This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 6, number 5
Volume Author/Editor: NBER

Volume Publisher:
Volume URL: http://www.nber.org/books/aesm77-5
Publication Date: December 1977

Chapter Title: ADAPTED METHODS FOR SOLVING AND OPTIMIZING QUASI-TRIANGULAR ECONOMETRIC MODELS
Chapter Author: Pierre Nepomiastehy, Alain Ravelli
Chapter URL: http://www.nber.org/chapters/c10543
Chapter pages in book: (p. 78-85)

ADAPTED MITHODS FOR SOIVING ANI OPTIMIZING; QUASI-TRIANGUIAR ECONOMETRIC MODELS

By Pierre Nepomiastcuy and Alatn Ravellit

This paper sets atu a Sewten-like method for solsing the model and a me'thod for compmiturs the gradient fodjoint wariable techniquej :hhich are both adatted to commometric models with
 mate with classical methots an the l.30 equarions. Star mandel.

1. Intronection

Let us consider a non-linear and dynamic macroeconomic modei with n endogeneous variables. To solve this model. we propose the following method. A set of s variables. called loop variables, and a set of s equations. called loop equations are seiceted such as: for given values of the loop variables. the remaining model with $n-s$ equations and $n-s$ variables is triangular and can be solved directly: then. an algorithm is chosen to iterate on the values of the loop variables in order to satisfy the loop equations.

The efficiency of this method obviously depends on the number of loop variables. We propose in [1] a method to renumber the equations and the variables in order to minimize this number.

If, after a possible renumbering. s is small compared to n. then the jacobian matrix of the model is lower-quasi-triangular (i.e. most of its non zero elements are under the main diagonal) and the model is called quasitriangular. In the paper, we shall consider only this kind of model but it seems to be the case for many macroconomic models. Here are a few examples:

Model	Number of equations (n)	Number of loop variables (s)
Andomini $[2]$	4	1
Pimpon $[3]$	14	2
Fair $[4]$	83	7
Star $[5]$	130	3
DMS $[6]$	about 1000	less than 100

The quasi-triangular structure was obtained by hand for Andomini and Pimpon, by the algorithm described in [1] for Fair. and was provided by the author of Star: for DMS. no renumbering was made.

In section H1, we propose an adapted Newton method easy to use and we give numerical results using comparisons with Gauss-Seidel.

$$
555
$$

We have shown in [7] on the small Pimpon model that the adion variable method is more elfective for compuling the gradient than the peneral!y !ned finite difference method proposed by fair [8]. We propos in section IV an adaptation of this adjoint variable method to the quas. triangular structure of the model and we give numerical results of com parisons with the finite diference method made asing the Star model.

These comparisons provide most encouraging results to support the efliciency of the two proposed methods.

II. Strectire of ihe Modf

For sake of elarity of the presemtation, we shall simplify se stricture of the model in the sense that we are not going to disting sin beteren equations which do not depend on loop variables and which correspond to pre-decermined variables, equations which depend on loop variables (heart of the model) and the triangular set of omput equations. The methods proposed in sections 1 ll and 18 can catsily be adapted to take into actount these differenees between cymations (see (i)).

Let us consider a discrete time dynamic model with periodst going from I to T. Let n be the number of endogencons variables, x_{1}^{t} be the value of variable i at period t and x, be the vector $\left\{x_{1}^{t} \ldots, x_{i}^{n}\right\}$. Let r be the number of control variables. u^{\prime}, be the vector $\left\{u_{1}^{\prime} \ldots \ldots, u_{i}^{\prime}\right\}$. Let p and q be the maximum lag appearing in the model on (respectively endeg. encous and control variables. Then, the model is deseribed by the foi lowing set of equations:

$$
\begin{gather*}
x_{r}^{\prime}=f_{i}^{i}\left(x_{1}, x_{t} \ldots \ldots x_{1}, u_{r}, u_{t} \ldots \ldots u_{r}\right) . \tag{ta}\\
i=1 \ldots \ldots n . \quad t=1 \ldots \ldots T
\end{gather*}
$$

(Ib) $\quad x_{i}^{i}$ given for $i=1, \ldots, n$ and $t=-p+1,-p+2 \ldots-1.0$
We shall assume that the given functions f, are continuously dif ferentiable and that, at least for any control taken in a reasonable range. the system (1) has a unique solution.

