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                AbstractAbstractAbstractAbstract    
 

Recent increases in energy prices, especially oil prices, have become a principal 
concern for consumers, corporations, and governments. Most analysts believe that 
oil price fluctuations have considerable consequences on economic activity. Oil 
markets have become relatively free, resulting in a high degree of oil-price 
volatility and generating radical changes to world energy and oil industries. As a 
result oil markets are naturally vulnerable to significant negative volatility. An 
example of such a case is the oil embargo crisis of 1973. In this newly created 
climate, protection against market risk has become a necessity. Value at Risk 
(VaR) measures risk exposure at a given probability level and is very important 
for risk management. Appealing aspects of Extreme Value Theory (EVT) have 
made convincing arguments for its use in managing energy price risks. In this 
paper, we apply both unconditional and conditional EVT models to forecast Value 
at Risk. These models are compared to the performances of other well-known 
modelling techniques, such as GARCH, historical simulation and Filtered 
Historical Simulation.  Both conditional EVT and Filtered Historical Simulation 
procedures offer a major improvement over the parametric methods.  
Furthermore, GARCH(1, 1)-t model may provide equally good results, as well as 
the combining of the two procedures. 
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1. Introduction1. Introduction1. Introduction1. Introduction    
Recent increases in energy prices, especially oil prices, have 

become a principal concern for consumers, corporations, and 
governments. Oil as a primary source of energy is needed for 
industrial production, electric power generation, and transportation. 
The major oil price shocks during the last three decades were the 
1973 oil embargo, the 1979-80 events in Iran and Iraq, the 1990 
invasion of Kuwait and latest crisis in the crude oil market in 1999-
2000.  Numerous studies were carried out to investigate possible 
effects of oil price fluctuations on the main economic indicators of oil-
importing countries. Most analysts believe that oil price fluctuations 
have considerable consequences on economic activity. Among others, 
Sadorsky (1999) suggests changes in oil prices have an impact on 
economic activity, but changes in economic activity have little impact 
on oil prices. He shows that oil price volatility shocks have 
asymmetric effects on the economy and finds evidence of the 
importance of oil price movements when explaining movements in 
stock returns. 
 

Oil prices were primarily determined by long-term contracts 
between oil producers and international oil companies. OPEC1 the 
most oil dominate the price and quantity of oil sold.  Prices 
fluctuated when these long-term contracts were revised, but prices 
were not otherwise particularly responsive to market conditions.  
However, the oil market began to change and become relatively free, 
resulting in a high degree of oil-price volatility and generating radical 
changes to world energy and oil industries.  Oil market is therefore 
naturally vulnerable to volatility (see Fattouh, 2005) as it’s very 
linked to the sources and the potentially sources of instability, 
including political and economic factors2. In this newly created 
climate and in response to an unpredictable, volatile and risky 
environment, protection against market risk has become a necessity.  
It is therefore important to model these oil price fluctuations and 
implement an effective tool for energy price risk management. Value 
at Risk has become a popular risk measure in the financial industry, 
whose origins date back to the early 1990’s at J.P. Morgan.  VaR 
answers the question about how much we can lose with a given 
probability over a certain time horizon. The great popularity that 
                                                 
1 Organization of Petroleum Exporting Countries: the cartel controls 70 percent of the world’s known oil reserves and contributes to about 40 percent to world oil 

production. 

2 For a discussion of the articulation between economic and political factors in the formation of petroleum prices (see Giraud 1995). 
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this instrument has achieved is essentially due to its conceptual 
simplicity: VaR reduces the (market) risk associated with any 
portfolio to just one number, the loss associated to a given 
probability. 

 
Existing approaches for VaR estimation may be classified into 

three approaches. First, the non-parametric historical simulation (HS) 
approach provides simple empirical quantiles based on the available 
past data. Second, fully parametric models approach based on an 
econometric model for volatility dynamics and the assumption of 
conditional normality (J.P. Morgan’s Riskmetrics and most models 
from the GARCH family) describe the entire distribution of returns 
including possible volatility dynamic. Third, extreme value theory 
approach parametrically models only the tails of the return 
distribution. Since VaR estimations are only related to the tails of a 
probability distribution, techniques from EVT may be particularly 
effective. Appealing aspects of EVT have made convincing arguments 
for its use in calculating VaR and for risk management in general. 

 
Extreme value theory has been applied in many fields where 

extreme values may appear. Such fields range from hydrology 
(Davison and Smith, 1990; Katz et al.; 2002) to insurance (McNeil, 
1997; Rootzen and Tajvidi, 1997) and finance (Danielsson and de 
Vries, 1997; McNeil, 1998; Embrechts, 1999; Gençay and Selçuk, 
2004). EVT provides a solid framework to formally study the 
behavior of extreme observations.  It focuses directly on the tails of 
the sample distribution and could, therefore, potentially perform 
better than other approaches in terms of predicting unexpected 
extreme changes (see for exemple, Dacorogna et al., 1995; Longin, 
2000). However, none of these studies has reflected the current 
volatility background. In order to overcome this shortcoming, McNeil 
and Frey (2000) proposed a combined approach that reflects two 
stylized facts exhibited by most financial return series, namely 
stochastic volatility and the fat-tailedness of conditional return 
distributions (see, Pagan, 1996). 

 
Within oil markets, implementing a risk measurement 

methodology based on the statistical theory of extremes is an 
important issue. To the best of our knowledge, very few studies have 
focused on measuring the risk forecasts in the oil market despite the 
significant need and interest to manage energy price risks.  Among 
the few studies on estimating VaR on energy market with EVT, is 
the paper of Krehbiel and Adkins (2005) who analyzed the price risk 
in the NYMEX Energy Complex using an extreme value theory 
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approach. Given the importance for an effective price risk 
management tool, a more comprehensive study seems prudent. 

 
The purpose of this paper is to investigate the relative predictive 

performance of various alternative Value at Risk (VaR) models. Our 
main focus is on extreme value theory-based models. To this end, 
both unconditional and conditional Extreme Value Theory (EVT) 
models are used to forecast VaR. These models are compared to the 
performances of other well-known modeling techniques, such as 
GARCH, historical simulation, and Filtered Historical Simulation. 
Backtesting criteria (unconditional and conditional coverage) are 
implemented to test the statistical accuracy of the candidate models.  
Results show that Conditional EVT and Filtered Historical 
Simulation procedures offer a major improvement over the parametric 
methods.  Furthermore, GARCH (1,1)-t model may give equally good 
results, as well as the combining of the two procedures. 

