Fixed points for singlevalued operators with respect to tau-distance

Guran, Liliana
Titu Maiorescu University of Bucharest

2007

Online at http://mpra.ub.uni-muenchen.de/26927/ MPRA Paper No. 26927, posted 23. November 2010 / 10:18

Fixed points for singlevalued operators with respect to

 τ-DISTANCELiliana Guran

Department of Applied Mathematics
Babes-Bolyai University Cluj-Napoca Kogălniceanu 1, 400084, Cluj-Napoca, Romania. E-mail: gliliana@math.ubbcluj.ro

Abstract

In this paper we first recall the concept of τ-distance on a metric space. Then, we prove a fixed point theorem for singlevalued operators in terms of a τ-distance.

KEY words: fixed point, τ-distance, singlevalued operator.
Mathematics Subject Classification 2000: 47H10, 54 H 25.

1 INTRODUCTION

In 2001 T.Suzuki introduced the concept of τ-distance on a metric space. They gave some examples of τ-distance and improve the generalization of Ba nach contraction principle, Caristi's fixed point theorem, Ekeland's variational
principle and the Takahashi's nonconvex minimization theorem, see [1], [2]. Also, some fixed point theorems for singlevalued operators on a complete metric space endowed with a τ-distance were established in T.Suzuki [3].

The suppose of this paper is the present a theorem for singlevalued operators in a complete metric space with respect to τ-distance.

2 Preliminaries

Definition 1.1 Let X be any space and $f: X \rightarrow X$ a singlevalued operator. A point $x \in X$ is called fix point for f if $x=f(x)$. The set of all fixed points of f is denoted by Fix (f).

Definition 1.2
(1) A singlevalued operator f defined on a metric space (X, d) is said to be lower semicontinuous (lsc) at a point $t \in X$ if either $\lim _{x \rightarrow t} \inf f(x)=\infty$ or $\liminf _{x \rightarrow t} f(x) \geq f(t)$.
(2) A singlevalued operator f defined on a metric space (X, d) is said to be upper semicontinuous (usc) at a point $t \in X$ if either $\lim _{x \rightarrow t} \sup f(x)=-\infty$ or $\lim _{x \rightarrow t} \sup f(x) \leq f(t)$.
(3) A singlevalued operator f defined on a metric space (X, d) is said to be continuous at a point $t \in X$ if f is lower semicontinuous and upper semicontinuous in the same time at the point $t \in X$. If f is continuous in all $t \in X$ then f is continuous in (X, d).

The concept of τ-distance was introduced by T. Suzuki (see[1]) as follows:

Let (X, d) be a metric space, $p: X \times X \rightarrow[0, \infty)$ is called τ - distance on X if there exists a function $\eta: X \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$and the following are satisfied :
$\left(\tau_{1}\right) p(x, z) \leq p(x, y)+p(y, z)$, for any $x, y, z \in X$;
$\left(\tau_{2}\right) \eta(x, 0)=0$ and $\eta(x, t) \geq t$ for all $x \in X$ and $t \in \mathbb{R}_{+}$, and η is concave and continuous in its the second variable;
$\left(\tau_{3}\right) \lim _{n} x_{n}=x$ and $\lim _{n} \sup \left\{\eta\left(z_{n}, p\left(z_{n}, x_{m}\right)\right): m \geq n\right\}=0$ imply
$p(w, x) \leq \lim _{n} \inf \left(p\left(w, x_{n}\right)\right)$ for all $w \in X ;$
$\left.\left(\tau_{4}\right) \lim _{n} \sup \left\{p\left(x_{n}, y_{m}\right)\right): m \geq n\right\}=0$ and $\lim _{n} \eta\left(x_{n}, t_{n}\right)$ imply $\lim _{n} \eta\left(y_{n}, t_{n}\right)=0 ;$
$\left(\tau_{5}\right) \lim _{n} \eta\left(z_{n}, p\left(z_{n}, x_{n}\right)\right)=0$ and $\lim _{n} \eta\left(z_{n}, p\left(z_{n}, y_{n}\right)\right)=0$ imply $\lim _{n} d\left(x_{n}, y_{n}\right)=0 ;$

We may replace $\left(\tau_{2}\right)$ by the following $\left(\tau_{2}\right)^{\prime}$:
$\left(\tau_{2}\right)^{\prime} \inf \{\eta(x, t): t>0\}=0$ for all $x \in X$, and η is nondecreasing in the second variable.

Let us give some examples of τ-distance (see[2]).
Exemple 1.1. Let (X, d) be a metric space. Then the metric " d " is a τ distance on X .

Exemple 1.2. Let (X, d) be a metric space and p be a w-distance on X.Then p is also a τ-distance on X .

Exemple 1.3. Let (X, d) be a metric space and p be a w-distance on X , let $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a nondecreasing function such that $\int_{0}^{\infty} \frac{1}{1+h(r)} d r=\infty$, and let $z_{0} \in X$ be fixed. Then a function $q: X \times X \rightarrow \mathbb{R}_{+}$defined by:

$$
q(x, y)=\int_{p\left(z_{0}, x\right)}^{p\left(z_{0}, x\right)+p(x, y)} \frac{d r}{1+h(r)} \text {, for all } x, y \in X
$$

is a τ-distance. For the proof of the main result we need of the definition of the $p-$ Cauchy sequnce and the following lemmas (see [3]).

Definition 1.4.Let (X, d) be a metric space and let p be a τ-distance on X . Then a sequence $\left\{x_{n}\right\}$ in X is called p-Cauchy if there exists a function $\eta: X \times[0, \infty) \rightarrow[0, \infty)$ satisfying $\left(\tau_{2}\right)-\left(\tau_{5}\right)$ and a sequence $\left\{z_{n}\right\}$ in X such that $\lim _{n} \sup \left\{\eta\left(z_{n}, p\left(z_{n}, x_{m}\right)\right): m \geq n\right\}=0$.

