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We begin by providing an overview of the conventional static equilibrium approach. In 

such model both the flow of trips and congestion delay are assumed to be constant. A drawback 
of the static model is that the time interval during which travel occurs is not specified so that 
the model cannot describe changes in the duration of congestion that result from changes in 
demand or capacity. This limitation is overcome in the Vickrey/Arnott, de Palma Lindsey 
bottleneck model, which combines congestion in the form of queuing behind a bottleneck with 
users' trip-timing preferences and departure time decisions. We derive the user equilibrium and 
social optimum for the basic bottleneck model, and explain how the optimum can be 
decentralized using a time-varying toll. They then review some extensions of the basic model 
that encompass elastic demand, user heterogeneity, stochastic demand and capacity and small 
networks. We conclude by identifying some unresolved modelling issues that apply not only to 
the bottleneck model but to trip-timing preferences and congestion dynamics in general 
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Introduction  

This paper provides a brief introduction to dynamic congestion models, based on the Vickrey 
(1969) bottleneck model which has become the main workhorse model for economic analysis of 
situations involving congestion dynamics.  

The word dynamic can have several possible meanings. One possibility is that it relates to the 
way traffic systems evolve and users learn from day to day. In the context of the bottleneck model, 
it relates to intra-day timing, i.e. to the interdependencies between traffic congestion at different 
times within a given day.  

We shall discuss dynamic approaches against the background of static models. Static models 
assume that congestion is constant over some given time period. A congestion law provides the 
travel time as a function of the entering flow. The time dimension is not explicitly involved: all 
quantities are computed as single figures specific to a time period.  

The basic static model considers a network comprising nodes and links. The nodes are 
centroids of zones, associating trip ends within a zone with a point that is a node in the network. 
Links connect the nodes. A cost function describes the cost of using each link. Congestion means 
that the cost increases as the number of users of the link increases. The demand is given by the 
origin-destination (O-D) matrix, indicating the number of trips between pairs of nodes. The solution 
involves the choice of route within the network for each O-D pair. Traffic volume on each link, the 
travel cost of using each link, the cost of making each trip, and the total travel cost for all users all 
depend on these route-choice decisions. 

Each user for each O-D pair is assumed to choose a route in the network that minimises the 
sum of link costs for the trip. But users compete for the same space and the route choices of users in 
one O-D pair affect the costs experienced by other users through congestion. We can imagine a 
process where users keep revising their route choices in response to the route choices of other users. 
We seek an equilibrium in which no user can reduce his cost by choosing a different route. This 
equilibrium concept is due to Wardrop (1952). This problem was first given a mathematical 
formulation and solution for a general network by Beckmann, McGuire and Winston (1956). We 
will discuss the static model in more detail below in the context of simple networks.  

The static model remains a basic tool for the mathematical description of congested networks. 
The static model does, however, omit important features of congestion. The static model is hence 
unsatisfactory for a number of purposes.  

The main feature that the static model omits is that congestion varies over the day, with 
pronounced AM and PM peaks in most cities. Travel times can easily increase by a factor two from 
the beginning to the height of the peak. To design and evaluate policies for tackling congestion it is 
necessary to recognize these variations. There are a number of fundamental features of congested 
demand peaks that a model should take into account.  

First, travellers choose not only a route, but also a departure time in response to how congestion 
varies over the course of a day. When a policy is implemented that affects peak congestion, 
travellers respond by changing departure time. The departure time changes are systematic on 
average and can be observed in the aggregate temporal shape of the peak. Think, for example, of car 
traffic entering the central business district (CBD) of some large city. The number of travellers 
reaching their workplaces per hour is fixed at the capacity rate during the morning peak. So if the 
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number of workplaces in the CBD increases, the duration of the morning peak must increase too. 
Similarly, if capacity is increased the duration of the peak will shrink. The duration of the peak thus 
depends on both demand and capacity. Such observations suggest that trip timing is endogenous 
and speak in favour of dynamic models. 

Second, travellers incur more than just monetary costs and travel time costs when they make a 
trip. Travellers have preferences regarding the timing of trips and deviations from the preferred 
timing are costly. Such scheduling costs are comparable in magnitude to congestion-delay costs as a 
fraction of total user costs. These scheduling costs are by nature ignored in static models. This 
means that static models cannot reveal the effect of policies that affect scheduling costs.  

Third, many relevant policies can only be described within a dynamic model. A congestion toll 
or parking fee that varies over time as congestion increases and decreases is an obvious example.  

The basic dynamic model discussed in this paper, the bottleneck model, starts directly from the 
above observations regarding within-day dynamics. It is therefore well suited to analyse policies 
that rely on these dynamics. It was introduced by William Vickrey (1969). Arnott, de Palma, and 
Lindsey (1993a) revisited and extended this seminal but almost forgotten model. It is a tractable 
model and it leads to a number of important insights. The model features one origin-destination pair 
(let us say residence and workplace), one route, and one bottleneck. The bottleneck represents any 
road segment that constitutes a binding capacity constraint. The bottleneck allows users to pass only 
at some fixed rate. There is a continuum of users and it takes some positive interval of time for them 
all to pass the bottleneck.  Users are identical and they wish to arrive at the destination at the same 

ideal time *t . Because of the bottleneck, all but one user must arrive either before or after *t . 

Deviation from *t  represents a cost for users. They also incur a travel time cost, which includes free 
flow travel time and delays in the bottleneck. Individuals choose a departure time to minimise the 
sum of schedule delay and travel time costs.  

To analyse this situation, we consider an equilibrium in which no traveller has incentive to 
change his departure time choice. This is an instance of a Nash equilibrium (Haurie & Marcotte, 
1985), which is the natural generalisation of Wardrop equilibrium. Individuals are identical and 
therefore they experience the same cost in equilibrium. One might wonder whether the Nash 
equilibrium concept has any counterpart in the real world. We see Nash equilibrium as a 
benchmark. Like anything else in our models, it is an idealisation, describing a situation that we 
hope is not too far from reality. The appeal of Nash equilibrium is that it is a rest point for any 
dynamic mechanism whereby informed travellers revise their (departure time) choice, if they do not 
achieve the maximum utility available to them.  

Travellers incur the same generalised travel cost in equilibrium, but they have different trips. 
Some depart early, experience only a short delay at the bottleneck, but arrive early at work. Others 
avoid queuing delay by departing late, but arrive also late at work. Those who arrive near the 
preferred arrival time will experience most congestion and have the longest travel time. In this way, 
the bottleneck model describes a congested demand peak with a queue that first builds up and then 
dissolves.  

The endogenous choice of the departure time was independently studied by de Palma, Ben-
Akiva, Lefèvre & Litinas (1983), who proposed a dynamic model incorporating a random utility 
departure time choice model and a generalised queuing model. In contrast to the Vickrey bottleneck 
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model, where the capacity constraint is either active or not, the supply model of de Palma et al. 
shifts smoothly from the uncongested to the congested regime. 

