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DEBT, DEFICITS AND FINITE HORIZONS:

THE STOCHASTIC CASE

ROGER E.A. FARMER, CARINE NOURRY, AND ALAIN VENDITTI

Abstract. We introduce aggregate uncertainty and complete markets into Blan-

chard’s (1985) perpetual youth model. We show how to construct a simple formula

for the pricing kernel in terms of observable aggregate variables. We study a pure

trade version of our model and we show it behaves much like the two-period over-

lapping generations model. Our methods are easily generalized to economies with

production and they should prove useful to researchers who seek a tractable sto-

chastic model in which fiscal policy has real effects on aggregate allocations.

I. Introduction

For the past twenty years macroeconomists have used the Real Business Cycle

model (RBC) to study stochastic fluctuations in aggregate economic activity. In

that model, an infinitely lived family makes decisions for all subsequent generations.

The model is elegant and simple and captures many of the features of real world

business cycles but it has strong properties that follow from the representative agent

assumption. Among them: 1) the real interest rate in the long run is pinned down

by the representative agent’s rate of time preference, 2) an expansionary fiscal policy

in the form of a tax financed transfer has no first order effects on aggregate economic

activity and 3) in a model of multiple infinitely lived agents with time separable

preferences the income distribution is degenerate.

Paul Samuelson (1958) proposed an alternative ‘overlapping generations’ model

(OG) in which a sequence of overlapping finitely lived agents trade with each other.

In Samuelson’s original paper there were three generations of agents. It has since been

extended to multiple generations and has been used to study optimal fiscal policy

(Diamond 1965), intergenerational transfers (Kotlikoff and Summers 1981) and social

security policy (Imrohoroglu, Imrohoroglu and Joines 1999). Long lived versions of
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 2

the model have been analyzed computationally by Rios-Rull (1996) and the dynamics

of the two-period version have been analyzed by David Gale (1973).

The overlapping generations model has very different properties from that of the

representative agent model but it does not lend itself to empirical work because

realistically calibrated versions of the model are described by very high order difference

equations. To circumvent this problem, Olivier Blanchard (1985) and Philippe Weil

(1989) have studied a model populated by a measure of long-lived agents that die, and

are replaced, with a fixed probability that is independent of age. This perpetual youth

model combines features of the representative agent model with the OG framework

in a tractable way and versions of the model have been used to study a variety of

issues in macroeconomics.

The purpose of this paper is to extend Blanchard’s analysis to the stochastic dis-

crete time case by studying a pure trade version of the perpetual youth model with

aggregate endowment shocks. We introduce a technique for solving the model in

the presence of a complete set of securities and we show that it behaves much like

the two-period model studied by David Gale (1973). Although our focus is on solu-

tion methods, our results should be of interest to researchers interested in analytic

methods for studying the impact of fiscal policy in stochastic overlapping generations

models both with and without production.

II. Relationship to the Literature

Our paper is connected to two distinct literatures. Beginning with Cass and Shell’s

(1983) work on sunspot equilibria, a body of work developed on determinacy in over-

lapping generations models with and without complete markets. Some early examples

from this extensive literature include Farmer and Woodford (1984) and Spear (1985).

Other papers including Zilcha (1991), Chattopadhyay and Gottardi (1999), Chat-

topadhyay (2005) and Bloise and Calciano (2008) have studied optimality in these

models.

Cass and Shell (1983) exploited an equivalence between a model with a complete

set of Arrow securities and a model with complete contingent commodities to estab-

lish the existence of sunspot equilibria. Following work on spanning by Duffy and

Huang (1985), Talmain (1999) has studied the number of assets needed to span the

commodity space in a two period overlapping generations model. This is the closest

paper to our own in this literature although Talmain’s work, like all of the other

papers we have cited, deals with finite horizon agents.
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 3

Our paper is connected to a second literature that developed from the perpetual

youth model of Blanchard (1985) and Weil (1989). That model forms the core of

a recent literature, both theoretical and empirical, that formulates and estimates

macroeconomic models in which fiscal policy matters. It includes papers by Ghironi

(2003), Ganelli (2003; 2005), Botman et. al. (2006) and Farmer (2009). The device

of assuming long-lived agents who die with fixed probability is a useful one because

it allows the researcher to construct tractable models in which Ricardian equivalence

(see Barro (1974)) breaks down and fiscal transfers have real effects.

But although the perpetual youth model is tractable, the versions that have been

worked out in the existing literature, do not allow for aggregate shocks. Empirical

work based on this model must add shocks to the linearized non-stochastic model.

That is an unsatisfying and ad hoc solution since the way that aggregate uncertainty

enters the model could potentially affect the behavior of the aggregate equations.

Even if a first order approximation works well, there is no guidance from the non

stochastic model on how to incorporate second order effects that one would need

to study interactions between aggregate quantities and risk spreads. In the current

paper, we show how to construct the pricing kernel in a pure trade model with long-

lived perpetual youth consumers with logarithmic preferences and aggregate shocks.