 
This paper is organized as follows: Section 2 briefly reviews the 

principles of risk measurement and extreme value theory. Section 3 
discusses various parametric and non-parametric methods that we 
apply in order to forecast risk measures. Section 4 discusses threshold 
choice for EVT. Section 5 presents the evaluating framework of VaR 
models. Section 6 provides our empirical results and Section 7 
concludes the paper. 
    
2  2  2  2   Risk measures and Extreme Value Theory Risk measures and Extreme Value Theory Risk measures and Extreme Value Theory Risk measures and Extreme Value Theory    
2.1   Risk measures2.1   Risk measures2.1   Risk measures2.1   Risk measures        

Value at Risk (VaR) is a popular risk measure in the financial 
industry, whose origins date back to the early 1990’s at J.P. Morgan.  
VaR is defined as the maximum loss that will be incurred on the 
portfolio with a given level of confidence over a specified period. In 
other words, for a given time horizon t and confidence level q, the 
VaR is the loss in market value over the time t that is exceeded with 
probability 1-q. For example, if q is equal to 99% and the holding 
period is one day, the actual losses on portfolio should exceed VaR 
estimate not more than once in 100 days on average. 

 
From a statistical point of view, VaR entails the estimation of a 

quantile of the distribution of returns.  To define VaR precisely, let X 
be the random variable whose cumulative distribution function FX 
describes the negative3 profit and loss distribution (P&L) of the risky 
financial position at the specified horizon time. Formally, value at 

                                                 
3 Negative values of X correspond now to profits and positive values of X correspond to losses.  
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risk is a quantile of the probability distribution FX, that is roughly, 
the x corresponding to a given value of 0 < q = FX (x) < 1.  
                         VaRq(X)=F-1(q),                        (1)                                  
where F-1denotes the inverse function of FX. 
 

Artzner et al.(1997, 1999) show that VaR has various 
theoretical deficiencies as a measure of market risk. They conclude 
that the VaR is not a coherent measure of risk as it fails to be 
subadditive in general. On the other hand, VaR gives only a lower 
limit of the losses that occur with a given frequency, but tell us 
nothing about the potential size of the loss given that a loss exceeding 
this lower bound has occurred. These authors propose the use of the 
so-called expected shortfall or tail conditional expectation instead. 
The expected shortfall measures the expected loss given that the loss 
L exceeds VaR. In particular, this risk measure gives some 
information about the size of the potential losses given that a loss 
bigger than VaR has occurred.  Expected shortfall is a coherent4 
measure of risk as defined by Artzner et al. (1999). Formally, the 
expected shortfall for risk X and high confidence level q is defined as 
follows:  
                    Sq(X)=E(X\X>VaRq(X))          (2) 
 
2.2 Extreme 2.2 Extreme 2.2 Extreme 2.2 Extreme Value TheoryValue TheoryValue TheoryValue Theory    

The purpose of this section is to summarize the set of results of 
the extreme value theory necessary to develop the theoretical 
foundation for this paper. Readers interested in a more detailed 
background may consult various texts on EVT such as Embrechts et 
al. (1997) and Reiss and Thomas (1997). The modelling of extremes 
may be done in two different ways: modelling the maximum5 of a 
collection of random variables, and modelling the largest values over 
some high threshold. Consequently, we have two significant results: 
First, the asymptotic distribution of a series of maxima (minima) is 
modelled and under certain conditions the distribution of the 
standardized maximum by the generalized extreme value (GEV) 
distribution.  The second significant result concerns the distribution 
of excess over a given threshold and shows that the limiting 
distribution is a generalized Pareto distribution (GPD). 
 
2.2.12.2.12.2.12.2.1 The Generalized Extreme ValueThe Generalized Extreme ValueThe Generalized Extreme ValueThe Generalized Extreme Value    

Suppose we have an independent and identically (i.i.d.) 
sequence of random variables X1,X2,...,Xn representing risks or losses 
                                                 
4 A risk measure that satisfies monotonicity, translation invariance, homogeneity and sub-additivity  properties is called coherent. 

5 Max (X
1

, X
2

,...,X
n

) = Min(-X
1

, -X
2

,...,-X
n

) Therefore, all the results for the distribution of maxima leads to an analogous result for the distribution of minima 

and vice versa. We will discuss the results for maxima only. 
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with unknown common cumulative distribution function (c.d.f), 
F(x)= Pr(Xi ≤ x). As a convention, a loss is treated as a positive 
number and extreme events take place when losses come from the 
right tail of the loss distribution F. Let Mn = max(X1, X2,...,Xn) 
denote the nth sample maximum in a sample of n losses. We are 
interested in the behavior of Mn as n approaches infinity. For a 
sample of i.i.d. observations, the c.d.f of Mn is given by 
                              
                    Pr(Mn ≤ x) = F(x)n                     (3)  
 
This result implies that Pr(Mn ≤ x) approaches 0 or 1 depending 
whether F has a finite upper end-point or not, as n approaches 
infinity. Let xF be the finite or infinite upper end-point of the 
distribution F such that xF = {x: F(x) < 1}.  
 
While result (3) is of no immediate interest, it tell us nothing about 
the distribution of Mn for large n, we rely on the Fisher-Tippett 
theorem to examine the asymptotic behavior of the distribution. It 
does for the maxima of i.i.d. random variables what the central limit 
theorem does for sums. Fisher-Tippett showed that if there exist 
norming constants an > 0 and bn ∈ IR and some non-degenerate 

distribution function H such that: Hd→
n

nn

a
b-M then H is one of the 

following three6 types:  

                Weibull: 
�
�
�

>
>≤

=Ψ
0        x 1, 

0   0,    x ],exp[-(-x)
 )(

αα

α x  

                Gumbel:     ),exp(-e )( -x=Λ x  x ∈ IR 

                Fréchet: 
�
�
�

>>

≤
=Φ

0   0,   x ],exp[-x
0                 ,0

 )( - ααα

x
x  

 
By taking the reparameterization ξ = 1/α due to Jenkinson (1955) 
and von Mises (1936), Weibull, Gumbel and Fréchet distributions can 
be represented in a unified model with a single parameter. This 
reparameterized version, H, is called the generalized extreme value 
(GEV) distribution (see Embrechts et al., 1997, pp.121-152).        
 