For solving the model at period t, the vector:

$$
\begin{equation*}
e_{t}=\left|x_{t} \quad 1, x_{i}, 2 \ldots \ldots, x_{t}, \ldots, u_{t}, u_{t} \quad \ldots \ldots u_{t}\right| \tag{2}
\end{equation*}
$$

is known and the problem is to find the solution x, of the problem:

$$
\begin{equation*}
x_{1}^{\prime}=f_{t}^{\prime}\left(x_{1} e_{1}, \quad i=1 \ldots \ldots n\right. \tag{3}
\end{equation*}
$$

After a possible renumbering of equations and variables, the low equations are the s last equations of the model and $y_{t}=\left\{x_{i}^{n-5}\right.$.... x_{i}^{n} ! is the vector of the loop variables. Then. by definition of the loon variables. the system (3) is triangular for an! given 1, and (3) can bi

$$
550
$$

written:

$$
\begin{array}{ll}
x_{i}^{\prime}=f_{i}^{i}\left(x_{1}^{1} \ldots \ldots x_{1}^{1} \cdot y_{1}, e_{t}\right) & i=1 \ldots \ldots n \cdots n \tag{4a}\\
x_{i}^{\prime}=f_{i}^{\prime}\left(x_{1} e_{t}\right) & i=n-r+1 \ldots, n
\end{array}
$$

III. Solution of the Model

For any given $r_{\text {t }}$ the sysiem (4a) is triangular and can be solved by simple evaluations of functions f_{1}^{2}. Which gives us vahues of x^{\prime}, for any $i \leq n-s$. Since $y_{1}=\left\{x_{1}^{n-s+1}, \ldots r_{1}^{n}\right\}$, it can be seen that. taking (4a) into account, x_{1} can be considered as a function $x_{i}\left(y_{i}\right)$ of y_{i}. Of course. with an arbitrary valuc of $y_{i}, x_{i}\left(y_{r}\right)$ does not in general satisty equations (4b), there is an error which depends on and only on y_{1}. We shall denote $\varphi_{i}\left(y_{i}\right)$ this error. The problem is to find y_{i} in such a waty that this error is equal to zero:

$$
\begin{equation*}
\varphi_{1}^{\prime}\left(y_{t}^{\prime}\right)=0 . \quad i=1 \ldots \ldots s \tag{5}
\end{equation*}
$$

In theory: it is possible to eliminate variables x_{1}^{2}. $i<n-s$. froin equations (4) and obtain the analyical expressions of functions $f_{1}^{\prime}\left(y_{t}\right)$. For large models. this is obviously impossible for pratical reasons but it is clear that. using (4), one is able to compute the numerical value of $\varphi_{i}\left(y_{t}\right)$ for any given numerical value of y_{t}. In this case the partial derivatives of φ^{i}, cannot be analytically computed and the simplest method for solving (5) is the well-known Gauss-Seidel algorithm.

It should be noted that this Ganss-Seidel algorithm. applied to the system (5) of dimension $s(s=3$ for Star) and not to the total system (3) of dimension n ($n=130$ for Star) is adapted to the quasi-triangular struc. ture of the model. But, still. it has the usual disadvantages of the GaussSeidel methods. namely:
a) the convergence is slow:*
b) the convergence is strongly dependent on the ordering and normalization of the equations and on the weights chosen for the feedback. weights which can be deternined for each model only by a large number of random tests.
We propose solving (5) by using the Newton method whith has a convergence rate of $2^{* *}$ and no parameters to determine in the feedback rule. It should be noted that if the Newton method had been applied directly to the total model (3). then each iteration would have required the solution of a linear system of dimension n. Using a general package

[^0]to solve this linear system. we have obtamed very poor restith. This lincar system is sparse and an be solved by :dapted mothods lik: those proposed by Drad !9! and we shall wat until Drads routine is atsalable io see if the "global Newton method" with the sparse fechnque for solving the linear system is more effective than our method or not

