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STATISTICAL METHODOLOGY FOR NON IER1ODIC CYCLES:

FROM THE COVARIANCE TO RS ANALYSIS

BY Bioi r B. MANIwUtROTt

This paper begins with a critical and idiosyncratic surrey of some of the less known and more dangerous
pitJiifls of the common statist jeal methods of time serie.s'.vilrsis -namely of the methods ming thc
eorrelation Ii then promotes a new and promising alti'rnat ire, RIS analysis, and describes a good Jiwiilv
of ,audoni processes, the fractional noises.

I INTRODU('flON

This paper is a comparative analysis of a number of statistical techniques for the
study of economic fluctuation, of old techniques which I have found----to various
degrees--to be lacking, and of a new technique called R/S analysis of which I am
enamored today. I had thought of titling this paper "New Methods of Statistical
Economics," but unfortunately 1 used that title in 1963 [10]. Even though the old
"new" methods have taken root and spread around,2 I don't want to confuse
matters with the new "new."

Though [followed up [10] and [it] with more work in the same vein. [14],
[2 1]. 1 have also instigated a different development, in a sense one perpendicular
to the older one. The present paper is meant to be a proselytizing introduction to it.
The methods on which I was working circa 1960 had concerned primarily the
inorgincil distribution of various economic time series, irrespectire oj their struclure
of dependence. Notably, I concentrated on the fact that among them, especially
price series, many are non-Gaussian to the extreme.3 For this behavior - borrowing

'Thanks are due, in chronological order, to Harold A. Thomas of Harvard for showing roe
Hurst's papers that made me aware of R/S; to James R. Vallis of IBM for stimulating discussions
during our study of R/S by computer simulation, and [or permission to include a few examples from
our papers; to the National Bureau of Economic Research for support of further simulation work on
R/S: to Murad Taqqu of Columbia University for assistance in the NBER supported work, for per-
mission to quote his unpublished theorems, and for stimulating discussions: to Hirsh Lewitan of IBM
for programming assistance: and to Christopher Sims of the University of Minnesota and the NBER
for a most helpful reading of a draft of this paper.

I view my 1963 proselytizing as having been successful in the quantity, and very successful in the
quality, of the work it triggered. I was especially fortunate in having Eugene Fama join me, first to help
interpret my infinite variance theses to economists [4], then toadd his own empirical evidence to mine [5].
to work out applications [6] and to train students [2], [28]. [3!]. Additional notable work on the same
tines is to be found in [29], [30]. Compared to Paul Cootner's statement in 1964 that "there can be
little doubt that Mandelbrot's theses are [I blush] the most revolutionary development in the theory of
speculative prices since Bachelier's initial work (1900)," the casual treatment of the same theses by
Richard Roll [31], not as hypothetical but as natural and nearly commnon-sensical, marks a definite
change of attitude.

A little repetition of known lacts at this point may help this paper also serve as a tutorial. 'the
main characteristic of the well known "Galton ogive" distribution is that ii has a round head and no
tails to speak of. By contrast, the daily changes of the logarithm of, say, the spot price of cotton have a
distribution with a pointy head, arid very long tails, features which express-- respectively ---that by
Gaussian standards very small price changes are much too numerous, and large price changes much
too large. Many authors believe that very large price changes should be handled apart, but I don't see
why it should be so, and I therefore made it a point to examine the observed (listributions as wholes.
Stared at intensely, they turn out to look less like the Gaussian than like another classical disiribution,
Cauchy's. whose density is (I 4-x 2- i '. More precisely, they look like a cross between the Cauchy
and the Gaussian. There happens to exist in the literature a whole family of such 'hybrids." depending
on a parameter a that varies from I (Cauchy) to 2 (Gauss). They are ordinarily called stable, and
sometimes--in a search for a less overworked termstable Levy, and I confess having added to the
confusion by calling them stable Paretian or Pareto-Levy. They turn out to fit price change distributions
well.

259



from the Bible and from hydrology---! have since coined the self explanatory term
"Noah Effect" [23]. The methods I explore currently concern the .tructure f
depeiulence in various economic time series, especially long run dependence,
arrespectire of their marginal distribution. Notably. eConomic time Series lend to be
characterized by the presence of clear-cut but not periodic "cycles" of all con-
ceivable "periods," short, medium, and long, where the latter means "comparable
to the length of the total available sample," and where the distinction between
"long cycles" and "trends" is very fuzzy. For this sort of behavior I have coined
the term "Joseph Effect" [23].

Although cycles have been studied extensively, I see in the literature a glaring
gap. While considerable work was invested both in accumulating data and in
investigating econometric models that generate "cyclic-looking" artificial time
series, efforts to characterize the structure of actual series have been minimal
they have mostly consisted in stressing that few are either strict or bidden periodic,
and that even when a clear seasonal is present, removal of the seasonal tends toleave a cyclic remainder. The first step in dealing with such "cyclic behavior"
mathematically was taken several decades ago, and has consisted in observing
that something "roughly like it" is encountered in oscillatory autoregressiveprocesses. The initial pioneering observation to this effect was naturally based uponintuitive and casual tests, and this was admissible. But for a whole branch of
econometrics those same tests provide inacceptably flimsy foundations. Pioneeringremarks, due among others to Adelman [I] and Granger [7], have not beenfollowed up. Though non-periodic cyclic behavior is both important and peculiarenough to be viewed as a distinct "phenomenon," the available mathematics(both probability and statistics) had not studied it squarely.

The above remarks set the framework of my current search for the following:
Ways of grasping intuitively the concept of non-periodic "cyclic" long

run dependence, contrasting it with the two customary patterns, namely shortdependence (Markov character) and periodic variation. The differences betweenthe above kinds of dependence arc quite as deep as those in physics between----
respectivejy__liquids gases, and crystals. Contributing to this comparison, I haveparticipated in extensive computer simulations of a variety of different processes,classical or otherwise. "Eyeball" tests of goodness of fitas long as their realm ofapplicability is kept in mindare peerless.

Alternative methods of stalistical testing and estimation that stress suchlong run dependence, including methods insensitive to non-Gaussian margins.The methods I advocate are range analysis and, more important, R,.S analysis.Simple one variable stochastic processes that look like the data andexhibit the same typical R,,'S statistical behavior. The main tools- I have used arevarious "fractional noises," which are stationary processes such that their spanof dependence is infinite. (Their role is the counterpart of that of the stable Paretianprocesses I injected into economics around 1960.)
The present paper primarily surveys and elaborates the findings on thosepoints scattered in my earlier papers. I do have some ideas about the causes of theeffects to be descnbed and about their interrelationships (see, e.g. [13], [18]), but
The equivalent of a flood may be of either of two kinds: a price change either up or down,that some may ride and others will consider catastrophic
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my overall approach below, as it was circa 1960 when I was advancing the infinite
variance thesis (and in various investigations outside of economics) is characterized
as "phenomenological." l'he approach plays the same role as phenomenological
thermodynamics in the theory of heat (hut physics will not be mentioned again).
Rather than to leave the data and specific models face to face, I have endeavored
to establish "buffers" by identifying "phenomena" that embody something
essential in the data and also accept simple mathematical expressions.

The quickest way to make a new viewpoint be appreciated is unfortunately
"negative": to show how it affects the use of old techniques. This is why this paper
grew to also include much critical exposition of the work of others, I shall list,
in turn, some limits to the use of autocorrelation function (ACF) analysis, and of
variance time ftinction (VTF) analysis. The former is familiar in economics-the
phrase "pitfalls of correlation" is a cliche and perhaps a bore ---, while acceptance
of the latter is still only a threat. Even in "the best" case, both are known to exhibit
a long line of pitfalls--more accute and better known in the ACF case, and it will
be shown that the prevalence of the Noah and Joseph Effect in Nature indicates
that both the marginal distributions and the laws of dependence of many actual
cases are very far from being "the best" for an application of ACF and VTF.
One must beware of the pitfalls of apparent lack of correlation. Then I shall
proceed to range(R)analysis, which is a varianta signifIcantly modified one of
which may be termed "high minus low" (HLF) analysis. Finally, I shall reach
range over standard deviation (R/S) analysis. I hope and trust that many readers
especially those who have been sheltered from VTF and highs minus lowswill
become convinced by my criticism before they are exhausted by hearing it stated
fully, will become impatient with "negative" sections and will skip on to the
"positive" sections concerning fractional noises and their simulation, and R/S
analysis. Those sections have been written to accommodate such readers.5

2. NOTATION AND DEFINITION OF FRACTIONAL GAUSSIAN Noise

XU) will designate either a time series (t.s.), i.e. an empirical record as function
of time t, or a random function (r.f.) of i. Random variables will he denoted as r.v.
Time is assumed integer-valued. As in [15], a star will denote summation, with
X * (t) = X(s) - X(s). Thus,

X * (0) = 0 for r = 0,

X(s) for and also (X2) * (1) = Y2(s)