                                                 
6 The distributions Ψ

α  
(x), Λ(x) and φ

α are called standard extreme value distributions. 
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   x,0),exp(

0 x  1  0,   ),x)  exp(-(1
(x)H

1--

�
�

�

�
�

�

�

+∞≤≤∞−=−

>+≠+
=

− ξ

ξξξ ξ

ξ
xe

           (4) 

                                    
In this case, X (and the underlying distribution F) is said to belong 
to the Maximum Domain of Attraction of the extreme value 
distribution of H and we write X ∈ MDA( ξH ).  
 

The most important parameter is ξ , which indicates the 
thickness of the tail of the distribution. The larger the tail index, the 
thicker the tail. It determines, essentially, the tail behavior of H.  
Distributions that belong to MDA( ξH ), for ξ  > 0  are called heavy7 
tailed (examples are Pareto, Cauchy, Student-t, loggamma). In 
practice, modeling all block maxima is wasteful if other data on 
extreme values are available. Therefore, a more efficient approach is 
to model the behavior of extreme values above a high threshold. 
 
2.2.22.2.22.2.22.2.2 The Generalized Pareto DistributionThe Generalized Pareto DistributionThe Generalized Pareto DistributionThe Generalized Pareto Distribution    
 Suppose that X1,X2,...,Xn are n independent realizations of a 
random variable X with a distribution function F(x). Let xF be the 
finite or infinite right endpoint of the distribution F. The distribution 
function of the excesses Xi over certain high threshold u is given by 

     Fu (y)=Pr(X-u  ≤ y | X> u)=
F(u)-1

 F(u)-u) F(y + , y ≥  0      (5) 

 
 Balkema and de Haan (1974) and Pickands (1975) theorem8 
showed that for a certain class of distribution functions, the 
generalized Pareto distribution (GPD) is the limiting distribution for 
Fu(y) as the threshold tends to the right endpoint. They stated that if 
the distribution function F ∈ DAM(Hξ ) then it is possible to find a 
positive measurable function )(uβ such that:                                                   
                        
            

Fxu →
lim

uxy F −≤≤0
sup  ( ) (y)G-(y)F u,u βζ =0                   (6) 

  

                                                 
7 Thin-tailed distributions include the normal, exponential, gamma and lognormal belong to MDA (H

0
), while distributions with a finite right-hand end points (such 

as the uniform and beta distributions) belong to MDA (H ξ ), for ξ < 0. 

8 For more details consult Theorem 3.4.13 on page 165 of Embrechts et al. (1997).  
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 where ( ) )(
,

yG
uβξ , the GPD, is 

          ( )
( )

( )�
�

�

�
�

�

�

=−−

≠��
�

�
��
	



+

=

−

0),exp(1

0,1-1
(y) G

1

,

ξ
β

ξ
β

ξ ξ

βξ

u
y

u
y

u              (7) 

where y ≥  0 for ξ  ≥  0 and 0 ≤  y ≤ - ( )
ξ

β u  for ξ< 0. The choice of the 

threshold u is crucial for the success of the GPD modelling. The 
appropriate value is typically chosen by a trade-off between bias and 
variance (see section 4). 
 ξ  is the important shape parameter of the distribution and is an 
additional scaling parameter β (u). The GPD embeds a number of 
other distributions. If ξ  > 0 then G is a reparametrized version of the 
ordinary Pareto distribution, which has a long history in actuarial 
mathematics as a model for large losses; ξ  = 0 corresponds to the 
exponential distribution and ξ  < 0 is known as a Pareto type II 
distribution. The first case is the most relevant for risk management 
purposes since the GPD is heavy-tailed when ξ  > 0. Estimates of the 
parameters ξ  and β (u) can be obtained from expression (7) by the 
method of maximum likelihood (see Embrechts et al.(1997) ). For ξ  
>-0.5, Hosting and Wallis (1987) present evidence that maximum 
likelihood regularity conditions are fulfilled and the maximum 
likelihood estimates are asymptotically normally distributed. 
 
3   Statistical Approaches to Value3   Statistical Approaches to Value3   Statistical Approaches to Value3   Statistical Approaches to Value----atatatat----RiskRiskRiskRisk    
 In this section, we present the various parametric and non-
parametric methods that we use to forecast risk measures, VaRq, in 
the oil market. Our main interest is on extreme value theory based 
modes: we consider the unconditional GPD, the GARCH models, the 
conditional GPD, the historical simulation, filtered historical 
Simulation and finally we include the unconditional normal model 
where we assume that the returns come from the normal distribution 
with historically estimated mean and variance. 
        
3.13.13.13.1 The PeaksThe PeaksThe PeaksThe Peaks----overoveroverover----Threshold Model: the GPD approachThreshold Model: the GPD approachThreshold Model: the GPD approachThreshold Model: the GPD approach    
 Since VaR estimations are only related to the tails of a 
probability distribution, techniques from EVT may be particularly 
effective. Appealing aspects of EVT have made convincing arguments 
for its use in calculating VaR. As we have discussed, the modelling of 
extremes may be done in two different ways: modelling the maximum 
of a collection of random variables, and modelling the largest values 
over some high threshold, known as the ‘Peaks-Over-Threshold 
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(POT)’ model. In this paper, we use the latter, more modern 
approach to modelling extreme events. The POT models are generally 
considered to be more appropriate for practical applications, due to 
their more efficient use of the limited data as all observations above 
the threshold are utilized to estimate parameters of the tail. 
 
 Our approach to the GPD modeling is as follows. We fix a 
sufficiently high threshold u. Let Y1... Yn be the excesses above this 
threshold where Yi = Xi-u. Balkema and de Haan (1974) and 
Pickands (1975) theorem (6) justify that Fu(y)= ( ) (y)G , uβξ provided the 
threshold is sufficiently high. By setting x = u + y, an approximation 
of F(x), for x>u, can be obtained from equation (5):  
 
                 ( ) (u), F (y)F(u))G-(1F(x) , += uβξ                                                                                 (8)  
  
and the function F(u) can be estimated non-parametrically using the 
empirical c.d.f: 

                                       , 
n
N-n

(u)F u
^

=                                         

(9) 
where Nu represents the number of exceedences over the threshold u 
and n is the sample. After substituting equations (7) and (9) into 
equation (8), we get the following estimate for F(x) 

                         
,

^

^^
1

^
1

n
uN

- 1(x)
^
F

 

�
�
�

�

�

�
�
�

�

�

�
�
�

�
�
�
�

� −+

−

=
β

ξ
ξ

ux   (10) 

where 
^
ξ  and 

^
β  are estimates of ξ  and β , respectively, which can be 

obtained by the method of maximum likelihood. 
 