In future work we plan to extend our results to a wider class of preferences and to

embed our results in a production economy.

III. The Model

We assume that a new cohort of individuals is born each period. Agents die with

fixed probability which is independent of age. This important assumption implies

that all agents discount the future in the same way and it leads to a single concept of

aggregate human wealth that greatly simplifies the structure of the set of competitive

equilibria.

Each household survives into the subsequent period with a fixed probability π and

every period a proportion (1−π) of households dies. At the beginning of each period,

households have n children. It follows that if Nt is the number of agents alive at date

t then

Nt+1 = (π + n)Nt (1)

is the number of agents alive at date t + 1. Depending on whether π + n is greater or

smaller than one, the total population will increase or decrease over time. We assume

that π + n > 1 and we normalize the initial population to one, N0 = 1.
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 4

The combination of birth and death processes implies that at any point in time

there are (π + n)t agents alive of whom π(π + n)t−1 are “old", i.e. survivors from the

previous period t − 1, and n(π + n)t−1 are “young”, i.e. newly born in period t.

The per-period utility function of the agents is logarithmic. For a typical agent i,

utility at date t is given by the expression

U i
t = log(ci

t). (2)

We consider an exchange economy with a single consumption commodity and sto-

chastic endowments in which uncertainty unfolds in a sequence of periods. Uncer-

tainty each period is indexed by a finite set of states S = {S1, . . . , Sn}. Define the set

of t-period histories St recursively as follows:

S1 = S

St = St−1 × S, t = 2, . . .
(3)

The households in this economy trade a complete set of Arrow securities. Let

Qτ
t (S

τ ) represent the price of the security that pays one unit of the consumption

commodity if and only if history Sτ ∈ Sτ occurs at date τ . Using this notation

Qt+1

t (S ′) is the price of an Arrow security. This is a claim, sold at date t, to one unit

of the consumption good for delivery at date t + 1 if and only if state S ′ occurs. Let

the probability that S ′ occurs at date t + 1 be given by p(S ′) and assume that this

probability is independent of time.

Each period t, the agents of household i receive an endowment wi
t(S) if state S ∈ S

is realized. They purchase consumption commodities ci
t(S) and they accumulate a

portfolio of the n securities ai
t+1(S

′), where there is one security for each of the values

of S ′.

Since the household may not survive into period t + 1, we assume, as in Blanchard

(1985), that there exists an actuarially fair annuities market. The existence of this

market implies that the household pays price πQt+1

t (S ′) for a claim to one unit of

consumption in period t + 1 if and only if state S ′ occurs and the household is alive.

We assume that this security is issued by a competitive annuity sector that earns

zero profit in equilibrium. If the household dies, its claim reverts to the company

that issued the annuity. We will describe the balance sheet of this sector in Section

V.

Given our assumptions, the representative family born in period h faces the follow-

ing sequence of budget constraints,
∑

S′∈S

πQt+1

t (S ′)ai
t+1(S

′) = ai
t(S) + wi

t(S) − ci
t(S), t = h . . .∞, (4)
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 5

together with the set of no-Ponzi scheme conditions,

lim
T→∞

πT−hQT
h (ST )ai

h(S
T ) ≥ 0, for all ST ∈ ST , (5)

one for every possible history that might occur. These constraints imply that the

household must plan to remain solvent in every possible history. The term ai
t+1(S

′) is

the quantity of security S ′ purchased for price πQt+1

t (S ′) at date t. The terms ai
t(S)

and wi
t(S) on the right side of (9) are respectively the sole security that has positive

value at date t and the endowment received at date t if state S is realized. ci
t(S) is

the household’s purchase of consumption commodities.

The human wealth of household i is defined recursively by the equation,

hi
t(S) = wi

t(S) +
∑

S′∈S

πQt+1

t (S ′)hi
t+1(S

′). (6)

By iterating this expression it follows that, as long as human wealth is finite,

hi
t(S) =

∞
∑

τ=t

[

πτ−t
∑

Sτ∈S
τ

Qτ
t (S

τ )wi
τ (S

τ)

]

. (7)

The assumption that human wealth is finite requires that

lim
T→∞

πT−hQT
h (ST )wi

h(S
T ) = 0, for all ST ∈ ST . (8)

In a representative agent model with no uncertainty and a constant growth rate

of endowments, a condition like this implies that the interest rate must exceed the

growth rate. Our condition is weaker. In the perpetual youth model the household

values future assets using the factor πQt+1

t instead of Qt+1

t reflecting the fact that it

may not survive into the subsequent period and this fact implies that the perpetual

youth model may display inefficient equilibria in which the interest rate is less than

the growth rate.

