2 > (<)α2β1, the consumption (investment) good sector
is capital intensive at the private level, and if α̂1 > β̂1 the consumption
(investment) good sector is capital intensive at the social level. Then, the
first condition requires that the consumption good is suffiently capital in-
tensive at the private level. The second condition holds if the consumption
good is labor intensive at the social level but can be also satisfied even if
the consumption good is also capital intensive at the social level.

When the utility function is non-linear, i.e. if σ > 0, it can be shown that
under the conditions given in (24), we still get x2 ∈ (−1, 0) and x3 ∈ (−1, 1)
provided the value of σ is not too large. More precisely, we have:

Lemma 2. Under Assumption 1, let α1β2−α2β1 > α2/δ and β̂1 > α̂1− α̂2.
Then x2 ∈ (−1, 0) and x3 ∈ (−1, 1) if and only if σ ∈ [0, σ∗) with

σ∗ =
[δ(α1β2−α2β1)−α2][β̂1−(α̂1−α̂2)](1−δβ1)

2[(1−δβ1)[α̂1α2(1+δβ1)+δα̂2α1β2]+δα1β2(β̂1+δβ1)] (25)

Proof : See Appendix 5.3.

Building on these results, we may now discuss the multiplicity of equi-
librium paths. As seen in the Introduction, local indeterminacy arises when
the stable manifold has dimension greater than the number of predetermined
variables. Equations (18) and (19) define a system of implicit difference
equations of order 2 in the capital stock k and order 1 in the real money
balances m. Since kt has been decided at period t − 1, it plays the role of
predetermined variable at time t while, on the contrary, mt and kt+1 can
be chosen at time t and play the role of forward variables. More precisely,

8
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even if the stock of money Mt is a predetermined variable, the real balances
mt = qtMt inherit the status of forward variable from the relative price qt.

As a result, the equilibrium is unique if one characteristic root is stable,
i.e. belongs to the unit circle, and two characteristic roots are unstable, i.e.
lie outside the unit circle. In other words, uniqueness rests on the existence of
one-dimensional stable manifold. Conversely, as soon as the stable manifold
has dimension greater or equal to 2, there exists a continuum of converging
equilibrium paths and the steady state is locally indeterminate. In this case,
two kinds of local indeterminacy may arise:

- A local indeterminacy of order 1 when the stable manifold is two-
dimensional. In a given neighborhood of the steady state, the intersection
of the plane defined by the forward variables mt and kt+1 with the stable
manifold is a one-dimensional manifold. From each point of this manifold
starts an equilibrium trajectory converging to the steady state.

- A local indeterminacy of order 2 when the stable manifold is three-
dimensional. Indeed, in a given neighborhood of the steady state, the inter-
section of the plane defined by mt and kt+1 with the stable manifold gives a
two-dimensional local manifold which contains multiple starting points for
as many converging equilibrium paths.
The following Proposition provides clear-cut conditions for the existence of
local indeterminacy of both the orders.

Proposition 3. Let Assumption 1 holds and consider the critical bound
σ∗ as defined by (25). Then the steady state is locally indeterminate of
order 2 if and only if α1β2 − α2β1 > α2/δ, β̂1 > α̂1 − α̂2, σ ∈ [0, σ∗) and
εm ∈ (0, (θ − β)/2θ). Moreover:

i) For any given εm ∈ (0, (θ− β)/2θ), the steady state is locally indeter-
minate of order 1 when σ > σ∗, where σ∗ is a flip bifurcation value giving
rise to period-two cycles. If the cycles of period 2 arise in the right (respec-
tively, left) neighbourhood of σ∗, they are locally indeterminate of order 2
(respectively, locally indeterminate of order 1).

ii) For any given σ ∈ [0, σ∗), the steady state is locally indeterminate of
order 1 when εm > ε∗m = (θ − β)/2θ, where ε∗m is a flip bifurcation value
giving rise to period-two cycles. If the cycles of period 2 arise in the right
(respectively, left) neighbourhood of ε∗m, they are locally indeterminate of
order 2 (respectively, locally indeterminate of order 1).

Proof : See Appendix 5.4.