For q>F(u), VaRq can be obtained from (10) by solving for x 
  

                 ( )
�
�
�

�

�

�
�
�

�

�

−��
�

	



�

�
−+

−

11u= VaR

^
^

^

^

q

ξ

ξ

β q
N
n

u

                   (11) 

where u is a threshold, β  is the estimated scale parameter, 
^
ξ  is the 

estimated shape parameter.  
 The main advantage of unconditional GPD approach is that it 
focuses attention directly on the tail of the distribution. However, it 
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doesn’t recognize the fact that returns are non-i.i.d 
 
3.2 GARCH 3.2 GARCH 3.2 GARCH 3.2 GARCH ModellingModellingModellingModelling 

The issue of modelling returns that account for time-varying 
volatility has been widely analyzed in financial econometrics 
literature. Two main types of techniques have been used: Generalized 
Autoregressive Conditional Heteroscedasticity (GARCH)-models 
Bollerslev (1986) and stochastic volatility models. GARCH processes 
have gained fast acceptance and popularity in the literature devoted 
to the analysis of financial time series. These time series models 
capture several important features of the financial series, such as 
volatility clustering and leptokurticity.  

As opposed to the EVT-based models described above, GARCH 
models do not focus directly on the returns in the tails. Instead, by 
acknowledging the tendency of financial return volatilities to be time-
dependent, GARCH models explicitly model the conditional volatility 
as a function of past conditional volatilities and returns. Let n

0tt }{X =  
refer to be the negative return series. We assume that the dynamics 
of the return series follows the stochastic process:  

   

),g( 

1))(z V0,)f(E(z 
~

i.i.d
 z

                         z  µ      µ   X

1-t
2

ttt

tttttt

Ω=

==

+=+=

tσ

σε

     (12) 

where E(X t |Ω 1-t )= tµ  denotes the conditional mean, given the 
information set available at time t-1, 1-tΩ , n

0tt }{ =ε  is the innovation 
process with conditional variance V(X t |Ω 1-t )= 2

tσ , f(.) is the density 
function of n

0tt }{z = and g is the functional form of the conditional 
volatility model. In estimating VaR with GARCH type models it ’is 
commonly supposed that the innovation distribution follows a normal 
distribution "conditional normal distribution" so that an estimate of 
VaR is given by the following equation: 

                      ,  (q)   q,VaR -1
11t1t Φ+= +++ tµ σ        (13) 

where ( ).1−Φ  is the quantile of the standard normal distribution, 
 1t+µ and 1+tσ  are the conditional forecasts of the mean and the 

standard deviation at time t+1, given the information at time t. It is 
generally well recognized that GARCH-models coupled with 
conditionally normally distributed innovations "conditional student 
distribution" is unable to fully account for the tails of the marginal 
distributions of daily returns. Several alternative conditional 
distributions have therefore been proposed in the GARCH (e.g. 
Student-t distribution, generalized error distribution (GED), and 
etc.). 
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 In this paper, we will show that GARCH models with Student’s 
t-distribution yields quite satisfactory results. In this case, the VaR is 
given by: 

                             ,  (q)2   q,VaR 1-
11t1t Fµ t υ

υσ −+= +++       (14) 

where F-1(q) is the quantile the t-distribution with υ  degrees of 
freedom (υ > 2). 
GARCH modeling approach that does model the conditional return 
distribution as time varying, but focuses on the whole return 
distribution and not only on the part we are primarily interested in, 
the tail. Therefore, this approach may fails to estimate accurately the 
risk measures like VaR. 
 
3.3   Conditional GPD3.3   Conditional GPD3.3   Conditional GPD3.3   Conditional GPD    
 In order to overcome the drawbacks of both approaches 
presented above, the immediate solution is to combine these two 
approaches as firstly suggested by McNeil and Frey (2000). The 
combined approach, denoted conditional GPD, has the following 
steps: 
- Step 1: Fit a GARCH-type model to the return data by quasi-
maximum likelihood. That is, maximize the log-likelihood function of 
the sample assuming normal innovations. Estimate 1t+µ  and 1t+σ from 
the fitted model and extract the residuals zt.  
- Step 2:  Consider the standardized residuals computed in Step 1 to 
be realizations of a white noise process, and estimate the tails of the 
innovations using extreme value theory. Next, compute the quantiles 
of the innovations for q = 0.95. 
- Step 3: Construct VaR (ES) from parameters estimated in steps one 
and two. 
We assume that the dynamics of log-negative returns can be 
represented by (12).  Given the 1-step forecasts 1t+µ , 1t+σ  and the 
estimate quantile of standardized residuals series, VaRt+1(Z), using 
the equation (11) the VaR for the return series can be estimated as: 

                            (Z),VaR   q,VaR t11t1t +++ += tµ σ               (15) 
By first filtering the returns with a GARCH model is that we get 
essentially i.i.d. series on which it is straightforward to apply the 
EVT technique. The main advantage of the conditional GPD is that 
it produces a VaR which reflect the current volatility background. 
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3.4   Historical Simulation3.4   Historical Simulation3.4   Historical Simulation3.4   Historical Simulation    
The first and the most commonly used method is referred to as 

the historical simulation (HS) approach. The main idea behind the 
HS is the assumption that historical distribution of returns will 
remain the same over the next periods: it assumes that price change 
behavior repeats itself over time. Therefore, future distribution of 
returns is well described by the empirical, historical return that will 
be used in estimating VaR. As a result, the VaR based on HS is 
simply the empirical quantile of this distribution associated with the 
desired likelihood level. 

 
                  , }}{{X Quantile  q,VaR n

1tt1t =+ =                  (16) 
 
Historical Simulation (HS) has a number of advantages.  It is 

easy to understand and to implement. It’s completely nonparametric 
and does not depend on any distribution assumption, thus capturing 
the non-normality in the data. HS also has several disadvantages. 
Most notably, it is impossible to obtain an out-of-sample VaR 
estimate with HS. HS ignores the potentially useful information in the 
volatility dynamics. For a complete discussion on the use of historical 
simulation approach for VaR estimation, you can see various articles 
such as Hendricks (1996) and Barone et al. (2000). 
 