Applying the Newton method to (5). at each iteration we have onls to solve a linear system of dimension s (with $s=3$ for Star). Consequently, the only problem is the computation of the partial derivatives $\partial \varphi_{i}^{\prime} / \partial y_{l}^{\prime}$. If an analytical derivation package (as Formac) is a a ailable, then the analytical expressions of the derivatives a $f_{4}^{\prime} / d x_{1}^{\prime}$ tan be deduced from (4). By definition of $\varphi_{1}\left(y_{i}\right)$, we have:

$$
\begin{equation*}
f_{i}^{\prime}\left(y_{i}\right)=y_{t}^{i}-f_{1}^{n-s+1}\left[x_{i}\left(y_{i}\right) \cdot e_{t}\right] \quad i=1 \ldots s \tag{6}
\end{equation*}
$$

with $y_{i}^{i}=x_{1}^{n-+1}:$ from (4a) we have:

$$
\begin{equation*}
\frac{\partial x_{t}^{i}}{\partial y_{1}^{\prime}}=\sum_{k=1}^{i-1} \frac{\partial f_{1}^{2}}{\partial x_{1}^{k}} \frac{\partial x_{1}^{k}}{\partial y_{1}^{\prime}}+\frac{\partial f_{1}^{2}}{\partial y_{1}^{\prime}} \quad i=1 \ldots n-s . \quad i=1 \ldots \ldots s \tag{7}
\end{equation*}
$$

which for any j. is a triangular system in $a x_{1}^{\prime} / d y_{i}^{j} i=1 \ldots \ldots n-s$. Then. from derivation of (6). we have:

$$
\begin{equation*}
\frac{\partial \varphi_{1}^{i}}{\partial y_{t}^{\prime}}=\delta_{i j}-\sum_{1=1}^{n-s} \frac{\partial f_{1}^{n-1+!}}{d x_{t}^{k}} \frac{a x_{i}^{k}}{d y_{t}^{\prime}}-\frac{d y_{1}^{n \cdot s+1}}{\partial y_{1}^{\prime}} . \quad i . j=1 \ldots \ldots s \tag{8}
\end{equation*}
$$

If no analytical derivation package is available, then finite difference approximations of the $d \varphi_{1}^{\prime} / d y^{\prime}$, are computed. The computation of $\varphi\left(j_{;}\right)$ for $s+!$ values of vector y_{i}, that is $s+1$ solutions of the triangular system (4). gives an approximation of these derivatives: for more detals, see [1].

With programs written in Fortran H extended on an IBM $370-1$ ts computer and with a unit of one millisecond of CPU time. Table I gives. for different values of the required accuracy. the computing time of one simulation over 10 periods of the 130 equations model Star.

1	(iS	N	$N:$
10^{-2}	14.7	9.6	120
(10)-4	51.9	1.45	$18:$
10^{-6}	1290	20.2	S0.0
10^{-8}	2659	23.4	20.3

[^1]Remember that the model is solved when $\varphi_{i}\left(y_{i}\right)=0$, with $\varphi_{i}\left(y_{i}\right)$ given by formula (6). We have chosen as the iest to stop the algorithm:

$$
\begin{equation*}
\sum_{i=1}^{s}\left|\frac{f_{1}^{n+1}-y_{i}^{i}}{y_{i}}\right| \leq t \tag{9}
\end{equation*}
$$

All the methods tested were adapted to the quasi-triangular structure of the model. A run of the "global Newton method" discussed above with a standard package for the linear system produced disastroms results: 13 seconds for $\epsilon=10^{-8}$ (50 times worse than GS).

The Gauss-Seidel method chosen for comparison was the one described above, namely Gauss-Seidel applied to (5), after optimization of the $s=3$ weights of the feed-back rule. It is obvious that Gauss-Seidel applied to the total system (3), even after the optimization of the $n=130$ weights of the feed-back rule. would have given worse results.

In methods N1 and N2. the jacobian $\left(\left(2 \varphi_{1}^{\prime} / \partial y_{i}^{\prime}\right)\right.$) was computed for each iteration of the Newton methods. Computing it only sometimes gives a small improvement (for more details, see [1]).

From table 1, it appears obvious that when the Newton method is adapted to the quasi-triangular strueture of the model, then this method is much more effeetive than the Gauss-Seidel, especially when a high accuracy is required, which is the case when the simulation algorithm is only a part of an optimization problem solved by sophisticated algorithms like Davidon-Fleteher-Powell.

iv. Optimization of the Model

We have to minimize the following loss function:

$$
\begin{equation*}
j(x, u)=\sum_{t=1}^{r} j_{t}\left(x_{t}, x_{t-1}, \ldots, x_{t-p}, u_{t}, u_{t-1}, \ldots, u_{t-q}\right) \tag{10}
\end{equation*}
$$

where x and u are linked by the model (1). We shall assume that the functions j_{i} are continuously differentiable.