An area of economic literature has grown out of these two initial contributions, exploring a 
number of issues in the context of the basic bottleneck model: e.g., equilibrium, social optimum, 
decentralization of the social optimum via pricing, second best pricing (including step tolls), elastic 
demand, heterogeneous individuals, small networks (routes in parallel and routes in series), 
stochastic capacity and demand, alternative treatments of congestion, and pricing on large networks. 
The basic model has also been extended to include mode choice, parking congestion, modelling of 
the evening commute and non-commuting trips.  The research stream initiated with M. Ben-Akiva 
had more focus on numerical computation, and it has led, amongst other development, to the 
METROPOLIS software for large networks, discussed below.  

This paper first reviews the simple static model of congestion, where time is not explicitly 
considered. This serves as a background for the dynamic model. We then introduce the basic 
bottleneck model and continue to discuss some of the extensions mentioned.  

The static model of congestionii 

Static networks 

We begin with a simple example. Consider a fixed number 0N   of travellers having two 

routes available. The travellers split with 1 0n   on the first route and 2 0n   on the second route, 

where 1 2n n N  . The cost associated with each route is taken to be a linear function of traffic 

such that the average cost on route i  is  i i i i iC n a b n  . The cost is a so-called generalised cost, 

combining monetary cost and travel time in a single monetary equivalent. The Nash equilibrium 

occurs when no traveller wants to change route, which requires that    1 1 2 2C n C n .  Solving this 

equation leads to the equilibrium solutioniii 

2 1 2
1 2 1

1 2 1 2

,e e ea a b
n N n N n

b b b b


   

 
. 

The Nash equilibrium has every traveller minimise his/her own cost. We can alternatively 
consider social optimum where the total cost for all travellers is minimised. In general the social 
optimum is not a Nash equilibrium. The social optimum minimises the total cost function  

  
1 2, 1 2 1 1 1 2 2 2min , ( ) ( )n n W n n n C n n C n  . 

The total cost associated with use of route i  is  i i in C n . The marginal cost of an additional user is  

 
   i i i

i i i i
i

d n C n
C n b n

dn

     . 

In this expression,  i iC n  is the cost paid by the marginal user. The remainder i ib n  is an externality: 

it is the part of the increase in the total cost that is not borne by the additional user. The first-order 
condition for social optimum requires equal marginal costs, or  

    1 1 1 1 2 2 2 2C n b n C n b n   . (1.1) 
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The only difference between this and the first-order condition for the equilibrium is the terms 

representing the externalities of the two routes. The externalities are zero if 0ib  , i=1,2, i.e. if 

adding an additional user does not lead to increased travel cost. In this case, the social optimum 
would be the same as the equilibrium. 

The social optimum has 

 02 1 2
1 2 1

1 2 1 2

2
,

2 2 2 2
o oa a b

n N n N n
b b b b


   

 
. (1.2) 

The solution is written in this way to emphasise the similarity to the Nash equilibrium. The only 

difference between the optimum and the equilibrium outcomes is that the marginal costs, the ib , 

have been replaced by 2 ib  in the expression for the optimum outcome. This indicates that the 

optimum can be achieved as an equilibrium outcome by setting a toll equal to i in b  on each of the 

two routes. This has the effect of doubling the variable cost from the perspective of users and the 
expression in (1.2) then becomes the equilibrium outcome. 

Elastic demand 

The discussion so far has considered a fixed number of travellers N . We now allow demand to 
be elastic, limiting attention to just one route. Travellers on this route are identical, except for 
different willingness to pay to travel. Figure 1 shows a downward-sloping inverse demand curve 

 D N  to reflect that demand decreases as the cost increases. The curve  C N  is again an average 

cost curve expressing the cost that each traveller incurs. The curve  MC N  is a marginal cost 

curve, expressing the marginal change in total cost following a marginal increase in the number of 
travellers; in other wordsiv 

      'MC N C N N C N   . 

When the cost curve is increasing, the marginal cost curve will lie above the cost curve.  
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C 

C+ 

a 

cost 

MC 

c 

b 

d 

D 

N  

Figure 1. A static model  

 

The equilibrium occurs at the intersection of the demand curve with the average cost curve at 
the point b. The marginal traveller at this point is indifferent between travelling and not travelling, 
he faces a cost corresponding to the line segment a-b and a benefit of the same size. For travellers in 
aggregate, however, the cost of adding the marginal traveller is given by the MC curve. For the 
marginal traveller at point b, this cost corresponds to the line segment a-c. So the last traveller 
imposes a net loss corresponding to the line segment b-c on the group of all travellers. If usage was 
reduced to the point where the MC curve crosses the demand curve, then the corresponding loss is 
zero for the traveller at the point d. The total loss in market equilibrium is then represented by the 
shaded triangle b-c-d on the figure.  

The optimal toll, labelled   in Figure 1, implements the optimum at the point d, where the 
private benefit is equal to the marginal cost. The toll is required because drivers ignore the costs 
they impose on other drivers. The toll is just the difference, evaluated at the social optimum, 
between the marginal cost and the average cost, i.e. the externality.  

The basic bottleneck model 

We now introduce the basic Vickrey bottleneck model in its simplest form. Consider a 
continuum of 0N   identical travellers, who all make a trip. They have to pass a bottleneck, which 

is located 1d  time units from the trip origin and 2d  time units from the destination. Denote the time 

of arrival at the bottleneck of a traveller by t  and the exit time from the bottleneck as a . The 

situation is illustrated in Figure 2. A traveller departs from the origin at time 1t d  and arrives at the 
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bottleneck at time t . There he/she is delayed until time a t  at which time he/she exits from the 

bottleneck to arrive at the destination at time 2a d . 

Figure 2. Trip timing 
 
Each traveller has a scheduling cost expressing his/her preferences concerning the timing of the 

trip. Travellers are assumed to have a preferred arrival time *t  and they dislike arriving earlier or 
later at the destination. Travellers also prefer the trip to be as quick as possible. For a trip that starts 

at time 1t  and ends at time 2t , consider then a cost of the form  

        * *
1 2 2 1 2 2, max ,0 max ,0c t t t t t t t t           , (1.3) 

where 0 ,0    and   . In this formulation,   is the marginal cost of travel time,   is the 

marginal cost of arriving earlier than the preferred arrival time,   is the marginal cost of arriving 

later, and these values are constant. The deviation *
2t t  between the actual arrival time and the 

preferred arrival time is called schedule delay and it is possible to speak of schedule delay early and 
schedule delay late, depending on the sign of the schedule delay.v This cost formulation has become 
colloquially known as      preferences. Later, we shall consider scheduling cost of a general 

form. 