Proposition 3 shows that under some appropriate restrictions on the capital
intensity differences at the private and social levels, a large enough elastic-

9
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ity of intertemporal substitution in consumption and a low enough interest
elasticity of real money demand are necessary and sufficient conditions for
the occurrence of local indeterminacy on the full dimensional phase space.
Moreover, when the elasticity of intertemporal substitution in consumption
is decreased, or when the interest elasticity of real money demand is in-
creased, we prove the occurrence of local indeterminacy of order 1 through
a flip bifurcation. Case ii) is particularly worthwhile as it is based on a large
enough interest elasticity of real money demand, a condition that matches
empirical evidences. We also show that period-two cycles are intimately
connected with the existence of multiple equilibria.

4 Concluding comments

We have shown that local indeterminacy and business-cycle fluctuations
based on self-fulfilling prophecies occur in a two-sector monetary economy
with productive externalities and money in an additively separable utility
function. More precisely, we have provided conditions on technologies lead-
ing to the existence of local indeterminacy for any value of the interest rate
elasticity of money demand, provided the elasticity of intertemporal substi-
tution in consumption is large enough. Indeed, while local indeterminacy
of order 2 requires a low enough interest elasticity of real money demand,
local indeterminacy of order 1 can be obtained even with a large interest
elasticity of real money demand. However, as in this last case the restric-
tion on the elasticity of intertemporal substitution in consumption appears
to be disputed with respect to empirical evidences, it would be interesting
to generalize the formulation of preferences by considering a non-separable
utility function and to check whether this condition could be relaxed. This
is left for future research.

5 Appendix

5.1 Proof of Proposition 1

Consider first equation (22). We need to compute the partial derivatives of
T . From the Lagrangian (10) we derive the first order conditions:

r = ecα1K
α1−1
c Lα2

c = peyβ1K
β1−1
y Lβ2

y (26)

w = ecα2K
α1
c Lα2−1

c = peyβ2K
β1
y L

β2−1
y (27)

Using Kc = k0 −Ky, Ly = 1− Lc, and merging the above equations gives:

10
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L∗c =
α2β1(k0 −K∗y )

(α1β2 − α2β1)K∗y + α2β1k0
(28)

L∗y =
α1β2K

∗
y

(α1β2 − α2β1)K∗y + α2β1k0
(29)

K∗c = k0 −K∗y (30)
K∗y = g(k0, k1) ≡ g (31)

where

g(k0, k1) =
{
Ky ∈ [0, eykβ1 ] / k1 = ey(α1β2)β2K

β1+β2
y

[α2β1k0+(α1β2−α2β1)Ky ]β2

}
(32)

To simplify notation let:

∆ = (α1β2 − α2β1)g + α2β1k0 (33)

From the envelope theorem we get:

T1 = r∗, T2 = −p∗

From (26), (28) and (30) we obtain:

r∗ = ecα1(k0 − g)α1+α2−1(α2β1)α2∆−α2 (34)

and from (26), (29), (31) and (34):

p∗ =
ecα1

eyβ1
(α2β1)α2(α1β2)−β2(k0 − g)α1+α2−1g1−β1−β2∆β2−α2 (35)

By the derivation of g, we have, for any equilibrium path, the identity
∆ = e

1/β2
y α1β2(g/y)1/β2 . Substituting this into (34) and (35) gives after

simplifications:

T1(k0, k1, ec, ey) = α1ece
−α2
β2

y

(
α2β1

α1β2

)α2

(k0 − g)α1+α2−1g
−α2(β1+β2)

β2 y
α2
β2

T2(k0, k1, ec, ey) = −α1
β1
ece
−α2
β2

y

(
α2β1

α1β2

)α2

(k0 − g)α1+α2−1g
β2−α2(β1+β2)

β2 y
α2−β2
β2

A steady state k∗ is then defined as T1(k∗, k∗, e∗c , e
∗
y) + ρT2(k∗, k∗, e∗c , e

∗
y)

with e∗c = êc(k∗, k∗) and e∗y = êy(k∗, k∗). Denote g∗ = g(k∗, k∗) and y∗ = k∗.
Using the derivatives of T in the definition of k∗ gives:

g∗ = δβ1k
∗ (36)

Substituting (36) into the definition of g, we find

k∗ = e∗y(α1β2)β2 (δβ1k
∗)β1+β2 [(α1β2 − α2β1)δβ1k

∗ + α2β1k
∗]−β2
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Considering that:

e∗y = (δβ1k
∗)b1+b2 (α1β2)b2 [(α1β2 − α2β1)δβ1k

∗ + α2β1k
∗]−b2

and substituting e∗y into the above equation, finally gives

k∗ = α1β2

β1[α2+δ(α1β2−α2β1)] (δβ1)
1

β̂2

Consider now the monetary part of equation (22) evaluated at k∗ with
c∗ = T ∗. We get:

v′(m) = θ−δ
δ u′(T ∗)

The boundary conditions in Assumption 1 guarantee the existence and
uniqueness of a solution m∗.