Equations (4) – (8) can be combined to write a single budget constraint for the

household,
∞

∑

τ=t

[

πτ−t
∑

Sτ∈S
τ

Qτ
t (S

τ )ci
τ (S

τ )

]

≤ hi
t(S) + ai

t(S). (9)

A representative family maximizes the following intertemporal stream of discounted

utilities

Et

{

+∞
∑

τ=t

(πβ)τ−tlog(ci
τ (S

τ ))

}

(10)

subject to the budget constraint (9), where β ∈ (0, 1) is the discount factor. The first

order condition for this maximization program is given by the following set of first
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 6

order conditions, one for each of the n states S ′ ∈ S,

Qt+1

t (S ′)ci
t+1(S

′) = βci
t(S)p(S ′). (11)

Recall that p(S ′) is the probability that state S ′ occurs. As is well-known, with a

logarithmic utility function, the solution to the household’s problem is given by the

following policy function

ci
t(S) = (1 − βπ)

(

ai
t(S) + hi

t(S)
)

. (12)

This equation instructs the household, in the optimal plan, to consume a fixed fraction

of wealth each period.

IV. Defining Aggregate Variables

The equilibrium of the perpetual youth model is complicated. The economy con-

tains an infinite number of agents indexed by date of birth and each of these agents

takes decisions based on the realization of uncertainty at the date he was born. As

with all long-lived generations models, a complete description of the equilibrium re-

quires that one keep track of the wealth distribution across agents and, in this model,

the wealth distribution is an infinite dimensional object.

Blanchard made two assumptions that simplify the description of equilibrium.

First, preferences are logarithmic.1 Second, all agents die with the same probabil-

ity that is independent of age. These assumptions imply that consumption is linear

in wealth and they allow one to derive a simple set of equations in the aggregate state

variables that completely characterizes their behavior. Our contribution in this paper

is to extend this idea to the case of aggregate uncertainty by assuming the existence

of a complete set of Arrow securities.

To describe an equilibrium, our first task is to define a set of aggregate state vari-

ables. For this purpose we will divide the population into two groups that correspond

roughly to the young and the old in a standard two-period overlapping generations

model.

Let At be the index set of all agents that are alive at date t. Recall that a proportion

π of these agents will survive into period t + 1. Similarly, let Nt+1 denote the set of

newborns at period t+1. For any date t+1 and any variable x let xi
t be the quantity

1This assumption can be extended to homothetic preferences with some additional algebra. We

have not pursued that complication here since it considerably increases the complexity of the math-

ematics needed to characterize an equilibrium.
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 7

of that variable held by household i and let xt be the aggregate quantity. Then,

π
∑

i∈At

xi
t+1 +

∑

i∈Nt+1

xi
t+1 =

∑

i∈At+1

xi
t+1 = xt+1. (13)

Notice that At+1 6= At ∪ Nt+1 as (1 − π)Nt agents die at the end of period t while

nNt agents are born at the beginning of period t + 1.

Equation (13) says that any aggregate variable x can be defined as the sum over

groups of people in two different ways. We can add up xi over everyone who was alive

yesterday and add it to the sum over everyone who is born today. Or we can add up

xi over everyone who is alive today. Using this notation, define At, Wt, Ct and Ht as

follows,

At =
∑

i∈At
ai

t, Wt =
∑

i∈At
wi

t, Ct =
∑

i∈At
ci
t, Ht =

∑

i∈At
hi

t. (14)

We also define each of these variables in per capita terms,

at = At

Nt
, wt = Wt

Nt
, ct = Ct

Nt
, ht = Ht

Nt
, (15)

where Nt evolves according to Equation (1).

V. Government, Life Insurance and Annuities

We assume the existence of a competitive annuities sector that issues Arrow se-

curities as liabilities. Here, we describe how this sector operates. Each period, the

annuities sector issues a set of n securities. Security S ′ is sold to the household sector

for price πQt+1

t (S ′). In addition to these assets, we assume the existence of a gov-

ernment that issues debt Bt+1 in the form of pure discount bonds. Bt+1 is a claim

to Bt+1 units of the consumption good at date t + 1 in every state of nature. The

assumption of no riskless arbitrage implies that a claim of this kind will sell for price

Qt+1
t in period t where,

Qt+1

t =
∑

S′∈S

Qt+1

t (S ′). (16)

We will study the case where Bt+1 may be positive (the government is in debt) or

negative (the government owns claims on the private sector). Note that debt of this

kind is conceptually distinct from the ‘money’ of Samuelson’s (1958) paper since it is

denominated in units of consumption. It represents an indexed bond.

We will take the initial value of debt as given: It may be positive or negative. We

will study policies in which the debt is rolled over from one period to the next with

neither taxation nor government purchases of commodities. We leave these additional

features for future work.
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 8

VI. Equilibrium Relationships Between Aggregate Variables

In this section we put together the behavioral relationships and our definitions to

derive a set of equations that will hold, in equilibrium, between the per capita debt

bt = Bt/Nt, Qt+1

t (S ′), wt(S), at(S) and ht(S). We begin with government policy.