X* (t) = X(s) for I - I.
s1f I

Note that two other introductions to RJS already exist in the literature. One i.s informal- --as is
the present onebut addressed to the very different problem of water engineering, and written in the
vocabulary of hydrology. See Mandelbrot and Wallis [23]. [24]. [25], [26], [27]. The other is formal and
written ex-cathedra, with minimal motivation and extensive mathematical discussion, Mandeibrot
[20].
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Similarly, two stars will denote repeated summation, as in

(N.sI
Abbreviations such as ri, t.s., ACF vill serve both as singular and as pluraLIn this paper, a special role will be played by r.f. with independent values,Markov processes, and "discrete fractional Gaussian noises" (diGn). The latterare the counterpart of the Paretian stable process encountered in studies ofinfinite variance. The dfGn of exponent H is the special stationary Gaussian ri.denoted F11(t), defined as having a population ACF equal (6

C,,(d) = (1/2) [)d + I
j211 - 21dj21' + d - I )211]

For all values of H, one has C,,(0) = 1, as required of a correlation. Forfdl the cases to consider number three. C,,(d) = 01ff! = 0.5- -in which casethe values of F05(t) are independent, so it is a white noise. On the other hand.C(d) > 0 if H > 0.5, and C,(d) < 0 if H < 0.5. By every one of several criteriato be studied below, we shall see that F,,(t) exhibits very long run dependencewhose intensity is measured by H - 0.5, where the exponent H lies between 0 and 1.Tables of C,,td) and of approximations thereto are found in Mandelbrot [17].To avoid dragging JdI throughout, we shall write the formula for d> 0 only.The reasons why dfGn is needed will become increasingly apparent: forexample, Section 7 will illustrate and describe intuitively the behavior of its samplefunctions. However, it maybe good to give without waiting one reason why in [12]I had added this special family to the model maker's kit. Suppose a probabilistis told that a t.s. of price changes
looks cyclic but nonperiodic, and is asked forexamples of r.f. having such a behavior. His first choice might well be a randomwalk or Brownian motion (see Feller's Volume 1, page 86 of the third edition).But of course, the economist knows this would not do because what looks in afirst approximation like Brownian motion, is the t.s. of price itself, not of itschanges. This same approximation says that price changes are like white noise,which is ofcourse the rough model we want to go beyond. Thus, in loose intuitiveterms, what the model maker should strive for is a hybrid between white noiseitself and its integral, some kind of partial integral or "fractional integral of whitenoise',.

By unlikely chance, a concept bearing the name in quote marks does happento have been defined in pure mathematics, by Abel, Holmgrcn, Riemann and Liou-yule, their definition being later modified by 1-lerman WeyL What I have claimedin [12] is that--by an even less likely coincidencethe process yielded by frac-tional integration of white noise is precisely what is needed for modeling non-periodic cycles. For Weyl's formula of fractional integration, the reader is referredto [22] or [24]. Note that the order of integration is H - 0.5. One can show that arelation familiar in ordinary
integrationnamely that the integral of order Jof an integral of order J2 of X(t) is an integral of order f1 + J, of X(t)extendsto fractional orders. This property is needed, when applying Weyl's definition torandom functions, to avoid some conceptual

complications which would have6
Mnemonic device: this is the second

finite difference of the function (I/2t421.
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marred a direct application. Thus, a good implementation of the fraction7.l integral
of a white Gaussian noise is achieved by first taking 'n integi d of order I! + 0.5
and then taking the sequence of first differences of ñe result, This yields the dfGn
of exponent H as defined above. i'he litct that f)r H > 0.5 the correlation is
positive for all d expresses that----just like classical integration--fractional integra-
tion of positive order smoothes out a process and makes it persistent. Fractional
integration of negative order--like classical differentiationroughens it up.
As a result, the ease H < 0.5 is by far the less important one. Its properties will be
mentioned only when they both require only a small effort and are illustrative.

3. Two NEW PITFALLS OF SERIAL CORRELATION

A t.s. X(z) was given from t = Ito t = T, and its sample average T 1X (TI'),

its sample variance T '(X2) * (TI), and its sample covariance function (ACF)
(or serial correlation, or lagged correlation)(T - d) ' 1''X(t)X(t + d) have
all been evaluated. General question: What have we learned? Answer: When
either the Noah or the Joseph Effect prevails, very little.7 More specific question:
Does it suffice to match these quantities in a model and in reality? Answer: No.
Even more specific question: According to Box, Jenkins and Watts [3], it suffices
that the above characteristics of the data he matched in a model that is a mixed
autoregressive-moving average Gaussian r.f. Is this advice sensible? Answer: Only
within sharp limits: ACF analysis is effective primarily in the search for models of
those aspects of statistical dependence that refer to near Gaussian r.f. and that
concern high frequencies l/d and small lags d, that is, for models of short run near
Gaussian effects. For example, it is recommended to economists wishing to forecast
next year's value of a t.s. known to be Gaussianas it was to hydrologists wishing
to forecast next year's discharge in a Gaussian river. Obviously, Gaussian short
run problems are important, but they are not the only ones. Let us examine some
arguments which make it likely that, as correlation methods have been applied in
the past (for different reasons in different instances), both the short and long run
dependence have often been underestimated.

3.1. Interpretation of the Swnple ACF when time Generating Process is Highly
Non-Gaussian, Namely Noah Erratic

Many economic t.s. exhibit the Noah Effect, that is, have extremely long
tailed (= leptokurtic) distributions. This is the feature I proposed circa 1960
to model by a class ofrf. characterized by finite mean EX(t) and infinite variance
EX2(z), including notably the Pareto-Levy (= stable Paretian) r.f. Let me show
that when an A CF analysis program is used blindly for such t.s., tile degree of depend-
ence is grossly underrated. This novel effect is thc inverse of another (better known)
unfortunate aspect of correlation, that it tends to "uncover" non-existing relations.
The difficulty to be described has beenimplicitlywidely known, and it could,
of course, be avoided by using "common sense," e.g. by eliminating outliers or by
transforming the variables before taking the correlation so as to make them near

There would be no improvement if the denominator in the defInition of the sample covariance
were T' instead of (T d).
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Gaussian. but I think to elaborate on the precise nature of this underrating isilluminating.
As a preliminary, consider the case -especially familiar to computer_orientedscientists -wheic a sample of IOU unit variance Gaussian r.v. has been "con-

taminated" through keypunch error with one value of about 100. This has thefollowing effects. The sample variance around the expectation jumps up fromabout 100/100 to about (99 + IO,000)/JOcJ. The sample average jumps up fromabout ± 10/100 to about (100 ± lO)/100. The sample variance around the sampleaverage jumps up from about 1 to about 100. The sample covariance of Ia one{X(tK(t + l)]/99, jumps up from about ±\/99/99 to about (±v-98 ±100)/99 However, the ACF of lag d = I changes in the Opposite direction,
namely jumps dow,, from about ±0.1 to about ±0.015. ACF for larger lags dalso decrease sharply. Many practitioners are limiliar with this etP.ct and recognizeit as a symptom of keypunch error.

Next, consider T values of an independent r.f. exhibiting the kind of moremoderately non-Gaussian distribution characteristic of the Noah Effect, forexample a t.s. of the changes of commodity and security prices. In the r.f. withfinite mean and infinite variance which I have proposed as model, one hasEX(t)X(t + d) = 0. More specifically, if X(t) is approximately stable Paretian(= Pareto- of exponent , with I < < 2, then the orders of magnitude ofX(t)A'( + d) and X(t) are, respectively T12 and 721 and so the order ofmagnitude of a correlation of lag d > 0 is T tZ,
The Gaussian would predict con-vergence to zero Proportionately to T 1i2 and by this standard a convergencepropor(jona to T - 112 should beconsidered as abnormally rapid. In other words.if statisticjl correlation analysis is judged by comparison with confidence levelsvalid for Gaussian r.f., it should not only be expected to call our t.s. independentbut should indicate an absurdly high level of significance To avoid such anomalies,it would be necessary to establish for each broad family of non-Gaussian r.f. aspecial set of alternative standards of statistical significance. an obviously un-realistic requirement

Now pass on to a highly non-Gaussian r.f. with someposjtive serial dependence.Unless unreasonably severe caution has been exerted, it is tempting to compareits sample ACF with the textbook confidence level, forgetting that the latter isonly appropriate for Gaussian r.f. Even though it falls above the confidence levelthat it would have been appropriate to consider, it is quite possible that the ACFof a sample from a non-Gaussian r.f. should fall below the textbook confidencelevel. As a result, the textbook test will affirm that the dependec is not significant!