The travel time 1d  between the origin and the bottleneck adds the same constant amount to the 

scheduling cost of all travellers and so it can be set to zero without affecting the behaviour of 

travellers in the model. Similarly, the travel time 2d  between the bottleneck and the destination can 

time 

space 

a  t  1t d
  2a d

 

 

Location of  
bottleneck 
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be set to zero by redefining the preferred arrival time. So without loss of generality we may let 

1 2 0d d  . This means that the time of departure is the same as the time of arrival at the bottleneck 

and that the time of exit from the bottleneck is the same as the time of arrival at the destination. 
Travellers depart from the origin according to an aggregate schedule, described in terms of the 

cumulative departure rate R , where  R a  is the number of travellers who have departed before 

time a . So R  is similar to a cumulative distribution function: it is proportional to the probability 
that a random traveller has departed before time a . R  is increasing, since travellers never return. 

Moreover,   0R    and  R N  . The departure rate    'a R a  , wherever R  is 

differentiable.  
The bottleneck can serve at most s  travellers per time unit. Travellers who have not yet been 

served wait before the bottleneck. The bottleneck serves travellers in the sequence in which they 
arrived (first-in-first-out or FIFO). The bottleneck capacity is always used if there are travellers 
waiting before it.  

Recall that Nash equilibrium is defined as a situation in which no traveller is able to decrease 
his cost by choosing a different departure time. Since travellers are identical, this definition reduces 
to the requirement that all travellers experience the same cost and that the cost would be higher for 
departure times that are not chosen by any travellers. 

Denote the interval of departures and arrivals as  0 1,I a a . Let us consider some properties of 

Nash equilibrium. First, there will be queue from the time the first traveller departs until the last 
traveller departs, since otherwise there would be a gap in the queue and somebody could move into 
the gap to decrease cost. Second, the queue will end at the time the last traveller departs, since 
otherwise he/she could wait until the queue was gone and reduce cost. This shows that the departure 
interval is just long enough for all travellers to pass the bottleneck. Third, as the cost of the first and 
the last travellers are equal and since they experience no queue, they must experience the same cost 
due to schedule delay. These insights are summarised in the following equations. 

 1 0 / ,a a N s   (1.4) 

    * *
0 1t a a t      . (1.5) 

 
Equation (1.4) ensures that arrivals take place during an interval that is just long enough that all 
travellers can pass the bottleneck. Equation (1.5) ensures that no traveller will want to depart at any 
time outside I .  

Solving these two equations leads to  

 

*
0

*
1

,
N

a t
s

N
a t

s


 


 

 


 


 

and the equilibrium cost for every traveller is  

 
N N

s s

 
 




. 
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This is linear in the number of travellers and so the simple static model could be viewed as a 
reduced form of the dynamic model.  

Equations (1.4) and (1.5) are extremely useful in that they determine the equilibrium cost of 
travellers as a function of the number of travellers and the bottleneck capacity. The total cost is then 

2 /N s  with corresponding marginal cost 2 /N s , of which half is internal cost to each traveller 
and the other half is external. The marginal change in total cost following a change in capacity s  is 

2 2/N s . Since there is no toll, price equal travel cost: / ,ep N s  that is price is a function of N 

and s. The function is this a reduced-form supply function, which is very usefull, especially in 
analytical work, together with a trip demand function.  

There is always a queue during the interval I . This means that the bottleneck capacity is fully 
utilised and hence that sd  travellers pass the bottleneck during an interval of length d .  At time a , 

a total of  R a  travellers have entered the bottleneck, taking a total time of   /R a s  to pass. The 

first traveller enters and exits the bottleneck at time 0a . Hence a traveller arriving at bottleneck at 

time a  exits at time  0 /a R a s . Travellers are identical so they incur the same scheduling cost in 

equilibrium. Normalising * 0t  , it emerges that 

 
     

0 0max ,0 max ,0
R a R a R aN

a a
s s s s

   
   

         
   

. 

Differentiating this expression leads to 

  

 

 

0

0

, 0

, 0

R a
s a

s
a

R a
s a

s


 




 


   

   

 

during interval I . A few observations are immediately available. Initially the departure rate is 
constant and higher than s  (since   ). It is high until the traveller who arrives exactly on time. 

Later travellers depart at a constant rate which is lower than s . 
Figure 3 shows the resulting departure schedule. The horizontal axis is time and the vertical 

axis is the number of departures, ranging from 0 to N . The thick kinked curve is the cumulative 

departure rate R . Departures begin at time 0a  and end at time 1a  with  1R a N . The line 

segment connecting point 0a  to point e represents the number of travellers served by the bottleneck, 

it has slope s .  
The first departures take place at a rate larger than capacity and queue builds up. For example, 

at time a , the number of travellers who have departed corresponds to the length of the segment 
a c , while the number of travellers who have been served by the bottleneck corresponds to the 
length of the segment a b . Thus the queue at that time has length corresponding to the segment 
b c . The travellers in the queue at time a  will all have been served by time d , which is then the 
time at which the traveller departing at time a  is served by the bottleneck. The time spent in the 
bottleneck equals the length of the queue at the time of departure divided by the capacity. 
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The traveller departing at time d  exits the bottleneck exactly at time *a . Therefore the 

departure rate drops below capacity at this time and the queue begins to dissolve. It also follows that 
the queue reaches its maximum length at time d . 

For the top half of the figure, the horizontal time axis refers both to the departure from the 
origin and to the arrival time at the destination. For the bottom half of the figure, the time axis 
instead refers to the arrival time at the destination. The shaded areas on the bottom half of Figure 3 
show the composition of the scheduling cost throughout the peak. The first traveller arrives early 

and is not delayed in the bottleneck so his cost is  * 0a a   . Later travellers do not arrive as early, 

but are delayed more in the queue and incur the same trip cost. The traveller who arrives at the 
preferred arrival time is the most delayed and his trip cost comprises solely travel time cost. Later 
arrivals are less delayed in the queue, but arrive later at the destination. The last traveller is not 

delayed in the bottleneck at all, but arrives last at the destination and incurs a cost of  1 *a a   . 

 
Figure 3. Equilibrium departure schedule under      preferences 

 

a 

b 

c d 

a0 a1 

e 

* 0t   
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Optimal tolling 

The queue that arises in equilibrium in the bottleneck model is sheer waste. It generates no 
benefit at all. If travellers could be induced to depart at the capacity rate s  during the equilibrium 
interval I , then there would be no queue. All travellers (except the very first and the very last) 
would gain from reduced travel time while arriving at the destination at exactly the same time as in 
equilibrium. A main insight of the bottleneck model is that it is possible to achieve this outcome 
through the application of a toll. 

So consider a time varying toll   0    charged at the time of arrival at the bottleneck. We 

make the additional behavioural assumption that travellers choose departure time to minimise the 

sum of the toll and the trip cost. We restrict attention to tolls that have    0 1 0a a    and are 

zero outside the departure interval I . This means that (1.4) and (1.5) still apply. If the toll is well-
behaved, in ways to be explained below, then Nash equilibrium exists and departures still occur in 
the interval I . Therefore the equilibrium cost is the same as in the no-toll equilibrium discussed 
above.  