5.2 Proof of Proposition 2

Total differentiation of equations (18) and (19) gives after tedious compu-
tations available upon request

dkt+2

[
1 + σ

T ∗21
c∗T ∗12

δB
]

+ dkt+1

[
T ∗22
δT ∗12

+ T ∗11
T ∗12
− σ T ∗21

c∗T ∗12
(δB +A)

]
+ dkt

[
T ∗22
δT ∗12

T ∗11
T ∗12

+ σ
T ∗21
c∗T ∗12
A
]

= 0

dkt+2T1δB − dkt+1T1(A+ δB) + dkt
θ
δT1A+ dmt+1

c∗(θεm−(θ−β))
δσm∗εm

− dmt
θc∗

δσm∗ = 0

with

T ∗11
T ∗12

=− α2
δ(α2β1−α1β2) ,

T ∗22
δT ∗12

= − β̂1−α̂1

α̂2
,

T ∗21
c∗T ∗12

= −α1
α̂2

T ∗11
T ∗12

1+β̂1
T ∗12
T ∗11

1−δβ1

A = α̂1
α1

1−δβ1+δβ1
α̂2β̂1
α̂1β̂2

α1β2
α2β1

„
1+
T ∗22
δT ∗12

«
1+β̂1

T ∗12
T ∗11

, B = α̂2
α2

β2

β̂2

(1−δβ1)

[
1−β̂1

„
1− α̂1β̂2

α̂2β̂1

α2β1
α1β2

«]
+δβ1

„
1+
T ∗22
δT ∗12

«
1+β̂1

T ∗12
T ∗11

Then we derive the associated Jacobian matrix:

J =


0 1 0

−
T ∗22
δT ∗12

T ∗11
T ∗12

+σ
T∗21
c∗T ∗12

A

1+σ
T∗21
c∗T ∗12

δB
−
T ∗22
δT ∗12

+
T ∗11
T ∗12
−σ T∗21

c∗T ∗12
(δB+A)

1+σ
T∗21
c∗T ∗12

δB
0

J31 J32
θεm

θεm−(θ−β)


The result follows after straightforward simplifications.
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5.3 Proof of Lemma 2

Consider the expression between brackets in the characteristic polynomial
given in Proposition 2, namely:

P̃(x) =
[ (
x− α2

δ(α2β1−α1β2)

)(
x− β̂1−α̂1

α̂2

)
− σ

(
(1−δβ1)(α̂2α1β2+α̂1α2β1)+δβ1α1β2

α̂2(1−δβ1)(α2β1−α1β2) x− (1−δβ1)α̂1α2+δβ̂1α1β2

δα̂2(1−δβ1)(α2β1−α1β2)

)
(x− 1)

]
Under the conditions given in (24), we get x2 ∈ (−1, 0) and x3 ∈ (−1, 1)
when σ = 0. When σ increases the two roots decrease and the loss of
stability is obtained when one root goes outside the unit circle through
−1. The bifurcation value of σ, denoted σ∗, is then obtained by solving
P̃(−1) = 0.

5.4 Proof of Proposition 3

The first part is immediately derived from Lemmas 1 and 2. The existence of
a flip bifurcation is generically obtained when one characteristic root crosses
the value −1, which happens, for any given εm ∈ (0, (θ − β)/2θ), when σ
crosses σ∗ from below. In addition, period-two cycles appear either in a right
or left neighbourhood of σ∗ according to the properties of the nonlinear part
of the system of difference equations, while their stability properties depend
on the stability properties of the steady state (see Ruelle [9]). Therefore, it
follows that, generically, σ∗ is a flip bifurcation value giving rise to period-
two cycles for any σ in its right (resp. left) neighborhood, which are locally
indeterminate of order 2 (resp. locally indeterminate of order 1). This proves
case i). Case ii) is proved with a similar argument for any given σ ∈ [0, σ∗)
using εm as bifurcation parameter. In this case, ε∗m = (θ − β)/2θ is also a
flip bifurcation value.
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