3.2. Inerpre(i,(jo,, of the Sample AC'F when 1/ic Gener(1ti,ig Process Exhibits aVery Strong Long Run Depe,u/e,,ee Na,nej1' is "Joseph Erratic"
Let us 110W COnsider t.s. that exhibits the peculiar "Joseph" forms of long rundependence. This last notion will be explored in a later Section, but we cananticipate by noting that I have proposed [12] to model it by a class of r.f. charac-terized by an infinite memory. This last feature may be present independentlyof whether or not the Noah Effect

is observed, but we shall for the moment dividethe difficulties by assuming the latter Effect is absent, and by examining a Gaussian
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r.f. such that sample ACF analysis underrates the degree of dependence. It is the

dfG noise F,,(t) defined above.
It is a familiar fact that, like any other statistical procedure, model fitting must

start with the choice ofa criterion that attributes weights to diflrentkinds oferror.
Unavoidably, this choice of a distance is largely arbitrary, anddepending both
upon one's aims and assumptions different definitions may be recommended.
A variety of distances will be considered. Since Gaussian ri. are fully determined

by their ACF, a measure of distance for them only involves the respective ACF,

and we shall assume this restriction remains applicable to the near Gaussian
phenomena with which we deal at the present.

The most naive distance involves only the mean and the variance. This

amounts to neglecting dependence altogether, calling all ri independent. In these
Annals, this viewpoint deserves no further discussion. so we shall assume henceforth

that mean and variance are matched by being put equal, respectively, to 0 and 1.

The second most naive distances between two rf. arc increasing functions of

the absolute difference between the respective ACF corresponding to the lag

d = 1. From this viewpoint, every r.f. is Markov, and possibly even independent.

For example, define M,,(() as the Markov Gauss (MG) r.f. of ACF equal to d

to [C,,(l)]d = (2211 l)d Since the ACF of F,,(t) and M,,U) have been con-
structed so as to coincide for both 1! = 0 and dI = 1, the naive conclusion could be

that F,, and M,, are indistinguishable.
The notion that every non-independent r.f. is Markovian is surprisingly

widespread; but it is. of course, absurd. This shows that the above second most
naive distance is inadequate, and that a realistic definition of a distance must also
consider the values of ACF for !tll > 1. For example, one can take account of these

values by taking as distance the maximum difference between two ACF's, as
Box and Jenkins [3] do implicitly when they trace "confidence levels."

Although the domain of validity of this last distance is non-negligible, it is

limited. For example, compare numerically the above r.f. M,,(t) and F,,(t). Despite

the fact that the analytical expressions of their respective ACF C,1(d) and {C,,(1)]d

differ greatly for d > 1, the actual numerical differences between the two r.f., for

given d, happen to be small. For example, for H = 0.6, the difference lies below
0.08. Therefore, the Box Jenkins distance would lead us to conclude that in a first
approximation C,,(d) and [C,,(lfl differ little, bringing us back to the naive notion

that F,,(t) is nearly Markovian. But when a better approximation is desired, one will

invoke a higher autoregressive r.f., and what one will find is that the order of this
r.f. will behave strangely: it will be rather sharply sample dependent, and it will
tend to increase without bound as the sample size increases. This suggests that
the lack of difference between F,,(t) and such a process is perhaps an illusion, and
the absolute difference of ACF is perhaps a bad distance. This hunch will be
confirmed in Section 5, in which we discuss VTF analysis.

4. CONCEPTS oi SHORT (FINITE) AND LoNG (INFINITE) C-ILPFNI)ENCE

The practical difficulty we encountered in trying to apply ACE to the dfGn
has deep mathematical roots. An ACF is indeed an infinite sequence of numbers,

and the definition of a distance for infinite sequences is an order of magnitude
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harder and more indeterminate than for finite sequences Scri
Occurrences ofmathematical infinity can in practice be dismissed as relevant only to events thatwill not happen before Doomsday, hut the present role of infinity is

differentRoughly, a sequence of events can be thought as effectj%el% tInit if saccvents aic qualitatively alike, and conversely as efkctively infinite if succs,occurrences are qualitatively very different. A first example had been efleotintereditt my Noah Effect studies circa 1960, a second example in the kind of Cyclic
behaviorwith which we are now concerned, with ever new kinds of cycles of ever 1°nger"Period"appearing as the sample increases. The presence ofcycles thus constitut5in my opinion, prima facie evidence that at least some among

economic r.f.,though not periodic, have effectively an infinite span. The main alternative description I know assumes economic behavior to be wholly
nOfl-Stationary If suchwere really the case, the possibility ofa rational descriptiofl in

economics would benegated. This being the alternative, the rational descriptive economist shouldconsider the assumption of infinite span as optimistic
4.1. Perhaps the simplest distinctioti involving infinity explicitly is thedichotomy between convergent and divergent series. An early example agaiii,occurs in my work on infinite variance. As a second example consider the co-variance ofa Gaussian process. Each individual value of C(/) is finite, hut considerthe series

S'(0)=1/2) C(d) = [C(0)/2
dI C(d)] (i0)"2 +

It occurs in spectral analysis_w11 the notation S'(0) (see below)_and alsoin the study of physical fluctuations when it is often called Taylor's Eulerian scale.Clearly, the series may either converge, or diverge in the Sense that its partial sumerorn d = D to d = D tends to infinity with D, or be indefinite in the sense thatthe partial series has no limit. In addition, series that converge to 0 must be singledout.

For M11(t) with C(d) = [C,1( I )]d S'(0) satisfIes 0 < Sb) < x
I S'(0) = x when H > 0.5For F,,(t), with C(d) C,,(1/)
(S'(Q) = 0 when II <0.5

For periodic r.f. with fixed period and random amplit tide andphase, C(d) is a sine function and S(0) is indefinite.
These Possibilities suggest a tetrachoto1 we shall first state, then discuss,then modify and improve.

4.2. The
C-terrac/,oto,,13,. Statistical C-depe,(/(,1(.

A tetrachotomy is of course
a classification into four categories. In the presentinstance, they are defined as follows

Finite C-dependence short run C-dependcnce = short C-dependence =Vanishiiig long C-dependence Defined by 0 < S'(0) < ii-.
Very different

comments in the same spirit cn be found in papers by (hrisiophe1 Sims 132]. [33].
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Positive infinite ('-dependence positive long run C-dependence =
posit ice long C-dependence. Defined by S'(0) =

Negative infinite C-dependence = negative long run C-dependence =
negative long C-dependence. Defined by S(0) = 0.

- When the series that defines S'(0) is indefinite, the concept of C-dependence
is inapplicable.

4.3. Remark

The only sound reason for starting with the C-tetrachotomy is that it requires
so little preliminary. It has many flaws, sonic of them real. For example, the process
of successive differences of an independent Gaussian r.f. is called negative long
dependent. Soon we shall investigate other alternative tetrachotomics--which is
why the above definition has included the index C-. The first two, F- and R-
tetrachotomies, are nearly identical to the C-tetrachotomy, but better, and often
the three are indistinguishable. On the other hand, as soon as EX2 = x (strong
Noah Effect), all three become meaningless. A final different tetrachototny,
involving R/S dependence (to be introduced in Section 10) will on the contrary
apply irrespectively of whether EX2 = or or EX2 < . This, in my opinion,
will be a considerable practical and theoretical asset.

The issue of how to define dependence may be further illustrated by analogy
with the history of the concept of l.Q. Binet and the Stanford psychologists who
followed had only some vague and intuitive ideas of what they wanted to measure
and of how to measure it. Before an operational procedure implementing these
ideas was selected, many doubtful issues had to be settled more or less arbitrarily.
As a result, the claim that the BinetStanford Intelligence Quotient "really measures
the intelligence" came rapidly to be questioned, and different I.Q.'s came to be
considered, each of them measuring a different "kind" of intelligence. All told,
"intelligence is what is measured by some l.Q.," where the original I.Q. measures
the "BinetStanford intelligence." The indeterminacy of the concept of statistical
dependence is, luckily, less extrelne.

4.4. Comments on the Spectra! Anal ;tic Origin qf 1/ic Basic Tctrachotom'. The
Typical Shape of Economic Spectra

The above notation S'(0) was selected because when the spectral density of
the r.f. is well defined, it is equal to S'(f) = C(d)e2'°". and so S'(0) is its
value for the frequency f =

Now let a sample spectral density (s.s.d.) be obtained for a sample of duration
T. It will vary little from f = 0 up to at least f = l/T, independently of the form
ofS'(f), and so the three non-trivial sides of the C-tetrachotomy manifest themselves
as follows:

For Markov and finite autoregressive processes, and more generally whenever
0 < S'(0) < cx, there exists a well determined and intrinsic time scale T* such

' Formula S'(f) implies a decision about notation, because a different definition of the spectral
density S'(f) corresponds to each of the several accepted ways of choosing the unit of frequency. I prefer
to measure frequency in cycles per unit of time. Those who measure frequency in radians per unit of
time are accustomed to writing e1' (ore 0) instead of
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*

that the population S'(J) is constant and positive for 0 < f < 1/7* Hence, s.s.d.is flat from f = 0 up to an tipper limit which is l/T* for large samples (7'> T*)
and l/T for small samples, defined as having a sue 1' satisfying T << T*. This
tipper unit is denoted as Threak-overfreqiiency". What we have estahlishd is thatit possesses a lower bound equal to l/T* .> 0.