Travellers do not lose, but somebody else may gain since revenue from the toll can be used for 
other purposes. The size of the toll revenue is  

  
1

0

a

a

s ds , (1.6)  

and this represents a net welfare gain.  
Since the cost must be constant in equilibrium, we have  

    
0,

R aN
a c a a

s s
 

 
   

 
, (1.7) 

where R  is now the departure rate that results when the toll is imposed. It is (intuitively) clear that 
maximal efficiency is attained when the toll revenue is as large as it can be without destroying the 

equilibrium. Increasing  a  in (1.7) will reduce  R a .vi Moreover, the queue cannot be negative 

and so we must require that    0R a s a a  . Therefore the maximal toll maintains zero queue and 

the least possible cumulative departure rate, i.e.    0R a s a a   . This corresponds to a constant 

departure rate  a s  . The optimal toll is  

        , max ,0 max ,0
N N

a c a a a a
s s

             

for a I  and zero otherwise. This toll is initially zero at time 0a . Then it increases at the rate   

until it reaches a maximum of /N s  at time 0. It then decreases at the rate   until it is again zero 

at time 1.a  The optimal toll corresponds to the grey shaded area in Figure 3. In a sense, it just 

replaces the cost of queueing by a toll. The efficiency gain is achieved because queueing is pure 
waste whereas the toll revenue is just a transfer. 

Elastic demand 
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The discussion of the bottleneck model so far has assumed demand to be inelastic. A natural 
extension is to assume that the number of travellers deciding to participate in the peak depends on 
the equilibrium cost (Arnott et al., 1993a). The trip cost  

     0,p a c a a R a s    (1.8) 

is the same for all travellers in equilibrium. This implies that the total toll payment is  N p c  , 

where c  is the average scheduling cost of travellers. Let    0, ' 0N N     be a downward sloping 

demand function such that  N p  is the realised demand.  

This is a very convenient way to extend the model: conditional on any equilibrium number of 
travellers, the properties of equilibrium are exactly the same as in the inelastic case. The 
equilibrium number of travellers is uniquely determined since demand is decreasing as a function of 
the equilibrium cost of travellers while the equilibrium cost of travellers is increasing as a function 
of the number of travellers. This simplicity comes, however, at a cost as it requires separability 
between trip timing on the one hand and participation on the other.  

The separability of trip timing and participation implies that the optimal toll with elastic 
demand is the same as in the case of inelastic demand. To see this, note first that the optimal toll is 
able to remove queuing, so the average cost of travellers remains equal to /N s . Consider the 
following welfare function 

      
p

W p N s ds N p c


    ,  

i.e. the sum of consumer surplus and the total toll revenue. To find the welfare optimising toll, note 
that 

  1

0

,
a

a

s
c c a a da

N
  , 

which can be shown to imply that  

 
 
   '

/
N pc

N s c
p N p


 


. 

Using this to evaluate the first-order condition for maximum of  W p  leads to /p N s . That is, 

the optimal price should equal the equilibrium scheduling cost. Using (1.8) shows that the optimal 

toll is    / ,a N s c a a   , which is the same as in the case of inelastic demand.  

Optimal capacity and self‐financing 

Consider now a situation in which the optimal toll applies while capacity s  is supplied at cost 

  0K s  , with ' 0K  . We extend the social welfare function with the cost of capacity provision  

        ,
p

W p s N r dr N p c K s


     . 

For any given capacity s , the optimal value of    / ,a N s c a a    is as shown above. Note that  

  1
/

c
N s c

s s


 


. 
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This can be used to show that capacity is optimal when    'sK s N p c   . That is, the revenue 

from the optimal toll is equal to  'sK s .  

This finding leads directly to the self-financing theorem for the bottleneck model. If capacity is 

produced at constant returns to scale, i.e. if    'K s sK s  with  'K s  constant, then the optimal 

toll exactly finances the optimal capacity    K s N p c   .  If there are increasing returns to 

scale, then    'K s sK s , in which case the optimal toll cannot finance the optimal capacity.  

The self-financing result is also called the cost recovery theorem. It is an instance of a general 
self-financing theorem by Mohring & Harwitz (1962), which assumes that travel cost is 
homogenous of degree zero in capacity and use. A number of results on self-financing are 
summarised by Verhoef & Mohring (2009). 

The optimal capacity can be computed in the three regimes: no toll, coarse step toll and optimal 
fine toll. It can be shown that the optimal capacity is the lowest for the optimal fine toll, 
intermediary for the coarse toll and larger for the no toll regime (see ADL, 1993, for a proof). Note 
that these proofs are correct with inelastic (and elastic) demand.  

Scheduling preferences  

General formulation 

The      formulation of scheduling cost used above is a special case of more general 

scheduling preferences, introduced in this section. Below we revisit the bottleneck model from the 
perspective of these general scheduling preferences.  

In order to describe the traveller choice of trip timing in a more general way, we formulate 

scheduling preferences for a given trip in the form of scheduling utility  1 2,u t t , where 1t  is the 

departure time and 2t is the arrival time,. We shall make minimal assumptions regarding the 

specification of u . 

It is natural to require that 1 1/ 0u du dt  , such that it is always preferred to depart later, given 

2t .vii Similarly, requiring 2 2/ 0u du dt   ensures that arriving earlier is always preferred, given 1t . 

A marginal increase in travel time then always leads to a utility loss, since travellers will either have 

to depart earlier or arrive later. Define the function    ,v a u a a  as the scheduling utility that a 

traveller would receive if travel was instantaneous.  Assume that v  is quasi-concave and attains 

maximum at  *v t . This assures that for any 0d   there is a unique solution to the equation 

   v a v a d  . It also implies that v  is increasing for *a t  and decreasing for *a t . 

We incorporate monetary cost by considering utility to be u  . In some cases it is more 
convenient to talk about cost, which will then be the negative of utility, i.e. u  . In either case, it 
is implied that there is separability between scheduling and monetary cost. That is, a constant cost 
does not affect the preferences regarding trip timing. 
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In some situations it is necessary to specify scheduling utility further by imposing a certain 
functional form. For example, the      formulation specifies the scheduling cost completely 

up to a few parameters. Such restriction can be necessary for reasons of identification in 
econometric work, but in general it is preferable to specify as little as possible, since restricting the 
model entails the risk of introducing errors. In theoretical models it is similarly preferable to work 
with general formulations, since otherwise there is a risk that the results one may obtain depend on 
the specific formulation.  

In some cases it may be considered acceptable to impose a separability condition, just as we 
have done in the case of monetary cost and trip timing. The timing of the trip is given by a 
departure time and an arrival time and we work under the assumption that these times are all that 
matter about trip timing. The travel time is the difference between the departure time and the arrival 
time. We could equivalently describe trip timing in terms of travel time and arrival time or in terms 

of travel time and departure time. From the perspective of general scheduling utility  1 2,u t t , this 

leads to three possibilities for introducing a separability condition. 