The assumption that government rolls over its debt in each period implies that

debt each period is described by the following difference equation,2

Bt+1

∑

S′

Qt+1

t (S ′) = Bt. (17)

It follows from Equations (1) and (17) that

(π + n)bt+1

∑

S′

Qt+1

t (S ′) = bt. (18)

Next we turn to human wealth. We will derive a recursive expression for aggregate

human wealth that is similar to Equation (6), the expression for individual human

wealth. We arrive at this expression by summing Equation (6) over the set At of

agents alive at date t. The derivation is in Appendix A.

ht(S) = wt(S) + π
∑

S′

Qt+1(S
′)ht+1(S

′). (19)

Now consider the relationship between per capita consumption and wealth. Using

the equilibrium on the asset market as given by

∑

i∈At

ai
t(S) = Bt (20)

it follows from summing Equation (12) over all agents alive at date t that

ct(S) = (1 − βπ) (bt + ht(S)) . (21)

Using the market clearing condition, this expression implies,

wt(S) = (1 − βπ) (bt + ht(S)) . (22)

Finally, we seek an equation that describes the price of an Arrow security as a

function of wt and ht. In a representative agent model we could find an expression

for this price by taking the ratio of aggregate consumption at two different dates.

Something similar will work here, but we need to account for changes in the set

2Note that this equation can also be obtained as the aggregation of the households’ budget

constraints (4).
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 9

of agents over time. Appendix A shows how to derive the following expression for

Qt+1

t (S ′).

Qt+1

t (S ′) =
πβwt(S)p(S ′)

(π + n)wt+1(S ′) − (1 − βπ)nht+1(S ′)
. (23)

VII. Solving the Model

In this section we write down equations in two different state variables. Either of

these representations can be used to characterize the properties of equilibria. Our

first variable is the ratio of human wealth to the endowment. We call this zt(S) and

we define it as,

zt(S) =
ht(S)

wt(S)
. (24)

To derive a dynamic expression in zt(S), we first combine Equations (19) and (23),

to give,

ht(S) = wt(S) + βπ2wt(S)
∑

S′

ht+1(S
′)p(S ′)

(π + n)wt+1(S ′) − (1 − βπ)nht+1(S ′)
. (25)

Dividing this expression through by wt(S) gives the expression we seek,

zt(S) = 1 + βπ2
∑

S′

zt+1(S
′)p(S ′)

π + n − (1 − βπ)nzt+1(S ′)
. (26)

We can also write the right hand side as an expectation,

zt(S) = 1 + βπ2Et

[

zt+1(S
′)

π + n − (1 − βπ)nzt+1(S ′)

]

. (27)

Next, we turn to an equivalent expression to characterize equilibria using govern-

ment debt as a state variable. Substituting equation (23) into equation (18), we

obtain the following expression,

(π + n)βπwt(S)bt+1

∑

S′

p(S ′)

(π + n)wt+1(S ′) − (1 − βπ)nht+1(S ′)
= bt. (28)

Now use Equation (22) to write human wealth as a function of debt,

ht+1(S
′) =

wt+1(S
′)

1 − βπ
− bt+1, (29)

and substitute this into (28) to give the equation we seek,

bt = (π + n)βπwt(S)bt+1Et

[

1

πwt+1(S ′) + (1 − βπ)nbt+1

]

. (30)
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 10

VIII. Deterministic Dynamics

Although we are ultimately interested in the stochastic properties of the model, we

turn first to the special case when there is no aggregate uncertainty by setting wt(S) =

w for any date t and any state S. This special assumption leads to the following non-

stochastic difference equation in zt which characterizes feasible sequences of human

wealth in a competitive equilibrium.

zt = 1 +
zt+1βπ2

π + n − (1 − βπ)nzt+1

, (31)

z1 =
1

1 − βπ
−

b

w1

, (32)

where b is initial government debt.

We can also state this an equation that uses debt as the state variable,

bt =
(π + n)βπwbt+1

πw + (1 − βπ)nbt+1

, (33)

b1 = b. (34)

Solving (31) at the steady state zt = z yields the following second degree polynomial

z2 − z

[

π + n

n
+

1

1 − βπ

]

+
π + n

n(1 − βπ)
= 0, (35)

which has two distinct steady states

z1 =
π + n

n
and z2 =

1

1 − βπ
. (36)

Solving Equation (33) at the steady state bt = b yields also two distinct values which

are associated with the steady state values of z1 and z2:

b1 =
πw[β(π + n) − 1]

n(1 − βπ)
and b2 = 0. (37)

Finally, we derive from equation (23) evaluated along a deterministic path two

associated values for the price of the Arrow securities at the steady state, namely:

Q1 =
1

π + n
and Q2 = β. (38)