3.5 Filtered Historical Simulati3.5 Filtered Historical Simulati3.5 Filtered Historical Simulati3.5 Filtered Historical Simulationononon    

In order to remedy some of the shortcomings of the simulation 
approach, we apply the filtered historical simulation (FHS) approach 
introduced by Hull and White (1998) and Barone-Adesi et al.  (1999). 
This approach combines the historical simulation and the GARCH 
models.  Specifically, it does not make any distributional assumption 
about the standardized returns, while it forecasts the variance 
through a volatility model. Hence, it is a mixture of parametric and 
non-parametric statistical procedures. Moreover, Barone-Adesi and 
Giannopoulos (2001) demonstrated the superiority of the filtered 
historical simulation over the historical one, since it generated better 
VaR forecasts than the latter method. The main advantage of FHS is 
that it can produce risk measures that are consistent with the current 
state of markets at any arbitrarily large confidence level. 
 

FHS consists on fitting a GARCH-model to return series and 
use historical simulation to infer the distribution of the residuals. By 
using the quantiles of the standardized residuals, the conditional 
standard deviation and the conditional mean forecasts from a 
volatility model, the VaR number is given as: 

                                       },}{{X Quantile   q,VaR n
1tt11t1t =+++ += tµ σ    (17) 

ha
ls

hs
-0

04
10

74
6,

 v
er

si
on

 1
 - 

24
 A

ug
 2

00
9



 

 13

The combination of the two methods might lessen the problematic 
use of the “classical” approaches, since this procedure can 
accommodate the volatility clustering, the observed “fat” tails and 
the skewness of the empirical distribution. 
 

 
4   Threshold choice for EVT4   Threshold choice for EVT4   Threshold choice for EVT4   Threshold choice for EVT    

Balkema and de Haan (1974) and Pickands (1975) theorem (6), 
tells us that above sufficiently high thresholds the distribution of the 
excesses may be approximated by a GPD. The parameters of the 
GPD may be estimated by using, for example, maximum likelihood 
once the threshold u has been chosen. However, this choice is subject 
to a trade-off between variance and bias. By increasing the number of 
observations for the series of maxima (a lower threshold), some 
observations from the centre of the distribution are introduced in the 
series, and the index of the tail is more precise but biased (i.e., there 
is less variance). On the other hand, choosing a high threshold 
reduces the bias but makes the estimator more volatile (i.e., there are 
fewer observations). The problem of finding an optimal threshold is 
very subjective: we need to find a threshold u above which the 
Pickands, Balkema and de Hann theorem (3.4) holds and the GDP is 
a reasonable model of exceedances. However, the threshold must also 
be chosen such that we have sufficient data to accurately estimate 
parameters of the distribution. 
 

There is no unique choice of the threshold level.  A number of 
diagnostic techniques exist for this purpose, including graphical, 
bootstrap methods [see Embrechts et al. (1997), Reiss and Thomas 
(1997)]. 
 

In this paper, a simulation exercise is conducted.  We generated 
samples of size n=1000, using two different distributions, the i.i.d. 
symmetric student-t(υ ) with υ  = 4,6 and the GARCH(1,1) with 
student-t(υ ) innovations. We take the parameterization used by 
Wagner and Marsh (2004). The distributions are all in the maximum 
domain of attraction of the Fréchet with ξ  parameter 0.25 or 0.17. 
This particular choice is driven by two main motivations. As we will 
show later, the student-t may provide a rough approximation to the 
observed distribution of model residuals. On the other hand, it allow 
us to compare the dependant GARCH (1, 1)-t models to the i.i.d 
student-t. 
 

We chose the threshold values indirectly, by choosing the k 
number of exceedances (k) to be included in the maximum likelihood 
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estimation. We started with k =20 and we increased it by 1 until it 
reached 500. To compare the different estimates, we computed the 
bias and the mean squared error of the estimators as follows; the bias 

of the estimator is defined to be Bias ]-E[ )( k

^

k

^

kξξξ = ; the expected 

difference between the estimator and the true tail index value; it is 
estimated in our study by 

                                            ( ) ξξ −= �
=

100

1100
1Bias

i

i
k ,                        (18) 

where ( )i
kξ  denotes the ith MLE estimate of obtained from the ith 

sample. The mean square error of the tail index estimator is defined 

to be ,)-E(=) MSE( 2
k

^

k

^
ξξξ  and it can be shown that 
2

k

^

k

^

k

^
)(Var=) MSE( ξξξ Bias+�

�

�
�
�

� . In our study we estimate the MSE(
^

kξ ) 

by   

         ,)(
100

1=) MSE( 2
100

1
k

^

�
=

−
i

i
k ξξξ                (19) 

Our objective is to determine how sensitive these estimates are 
to the choice of the parameter k, to the underlying distribution. In 
Figure 1, we plot the bias and MSE of the EVT estimates against k. 
Graphical inspection of this figure shows that a value of k between 
100 and 150 may be justified for the two distributions. We choose9 
k=140 for our GPD approach.  

 
5   Evaluating VaR models5   Evaluating VaR models5   Evaluating VaR models5   Evaluating VaR models    
 We test the reliability of our VaR methodology by investigating 
the out-of sample performance of the estimated VaRs in forecasting 
extreme returns. The backtesting procedure consists of comparing the 
VaR estimates with actual realized loss in the next period.  Two 
backtesting criteria10 are implemented for examining the statistical 
accuracy of the models. First, we determine whether the frequency of 
exceedances is in line with the predicted confidence level VaR based 
on the unconditional coverage test of Kupiec (1995). However, tests 
of unconditional coverage fail to detect violations of independence 
property of an accurate VaR measure, it’s important to examine if 
the violations are also randomly distributed.  Second, given that an 
accurate VaR model must exhibit both the unconditional coverage 
and independence property, we test jointly both properties based on 
conditional coverage Test of Christofersen (1998). 
 