 

     
     
     

1 2 2 2 1

1 2 2 1 2

1 2 1 2

,

,

,

u t t f t t g t

u t t f t t g t

u t t f t g t

  

  

 

 

The first condition would say that scheduling utility is separable in travel time and departure time. 
The second condition would say instead that scheduling utility is separable in travel time and arrival 
time. The      scheduling cost is a special case of this second possibility: Changing the travel 

time does not affect the traveller preferences regarding arrival time and vice versa. The third 
possible separability condition is used in the Vickrey (1973) formulation of scheduling preferences 
that we will consider in the next section. Here scheduling utility is separable in departure time and 
arrival time. That is, changing departure time, does not affect the preferences regarding arrival time 
and vice versa. 

The concept of the preferred arrival time *t  was used to define the      scheduling cost. It 

makes sense to talk about a preferred arrival time when there is separability in travel time and 
arrival time, since then the preferred arrival time is not affected by the travel time. Without this 
separability, there is no single preferred arrival time since the preferred time to arrive depends on 
the travel time. If instead scheduling utility is separable in departure time and travel time, then we 
would want to talk about a preferred departure time. In some contexts, for example the PM 
commute from work to home, this might be a more natural concept. In general, neither the concept 
of a preferred arrival time nor a preferred departure time may be relevant. We shall now discuss 
Vickrey (1973) scheduling preferences, which are separable in departure time and arrival time. 

Vickrey (1973) scheduling preferences   

Consider an individual travelling between two locations indexed by 1,2i  . He derives utility 

at the time dependent rate i  at location i . Let us say he starts the day at time 1T  at location 1 and 
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ends the day at time 2T  at location 2. If he departs from location 1 at time 1t  and arrives (later) at 

location 2 at time 2t , then he obtains scheduling utility 

      
1 2

1 2

1 2 1 2,
t T

T t

u t t s ds s ds    . (1.9) 

The formulation is illustrated in Figure 4. 

 
Figure 4. Vickrey (1973) scheduling preferences 
   

Note that when 1T  and 2T  are fixed, these numbers can be replaced by arbitrary numbers in 

(1.9) without affecting the implied preferences. Assume that 1 10,  ' 0    , 2 20,  ' 0    and 

that there is a point in time, *t , where    * *
1 2t t  . Speaking in terms of the morning commute 

these conditions imply that a traveller prefers to be at home or at work to travelling, that his/her 
marginal utility of staying later at home is decreasing, that his/her marginal utility of arriving earlier 

at work is also decreasing, and that there is a time ( *t ) when he/she would optimally transfer from 
home to work if instant travel was possible. Given a travel time of d , he/she would optimally 

depart at the time  t d  depending on d  when      1 2t d t d d   . It is straightforward to 

derive that his/her value of time would be  

 
       2

,u t d t d d
t d d

d


 
  


. 

1T
  2T

 1t   2t  

1  

2  

*t  

ha
l-0

05
39

16
6,

 v
er

si
on

 1
 - 

24
 N

ov
 2

01
0



16 
 

This is strictly increasing as a function of d . Using survey data on stated choice, Tseng & Verhoef 
(2008) provide empirical estimates of time varying utility rates corresponding to the Vickrey (1973) 
model. 

The cost of travel time variability 

When travel time is random and travellers are risk averse, the random travel time variability 
leads to additional cost, the cost of travel time variability. Both Vickrey formulations of scheduling 
preferences are useful for deriving measures of the cost of travel time variability as well as of the 
scheduling impact of the headway of scheduled services. Such cost measures can be useful to 
incorporate elements of dynamic congestion in reduced form in static models.  Consider a traveller 
who is about to undertake a given trip. The travel time for the trip is random from the perspective of 
the traveller. While he/she does not know the travel time outcome before making the trip, the 
traveller knows the travel time distribution. The travel time distribution is independent of the 
departure time of the traveller. The latter is a strong assumption but necessary for the results 

The traveller is assumed to choose his departure time optimally, so as to maximise his/her 
expected scheduling utility. That makes the expected scheduling utility a function just of the travel 
time distribution. Therefore it is possible in principle to evaluate how the expected scheduling 
utility depends on the travel time distribution. Simple expressions are available for the two Vickrey 
specifications of scheduling preferences.  

In the case of      preferences, Fosgerau & Karlstrom (2010) show that the expected trip 

cost with optimal departure time is 

    
 

1
1 s ds

  

     



     , 

which is linear in the mean and in the standard deviation of travel time. This is a practical advantage 
in applications. The expression depends on the shape of the travel time distribution through the 
presence of   in the integral and so   must be taken into account if the marginal value of standard 
deviation of travel time is to be transferred from one setting to another. In the same vein, Fosgerau 
(2009) uses      scheduling cost to derive simple expressions for the value of headway for 

scheduled services. In the case of Vickrey (1973) scheduling preferences with linear utility rates, 
Fosgerau & Engelson  (2010) carry out a parallel exercise. They show that with random travel time 
and unconstrained choice of departure time, the expected scheduling cost with the optimal choice of 
departure time is linear in travel time, travel time squared and the variance of travel time. Parallel 
results are also provided for the value of headway for scheduled services. In contrast to the case of 
     scheduling cost, it is possible also to derive a simple expression for the expected 

scheduling cost for the case of a scheduled service with random travel time. 

The bottleneck model revisited 

The results discussed above for the basic bottleneck model survive in some form with more 
general scheduling preferences. The setup of the model is as before, the only change is that now 
travellers are only assumed to have scheduling preferences of the general form discussed above. 
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Without loss of generality we may again consider 1 2 0d d  , since the exact form of scheduling 

preferences is not specified.  
It is easy to argue, using the same argument as in the simple case, that Nash equilibrium 

requires departures in an interval  0 1,I a a  satisfying 

 1 0 / ,a a N s   (1.10) 

    0 1 .v a v a  (1.11) 

This is illustrated in Figure 5. Moreover, the queue has length zero at time 0a  and 1a  but it is 

strictly positive at any time in the interior of this interval. The second condition (1.11) has a unique 
solution since v  is quasiconcave and it ensures that no traveller will want to depart at any time 
outside I . 

 
Figure 5. The function v  and the equilibrium departure interval  

 
Equations (1.10) and (1.11) determine the equilibrium utility of travellers as a function of the 

number of travellers and the bottleneck capacity. It is then straightforward to derive the marginal 
external congestion cost and the marginal benefit of capacity expansion. 

As in the basic model, there is always a queue during the interval I and a traveller arriving at 

the bottleneck at time a exits at time  0 /a R a s . Travellers are identical so they achieve the same 

scheduling utility in equilibrium  

    
0 0,

R a
v a u a a

s

 
  

 
. 