Lemma 1.5. Let (X, d) be a metric space and let p be a τ-distance on X. If a sequence $\left\{x_{n}\right\}$ in X satisfies $\lim _{n} \sup \left\{p\left(x_{n}, x_{m}\right): m>n\right\}=0$, then $\left\{x_{n}\right\}$ is a p-Cauchy sequence. Moreover, if a sequence $\left\{y_{n}\right\}$ in X satisfies $\lim _{n} p\left(x_{n}, y_{n}\right)=$ 0 , then $\left\{y_{n}\right\}$ is also a p-Cauchy sequence and $\lim _{n} d\left(x_{n}, y_{n}\right)=0$.

Lemma 1.6. Let (X, d) be a metric space and let p be a τ-distance on X. If $\left\{x_{n}\right\}$ is a p-Cauchy sequence, then $\left\{x_{n}\right\}$ is a Cauchy sequence. Moreover, if $\left\{y_{n}\right\}$ is a sequence satisfying $\lim _{n} \sup \left\{p\left(x_{n}, y_{m}\right): m>n\right\}=0$, then $\left\{y_{n}\right\}$ is a p-Cauchy sequence and $\lim _{n} d\left(x_{n}, y_{n}\right)=0$.

3 MAIN RESULT

Theorem Let (X, d) a complete metric space, $\tau: X \times X \rightarrow[0, \infty)$ a τ-distance in X and $f: X \rightarrow X$ a continuous operator, such that we have:
(i) there exists $q<1$ such that:

$$
\tau(f(x), f(y)) \leq q \tau(x, y)
$$

for every $x, y \in X$;
(ii) $\inf \{\tau(x, y)+q \tau(x, f(x)) \mid x \in X\}>0$, for every $y \in X$ with $y \neq f(y)$. Then there exists $z \in X$ such that $z=f(z)$ and $\tau(z, z)=0$.

Proof. Let $u_{0} \in X$ such that $u_{1}=f\left(u_{0}\right)$. Then for $u_{2}=f\left(u_{1}\right)$ we have $\tau\left(u_{1}, u_{2}\right) \leq q \tau\left(u_{0}, u_{1}\right)$. Thus we can define the sequence $\left\{u_{n}\right\} \in X$ such that $u_{n+1}=f\left(u_{n}\right)$ and $\tau\left(u_{n}, u_{n+1}\right) \leq q \tau\left(u_{n-1}, u_{n}\right)$ for every $n \in \mathbb{N}$.

Then we have, for any $n \in \mathbb{N}$ and $q<1$,

$$
\tau\left(u_{n}, u_{n+1}\right) \leq q \tau\left(u_{n-1}, u_{n}\right) \leq \ldots \leq q^{n} \tau\left(u_{0}, u_{1}\right)
$$

and hence for any $m, n \in \mathbb{N}$ with $m \geq 1$

$$
\begin{gathered}
\tau\left(u_{n}, u_{n+m}\right) \leq \tau\left(u_{n}, u_{n+1}\right)+\tau\left(u_{n+1}, u_{n+2}\right)+\ldots+\tau\left(u_{n+m-1}, u_{n+m}\right) \\
\leq q^{n} \tau\left(u_{0}, u_{1}\right)+q^{n+1} \tau\left(u_{0}, u_{1}\right)+\ldots+q^{n+m-1} \tau\left(u_{0}, u_{1}\right) \\
\leq \frac{q^{n}}{1-q} \tau\left(u_{0}, u_{1}\right) .
\end{gathered}
$$

By the Lemma 1.5, $\left\{u_{n}\right\}$ is a p-Cauchy sequence and using Lemma 1.6 we have that the sequence $\left\{u_{n}\right\}$ is a Cauchy sequence .

Then $\left\{u_{n}\right\}$ converges to some point $z \in X$. We fix $n \in \mathbb{N}$. Since $\tau(u, \cdot)$ is lower semicontinuous for any $u \in X$, we have:

$$
\tau\left(u_{n}, z\right) \leq \lim _{m \rightarrow \infty} \inf \tau\left(u_{n}, u_{n+m}\right) \leq \frac{q^{n}}{1-q} \tau\left(u_{0}, u_{1}\right)
$$

Assume that $z \neq f(z)$. Then, by hypothesis, we have:

$$
\begin{gathered}
0<\inf \{\tau(x, z)+\tau(x, f(x)) \mid x \in X\} \\
\leq \inf \left\{\tau\left(u_{n}, z\right)+\tau\left(u_{n}, u_{n+1}\right) \mid n \in \mathbb{N}\right\} \\
\leq \inf \left\{\left.\frac{q^{n}}{1-q} \tau\left(u_{0}, u_{1}\right)+q^{n} \tau\left(u_{0}, u_{1}\right) \right\rvert\, n \in \mathbb{N}\right\}=0
\end{gathered}
$$

This is a contradiction. Therefore we have $z=f(z)$. Then we have

$$
\tau(z, z)=\tau(f(z), f(z)) \leq q \tau(z, f(z))=q \tau(z, z)
$$

and hence $\tau(z, z)=0$.

References

[1] T. Suzuki, Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Annales Societatis Mathematicae Polonae, XLV(1)(2005), (45-58).
[2] T. Suzuki, Generalized Distance and Existence Theorems in Complete Metric Spaces,J.Math.Anal.Appl., 253(2001), 440-458.
[3] T. Suzuki, Several Fixed Point Theorems Concerning τ-distance,Fixed Point Theory and Application, 3(2004), 195-209.