                                                 
9 In a similar simulation exercise McNeil and Frey (2000) concluded, in the iid case,  that a  k value of 100 seems reasonable, but they argued that could equally 

choose  a  k value of 80 or 150. 
10 For a review of different backtesting procedures see (Campbell 2005). 

ha
ls

hs
-0

04
10

74
6,

 v
er

si
on

 1
 - 

24
 A

ug
 2

00
9



 

 15

 
 
5.15.15.15.1 Unconditional Coverage TestUnconditional Coverage TestUnconditional Coverage TestUnconditional Coverage Test    

        Let �
=

+=
T

1t
1tI N be the number of days over a T period that the 

portfolio loss    was larger than the VaR estimate, where It+1be a 
sequence of VaR violations11that can be described as:    

                     
�
�
�

≥
<

=
++

++
+ t.|VaR X if  0,

t|VaRX   if  1,
I

1t1t

1t1t
1t  

We use a likelihood ratio test developed by Kupiec (1995). This test 
examines whether the failure rate is statistically equal to the expected 
one.  Let p be the expected failure rate (p= 1-q, where q is the 
confidence level for the VaR).  If the total number of such trials is T, 
then the number of failures N can be modelled with a binomial 
distribution12 with probability of occurrence equals toα . The correct 

null and alternative hypothesis are, respectively H0: p
T
N =  and H1: 

p
T
N ≠ . | 

The appropriate likelihood ratio statistic is:  

           ( )
�
�
�

�

�
�
�

�
−−

�
�

�

	






�

�
�
�

	


�

� −= −
−

NTN
NT

pp
T
N 1log(1)(log2 LR N

uc T

N  (20)  

 
ucLR ( )12χ→ d under H0 of good specification. Note that this 

backtesting procedure is a two sided test. Therefore, a model is 
rejected if it generates too many or too few violations, but based on 
it, the risk manager can accept a model that generates dependent 
exceptions. Accordingly, this test may fail to detect VaR measures 
that exhibit correct unconditional coverage but exhibit dependent 
VaR violations. So we turn to a more elaborate criterion. 

 
5.25.25.25.2 Conditional Coverage TestConditional Coverage TestConditional Coverage TestConditional Coverage Test    

Christofersen (1998) proposed a more comprehensive and 
elaborate test, which jointly investigates if (i) the total number of 
failures is equal to the excepted one and (ii) the VaR failure process 
is independently distributed through time. This test provides an 
opportunity to detect VaR measures which are deficient in one way 
or the other.  Under the null hypothesis that the failure process is 

                                                 
11 A violation occurs if the forecasted VaR is not able to cover realized loss. 

12 xnx pp
x
n

xpX −−��
�

�
��
�

�
== )1()P(X :)B(n,~  
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independent and the expected proportion of violations is equal to p, 
the appropriate likelihood ratio is: 

                 [ ] [ ] ( )  ,2 )-(1)-[(12log]pp)-(1-2log LR 2
11

n
11

n
01

n
01

NN-T
cc

11100100 χππππ →+= dn   (21) 
where nij  is the number of observations with value i followed by  j, 

for i, j =0, 1 and  
n

n
  

ij

ij
ij

�
=

j

π are the corresponding probabilities.  The 

values i, j =1 denote that a violation has been made, while i, j =0 
indicates the opposite. The main advantage of this test is that it can 
reject a VaR model that generates either too many or too few 
clustered violations. 

 
6   Empirical analysis6   Empirical analysis6   Empirical analysis6   Empirical analysis    
6.1   Data6.1   Data6.1   Data6.1   Data    

The data for our analysis consists of the daily spot Brent oil 
prices, over the period May 21, 1987 through January 24, 2006 
excluding holidays. By using this time period, we get a complete 
sample containing 4810 observations. Figure 2 shows oil price trends 
corresponding to the analyzed period and indicates that the oil price 
has mainly fluctuated in the range of about 9-67 dollars. 

                                                                [Insert Figure [Insert Figure [Insert Figure [Insert Figure 2222 about here] about here] about here] about here]    
The sample mean and standard deviation of the oil price in this 
period are about 18 and 4 dollars, respectively. From these prices we 
calculate 4809 log-returns and plot them in figure 3. This graphic 
show that returns are stationary and suggests an ARCH scheme for 
the daily oil price returns where large changes are followed by large 
changes and small changes are followed by small changes.    

                                                                                                                                    [Insert Figure [Insert Figure [Insert Figure [Insert Figure 3333 and Table 1 about here] and Table 1 about here] and Table 1 about here] and Table 1 about here]    
Table 1 provides a summary statistics on the return series, the 
Jarque-Bera statistic shows that the null hypothesis of normality is 
rejected at any level of significance, as evidenced by high excess 
kurtosis and negative skewness. The unconditional distribution is 
non-normal has a long left tail relative to a symmetric distribution. 
The Ljung-Box statistic for serial correlation shows that null 
hypothesis of no autocorrelation for up to 20th order is rejected at any 
level of significance and confirms the presence of conditional 
heteroskedasticity. It is also important to note that the returns series 
are inconsistent with the necessary condition of the extreme value 
theory, i.e. that samples are independent and identically distributed. 
To overcome this shortcoming, it is necessary to filter returns with a 
GARCH model in order to get essentially i.i.d. series on which it is 
straightforward to apply the EVT. 
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6.2   Modeling oil price volatility6.2   Modeling oil price volatility6.2   Modeling oil price volatility6.2   Modeling oil price volatility    
 The result of a specification search in terms of AIC and BIC 
criteria for a wide range of values for p and q leads us to choose the 
ar(1)-garch(1,1) model, given by the following equation, as the best 
model: 

                                                                               tttt  Z µ   X σ+=  ,                                       (22) 
where Zt are i.i.d innovations with zero mean and unit variance, and                            

                                                                               110tµ −+= tXαα   
                                                                             2

1
2

110
2
t −− ++= tt γσεββσ  

where tµ  and 2
tσ denote the conditional mean and the conditional 

variance of the process. This model is fitted to data series using a 
pseudo-maximum likelihood estimation assuming normal distributed 

innovations to obtain parameter estimates 
�
�

�

�

�
�

�

�
=

^

1

^^

01
^

0
^^

,,,, γββααθ  and 

standardized residuals
t

^
t

^

t )µ-(X

σ
. 

                                   [Insert Table [Insert Table [Insert Table [Insert Table 2222 about here] about here] about here] about here] 
 

Table 2 presents the estimated parameters of the mean and volatility 
equations of oil returns. Both the constant term and ar(1) coefficient 
in the mean equation are found to be significant. Similarly, the 
parameters in the volatility equations: the constant, the arch(1) 
parameter and the garch (1) parameter, are all found to be 
significant. 
 

In this paper, the AR(1) GARCH(1,1) model is used in three 
contexts. In the first context, AR(1)-GARCH(1,1)-normal, the model 
is used directly as a risk measurement methodology for comparison 
with other candidate risk measurement methods. In the second 
context, the conditional GPD, the model serves to pre-filter the data 
series and produce the standardized residuals used to estimate tail 
parameters with the POT methodology. Finally, Filtered historical 
simulation, the model serves again to pre-filter the data series and 
produce the standardized residuals which will inferred by the HS 
approach. 