We state these results as a proposition,

Proposition 1. In the deterministic version of this economy with wt(S) = w for any

date t and any state S, there exist two distinct steady states for (z, b, Q) such that

(z1, b1, Q1) =

(

π + n

n
,
πw[β(π + n) − 1]

n(1 − βπ)
,

1

π + n

)

, (39)

ha
ls

hs
-0

04
39

33
6,

 v
er

si
on

 1
 - 

7 
D

ec
 2

00
9



DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 11

and

(z2, b2, Q2) =

(

1

1 − βπ
, 0, β

)

. (40)

Recall that the equilibrium gross rate of interest is given by R = 1

Q
. It follows that

the interest factors in these two steady state equilibria are such that:

R1 =
1

Q1

= π + n and R2 =
1

Q2

=
1

β
. (41)

Since n+π > 1, by assumption, the gross interest rate in both steady state equilibria

is positive and the wealth of each household is well defined. Notice however, that if

1/β < π+n, the second of these steady state equilibria is dynamically inefficient with

R2 < π + n.

David Gale (1973) studied dynamics of a two period model with a government

liability that he called money. His model led to a difference equation that is very

similar to the one that we have derived for the perpetual youth model. Following Gale

we refer to steady state 1 as the golden rule steady state since it has the property

that the interest rate paid by households is equal to the population growth rate. We

refer to steady state 2 as the autarkic steady state since it has the property that

each household will choose to consume its endowment in equilibrium and there is no

inter-generational borrowing or lending.

The steady state value for government debt at the golden rule, b1, can be positive or

negative depending on whether 1

β
is larger or lower than π +n. David Gale suggested

the following classification. An economy where 1

β
> π + n is called classical. An

economy for which 1

β
< π+n is called Samuelson. In a classical economy the autarkic

steady state is dynamically efficient with an interest rate that exceeds the growth

rate. In a Samuelson economy the autarkic steady state is dynamically inefficient

with an interest rate that is less than the growth rate.3 In a classical economy, steady

state debt is negative at the golden rule. In a Samuelson economy it is positive.

The sign of government debt at the golden rule has implications for the local sta-

bility properties of the respective steady states. Consider the difference equation (33)

which can be restated as a backward-looking difference equation as follows:

bt+1 =
πwbt

(π + n)βπw − (1 − βπ)nbt

≡ g(bt). (42)

Differentiating with respect to bt, it follows that g′(b1) = β(π + n) and g′(b2) =

1/[β(π + n)]. We use this result to state Proposition 2:

3Gale chose this terminology because dynamic inefficiency is a novel feature that arises in Samuel-

son’s overlapping generations model but is absent from classical infinite horizon models with a rep-

resentative agent.
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 12

Proposition 2. In the deterministic version of our model, with wt(S) = w for any date

t and any state S, the following results hold:

i) When the autarkic interest rate is less than the population growth rate, ( 1

β
<

π+n), the golden rate steady state, b1 > 0, is locally unstable and the autarkic steady

state, b2 = 0, is locally stable. In this case autarky is both stable and dynamically

inefficient.

ii) When the autarkic interest rate is greater than the population growth rate,

( 1

β
> π + n), the golden rule steady state, b1 < 0, is locally stable and the autarkic

steady state, b2 = 0 is locally unstable. In this case autarky is both dynamically

efficient and unstable.

What does it mean for a steady state equilibrium to be stable? Recall that we

have interpreted debt as an indexed bond. It follows that stability of a steady state

equilibrium implies that, locally, there will exist initial values for government debt

for which a policy of rolling over the debt is feasible and leads to a sequence for

government debt that converges to the steady state.

If the world is Samuelson – there is a feasible policy that rolls over the debt each

period. Government debt as a fraction of gdp will shrink over time as the economy

grows faster than the interest rate. This policy will have bad outcomes since it causes

the economy to converge to a dynamically inefficient steady state. In this world, there

is a Pareto improving policy; it is a once off transfer to existing agents, financed by

debt, that takes the economy to the golden rule steady state and leaves it there.

If the world is classical, a policy in which the debt is rolled over every period is

infeasible. It leads to an explosive sequence of debt and, eventually, taxes will need

to be raised to restore stability. In this world, there is no Pareto improving policy

since equilibria are efficient. There is however, a policy that raises the welfare of

all future generations at a small cost to the current generation. By taxing a small

amount from existing households and lending the money back to households, the

government can select an equilibrium with b < 0 that converges to a golden rule

steady state. In that steady state the government holds claims of b1, a negative

number, and every household receives a lump sum transfer each period, paid for by

the interest on government assets.

In David Gales’s (1973) analysis of a two-period model similar to ours, he interprets

debt as a nominal variable. Under that interpretation of our model, the initial value,

b is not pinned down since the initial price level is free. In that case, there is a

connection between stability of the steady state and determinacy of equilibrium. If

an equilibrium is unstable, it is locally determinate since there is a unique initial
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 13

condition associated with a path for the state variable that converges to the steady

state. If the steady state is stable, it is locally indeterminate.