When S'(0) = , on the contrary, T* is infinite. In other Words s.&d. alitaI'sis flat betweenf Oanclf = lIT That is, as Tincreases, the break-over frequenytends toO, and the s.s.d. at] 0 increases v,'ithout hound. This behavior has beenobserved by Adelman {lJ and Granger [7] in many economic time series, andGranger called it "typical" of economics.
When S'(0) = 0, s.s.d. dips down near J = 0. This behavior has also beenobserved. When an economic t.s. exhibits Granger's typical form, then beforeanalysis it is often "prewhitened"---difièrentjatedto erase the spectral peak atf = 0. Such processing often overshoots its aim and replaces the peak by a dip.Interpretation of sample spectra at low frequencies is known to practitionersas tricky. But the above examples do demonstrate that in the C-tetrachotoniy.each of the first three terms has a possible practical application. The fourth termrepresents r.f. for which 5(f) is non-differentiable, for example, exhibits jumpscorresponding to pure periodic components. These are beyond our concern in thispaper.

4.5. A Digression on Spectral Analysis and Sttithesis

Spectral anal sjs is not the concern of this paper, but its current popularityimplies it may be useful to digress in order to stress the importance of its relationswith spectral synthesis. Spectral analysis relies on the Euler--Fourier theorem,which says that any well behaved t.s. can be decomposed into a sum of periodicharmonic components In addition, the original Contexts of optics and acousticsinclude an important converse: each of those periodic components has anindependent physical reality, and so the original light and noise could be"synthesized" from meaningful building blocks. The original applications ofFourier methods to economics was similarlyspurred by the hope ofalso discoveringperiodicities, which might be initially hidden hut would turn out after the fact to bereal. However, it has turned out that the typical economic t.s. does not exhibitany such periodicity. (Seasonals do not count, because they are hardly hiddento begin with.) As a resuJt, economic t.s. cannot be spectral synthesized, and theirspectral analysis is purely a formal technique lacking concrete backing. A taste foritif it proves worthwhjleould have to he acquired.By way of contrast, R and R/S analysisto be discussed below---have anintuitive grounding in "high minus low" analysis of economics a taste for whichseems fairly spontaneous

5. THE VARIANCE TIME FUNCTION

The Population variance time function V(1/) of a stationary r.f. X(t), takenaround the Population
expectation, is defined as the second moment of the sum of
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d successive values of X(i), namelyassuming EX = Q-as

Vtd) = E[X * + (1) -- K * (t)2 = Var X * (ci)

- E{X * (d)]2 = F[K(l) - +

= E[X(t')X(t")] dC(0) + 2 C(s)
I

= dC(0) + 2C**(d - 1).

The equality between the first and last lines is known to some engineers as

"the formula of G. I. Taylor." Note that the variance of the average old successive

values of a process equals V(d)/d2. The variance V * (d) of the difference between

the respective averages of the d past and the ci future values ofX(t) is V* (d) =

[4V(d) - V(2d)]/d2; it measures the error in estimating a future average from the

average of a past record of identical length.
In terms of the asymptotic behavior of V(d) for ti - cc, the first three cases

of the C-tetrachotomy have the following effects:

In cases of short C-dependence, V(d) is asymptotically proportional to ci.

The simplest is V(d) = ci, as encountered for independent reduced Gaussian (1G)

r.f. In the MG casethe Markov Gauss process M11(t) whose ACF is [C11(l)]d__

the function V(tl) nearly equals

ti(l + 2C,,(1)[l - C,,(l)]'}.

In cases of positive long C-dependence, V(d) grows more rapidly than d.

In cases of negative long C-dependence, V(d) grows more slowly than d.
The simplest behavior V(d) can take in either of the cases of long dependence

is I'(d) = d2H. which in the case of discrete time Gaussian r.f. turns out to mean

that K(t) is a dfGn. One has H > 0 because V(d) cannot decrease as d - cc.

5.1. Comparison Betwee' the V(d of IG and MG

The exponents of d in the corresponding V(d) are identical, but the multiplying

factors in front are different. As C,,(l) - 0, the factor of MG tends to I and MG

tends to 1G. When C,1(l) is small, MG and IG ar near each other from the two

viewpoints of the nearness to each other of their respective ACF and VTF.

5.2. C'o,nparison Bet ceen the V(d) ofIG and dfGn

Th exponents of d are different. Hence, despite the fact that in a sense (as

we have seen) the ACF are close to each other, the processes are very far from

identical. In other words: even though every C(d). when considered singly.for large

d, is negligible, their accumulation may he very signJiCa?U.

5.3. Digression: The Self Similarity ofFractional Noise

The simplicity of the relation V(d) = d21' for dfGn had constituted the original

motivation for introducing dfGn and alsosince 2H is a fraction with H 0.5-
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one of the many equivalent motivations for the term "fractional noise." A con-sequence of V&/) = (/2!! is that X * U) is "statistically self-similar:' To define thisConcept, Consider two sample sizes 7" and T" and form the resealed ri.* (liT') X * (hT')\/I(T') and T'°X * (liT"). When Ii is a multiple ofboth 1,'T' and UT", both resealed ri. are defined, and it is easy to see that theirdistributions arc identical When T' < T", this identity expresses that a portionof the(1, T") sample is obtained from the whole by geometric similarity, hence theterm "statisticajiy self-similar." The complication that Ii must he a multiple ofboth l/T' and l/T" is conceptLlaliy unimportant- it can be avoided by consideringX(t) as the r.f. of the discrete time increments of a r.f. X *(t) defined in continuoustime, but we shall not dwell on this matter.

6. CONCEPTS 01: SI-TORT (FINITE) AN!) LONG (INFINITE) F-DEPENDENCE
6.1. Correlation Between Long Past and Future Averages

A second tetrachotoniy for r.f. is based upon the behavior of the functionfld', d), equal to the correlation between the past and future averages X* (d')/d'and X (/)/dthat is, between X * (d') and X * (- d themselves. V is given by
VarX*1/' + dy-- Var X*(d') -- Var()

2EVarX*((1fl12{Var V*jihI2

V(d + d') - V(d) - V(d')
21 V(d)J I/2{ V(d')] I!2

Adding the assumptjois that d'> I arid d>' I, we obtain the approximatj

C**(d'+(l) C**(d')_C**(d)F(d d)
[d'C(0) + 2C * * (d')]t '2[dC(0) + 2C * * (d)Jm/2

It is a part of folklore among users of probability theory that, as d - co andcr2, long past and future averages necessarily tend to become independent.However, such is not necessarily the case, as showfl by one example: when X(t) isdfGn with H 0.5, limd V(dh, (1) exists, and is nonzero; it has the same sign asH - 0.5. To restate this result, we shall need a new tetrachotomy The term"F-dependence" will stand for
"correlationdepefldence " i.e., nonorthogonaljtyBut when the r.f. is Gaussian, it is well known that non-orthogonal ity is a synonymfor statistical dependence

No(atjon For the sake of simplicity, fldli, d) will designate lid', d) when d'is the integer closest to dli.

6.2. The V-tetrac/')to,j,1,. Stai ist teal V-dependence
- Finite F-depejidence short run F-dependec = short F-depeni/ence =Vanishing long F-depen/',,ce Defined by limd, F(dh, d) exists and = 0 for allh> 0.

Positive ;iifinjte F-dcpendeiice = positive long run F-dependence =Positive long F-depenje,,ce Suppose that for all h > 0, lin. F'(dh, h) exists and
270



is >0. This defines X(t) as exhibiting positive long F-dependence, of a specifIed

intensity equal to the above limit. (For a generalization, sce a digression below.)
Negative infinite F-dependence = negative long run [-dependence =

negative long F-dependeiice. Suppose that for i11 It > 0, limd_. ftI'L Ii) exists' and
is < 0. This defines X as exhibiting negative long I -dependence, of a specified
intensity equal to the above limit. (For a generalization, see a digression below.)

In all other cases, the concept of F-dependence of specified intensity is
inapplicable.