 
We estimate the AR (1) GARCH (1, 1) specification using a 

rolling window of 1000 days data. We extract the standard residuals 
from the estimated model for two reasons: (i).to investigate the 
adequacy of ARCH modelling, and (ii), to use in the combined 
approaches described above (Conditional GPD, FSH). Table 3 and 
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figure 4 illustrate the effect of filtering the raw data with a GARCH 
modelling. Results indicate that the return series have significant 
ARCH effects, excess kurtosis and autocorrelation. The residual series 
is found to have significant excess kurtosis but it does possess neither 
significant autocorrelation nor any ARCH effect left. The results can 
be summarized in the followings: Neither the return series nor the 
residual series can be considered to be normally distributed, since 
both the series have significant excess kurtosis. Therefore, the 
assumption of conditional normality is unrealistic. On the other hand, 
the residual series is found to be free from autocorrelation. We can 
concludes that the filtering process successfully remove the time series 
dynamics from the return series and obtain an i.i.d series free from 
any time series dynamics. Therefore, EVT methods may be applied 
successfully to the i.i.d residual series. 

                                                                                                                                    [Insert Figure [Insert Figure [Insert Figure [Insert Figure 4444 and Table  and Table  and Table  and Table 3333 about here] about here] about here] about here]    
    

6.3   Dynamic backtesting6.3   Dynamic backtesting6.3   Dynamic backtesting6.3   Dynamic backtesting    
For all models, we use a rolling sample of 1000 observations, in 

order to forecast the VaRq for q ∈ {0.95, 0.99, 0.995, 0.999}. The main 
advantage of this rolling window technique is that it allows us to 
capture dynamic time-varying characteristics of the data in different 
time periods. As documented by McNeil and Frey (2000) and Gençay 
et al. (2003), within the backtest period, it is practically impossible to 
examine the fitted model carefully every day and to choose the best 
parameterization, so suppose that the AR(1)GARCH(1,1) 
specification is adequate on each rolling window.  A similar constraint 
is also related to the GPD modelling.  For this reason, we always set 
k =140 in this backtest, a choice that is supported by the simulation 
study of section 4. 
 

At each iteration, we compare the predicted VaR number with 
the realized return, to determine whether the frequency of 
exceedances is in line with the predicted confidence level of the VaR. 
If the number of violations is significantly different from the predicted 
level of violations, then the VaR estimation approach is not valid. 
Statistically, we use the two backtesting tests (unconditional and 
conditional coverage tests) explained above to access the statistical 
accuracy of the various risk management models.  The number of 
violations for various confidence levels and the p-values of the 
corresponding backtesting measures test are presented in tables 4, 5 
and 6. A p-value less than or equal to 0.05 will be interpreted as 
evidence against the null hypothesis. 
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                                [Insert[Insert[Insert[Insert Tables  Tables  Tables  Tables 4, 5 and 64, 5 and 64, 5 and 64, 5 and 6 about here]about here]about here]about here]    

 
The general observation would be that for the 95% VaR 

measures the EVT-based models and the others traditional models 
produce equally good VaR estimates (except for the Normal method 
at the 95% confidence level). As expected, the unconditional normal 
distribution performs poorly and is rejected for all confidence levels. 
This model underestimates the “true” VaR and is not appropriate for 
extreme quantiles estimation. The conditional normal approach can 
not be rejected for the 95% confidence level but its performance 
deteriorates at higher quantiles. This approach, while it responds to 
changing volatility, tends to be violated rather more often, because it 
fails to fully account to the leptokurtosis of the residuals. This model 
tends to underestimate the true risk. Such result constitutes an alarm 
to any market participants that use the models based on normality 
assumption. Conditional GPD model yields a better VaR estimation 
than provided by the GDP. The number of days when VaR is higher 
than actual price change is close to the excepted one. Furthermore, 
Conditional GPD methodology provides a more flexible VaR 
quantification, which accounts of volatility dynamics. 

 
                                                                        [Insert Figures [Insert Figures [Insert Figures [Insert Figures 5555 and  and  and  and 6666 about here] about here] about here] about here]    

    
Figures 5 and 7 show a part of the backtest for oil returns. In 

figure 5, we have plotted the negative returns; superimposed on this 
figure is the 99% conditional GPD VaR estimate, the 99% conditional 
normal VaR estimate and the 99% unconditional GPD VaR estimate. 
The violations corresponding to the backtest in figure 5 are shown in 
figure 6. We use different plotting symbols to show violations of the 
conditional GPD, conditional normal and unconditional GPD 
quantile estimates. Clearly, the conditional normal estimate responds 
to    volatility dynamics but tends to be violated rather more often as it 
fails to describe the extreme tails. Conditional Student model 
performs better than the conditional normal model and provides a 
very satisfying result, which is very comparable to the conditional 
GPD. As noted by McNeil and Frey (2000) this method can be 
viewed as a special case of the conditional GPD approach. It yields 
quite satisfactory results as long as the positive and the negative tail 
of the return distribution are roughly equal. Filtered Historical 
simulation approach is well suited for a VaR estimation and provides 
an improvement to the standard Historical approach. The FSH is 
almost close to the mark in VaR estimation. The violations number 
are too close to the theoretical ones. 
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                                                                                                                                                                [Insert Figures [Insert Figures [Insert Figures [Insert Figures 7777 and  and  and  and 8888 about here] about here] about here] about here]    
    

In figure 7, we have plotted the negative returns. Superimposed 
on this figure is the 99% conditional GPD VaR estimate, the 99% 
conditional Student VaR estimate and the 99% filtered historical 
simulation VaR estimate. The violations corresponding to the 
backtest in figure 7 are shown in figure 8.  This latter shows that 
there is not a particular difference between the three models; the 
violations points are more or less the same. 
 