Local indeterminacy implies that there exists a continuum of equilibrium paths

converging toward the same steady state. Since the price level is free, the initial value

of debt is not given and Proposition 2 implies that there exists an equilibrium path

from each admissible value for the initial debt converging either to b2 = 0 or to b1 < 0

depending on whether β(π + n) is larger or lower than 1.

Figure 1. Equilibrium in the Samuelson Case

Figure 2. Equilibrium in the Classical Case

In a Samuelson economy in which bt is interpreted as a nominal variable, there is a

one parameter family of perfect-foresight equilibria converging asymptotically to the

zero debt steady state. At this steady state households can borrow and lend at an
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 14

interest rate of 1/β (see Figure 1). The only perfect foresight equilibrium converging

to the positive debt golden rule steady state, is the one that begins with a price level

that exactly supports that steady state as an equilibrium.

In a classical economy in which bt is interpreted as a nominal variable, there exists

an unstable (determinate) no-debt steady state, and a stable (indeterminate) negative

debt steady state. Any initial interest rate, different from 1/β, generates a perfect

foresight equilibrium converging to the negative-debt steady state equilibrium (see

Figure 2).

IX. Stochastic Dynamics: the Case of Indexed Debt

Equation (30) must hold each period in any rational-expectation equilibrium. To

parameterize uncertainty we assume that wt is i.i.d., and drawn each period from

a distribution F (w) with bounded support [1, w̄]. We assume further that F (w) is

common knowledge. We normalize the lower bound of the support to unity since it

simplifies some algebra in the proofs.

To analyze equilibria of the stochastic model, we will consider two cases. Suppose

first that debt is denominated in units of the consumption commodity and that the

economy begins with per-capita debt of b which may be positive or negative. In

this case, since debt is chosen at date t, bt+1 is in the date t information set. An

equilibrium sequence of values of per-capita debt must satisfy the equation,

bt = (π + n)βπwt(S)Ψ(bt+1), (43)

b1 = b, (44)

where the function Ψ(bt+1) is defined by integrating the right hand side of Equation

(45) over future uncertainty.

Ψ(bt+1) =

∫
[

bt+1

πw′ + (1 − βπ)nbt+1

]

dF (w′). (45)

The following lemma provides an expression of bt+1 as a function of the endowment

wt and the current level of debt bt.

Lemma 1. There exists an increasing function f(x) : [−∞, b∗] → [−∞, +∞] with

b∗ = (π + n)βπ/(1 − βπ)n,4 and the following properties

(i) f(0) = 0,

(ii) limx→b∗ f(x) = +∞,

(iii) limx→−∞ f(x) = −∞.

4Note that if we consider a bounded support [w, w̄] for the distribution F (w), the upper bound b∗

becomes (π + n)βπw/(1 − βπ)n and we get limw→0 b∗ = 0. In order to be able to consider positive

values for b and to simplify the formulation, we have normalized the lower bound w to 1.
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 15

(iv) Any bounded sequence of debt that satisfies the equation

bt+1 = f

(

bt

wt

)

, (46)

for b1 = b is an equilibrium.

Proof : Applying the inverse function theorem allows us to invert Equation (43)

and to derive the result.

Figure 3. Stochastic Equilibrium in the Samuelson Case

Figure 4. Stochastic Equilibrium in the Classical Case

Using this lemma we state the characteristics of an equilibrium for this economy

in the following proposition.
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 16

Proposition 3. (i) If the economy is Samuelson, there exists a number b1L ∈ (0, b∗)

and an initial debt level b̄ such that if 0 < b < b1L, the policy of rolling over the debt

can be supported as an equilibrium in which debt follows Equation (46) and

lim
t→∞

Prob(bt > 0) → 0. (47)

If b ∈ [−∞, 0] ∪ [b1L, +∞], the policy of rolling over debt cannot be supported as an

equilibrium.

(ii) If the economy is Classical, there exist numbers b1L and b1U where −∞ < b1L <

b1U < 0, and an initial debt b̃ such that if −∞ < b̃ < 0 the policy of rolling over

the debt can be supported as an equilibrium in which debt follows Equation (46).

Further, there exists an invariant measure φ(x) such that

lim
t→∞

Prob(b1U < bt < b1L) →

∫ b1L

b1U

φ(x)dx. (48)

If b̃ > 0, the policy of rolling over debt cannot be supported as an equilibrium.

Proof. The dynamic equation of debt as given by Equation (46) is a Markov process.