6 3 Examples:
Among Processes for which Successire A rerages are 4si'tnptotieakv. for

Large ci, Non-independent die simplest are the dfGn

'They have a specified intensity of long F-dependence. which is, respectively,
> 0, = 0, and <0 when H > 0.5, H = 0 and I-I < 0.5. As a matter of fact. when

It is an integer, F(dh. d) is independent of d, which is one expression of the self
similarity of X * (z). In particular. F(d. d) [(1, 1) = C,,( 1) = 2211 -

6.4. The Relation.s Between C and F-dependence. Generalization of the Aboi'e

Examples

To a large extent----and up to comparatively unimportant exceptions, ext:a
factors and corrections---nearly all short F-dependent processes are also short

C-dependent, and the only processes that exhibit long F-dependence of spcciied
non-vanishing intensity are those sharing the same covariance with dfGn.'°

Digression: Proof. For the existence of lini.,, F(dli, I) for all It, one necessary
condition is that the limit exist for h = I. Writing

f(d, d) = [Vat X * (2d)/2 Var X * (d)] 1,

this necessary condition becomes that Var X * (2d)/Var X * (d) must have for
d -* x a limit to be designated as (2). Next, set ii = 2 and rewrite F as

Vat X (3d) Var X * (2d)

VarX*(d) Var X*(d)
F(2d,d) =

'[Var
X * (2d)1Y2

- VarX*(d)j

When Var K * (2d)/Var X * (d) and F(2d, d) have limits, Var K * (3d)/Var X * (d)

must tend to a limit. By induction, a necessary condition for the existence of a
specified intensity of dependence is that lim,, Var X * (hd)/Var X * (d) = (411(11)

should exist for every integer It, and therefore also for every rational Ii. Obviously,

(h) satisfies for all rational Ii' and It" the equation q(h'Iz") = q)(h')qJ(h ) which is a

The formercondition is enormously less specific than the latter. One is reminded of the conditions

required for the central limit theorems withrespectively--a classical Gaussian and a non-classical
stable Paretian limit. The former requires that EX2 < x, which is not specific at all; the latter requires
that for large x, the probability Pr X > x) behave near identically for the addends and foi the desired
limitagain up to comparatively unimportant extra factorswhich is a highly specific requirement.
This complication is unavoidable.
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form of Cauchy's functional equation. When in addition p(Iz) is assumed con-
tinuous (which might or might not be a new independent assumption), the above
equation must hold for all real h, and the necessary condition above becomes
that lim Var X * (Iid)/Var .V * (d) = q(h) J,211 with It a constant. Plugging
back, F(d,d) becomes 22h1 I - this is a correlation only if H < I which is a
second necessary condition. Final1y, asymptotic mean square continuity of X
requires that II > 0, which is a third necessary condition. The combined necessary
condition, namely: (h) J,2!1 with H a constant between 0 and I, is obviously
also sufficient. H is called the exponent of F-dependence.

Now we turn to the three specific sub cases H = 0.5, H > 0.5 and H <0.5.
Short F-dependence is equivalent to H = 0.5. In particular, short C-dependence
implies short F-dependence, because when limj, C * (d) is defined, finite and
positive, it follows that limd... C * * ((I)/(/ is defined, finite and positive,
lim C * * (Izd)/C * * (d) = I,, and 1im.. F = 0. The converse is unfortunately
not quite true: For example, if C(d) = l/d, then X(t) is long C-dependent but
C * * (d) '- d log d so that C * * (dh)/C * * (d) - I, meaning X is short F-dependent.
Thus, short F-dependence is slightly less demanding than short C-dependence.

When H > 0.5, it has been shown 135] that C(d) must be of the form C(d) =
.4211 -2 . .- , . Iu L(d), where L(d) is slowly varying for iarge d, meaning L(hd)/L(u) 1.

In the dfGn case, L(d) -+ 1.

When H < 0.5, One must have in addition 2- 1C(0) + E C(d) = 0.

6.5. Digression: Generalization of Long F-dependence to the Case of Unspecified
intensity

Categories 2 and 3 of the F-tetrachotomy can be widened, and category 4
correspondingly narrowed, by allowing long F-dependence to be present without
having a specified intensity. Suppose that

0 urn infd. f(dh, h) lim SUJ.,. F(dh, h)

holds for all h > 0, with the second inequality replaced by < for "sufficiently
many" h (see below). If so, the intensity of dependence is unspecified but dependence
is either non-negative (first inequality being 0), or positive (first inequality
being < 0). The obvious parallel definitions hold when

urn ['(dli, h) < urnSUPd_. F(dI, Ii) < 0.

Though the notion of "sufficiently many" above is not yet explored fully, examples
where lirn inf < urn sup for all h, meaning that the intensity of dependence is
unspecified, have indeed been constructed.

7. SIMULATION OF FRACTIONAL NOISES

Before we continue, it will be useful to acquire an intuitive feeling for the
shapes of the sample function of various short and long dependent processes.Such feeling is best obtained by examining pseudo random simulations.'' The

The fottowing description has in part been previously used in Mandeibrot and WaItis [24],pp. 229 to 232.
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Figure I A sample of 1,000 values of white noise, also called sequence of independent Gauss random
variables, of zero mean and unit variance, also called fractional noise with H = 0.5

first exhibit on Figure 1 is a sample of a process of independent Gaussian r.v.
A short sample suffices, because this process is monotonous and featureless.
Being analogous to the hum in electronic amplifiers, it is often called a discrete-
time white noise. It can also be considered a discrete time fractional Gaussian
noise with H 0.5. For the definition of dfGn, see Section 2 above.

Another small sample of dfGn, with H = 0.1, is given as Figure 2. It is richer
than white noise in high frequency terms, owing to the fact that large positive
values tend to be followed by compensating large negative values, but on a graph
this is not very apparent.

Friezes I to 5 carry successive samples, each containing 1,000 values, of a
moderately nonwhite fractional noise with H = 0.7. Similarly, Friezes 6 to 10
carry a strongly nonwhite fractional noise, with H = 0.9. Whenever H > 0.5, a
fractional noise is richer than white noise in low frequency terms. Therefore, large
positive or negative values tend to persist, and the dependence between successive
averages fails to die out. Even on a casual glance at the two Friezes the effect of
such low frequency terms is obvious. The reader should compare these artificial
series with the natural records with which he is concerned. To be meaningful, in
both cases the comparison must involve the same degree of local smoothing of
high frequency jitter. If the artificial series feel very different from his natural
records, then fractional noises are probably inappropriate for his problems.

L

WIITE N0$SE 000

TYPE I,H'O.l 1000

Figure 2 A sample of 1,000 values of a Type I fractional noise with H = 0.1. The sample was normalized
to have zero mean and unit variance
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3
Friezes to 5 A sample of 5.000 values of an approximation to fractional Gaussian nose In this
instance. II = 0.7, meaning the strength of long run dependence is moderate but definitci positive
(continued on the following pages)

If they feel close, but not quite right, then perhaps another value of!! will suffice.
If they feel right, then he should proceed to further and more formal statistical
tests of lit. Such formal tests are indispensable but should neither be blind nor
come first. A statistical test by necessity focuses upon a specific aspect ofa process.
whereas the eye can often balance and integrate various aspects. Formal test and
visual inspection should be combined.

A perceptually striking characteristic of fractional noises is that their sample
functions exhibit an astonishing wealth of features of every kind, including trends
and cyclic swings of various frequencies. In some subsamples such swings are rough
and far from periodic while other subsamples seem to include absolutely periodic
swings. However, the wavelength of the longest among the apparent cycles depends
markedly on the total sample size. As one looks at shorter portions of these friezes,
shorter cycles become visible. At the other extreme, on plots of these Friezes as
strips of 3,000 time units, the impression is unavoidable that cycles of about 1.000
time units are present. Since in the generating mechanisms, there is not built-in
periodic structure whatsoever, such cycles must be considered spurious. For
example, spectral analysis denies the apparent periodic appearance of fractional
noise. On the other hand, they are very real in the sense that something present in
human perceptual mechanisms brings most observers to recognize the same cyclic
behavior. This makes such cycles useful in describing the past. But they have no

Friezes 6 to 10 A sample of 5,000 values of an approximation to fractional Gaussian noise. in thisinstance, H = 0.9, meaning the strength of long nm dependence is high and positive (continued on thefollowing pages)
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Frieze 2

predictive value for the future. Remarks to the same effect have been made by
Keynes [9j. As a rough rule of thumb, unless the sample size is very short, the
longest cycles in a record corresponding to H = 0.7 have a wavelength equal to
one-third of the sample size. The specific value one-third of this rule is only a
matter of psychology of perception, but the fact that the ratio of apparent wave-
length to sample size is a constant is an aspect of the self-similarity of fractional
noise. This ratio depends on H.

A second and even more striking characteristic of fractional noise with H > 0.5
is that some periods above or below the theoretical mean, which equals 0 by
construction, are extraordinarily long. In fact, portions of these figures are
reminiscent of the seven fat and seven lean years in the Biblical story of Joseph
son of Jacob. One is tempted to express this perceptual persistence of fractional
noise with the help of the ideas of trend and of run. A run of low price changes
would be a period when price changes stay below the line a high run as a period
when they stay above the line. However, a careful inspection of samples of fractional
noise shows many instances where this concept of run describes its behavior very
poorly. Often, one is tempted to call a period a high run although it is interrupted
by a very short low run. Should we be pedantic and consider such a sequence as
being three runs? Or is it really a single run? Perhaps short runs could be eliminated
by a little smoothing? Such a chase after a reasonable definition of runs had to be
abandoned because it was found hopeless. Different smoothing procedures (moving
averages of various lengths) and definitions of high and low (different crossover
levels) were tried. The distribution of the duration of runs was found to depend very

Frieze 7
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Frieze 3

much on otherwise insignificant features of the model, whereas large differences inthe relative proportions of low and high frequencies were obscured. Thus, again,
we see that runs cannot be a good statistic (which may. incidentally, explain whyearlier applications of this statistic had lead to conflicting results).