0a
  1a

 
*t  

N
s  

utility

time 
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Consider now a time varying toll   0    charged at the time of arrival at the bottleneck. We 

restrict attention to tolls that have    0 1 0a a    and are zero outside the departure interval I . 

This means that equations  (1.10) and (1.11) still apply. If the toll is not too large, then Nash 

equilibrium exists with departures still in the interval I .viii  Therefore the equilibrium utility  0v a  

is the same as in the no-toll equilibrium. As in the basic model, the optimal toll maintains the 

departure rate at capacity. The optimal toll is then given by      0a v a v a    for a I  and zero 

otherwise. 
The conclusions regarding elastic demand extend to the case of general scheduling preferences. 

That is, the optimal toll is still p u  , which is the same as in the case of inelastic demand. The 

conclusions regarding optimal capacity and self-financing also carry over to the general case. That 
is, if capacity is supplied at constant cost and optimally chosen, then the optimal toll exactly 
finances the capacity cost. 

Extensions of the bottleneck model 

The bottleneck model is useful in many ways. It generates a number of insights concerning 
dynamic congestion, while being still relatively simple and tractable. The model is useful if the 
mechanisms it describes are representative of the real world. It is, however, a highly stylised 
description of actual congested networks. It is therefore of interest to extend the model by 
introducing more relevant features. Such an exercise has two main purposes. One is to gauge the 
robustness of the conclusions of the basic model. We can have greater confidence in conclusions 
that survive in more general versions of the model. The other main purpose is to generate new 
insights that were not available with the basic model. This section proceeds with a presentation of 
some of the extensions of the bottleneck model available in the literature. 

Second best pricing 

The optimal toll described above varies continuously over time. A real toll could do the same to 
any relevant degree of precision, but there remains the problem that travellers may not be able to 
understand such a complex pricing structure. Moreover, there may be technological reasons for 
varying tolls less frequently. Acceptability of road pricing is also a fundamental issue (see, e.g. de 
Palma, Lindsey & Proost, 2007, on this issue). 

Such considerations have led researchers to consider tolls that vary in steps. In the context of 
the bottleneck, ADL (1990) consider the simplest step toll, namely a toll that is positive and 
constant during some interval and zero otherwise. Such a toll has also been called a coarse toll. 

The discrete jumps of such a toll generate some new properties of the resulting equilibrium. 
Three groups of travellers can be identified according to whether they travel before, during or after 
the tolling period. Figure 6 compares the cumulative departure curve in the step-toll equilibrium and 
compares it with the no-toll equilibrium. Consider first the time before the toll is turned on. The 
cost of the last traveller not to pay the toll should be the same as the cost of the first traveller to pay 
the toll. To achieve this equality, there must be a period with no departures between these two 
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travellers. Early in the morning travellers depart at a high rate, they pay no toll and consequently 
depart at the same rate as they would in no-toll equilibrium. Just before the departure time at which 
travellers would begin to pay the toll, departures cease for a while and the queue dissipates 
gradually as travellers are served by the bottleneck.  

Departures start again when the queue has diminished just enough for the toll payment to be 
compensated by lower queueing time. The optimal single step toll is timed such that the queue has 
just disappeared at the time the toll kicks in. Departures for the group of travellers paying the toll 
then continue following the pattern analysed above. The toll is constant for these travellers and 
hence does not affect the departure rates. The departure rate is consequently high until the time at 
which a traveller arrives at the destination exactly on time, and then it drops to a lower level. The 
optimal single step toll is timed such that the queue has just disappeared at the time the toll lifts. 

A new phenomenon emerges relating to the third and final group of travellers who do not pay 
the toll. As shown in Figure 6, there is no queue at the moment before they depart. But the first 
traveller to depart must have the same cost in equilibrium as the other travellers. This can only 
happen if there is a mass departure at this time. In a mass departure, travellers depart so closely 
together that their sequence in the queue is random. In this case, travellers are assumed to account 
for their expected trip cost. 

It turns out that all the remaining travellers depart at once under the optimal coarse toll if   

as has been found in most empirical studies. On average they are better off than a traveller who 
waits until the queue has gone before departing. But all travellers must achieve the same expected 
cost in equilibrium. Therefore the first traveller departs later under the coarse toll than under no toll. 

 

 
Figure 6. The optimal coarse toll 

 

Time 

Number of travellers 

Untolled equilibrium 

Coarse toll 
equilibrium 

Charging period 
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ADL (1990) carried out their analysis for the case of a single step coarse toll. Laih (1994; 2004) 
extended this analysis to the case of multistep tolls using a slightly modified queueing technology in 
which some travellers can wait in a separate queue for the toll to lift, while those paying the toll 
pass the bottleneck.ix Laih then showed that at most n/(n + 1) of the total queueing time can be 
eliminated with the optimal n-step toll. Daganzo & Garcia (2000) also consider a step toll with the 
modified queueing technology. They divide travellers into two groups. Travellers from the first 
group are not liable to pay any toll. Travellers from the second group are liable to pay a constant 
step toll if they pass the bottleneck during the tolling period, otherwise they do not have to pay any 
toll. If the toll is high enough then travellers from the tolled group will avoid the tolling period. The 
tolling period is timed such that it fits exactly with the equilibrium departure interval of the untolled 
group. As a consequence, travellers from the untolled group can find an equilibrium during the 
tolling period and be strictly better off than without the scheme. Travellers from the tolled group are 
not worse off, since they travel during the same interval as without the scheme and avoid paying 
any toll by travelling outside the toll period. The essential insight is that the equilibrium cost is 
determined by the first and last travellers (as in (1.5) or (1.11)) as long as capacity is fully utilised 
during the departure interval.  

The function of the toll in this example is to reserve the bottleneck capacity for a specific group 
of travellers during a specific interval of time. Shen and Zhang (2010) describe a mechanism that 
uses ramp metering to achieve a similar effect.  

Random capacity and demand  

ADL (1999) consider bottleneck congestion in a situation where capacity varies randomly from 
day to day. The ratio is fixed within a day and given the ratio the evolution of the queue is then 
deterministic. Travellers choose departure time without knowing the random ratio of the day. They 
are assumed to find equilibrium in expected utility given the information they have. ADL identify 
circumstances in which the static model is not consistent with a reduced form of the dynamic 
model.   A perhaps surprising result is that providing more information can decrease welfare when 
demand is elastic and congestion is not efficiently tolled. 

Lindsey (2009) considers self-financing in the bottleneck model with random capacity and 
demand. He finds that the Mohring-Harwitz self-financing theorem survives randomness as long as 
the information used to set the optimal toll is the same as the information that is available to 
travellers.  

de Palma and Fosgerau (2009) include random travel time variability in a different way. They 
consider the bottleneck model with fixed capacity but where the FIFO property of the bottleneck 
model is replaced by random queue sorting, where all travellers in the queue at any given time have 
the same probability of exiting the queue at that moment. A range of intermediate regimes is also 
considered. Equations (1.10) and (1.11) still apply and the results that follow from these hence also 
apply. 