(i) Consider first the Samuelson case in which this Markov process is defined over

the interval [0, b∗]. As shown in Figure 3, there exists a number b1L ∈ (0, b∗) as

defined by b1L = f(b1L/w̄), such that if b ∈ [0, b1L), f(b/w) remains bounded for each

w ∈ [1, w̄]. Following Futia (1982), this Markov process defines a Markov operator T

on the Banach space of bounded functions on the interval [0, b1L] as

Th(b) ≡

∫

h(f(b/w))dF (w)

The proof is then based on various Definitions and Theorems provided in Futia (1982).

It follows from Theorem 4.6 and Proposition 4.4 that T is a weakly compact operator,

and hence quasi-compact. Moreover, f(b/w) maps the interval [0, b1L] into itself for

each w ∈ [1, w̄]. It follows from Definition 2.1 that T is a stable operator which is

thus equicontinuous as shown by Theorem 3.3. We can then conclude from Theorem

2.9 that there exists a degenerate invariant distribution such that limt→∞ Prob(bt >

0) → 0 since f ′(0) < 1 for any w ∈ [1, w̄].

(ii) Consider now the Classical case. As shown in Figure 4, there exists a number

b1L as defined by b1L = f(b1L) such that the Markov process (46) is defined over

the bounded interval [b1L, 0]. Following Futia (1982), this Markov process defines a

Markov operator T on the Banach space of bounded functions on the interval [b1L, 0]

as

Th(b) ≡

∫

h(f(b/w))dF (w)
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DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 17

The proof is again based on various Definitions and Theorems provided in Futia

(1982). It follows from Theorem 4.6 and Proposition 4.4 that T is a weakly compact

operator, and hence quasi-compact. Moreover, we derive from Definition 2.1 that since

f(b/w) maps the interval [b1L, 0] into itself for each w ∈ [1, w̄], T is a stable operator

which is thus equicontinuous as shown by Theorem 3.3. We can then conclude from

Theorem 2.9 that an invariant distribution φ(x) exists and is defined over the subset

[b1L, b1U ] with b1U such that b1U = f(b1U/w̄). To conclude the proof, we need finally to

consider the case in which the initial debt is such that b̃ < b1L. Since f ′(b/w) < 1 for

any b ∈ (−∞, b1L) and w ∈ [1, w̄], we get bt+1 = f(bt/wt) < bt for any bt ∈ (−∞, b1L)

and wt ∈ [1, w̄]. As a result, there exists τ > 0 such that for any t > τ , bt ∈ (b1L, 0)

and the previous argument applies.

Proposition 3 is illustrated in Figures 3 and 4.

X. Stochastic Dynamics: the Case of Money

There is a second case of interest in which bt is denominated in units of account.

This is what Samuelson (1958) called money. David Gale has analyzed the dynamics

of the non-stochastic two-period model and Farmer and Woodford (1997) have studied

a stochastic version of it. Our perpetual youth model behaves very much like the

stochastic two-period case studied by Farmer and Woodford.

When bt is denominated in nominal units, Equation (30) must still hold each period

in a rational-expectation equilibrium. But now there is no initial condition and bt+1

is no longer in the date t information set. It is a random variable that depends on the

realization of the period t + 1 price level. Consider the following change of variables

xt =
bt

wt

. (49)

Using this new variable we can write Equation (30) as follows,

xt = λ1Et

[

xt+1

π + λ2xt+1

]

, (50)

where λ1 ≡ (π + n)βπ and λ2 ≡ (1 − βπ)n. The fact that bt+1 is not in the date t

information set means that we can treat xt+1 as a random variable, determined at

date t + 1. As in Proposition 3, we derive the characteristics of an equilibrium in

terms of debt to endowment ratio.

Proposition 4. (i) If the economy is Samuelson then the number x∗ = λ1−π
λ2

is positive.

In this case, if the initial debt to endowment ratio satisfies the restriction 0 < x < x∗,

ha
ls

hs
-0

04
39

33
6,

 v
er

si
on

 1
 - 

7 
D

ec
 2

00
9



DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 18

the policy of rolling over the debt can be supported as an equilibrium in which debt

follows Equation (50) and

lim
t→∞

xt = 0. (51)

If x ∈ [−∞, 0] ∪ [x∗, +∞], the policy of rolling over debt cannot be supported as an

equilibrium.

(ii) If the economy is Classical, then the number x∗ = λ1−π
λ2

is negative. In this

case, if the initial debt to endowment ratio satisfies the restriction −∞ < x < 0,

the policy of rolling over the debt can be supported as an equilibrium in which debt

follows Equation (50) and

lim
t→∞

xt = x∗. (52)

If x > 0, the policy of rolling over debt cannot be supported as an equilibrium.

Proof : Applying the inverse function theorem allows us to invert Equation (50)

and to get

xt+1 =
πxt

λ1 − λ2xt

≡ G(xt)

We easily derive that there are two steady states which are solutions of G(x) = x,

namely 0 and x∗ = (λ1 − π)/λ2. The results follow from the fact that G′(0) = π/λ1

and G′(x∗) = λ1/π.