To complete the comparison between process with zero and infinite C- and
['-dependence, one should have exhibited some plots of Markov process and otherr.f. with finite but non-zero dependence. However, a verbal commentary willsuffice, because over any finite time space the behavior of a fractional noise can bemimicked beyond possible detection with the help of an appropriate finitelydependent process. As a matter of fact, that is how I actually perform simulations;see {J 7]. However, let both a fractional noise and a finite memory mimic be extra-polated to a long time span T, and let their graphs be placed side by side before oureyes to be compared. For that, some compaction by averaging is ncccssary forexample, each t.s. may be replaced by a sequence of 1,000 values each averagedover a time span of T/l,000, Then we shall see that, as T varies, the compactedgraph of dfGn will exhibit ever new patterns, while the patterns of the Markovmimic will eventually begin to repeat themselves, The art of simulating fractionalnoises relies on constantly injecting appropriatenew low frequency terms in orderto prevent such repetition. (Needless to say, this last remark applies only tosimulations; the origin of low frequency terms that may be present in actual t.s. ispractically unknown, and may be very different)

We may digress a moment to discuss the scope of various notions ofstationarity. The intuitive and mathematical notions agree fully for all com-paratively well behaved statistical fluctuations, for example those to which ACF
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Frieze 4

analysis applies without hitch, and also for fluctuations that are grossly non-
stationary -for example, random walks. But in other cases, the two definitions
disagree. For example, dfGri is mathematically stationary, hut intuitively many
view it as non-stationary, It is my belief that when a process is not stationary in the
usual intuitive sense, when it is not reducible to such stationarity by differencing,
and when no generalization of such stationarity is applicable to it, then a mathe-
matical study of ills impractical. The ambition of [12], in singling out fractional
noises and showing their broad practical applicability has been to propose such
a generalization.'2

8. VARIANCE TIME ANALYSIS

In this paper, fractional noise was first introduced merely to exemplify how
ACF analysis can fail; then its VTF behavior was shown to differ from that of
white noise, and finally it was shown to be useful. Now we return to statistics,
to try to do better than ACF analysis. The fact that the classification of possible
behaviors of V(d) is very close to our basic tetrachotomy of finite variance rS.
suggests using V(d) in statistical testing and estimation. The basic idea of VTF
analysis is that in order to compare two finite variance r.f. X'(t) and X"(t), it suffices
to compare the corresponding VTF V(d) and V"(d). When I" and V" are "alike,"
so are X'(t) and X"(t).

12 A later achievement was to introduce the concept ot generalized conditional stationarity,
through which additional r.f. that are not stationary are made manageable, at least in part. But this
issue need not be pursued here.

Frieze 9
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The comparison of the three values in
respective r.f. are very different. For H =dfGn. For H = 0.7, MG lies nearer to IG

H= 0.7

Frieze 5

The "conventional" applications of VTF analysis limit themselves to familiesof r.f. all of whose members are short C-dependent, so that the purpose of analysisis to estimate the value of S'(0). The present application is different: rf. with longC-dependence are allowed, and the purpose becomes to identify the asymptoticshape of the VTF, in order to classify X(r) among the alternatives of the basictetrachotomy.
To ascertain that attempting suchclassifications makes sensea first task is toproceed beyond analytic formulas and asymptotics, to numerical values and finitesamples. Four tables of typical numerical values follow. Hereas earlier in thepaperMG is the first order Markov rf. fitted to C,,(1) and IG is the independentGauss rf. fitted to C,,(0) = 1.

each table makes it obvious that the
0.6, MG lies halfway between IG and

H 0.9

Frieze 10
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H = 0.6; d = 50 H = 0.6;d = 100dfGn: V(d) 100 dfGn: V(d) 250MG: V(d).-.-80 MG: V(d)- 160IG: V(d)50 IG: V(d)-.- 100
H =0.7:d = 50 H 0.7;d = 100dfGn: V(d) 240 dfGn: V(d) -630MG: V(d) -.' 97 MG: V(d)- 194IG: V(d) 50 IG: V(d l00



We next list some numerical values of the variance V* (d) of the difference
between successive averages of d values of various r.f.

These values confirm that the MG process fitted to C,1(fl would underestimate
the long run variability grossly.

8. J . The Estimation Bias of VTF in the case of r.f i-faring Long Dependence (I/Ui
i-mite Variance

The definition of V(d) involves EX. When this moment is indeed known,
and the origin of X is so selected that EX = 0, it seems reasonable to estimate
V(d) by

1

V1(d, 1, T)
= T - d [X * (t + d) - X* (tfl2.

When, however, EX is unknown, its value is estimated efficiently by T X* (T)
so it seems reasonable to estimate V(d) by

1
T-d

V2(d, 1, T)
= [X*(t -+- d) X *(1) - (d,T)X*(T)]2.- 1=1

The above V1 satisfies EV1 = V(d), so it is an unbiased estimator. When X(t)
is short dependent, 1' has a bias, hut it is small. But when X(t) is long dependent,
the bias is large and depends on both Tand d. The question of whether or not a
biased procedure can be useful has been discussed at length in more usual contests
of statistics. After a period during which statisticians had sought to avoid bias,
they came to accept it, as long as it decreases the variance, and as long as bias
corrections are available. In the present case, however, the aim is not to esti-
mate the specific parameters of a r.v. or r.f., but the whole ill defined "shape"
of a function V(d) of d. We must proceed through the simultaneous estimation of
the separate values of V(d) for different d, and use judgments based on visual
inspection, at least as preliminaries. In this context, a bias that depends only on d
would be correctable, but when the bias depends on both d and T in inextricable
combination, one cannot correct it by eye. In order to correct it by algorithm one
needs the exact form of the bias as a numerical function of two variables, which is
difficult to store in a computer. If other methods happen to exist, for which the
bias is larger but easier to handle, they may be preferable even if less efficient.

The preceding discussion may serve as advance advertisement for the statistics
R(t, d) and R/S, for which the bias is large but does not depend on T and so is more
readily correctable. In addition to the above pragmaticreasons for avoiding a bias
dependent on T, there is an esthetic reason: V(d) is supposed to take account of
those dependence effects whose span of influence is at most d, while EV2(d, 1, T)
involves X * (F), and thus mixes in other effects whose span of influence is T.
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MG: V * (ii) = 160/2,500 MG: V* (d) = 200/2,500
IG: V (d) = 100/2,500 IG: V * (d) = 100/2,500.
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Further, observe that many statistics, such as sample moments, covariancesand Fourier coefficients, can be constructed in two steps. The first step is independent of the sample size and consists in constructing from the original Xt) a trans-formed function [X(t)], such as Xk(t), X(t)X(t 4- ), V(t) sin (2irft). The second stepconsists in taking the average of the transformed function over the availablesample. Statistics of this "transformthenaverage" form have many advantages.For example, they may be computed sequentially: as the sample size is increasedfrom T' to T", one increases the number of sample values ofL1X(t)J to be evaluatedand averaged, but the values of F [X(t)] already computed from the initial sample ofsize T' need not be recomputed. The sample correlations and V2 are examples ofstatistics that are not obtained by transforming then averaging. But the sampleaverages of R(t, d), S(t, d) and R(r, d)/S(t, d)to be defined bcloware computablesequentially.

8.2. Inappljcabjljr ?f VTF Anal ;'sis when EX2 = . Alter,, at lee Statistics
When EX2 = and EV(d) = , one encounters a difficulty very differentfrom a bias and more severe. We noted that, on the population level, the basictetrachotomy becomes meaningless. On the sample level, it follows thatEV2(d, 1, T) = and hence the sample values of V2(d, 1, T) are wildly scattered.This phenomenon is well known to statisticians n the Context of sampleaverages of such r.v. as Cauchy's, and it is recommended when averages misbehaveto replace them by medians. For example, an easy alternative to V, one havingacceptable fluctuations, would be obtained by considering

d(d, 1, T) = median of [ X' (t + d) - A' * (t) (d/7)X * (fl]2,an expression whose expectation is finite.
Nevertheless, is a poor meas tire of dependence, because, in addition tobeing biased, it is extremely non-robust. When the r.f. X(tJwith EX2 coareindependent, the function that relates E,ed to d already depends upon the dis-tribution of the X(t). This implies that when dependence is added, the effects onEVmCd of the marginal

distribution and of the law of statistical dependence of X(t)are mixed U inextricably Such mixture is not only undesirable, as was the casewith biases, but unacceptable In summary, empirical values of VTFe.g., thoseof Young [36Jare almost impossible to interpret. In the section after next, weshall see how the statistic R/S-which avoids biases depending on T- -also avoidsmixing the effects of margins with the effects of dependence

9. RANGE ANALYSIS
In the case ofa price t.s., to be viewed as a X* (1), economists are very familiarwith a statistic we shall call "high minus low function," which is defined as

HLF = (max - mm), ud [A' * (t + u) - A' * (i)].
E-Iere as below we shall use the flotation

maxlU<dZ(1,) - min1,U<dZ(,,) = (max - min).l<dZ(U)
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l'he HLF statistic is mostly useful when the process of differences X(t) =
X * (t) X * (z -- I) is stationary. Also, since the value X(z) = 0 of X plays a
central role here, HLF is tiseable in assessing the degree of stltistic!l dependence
in X(t) only when EX(t) is known, with EX(r) = 0. In that case, one takes the
average of HLF over all values oft between 1 and T - 1, and follows its variation
with d. There is no bias.