In this paper, we are only concerned by the search for an eflicient algorithm to compute the gradient $J^{\prime}(u)$ of $J(u)=j[x(u), u]$, where $x(u)$ is the solution of (1) assoeiated with the control u.

The linite difference method [8] is a very simple method for gradient computation, but it requires $r T$ model simulations for one gradient computation, where r is the control dimension and T the number of periods. We propose using the adjoint-variable method. This method is well known in optimal control theory (see, for example [10]) but, as far as we know, was applied to the optimization of a macroeconomic model for the first time by us [7]. In [7], we have shown how it can be applied to the 14equations Pimpon model: here we show how it can be adapted to the
quasi-triangular strueture of the model and we give results for the bif() equations Star model.

Io describe the adjoint-variable method. Iet us introduce sererat notations:

$$
\delta_{t}=\left\{\begin{array}{lll}
1 & \text { if } t & T \tag{11}\\
0 & \text { if } t> & T
\end{array}\right.
$$

$$
\begin{equation*}
w_{t}^{t}=\sum_{i=i j}^{4} \delta_{1+k} \frac{\partial j, n_{i}}{\partial u_{i}^{\prime}}, \quad i=1 \ldots \ldots r, \quad t=1 \ldots, T \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
r_{1}^{k}=\left(\left(\frac{a f_{t}^{a}+k}{a X_{1}^{\prime}}\right)\right): \quad G_{1}^{k}=\left(\left(\frac{a f_{1}^{a}+k}{\partial u_{t}^{\prime}}\right)\right) \tag{13}
\end{equation*}
$$

L.et $\psi=\left\{\psi_{1} \ldots, \psi_{i}\right\}$, with $\psi_{1} \in R^{n}$, be the solution of:

$$
\begin{equation*}
\psi_{i}=\sum_{k=0}^{p} \delta_{t+k}\left(f_{:}^{k}\right)^{*} \psi_{t+k}+r_{t}, \quad l=1 \ldots . T \tag{15}
\end{equation*}
$$

where $\left(F_{t}^{k}\right)^{*}$ is the transposed matrix of r_{i}^{k}. The equation (15) is called the adjoint system of the optimization problem and its solution ψ is called the adjoint-variable. It can be prosen (see [1]) that the gradient can be deduced from the value of ψ by the formula:

$$
\begin{equation*}
J_{t}^{\prime}(u)=w_{t}+\sum_{k=0}^{7} \delta_{t+k}\left(G_{t}^{k}\right)^{*} \psi_{t+k} \quad t=1 \ldots \ldots T \tag{16}
\end{equation*}
$$

For the gradient computation, one must solve the system (15) for $t=T$. then for $t=T-1$, and so on till $t=1$. Indeed, when ψ, is computed, the values of ψ^{\prime}, for any $t^{\prime}>1$ are known, hence the vector:

$$
\begin{equation*}
c_{t}=l_{i}+\sum_{k=1}^{p} \delta_{t+k}\left(f^{k}\right)^{*} \psi_{t \cdot k} \tag{17}
\end{equation*}
$$

is known (from (Il) we sec that. For $t=T, c_{t}=r_{1}$) and consputing t^{2} is reduced to the solution of the lincar system:

$$
\begin{equation*}
\psi_{t}=\left(f_{t}^{U}\right)^{*} \psi_{t}+c_{t} \tag{i8}
\end{equation*}
$$

From the notation (14) and the structure of the model gisen by (t). it can be seen that (18) can be written:

$$
\begin{equation*}
\psi_{i}=\sum_{i=i+1}^{n} \frac{\partial f_{1}^{\prime}}{d x_{1}^{\prime}} \psi_{i}^{\prime}+i_{i}^{\prime} \quad i=1 \ldots \ldots n-s \tag{19a}
\end{equation*}
$$

$$
\psi_{1}^{i}=\sum_{i=1}^{n} \frac{\partial f_{1}^{i}}{\partial x_{1}^{i}} \psi_{1}^{i}+c_{1}^{i} \quad i=n-s+1 \ldots n
$$