7   Conclusion7   Conclusion7   Conclusion7   Conclusion    

As the volatility in the oil markets increases, implementing an 
effective risk management system becomes an urgent necessity.  In 
risk management, the VaR methodology as a measure of market risk 
has gained fast acceptance and popularity in both institutions and 
regulators. Furthermore, extreme value theory has been successfully 
applied in many fields where extreme values may appear. VaR 
methodology benefits from the quality of quantile forecasts. In this 
paper, mainly EVT models are compared to conventional models such 
as GARCH, historical simulation and filtered historical. Our results 
indicate that that Conditional Extreme Value Theory and Filtered 
Historical Simulation procedures offer a major improvement over the 
traditional methods. Such models produce a VaR which reacts to the 
change of volatility dynamics. Furthermore, the GARCH (1, 1)-t 
model may give equally good results, as well as the two combined 
approach. Oil price fluctuations are closely linked to economic 
indicators. For further study, we suggest to study the dependence 
relation via copula functions. 
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Appendix: Figures & Tables 
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Fig. 1. Estimated bias and Mean Squared Error (MSE) against k for various estimators of shape parameter, ζ,, of two distributions:  
a t distribution with v=4 degrees of freedom based on an iid sample of 1000 observations and and AR(1)-GARCH(1,1)-t(v=4). 
  

Fig. 2. Daily prices of Brent crude (US $ per barrel). 

Fig. 3. Daily returns of Brent crude 
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. 
 

    Table 1 
Daily returns of Brent crude, summary statistics 

Mean (%) 0.0256 

Std. Dev (%) 2.333 

Min (%) -37.12 

Max (%) 17.33 

Skewness -0.8967 

Kurtosis 20.74 

Jarque-Bara 63690.41*(0.000) 

Ljung-Box 50.92*(0.0002) 
 

Table 2 
 AR(1)-GARCH(1,1) Estimation result 

Parameter Estimates SE t-value p-value 
Constant -0.04131 0.025424 -1.625 5.214 10-2 
AR(1) 0.06359 0.015376 4.136 1.798 10-5 
Constant 0.07577 0.009757 7.766 4.88510-15 
ARCH(1) 0.09509 0.004899 19.409 0.000 
GARCH(1) 0.89502 0.005547 161.346 0.000 

 
Table 3  
This table reports the results of testing ARCH effects (LM-Test), autocorrelation (Box-Ljung) and 
Normality (Jarque-Bera) for the raw data as well as for the standardized residuals. 

Statistic Jarque-Bera Ljung-Box LM-test 
Returns series 60874*(0.0000) 52.7575*(0.0001) 91.551*(0.0000) 

Residuals series 512.9583*(0.0000) 12.9006(0.8816) 14.2331(0.8185) 
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Fig. 4. Correlograms for the raw data and their absolute values as well as for the residuals and 
absolute residuals: iiid assumption may be plausible for residuals. 
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Table 4 
Backtesting result: Theoretically expected number of violations and number of violations obtained using: an 
Unconditional Normal distribution, the Historical Simulation approach, the Filtered Historical Simulation 
approach, the GPD model, a GARCH-model with normally distributed innovations, a GARCH-model with 
student t-innovations and a conditional GPD.  Note that these numbers should be as close as possible to the 
theoretically expected one in the first line. 

 
Table 5  
Unconditional Coverage: This table reports the p-values of the unconditional coverage test. The models are 
successively an Unconditional Normal distribution, the Historical Simulation approach, the Filtered Historical 
Simulation approach, the GPD model, a GARCH-model with normally distributed innovations, a GARCH-
model with student t-innovations and a conditional GPD. Note that a P-value greater than 5% indicates that 
the forecasting ability of the corresponding VaR model is adequate. 

 
Table 6 
Conditional Coverage: This table reports the p-values of the conditional coverage test. The models are 
successively an Unconditional Normal distribution, the Historical Simulation approach, the Filtered Historical 
Simulation approach, the GPD model, a GARCH-model with normally distributed innovations, a GARCH-
model with student t-innovations and a conditional GPD. Note that a P-value greater than 5% indicates that 
the forecasting ability of the corresponding VaR model is adequate. 

 
VaRq VaR.95 VaR.99 VaR.995 VaR.999 

Normal 0.000 0.000 0.002 0.000 

HS 0.072 0.477 0.216 0.171 

FHS 0.903 0.613 0.892 0.171 

GPD 0.075 0.401 0.197 0.339 

Cond. Normal 0.832 0.006 0.000 0.000 

Cond.Student 0.337 0.686 0.591 0.593 

Cond.GPD 0.745 0.685 0.892 0.076 

 
 

VaRq VaR.95 VaR.99 VaR.995 VaR.999 

Expected 190 38 19 4 

Normal 174 57 38 21 

HS 161 34 23 8 

FHS 192 36 18 9 

GPD 185 33 18 7 

Cond. Normal 188 58 40 19 

Cond.Student 207 41 23 2 

Cond.GPD 192 37 18 9 

VaRq VaR.95 VaR.99 VaR.995 VaR.999 
Normal 0.215 0.004 0.010 0.000 
HS 0.025 0.498 0.379 0.062 
FHS 0.908 0.731 0.809 0.062 
GPD 0.677 0.396 0.809 0.143 
Cond.Normal 0.855 0.003 0.000 0.000 
Cond.Student 0.225 0.640 0.379 0.307 
Cond.GPD 0.908 0.858 0.809 0.024 
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99% Value-at-Risk Violations 
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Fig.5. 1000 days of the oil returns Backtest, showing the 99% VaR estimates of conditional GPD (long dashed line), 
conditional normal (dotted line) and GPD (dashed line) superimposed on the negative returns. Conditional normal 
like conditional GPD responds quickly to the volatitility dynamic, while it is all the time the less than the conditional 
GPD. However, the unconditional GPD fails to reacts face to a high volatility. 
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Fig. 6.    Violations of 99% VaR estimates corresponding to the backtest in Figure 6. Squares, cercles and triangles denote 
violations of the conditional GPD, the conditional normal and the GPD respectively. The conditional normal estimate 
responds to volatility dynamics but tends to be violated rather more often as it fails to describe the extreme tails. 
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99% Value-at-Risk Violations 
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Fig. 7. 1000 days of the oil returns Backtest, showing the 99% VaR estimates of conditional GPD (long dashed line), 
conditional student (dotted line) and filtered historical Similation approach (dashed line)  superimposed on the negative 
returns. All models respond quickly the volatility dynamic, and there is no particular reason to prefer one model to 
another. 
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Fig. 8. Violations of 99% VaR estimates corresponding to the backtest in Figure 8. Squares, triangles and cercles 
denote violations of the conditional GPD, conditional student and the Filtered Historical Smulation VaR estimates 
respectively. There is not a particular difference between the three models; the violations points are more or less the 
same. 
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