When EX is unkown, it is tempting to modify the definition of HLF by
analogy to the definition of the sample VTF, by considering the expression

R * (t, d, 1, T) = (max - mm)1<u<d [X * (t + u) - X * (i) - (u11T )X *

and its average

R(d, I, T) = (1' - d)' R * (1, d, I, T).

Howeverfor reasons that will transpire shortlyI think it better to base
range analysis on a different algorithm, a variant of the IILF and of R* (Figure 3).
Evaluate

R(t, d) = (max -- mm)1 u<d { X * (t + u) - X * (t) - (u/d)[X * (1 -i- d) - X * (t)]},

and form the estimator
e = 1- d

RA(d, 1, T) = (T - d) Y' R(i, ii).
t= I

Observe that for each subsample (t 1, t + u) we use a different estimator of EX.
As a result, the functional form of the bias is improved. While the bias of l-ILF,
like the bias of VTF, depended on both d and T, the bias of RA depends only upon
d.'3 Price to pay for the above advantage: there is a loss of efficiency in the
estimation of lix, and the value of the bias for fixed T is increased.
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Figure 3 Construction of the sample range R(t, s) (reproduced from [291). Since empirical records
are necessarily taken in discrete time, the function X(u) should have been drawn as a series of points,
but it was drawn as a tine for the sake of clarity. As marked, A(u) = Xt (t + u) - X' (1) -
(u/s)[K * (+s) - X * (fl], and R(t, s) = max0 , (u) - min0, i(u). In the original application in
hydrology [8], X(t) stands for the discharge of a river during year:. In this case, save for corrections due
to discrete time. R(t,d) is the volume of a water reservoir that regularizes optimally the flow of water
between time and t d, that is, of a reservoir that produces a uniform outflow, ends at time

+ d exactly as full as it started at time z, never overflows and never dries up. The use of R(:, d) in
reservoir design originated with Rippi in 1885.

One might have tried, likewise, to apply to VTF the same transformation that leads from HLF
to RQ, 4 However, this option is closed because it would yield values identically equal to 0.

0 t t+u t+d
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The definition of R(t, d), contrary to the definition of VTF, does not involvesecond moments and as a result, ER(t, /) < only requires LX < , whileEV < x required EX < . Nevertheless as was the case for VTF, R(t, il) ifiusthe examined separately for the two cases of r.f. with a finite variance, especiallyGaussian, and of sharply non-Gaussian r.f.
Gaussian examples In the Gaussian cases, and especially for 1G. MG anddfGn, the behavior of R(t, d) with varying d can be shown to be as follows:IG and MG and most othercasesofshortdepejldeflcc. R(r, d)is asymptoticallyproportional to /d and hence to ,,/ V(d).
Most other cases of positive long C-dependence: R(t, (l)//(-..4Most other cases of negative long C.dependence: R(t, d)/\/d - 0.dfGn: R(t, d) S asymptotically proportional to d" and, again, to

The behavior of R(t, d) lends itself easily to defining a tetrachotomy of R-dependence parallel to, but a hit different from, C- and F-dependence Howeverwe need not dwell on it because in Gaussian case, the asvmptot Ic e/fi'ctlueness oft/icsample VTF aii! range is about the same. The latter requires longer computer runs,a feature that not everybody considers an asset; also, it has the advantage that itsbias is independent of T. But the precise payoffs between bias, efficiency andsimplicity have not been explored; they deserve the statisticians' attention, but inthis paper we have other purposes in mind.
Sharply non-Gaussian cases when EX2 . Since VTF is now meaninglessthe comparison can only run between R and sonic alternative to VTF, such asflCdian Again, R(t,d) has the asset of having better bias properties, but both sharethe major defect of being extremely non-robust Therefore, R(. d). as VTF, is to beavoided (see Figure 8).
Conch,5 ion R may be of possible use in preference to VTF in the Gaussiancase, but it mainly deserves attention as an intermediary step in the progressiontowards R/S, to which we can finally procee(J.

10. R/S ANALYSIS
10.1. Definitions and E/e,nen,r1 Properties

The squared standard deviation of a is. or r.f. K is defined by

S2(t,d) = d' X2(t + a) - (l21 X(r + u)]u=j

and the statistic Q is defined by

Q(t,d) ,d

This last notation is intended to emphasize that the numerator R(t,d) and thedenominator S(t, d) are merged into a new entity.
Historically R/S appears to have been first considered in a study of NileRiver discharges due to the celebrated hydrologist Harold Edwin Hurst [8]nicknamed Abu Nil (the Father of the Nile). Irrespectiie of Hurst's original reasons

282

' I



for considering Q, this statistic has turned out to have remarkably good properties,
as we shall see,'4

The normalizing denominator S vanishes if and only if all the
X(t + u)(0 < u d) are identical, in which case one also has R(t, d) = 0 so that Q
takes the indeterminate form Q = 0/0. In particular, the indeterminate form 0/0
is always encountered when d = 1. Otherwise, namely whenever it is not of the
form 0/0, Q is positive and finite and in fact it can be shown that it lies between two
effectively attainable limits, equal, respectivel,yto about 1 and about (//2. The
lower limit is exactly 1 when d is even, and is \/d/(d - 1) when d is odd ; for large d,
the latter is barely above 1. The upper limit is exactly d/2 when d is even, and is

- 1)/2 when d is odd; for large d, the latter is barely below d/2. The upper
and lower limits coincide when d = 2, in which case Q(t, d) is identically 1. When d
is smallish, Q(t, d) only depends on the rules of short run dependence in X(t),
but its dependence upon such rules is limited and so in the study of short run
dependence the statistic R/S is not at all eliective. Quite on the contrary, for large
d the dependence of Q(t, d) on the rules of long run dependence in X(t) is very strong
and very apparent, and so in the study of long run dependence the statistic R/S is
very valuable. The good properties announced as belonging to it consist in the
fact that the dependence of Q(r, d) upon d can be made the basis of a new and
especially convenient tetrachotoiny of statistical dependence. One can adopt either
of several variants; it is too early to be sure which is the best, so we shall state and
then discuss the simplest.

10.2. The RIS Tetrachototny; Statistical R/S Dependence

- Finite R/S dependence = short run R/S dependence s/tort R/S
dependence = vanishing long R/S dependence. Defined by this : lim d ° 5EQ(t, d)
exists and is positive and

-. Positive inflre R/S dependence = positive long run R/S dependence =
positive long R/S dependence. Exemplified by limdd°5EQ(t,d) = ce. Defined
by lim 5UPd... d°5EQ(t,d) = ce.

- Negative infinite R/S dependence = negative long run R/S dependence =
negative long R/S dependence. 1xemplificd by lima. , d - °5EQ(t, d) = 0. Defined by
lim inf. d °5EQ(t,d) = 0.

In all other cases, the abcve variant for R/S dependence is inapplicable.

10.3. The Exponent of R/S Dependence

When there exists a specific H(0 such that limd d11EQ(t,d)
exists and is positive and finite, the R/S dependence of X(t) is said to have a specified
intensity, of which H is called the exponent. Thus, the exponents of short, positive
long, and negative long R/S dependence, respectively, equal 0.5, lie between 0.5
and 1, and lie between 0 and 0.5.

10.4. The Value H = 1 and the Application of R/S Analysis to Non-stationary r.f.

In the rest of this paper, X(t) is assumed stationary, and it could not be other-
wise because the covariance and the VTF would cease to depend on d alone.

" Steiger [34] took, independently, one steo towards R/S, bt he failed to identify any of the
remarkable properties to be described below.
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But R/S is another matter; for example, let X(i) be Brownian motion or any otherexplosive sum of the values ofa stationary r.f. Because of the subtraction ofsamplemeans throughout, one may check that the distributions of R(t, d) and S(t, d) only
depend upon d, just as when X(t) is stationary.