Using the same argament as for solving the model. let $\lambda=$ $\left|\psi_{1}^{n-s+1}, \ldots \psi_{i}^{n}\right|$ be the vector of the adjoint loop variables. For any given $\dot{\lambda}$, using ($19 a$). it is possible to compute the corresponding values of ψ_{1}^{n-3}, then ψ_{1}^{n-s-1} and so on till $\psi_{!}^{1}$ and check whether these values satisfy (19b). Consequently, we are able to compute the errors:

$$
\begin{equation*}
E_{i}(\lambda)=\lambda_{i}-\sum_{i=1}^{n} \frac{\partial f_{t}^{j}}{\partial x_{i}^{\prime}} \psi_{i}^{\prime}(\lambda)-c_{t}^{n-s+1} \quad i=1 \ldots . \tag{20}
\end{equation*}
$$

and the only problem is to find λ such as $E(\lambda)=0$. From (19). it is clear that $\lambda \cdots E(\lambda)$ is a linear mapping which can be denoted by $f(\lambda)=A \lambda-b$. The computation of $I:(\lambda)$ for $\lambda=0$ gives the vector b. It can be proven* that the matrix A is the iransposed of the jacobian matrix of the system (5). hence A is known. Consequently. the system $A \lambda=b$. which is only of dimension s, has to be solved. then, the adjoint variable ψ, is computed with the help of (19 a) and, finally, the gradient is obtained by the formula (16).

The adjoint variable method requires, for one gradient computation, $2 T$ evaluations of equations (19) and 7 solutions of a linear system of dimension s : on the other hand. the finite difference method requires $r T^{2} / 2$ solutions of the non-lincar system (3) of dimension $n^{* *}$. Consequently, it is clear that the adjoint variable method is much more effective as shown on Table 2 which gives. for the model Star, the compating time ${ }^{* * *}$ of a gradient computation using the two methods:

TABLI: 2

T	M 1	M2	H1/W
10	0.65 sec .	0.016 sec	10.6
20	2.39 scc .	0.031 sec .	77.0
30	4.90 sec .	0.046 sec	106.5
7 : number of simulation periods.	: number of simulation period.		
W1 : gradient computing lime asing the tinite dificerenee method.			
W2	gradient computing time asing the tinite differenee method.gradient computing time asing the adjoint variable method.		
M1/M2: ratio of computing tines.			

[^2]In this comparison the matrices r_{t}^{k} and G_{1}^{i} were obtained by analytical derivation of the equations of the model. A tinite difference approximation of these matrices mattiply the computing time of method $M 2$ by a factor 10 (independent!y of r and the adjoint variable method still remains much powerful that the finite diflerence method.

IRIA-I.ABORI.
Rocquencourt. 78/50 Ie Chesnay. France

Referfences

[I] D. Gabay: P. Nepomiasthy: Mt Rochdi; A. Ravelii: "fude resolution et optimisa-
K. Wall: VAER Cambridge Mema, Sune 20, 1975

3] A. Couticre "Un modele da sosteme monetaire francas." Suarniques de fiude Finumbëre\%, NSE: (Paris). 1975/17.
 Ballinger Publishing Comp:as. 1976.
5) J. Mintral "STAR. Modele de prevision à comrtmonen torme." Semmaire sur !e

(b) D. Fouquet: "I er multiplic:atens de DMS." Publ. ANSEI, Jan. 24, 1977

 Dcc. 13 17. 1976.
[8] R. C. Fair: "On the Solution of Optimal Problems as Maximizatom Problems." Anals of Ricomomic and Social Measermeme. Vol. 3. No. I. Jan. 1974. pp. 135 154
[9] A. Drud: "Mothod for Comtrol of Complex Danamic Sistems." IMSOR No. 2?. Lyngby (Danemark). 1976.
[10] A. Bensoussan, E. Hurst: B. Naslund "Mamasement Apphications of Modern Controt Theors." Nerth-Holland, 1974.

[^0]: *its convergence rinc is 1 : the error at iterition α is proportionat to the error at iteration $h-1$
 **The error at iteration k is proportional to the syuate of the crror at iteration $h-1$.

[^1]: GS: Gauss-Seidel method
 N1: Newton method with an:ilyeical derivation of the model
 2: Newlon method with numeric:al dernaton of the motet
 e: atcuracy required.

[^2]: *ihis result was kindly sugecsted to us by one of the referecs of this paper for proot. sce [1].
 ${ }^{*}$ fior Star, we have $r=10 . n=130 . s=3$ and $t: 10$.
 ** uith programs in Fortran Hextended on all IBM $370-16 \times$ computer.