Queues take time to dissipate. This physical property of queues has implications for how 
queues evolve over the course of a day. An empirical regularity of congested demand peaks is that 
the mean travel time peaks later than the variance of travel time. Fosgerau (2010) shows how this 
phenomenon arises in a dynamic model of congestion with the ratio of demand to capacity being 
random. 
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Heterogeneity 

An extension to the basic bottleneck model which is clearly very important is to allow for 
heterogeneity. The basic model describes travellers as having identical scheduling preferences and 
identical preferred arrival time. This is very far from reality. For example, using survey data, 
Fosgerau (2006) estimates the distribution of the value of travel time,  . After conditioning on a 
number of controls, he finds that the remaining variation in the value of travel time has more than a 
factor of 50 between the 20th and 80th percentiles of the value of travel time distribution. There is 
every reason to think that preferences regarding earliness and lateness are similarly heterogeneous.  

One of the first questions to ask when such heterogeneity is allowed in the bottleneck models is 
whether equilibrium still exists and whether it is unique. Analysis of the model would be severely 
complicated if this failed. This is the subject of Lindsey (2004), who presents general conditions 
under which equilibrium exists in the basic bottleneck model extended with heterogeneity in the 
form of a finite number of homogenous groups of travellers. Lindsey provides a review of previous 
literature regarding preference heterogeneity in the dynamic model. 

Parking 

Parking is costly in that it competes for urban space with other uses. Cruising for parking is a 
significant contributor to urban congestion. Arnott and co-authors have published a series of papers 
on this and related issues, a recent reference is Arnott and Rowse (2009).  

There are a few papers on downtown parking in a dynamic framework in which parking 
occupies space and the attractiveness of a parking space decreases with the distance to the CBD. 
ADL (1991) use the bottleneck model to assess the relative efficiency of road tolls and parking fees. 
Without pricing, drivers occupy parking in order of increasing distance from the CBD. A time-
varying toll can prevent queueing, but does not affect the order in which parking spots are taken. 
Optimal location-dependent parking fees may be superior; they do not eliminate queueing, but 
induce drivers to park in order of decreasing distance from the CBD, thereby concentrating arrival 
times closer to work start times. Zhang, Huang and Zhang (2008) integrate AM and PM commutes 
with parking in this framework. 

Small networks with dynamic congestion 

This section considers some simple extensions from one link to small networks. Consider first 
two routes in parallel connecting an origin with a destination. There are 0N   travellers with 
     scheduling preferences. They each have to choose a route and a departure time. Each 

route has a certain fixed travel time and a bottleneck with fixed capacity. Denote the fixed travel 

times by iT  and the capacities by , 1, 2is i  . Denote also the number of travellers choosing route i  

as 0in   where 1 2N n n  , since all travellers choose one and only one route. Moreover, let i  

denote the arrival rate at the bottleneck for each of the routes.  
Consider first the choice of departure time conditional on the number of travellers on each 

route. From the previous analysis we know that in equilibrium they incur a trip cost of /i in s  on 

each route. There exists a unique equilibrium where  
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 1 2
1 2

1 2

n n
T T

s s
      .  

This is equivalent to (1.1) for the static model. It is straightforward to verify that the equilibrium 
number of travellers on route 1 is 

  1 1 2
1 2 1

1 2 1 2

s s s
n N T T

s s s s




  
 

, 

and the equilibrium cost is 

 1 1 2 2

1 2 1 2

s T s T N
C

s s s s
 

 
 

. 

This shows that two bottlenecks in parallel act just like a single bottleneck. The equivalent single 
bottleneck would have a fixed travel time that is a weighted average of the fixed travel times on the 
two routes and it would have a bottleneck capacity that is the sum of the capacities of the two 
routes. This result can be generalised to any number of parallel routes.  

A toll may be set at each bottleneck just as if it was a single bottleneck with elastic demand. As 
we have seen (page 6), the optimal toll does not affect the cost of using each route. Hence the split 
of travellers between routes is not affected by optimal tolling: The optimal toll does not reallocate 
between routes, but only across departure times. This is a very different conclusion than was 
reached in the static model, where the social optimum had a different allocation of travellers on 
routes than the equilibrium. 

There is another situation in which several bottlenecks acts like a single bottleneck. This 
happens when bottlenecks are connected in a serial manner. In this case, the effective capacity is 
just the minimum of the bottleneck capacities. That is, the binding capacity constraint is that of the 
smallest bottleneck. 

The property that parallel or serial bottlenecks can be reduced to a single equivalent bottleneck 
seems likely to survive if      preferences are replaced by general preferences. The 

description of the equivalent bottleneck does become more complicated. The property that 
equilibrium usage of the parallel routes is optimal also survives.  

ADL (1993b) analyse a Y-shaped network of bottlenecks to show that a Braess type paradox 
can arise: an increase in capacity can lead to increased cost. Analysis of more complicated networks 
is complicated and no general results on networks of bottlenecks seem to be available. 

Large networks 

The extension of the dynamic model to large networks remains a difficult problem. So far, 
existence and uniqueness of equilibrium have not been established (in spite of many attempts). The 
dynamic traffic assignment problem (Merchant & Nemhauser, 1978) is the subject of a large 
literature spanning several disciplines. Heydecker & Addison (2005) and Zhang & Zhang (2010) 
derive some analytical results. 

Otherwise, the literature mostly uses numerical methods. Dynamic traffic assignment models 
are also difficult to work with numerically due to the dimensionality of the problem, which quickly 
becomes extreme. 
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Consider a simulation model in which travellers choose the least-cost path through a network. 
Conditional on the actions of all other travellers, the problem of finding the least-cost path is 
feasible to solve using well-established algorithms (Dijkstra, 1959). These algorithms are quite 
efficient but nevertheless require nontrivial time to execute. The dynamic version of such a model is 
formulated in continuous time; we may want to approximate it using discrete time steps of one 
second. In, say, a four hour peak period there are 14,400 possible departure time choices. In order to 
simulate the choice of departure time, we have to find the least-cost path for each possible departure 
time. Consider a city which can be adequately represented by a zone system of 500 zones. Then the 
OD-matrix, indicating the size of origin-destination flows is a 500 by 500 matrix with 25,000 
entries. So the model will have to solve 3.6 billion shortest path problems through the network 
connecting the 500 zones. This will have to be done many times in order for such a simulation to 
identify an equilibrium in which no traveller will want to change his choice of departure time and 
route. The result is a huge computational problem and it is practically impossible to handle using a 
naive approach.  