The corresponding behavior of
Q(t,d) arouses curiosity. A more pragniatic reason for studying it is because one
never knows when X(t) is, or is not, stationary--especiaIly when its values areneither printed nor graphed but coded on tape. One must learn to recognize
after the fact when a sample Q(t, d) came from a non-stationary r.f.As it happens, when X(t) is non-stationary but Q(t, d) is in distributionindependent oft, then H = I. As a result, when the observed H differs from I by a

small amount that may be due solely to sample variation, this finding may mean
either that X(t) is stationary with a very strong long run dependence, or that X(()
is non-stationary with almost any kind of dependence. To discriminate between
those possibilities, one must R/S analyze both X(t) and the sequence of differences
of X(t).

10.5. Transients, the Middle Run, and the
Effectire Exnmment of R/S DependenceThe fact that the above tetrachotomy involves asymptotics is both its main

point and a weakness. it is not at all excluded that for middle sized values of d.
Q(t,d) should behave "as if" d"EQ(t,d) tended to a limit, with H 0.5, while
eventually it turns out that X is short R/S dependent after all. Such is for example
the case when X(t) has a finite but large memory. It may well happen that the
research with which one is involved has a finite horizon

and that for all d
between 5 (say)and dma, d "EQ(t, ci) isnear constant. From this limited viewpoint,
H is. "effectively,"

the exponent of R/S dependence of X(r). From the really long
run viewpoint, this value of H is no more than a special transient, but this does not.
make the effective H any less important.

10.6. Relationships between the R/S and Earlier
TetrachotonmiesThe Figures and their captions arc an integral part of the discussion that

follows. To motivate the construction of the Figures. note that---given a sample
of T values of X(t)an exhaustive output of the R/S analysis is constituted by the
(7' 2)(7' - 1)12 values of Q

corresponding to the non-trivial
values ci > 2. Thus,

the Q transformation expands the number of values involved. This insures that the
output is redundant,

and indeed the values of Q(t, d) corresponding to the neigh-
boring values of I and d are strongly

interdependent. Pending the development
(eagerly awaited) of more efficient methods. I simply select for each variable an
appropriately spaced subgrid. The interdependence between Q for diflérent t
depends on their difference, so I take

uniformly spaced values oft, ordinarily 15
altogether. The

interdependence over different c!on the
contrary---depends on

their ratio, so I take
logarithmically spaced values of ci, ordinarily 10 per decade,

and in graphical
methods I use for abscissa log d. Also, I start with d 10 because

we know that for small 1, Q(t, d) is mostly independent of X. Finally, I plot the
values of Q as a collection of T functions

log Q(t, d) of the variable logd,
parameterized by t. Successive

points plotted are linked to form broken lines.284



Such plots make it possible to check whether the output functions fluctuate in a
straight "street", and if they (10, to estimate Ii as a slope. In other cases, I plot
log Q(t, d) 0.5 log d. Such plots make it easier to test the extent to which the
street differs from horizontally. "Estimation" and "test" in the previous sentences
were originally mostly done by eye, but I am currently proceeding to various
algorithms.

First check oJ consistency: the G(n,ssian cases. It can be shown that short
C-dependent Gaussian r.f. are also short R/S dependent. See Figures 4 and 5 for
the case when X(t) is independent and white. In this case lim. d°5EQ(t,d)
was shown by W. Feller to be about 1.25. When X(t) is non-independent,
limd., d°5EQ(t, d) = 1.25 limd... d 1 Var X * (d).

On the other hand, when X(t) is a fractional Gaussian noise, it is long R/S
dependent of exponent H, and so its dependence is positive when H > 0.5 and
negative when H < 0.5. Figure 9.

C,,

00

l0

Figure 4 Examples of the behavior of Q(0. d) with increasing lag d, for each of four independent
samples of 30,000 independent Gaussian random variables. The theory predicts the trend line of this
diagram should tend to an asymptotic slope of 0.5. For small samples, an estimation bias is present.
The resulting corrections have been investigated

(R7S) d0'5

100 000 10,000 LAG

Figure 5 Examples of the behavior of Q(0, d)d ° for increasing lag d, for each of fifteen independent
samples of 30,000 independent Gaussian random variables. The theory indicates that Q(0,d)d° is
asymptotically a stationary r.f. of log d, and indeed it appeals that on this figure, the asymptotic stage
has already been reached. For example, the trend of each of the 15 graphs is definitely horizontal and the
fluctuations around this trend are small
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-0.5
(R/S) d

100 000 0,000 LAG
Figure 6 The same as Figure 5. except that the distribution of .V(r) is lognorinal, 10g1(, .V(0 being
reduced Gaussian. We see that RIS testing for mdependence is blind to the extremely

non-Gaussian
character of the lognormal process. The respective kurtosis of the VarioUS sampics ranged around 1000

(R115) d
-0.5

0 tOO t000 0,000 LAOFigure 7 The same as Figure 5, except that the distribution of X(t) is Cauchy. To appreciate the
contrast between the behavior of R/S and of R itself. sec Figure 8

Second check of consistency. non-Gaussian finite variance cases. The situationis a bit complicated in its fine detail, and has not yet been explored fully, but it hasbeen established that the tetrachotomy of R/S dependence is roughly parallelto those of C- and F-dependence,
themselves known to be parallel to each other.Check of usefulness: the concept of R/S dependence for regular independetu r.fwit/I infinite rariance. We now arrive to the basic fact that justifies defining R/Sdependence. Let Xi,t) be an independent r.f. such that its marginal distribution isregular, in the sense that K * (t) satisfies a generalized central limit theorem with anon-Gaussian stable Paretian limit. For example, X itself may be stable Paretian.The basic finding has been that all such X(t) are short R/S dependent, that is, R/Sdependent of exponent H = 0.5.

In other words. front the viewpoint of the value of H, all regular independem r:fare mdistulguishthle and equivalent. R/S has the extraordinary
ability of separatingthe long run dependence properties of X from its marginal

distribution properties.See Figures 6 and 7, and contrast the latter with Figure 8.Check of singularity: olternatwes to RI'S. The reasons that made Hurstintroduce R/S had given no hint of its usefulness. This feature spurred rite to anextensive search for possible
alternative statistics sharing the above property ofrobustness. Suchalternatives were found, but none of them seems clearly preferableand all are more cumbersometo calculate, Observe to start with that all the classicalstatistics, such as covariance,

spectrum, VTF and the range, involve one character-
istic that is very sensitive to dependence. The originality of R/S is that while it also
involves such a statistic (as its numerator) it also involves (as its denominator)
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Figure 8 Examples of the behavior of R(0, d) for each of a number of independent samples of 30,000
independent Cauchy r.v.'s. As predicted by the theory, the slope of the trend line is 1, and, more iulpor-
tant. fluctuations around the trend line are enormous. The fact that the ratio QI0, d)d - is well behaved,
as shown on Figure 7, turns by contrast to be the more remarkable. What it expresses is that the fluctua-
tion of S(0, d)d°5 and those of R(0, d) arc matched perfectly. The ratio R/Scan be considered "self-
standard ized"

a second, very dillèrent statistic, one completely independent of the rule of
dependence, that is, invariant with respect to permutations of the quantities X(r).
R/S demonstrates that such a combination can be used to aciieve robustness.

Figures 4 to 9 show better than a long discussion would the nature of the
behavior ofQ(t, 1). Note that the precise value of limd.. d °5EQ(t, d) is not robust,
i.e., it depends on X(t), hut it only varies between 1.25, applicable in the Gaussian
case, and 1.

10.7. A lternatit'e R/S Tezrachoto,nies

In the R/S tetrachotomy, as stated, all non-regular independent r.f. fall into the
fourth category. Intuitively, however, they belong in the first category, and indeed
one may define R/S dependence to bring them back there. However, the non-
regular cases are of slight importance here, and to complicate everything just for
their sake would he unwarranted.

287

I0 100 1000 10,000 LAG



000

00

Jo

Jo 00 '000 10,000 LtsG

Figure 9 Eampks of the behavior of Q(0. d) for each of six independent samples of a fractionalGaussian noise ofcxponeni H = 0.7. The theory predicts the trend line of this diagram should tend toan asymptotic slope of H = 0.7. Indeed, H can be estimated from
the sample a controllable smallsample bias is again present)

II. A WORD IN C'ON('LUSION

The reader who has lasted through so much statistics should have beenrewarded by at least a little economics. More specifically, (A) by a little analysis ofactual data from economics, to check to what extent the flofl-periodic cyclesexhbitcd by those data are itideed alike to those of fractional noise, (B) by someeconomic theory to explain whatever conclusion is reached in (A). I have acc(,mulated such statistical analysis by the cord, and such economic analysis by the gross,but I can only say that I hope to have both ready for publication very SOOn.

IBM Thomas i. Watson Research Ce,,ter, and
Nat jon11 Bure(w oJ Econon,jc Research
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