Although xt is non-stochastic in the equilibria described in this proposition, debt

itself is a random variable that fluctuates in proportion to the endowment. Since

the convergent steady states are indeterminate in this proposition, the techniques

discussed in Farmer and Woodford (1997) allow the construction of sunspot equilibria

in the neighborhood of the steady state. For the monetary economy, we can also

support equilibria at the determinate steady states.

Proposition 5. (i) If the economy is Samuelson, and if the initial value of debt is

non-negative, there exists a stochastic golden rule equilibrium in which

xt = x∗. (53)

(ii) If the economy is Classical, there exists a stochastic autarkic equilibrium in

which
xt = 0. (54)

In the Samuelson case, the price level adjusts each period to keep the ratio of debt

to the endowment constant. In the classical case, existing debt is repudiated by an

instantaneous hyperinflation that wipes it out. In this equilibrium money has no

value.

ha
ls

hs
-0

04
39

33
6,

 v
er

si
on

 1
 - 

7 
D

ec
 2

00
9



DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 19

XI. Conclusion

We have shown how to solve a discrete time version of the perpetual youth model

by assuming the existence of complete financial markets. Our model provides applied

researchers with a tool to study the effects of fiscal policy without introducing uncer-

tainty in an ad hoc manner. We showed that, when preferences are logarithmic, the

model behaves a lot like a pure-trade version of the two-period overlapping genera-

tions model and, like that model, government debt has important effects on the real

interest rate and on intertemporal allocations. Our solution technique should prove

useful in the analysis of calibrated macroeconomic models that drop the representa-

tive agents assumption, a step that is critical to an assessment of the long term effects

of government debt on employment, output and welfare.

Appendix A

Deriving the Human Wealth Equation. Using Equation (1) and Definitions (14)

and (15),

∑

i∈At

hi
t(S) =

∑

i∈At

wi
t(S) +

∑

S′∈S

Qt+1

t (S ′)π
∑

i∈At

hi
t+1(S

′)

⇔ Ntht(S) = Wt(S) +
∑

S′

Qt+1

t (S ′)[Nt+1 − nNt]ht+1(S
′)

⇔ Ntht(S) = Ntwt(S) + π
∑

S′

Qt+1(S
′)Ntht+1(S

′)

⇔ ht(S) = wt(S) + π
∑

S′

Qt+1(S
′)ht+1(S

′).

(55)

Line 2 follows from line 1 using the definitions of aggregate wealth and aggregate

human wealth and by recognizing that the human wealth of the old at date t + 1 is

equal to total human wealth Nt+1ht+1 minus the human wealth of the new generation

which has nNt members. Line 3 uses equation (1) to replace (Nt+1 − nNt) by πNt

and the final line follows from canceling Nt.

Deriving the Pricing Kernel. We begin with Equation (11), the agent’s Euler

equation. Aggregating this equation over the set At of agents that are alive at date

t, we obtain the expression

Qt+1

t (S ′)
∑

i∈At

ci
t+1(S

′) = βp(S ′)
∑

i∈At

ci
t(S). (56)
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We can obtain an expression for the right hand side of this equation in terms of the

aggregate endowment since from market clearing we know that

∑

i∈At

ci
t =

∑

i∈At

wi
t = Wt. (57)

To find a simple equation that describes equilibrium, we need an expression for
∑

i∈At
ci
t+1(S

′) in terms of the aggregate variables Ht, Wt and Bt. We will use two

facts. First, the consumption of all agents is the same linear function of their wealth.

Second, every aggregate variable can be split into a sum over new born agents and

existing ones.

Using the aggregation definition, Equation (13), and market clearing, it follows

that

Wt+1(S
′) =

∑

i∈At+1

ci
t+1(S

′) = π
∑

i∈At

ci
t+1(S

′) +
∑

i∈Nt+1

ci
t+1(S

′). (58)

Recall that newborns do not own Arrow securities. Their wealth is in the form of

human wealth. Using the policy function (12) evaluated at date t + 1 we can find an

expression for newborn consumption in terms of human wealth. Since the number of

newborns at date t + 1 is nNt, we can write this expression as follows,

∑

i∈Nt+1

ci
t+1(S

′) = (1 − βπ)nNtht+1(S
′). (59)

Combining Equations (57), (56), (58) and (59) leads to the expression

Qt+1

t (S ′) =
πβp(S ′)Wt(S)

[Wt+1(S ′) − (1 − βπ)nNtht+1(S ′)]
. (60)

Dividing top and bottom by Nt gives an expression for Qt+1

t (S ′) in terms of per

capita variables wt and ht(S).

Qt+1

t (S ′) =
πβwt(S)p(S ′)

(π + n)wt+1(S ′) − (1 − βπ)nht+1(S ′)
(61)

which is Equation (23) in the body of the paper. This equation gives the equilibrium

value of the price of an Arrow security.
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