This section describes one approach taken to this problem, used in the model METROPOLIS 
(de Palma et al., 1997). The basic idea for reducing the amount of computation is to drop the 
assumption that travellers can choose the shortest path considering the whole network at once. At 
each intersection, travellers are able to observe the travel cost on each downstream link. But they do 
not observe the travel cost on links further downstream. Instead they are able to form an expectation 
regarding the travel cost from the next downstream nodes until the destination. Travellers then 
choose the next link with the smallest expected total cost to reach the destination, i.e. the smallest 
sum of the cost of the next link and the downstream expected cost. This portrays travellers as 
making dynamic discrete choices and these are readily formulated as a dynamic programming 
model using the Bellman principle.x,xi  

The simulation model looks for equilibrium using a process which can be interpreted as a day-
to-day learning process. At the end of each day, the past outcomes for all travellers are pooled and 
this pool of information is common knowledge. During the next day, travellers have this 
information available when forming expectations. The idiosyncratic error terms are the same day 
after day (for departure time choice model). The choice of route can be either deterministic or 
stochastic (in such case, error terms are i.i.d. over space and time).  

Other congestion functions  

Henderson (1974) formulated a dynamic model of congestion using a similar setup to Vickrey 
(1969), but in which the travel time is determined by the flow at the time of departure and where 
flows departing at different times do not interact. Chu (1995) showed that the original Henderson 
formulation had problems due to nonexistence of equilibrium and proposed a reformulation in 
which travel time for a traveller is instead determined by the flow at the time of arrival at the 
destination. The Chu formulation has the Vickrey bottleneck as a limiting case. 

Conclusions 

This paper has presented an overview of dynamic models of congestion, focusing on results 
derived from the Vickrey bottleneck model. This model combines in a compact way the essential 
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features of congestion dynamics. We have also argued that some fundamental features of 
congestion are inherently dynamic, which makes dynamic models indispensable for many purposes. 
In particular, dynamic models can be used to study a variety of policies that cannot be studied with 
static models. These include road pricing with a time-varying component, flexible work hours, 
staggered work hours, dynamic access control, and ramp metering used to differentiate capacity 
allocation. Pricing policies are much more effective when tolls depend on the time of the day, for 
stylised as well as for real networks (see Santos, 2004).  

Research into congestion dynamics remains a very active area with many unresolved issues of 
high importance. We will mention a few here. Economic analyses using dynamic models of 
congestion are usually undertaken on the assumption that users are in Nash equilibrium. It would 
therefore be of interest to give general conditions under which Nash equilibrium exists (for general 
networks). It would further be of interest to specify learning mechanisms that would lead to Nash 
equilibrium. A learning mechanism is a rule that travellers use to update their choice of departure 
time and route in the presence of information concerning past outcomes. The existence of learning 
mechanisms leading to Nash equilibrium would support the presumption that the notion of Nash 
equilibrium is useful as a benchmark for actual congestion phenomena. Knowledge about learning 
mechanisms leading to Nash equilibrium may also be useful for the design of algorithms to find 
Nash equilibrium in simulation models.  

Progress would also be desirable concerning the nature of scheduling preferences. The 
discussion in this paper has taken for granted that travellers are equipped with scheduling 
preferences and that these can be regarded as exogenous from the point of view of our analysis. Our 
transportation perspective has led us to be concerned with the timing of trips and we view travellers 
simply as having preferences regarding timing such that they can respond to circumstances by 
changing their trip timing in sensible ways. These times are hardly the fundamental objects of 
preference and, strictly speaking, it only makes sense to formulate preferences in these terms when 
circumstances such as the activities before and after the trip can be regarded as exogenous. This is, 
however, not a very appealing position. If I know that my trip will take more time, then I will adjust 
my schedule for the day to take this into account. I care, e.g., about not being late for appointments. 
But I make the appointments myself and so my scheduling preferences are a consequence of choice. 

It is natural to ask why commuters mostly prefer to arrive at work at the same time. Various 
contributions have answered this question by pointing to agglomeration forces at the workplace, 
whereby productivity and wages are affected by the degree of overlap in work times, see Henderson 
(1981), Wilson (1988), Hall (1989). If this view is correct, then changes to the transport system will 
affect agglomeration, which in turn will affect commuter scheduling preferences. It remains to be 
seen how such mechanisms matter for our understanding of the effect of transport policies. 

Endogeneity of scheduling preferences may also matter for the value of information. Consider a 
trip exposed to random travel time variability. At some point in time I will learn the size of delay. If 
scheduling preferences are exogenous, then it only matters whether I learn about the size of the 
delay soon enough to adjust my departure time. If scheduling preferences are endogenous, then it 
also matters whether I learn about the size of the delay soon enough to adjust my schedule (Kreps 
and Porteus (1978) consider dynamic choice behaviour under conditions of uncertainty, with 
emphasis on the timing of the resolution of uncertainty.  
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As discussed in this paper, the current state of the topic of dynamic congestion modelling 
provides a range of general insights from small stylised models. Numerical simulation models exist 
to deal with the complexities of real size networks. In between, there is a large gap. Numerical 
simulation has the drawback that it must rely on particular assumptions, which may or may not 
provide good approximations to the object of interest.  So a main motivation for continued 
theoretical research into dynamic models of congestion is the desire for increased generality. The 
fewer assumptions required for a conclusion, the more certain we can be that it applies. As this 
paper has discussed, there are a number of directions in which we would like to extend our models 
so that they become better able to account for the facts that travellers are very heterogeneous, they 
make route and scheduling decisions based on limited information, they interact heavily in ways 
related to scheduling and they move about in complex networks that are subject to random shocks. 
The other main motivation for research into the area is the potential for providing a better empirical 
foundation for our models. One possibility that naturally comes to mind is to seek to utilise data 
sources such as GPS data to obtain a better understanding of actual trip scheduling behaviour.  

In conclusion, many exciting things have been done, giving us many important insights into 
congestion dynamics, and there are still many exciting things waiting to be done. 
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ii For a more detailed analysis of congestion in the static model see the G. Santos and E. 

Verhoef contributions. 
iii We assume the parameters are such that this equation leads to positive flows on each route.  
iv 'C  denotes the derivative of C . 
v Small (1982) tested a range of formulations of scheduling preferences, including the 

     preferences as a special case.  
vi Since  2 1 2, 0c t t  . This follows since   . We use subscripts to denote partial 

derivatives.  
vii We use subscripts to denote partial derivatives. 
viii Provided that the toll does not decrease too quickly. A quickly decreasing toll may induce 

travelers to avoid certain departure times, which leads to unused capacity. 
ix Laih (1994) did not recognize that it was necessary to reformulate the queueing technology 

in order to obtain his results. This was rectified in Laih (2004). 
x The exact optimization procedure used in METROPOLIS was never published since it is 

commercial proprietary software. 
xi Dynamic discrete choice models are surveyed in Aguirregabiria & Mira (2010). 

ha
l-0

05
39

16
6,

 v
er

si
on

 1
 - 

24
 N

ov
 2

01
0


