

Fixed points for singlevalued operators with respect to tau-distance

Guran, Liliana Titu Maiorescu University of Bucharest

2007

Online at http://mpra.ub.uni-muenchen.de/26927/ MPRA Paper No. 26927, posted 23. November 2010 / 10:18

Fixed points for singlevalued operators with respect to au-distance

Liliana Guran

Department of Applied Mathematics Babeş-Bolyai University Cluj-Napoca Kogălniceanu 1, 400084, Cluj-Napoca, Romania. E-mail: gliliana@math.ubbcluj.ro

ABSTRACT. In this paper we first recall the concept of τ -distance on a metric space. Then, we prove a fixed point theorem for singlevalued operators in terms of a τ -distance.

KEY WORDS: fixed point, τ -distance, singlevalued operator.

MATHEMATICS SUBJECT CLASSIFICATION 2000: 47H10, 54H25.

1 INTRODUCTION

In 2001 T.Suzuki introduced the concept of τ -distance on a metric space. They gave some examples of τ -distance and improve the generalization of Banach contraction principle, Caristi's fixed point theorem, Ekeland's variational principle and the Takahashi's nonconvex minimization theorem, see [1], [2]. Also, some fixed point theorems for singlevalued operators on a complete metric space endowed with a τ -distance were established in T.Suzuki [3].

The suppose of this paper is the present a theorem for singlevalued operators in a complete metric space with respect to τ -distance.

2 Preliminaries

Definition 1.1 Let X be any space and $f: X \to X$ a singlevalued operator. A point $x \in X$ is called *fix point* for f if x = f(x). The set of all fixed points of f is denoted by Fix(f).

Definition 1.2

(1) A singlevalued operator f defined on a metric space (X, d) is said to be lower semicontinuous (lsc) at a point $t \in X$ if either $\liminf_{x \to t} f(x) = \infty$ or $\liminf_{x \to t} f(x) \ge f(t).$

(2) A singlevalued operator f defined on a metric space (X, d) is said to be upper semicontinuous (usc) at a point $t \in X$ if either $\limsup_{x \to t} f(x) = -\infty$ or $\limsup_{x \to t} f(x) \leq f(t)$.

(3) A singlevalued operator f defined on a metric space (X, d) is said to be continuous at a point $t \in X$ if f is lower semicontinuous and upper semicontinuous in the same time at the point $t \in X$. If f is continuous in all $t \in X$ then f is continuous in (X, d).

The concept of τ -distance was introduced by T. Suzuki (see[1]) as follows:

Let (X,d) be a metric space, $p: X \times X \to [0, \infty)$ is called τ - distance on X if there exists a function $\eta: X \times \mathbb{R}_+ \to \mathbb{R}_+$ and the following are satisfied :

 $(\tau_1) p(x,z) \le p(x,y) + p(y,z)$, for any $x, y, z \in X$;

 $(\tau_2) \ \eta(x,0) = 0$ and $\eta(x,t) \ge t$ for all $x \in X$ and $t \in \mathbb{R}_+$, and η is concave and continuous in its the second variable;

 $(\tau_3) \lim_n x_n = x \text{ and } \lim_n \sup\{\eta(z_n, p(z_n, x_m)) : m \ge n\} = 0 \text{ imply}$

 $p(w, x) \leq \lim_{n} \inf(p(w, x_n))$ for all $w \in X$;

 $(\tau_4) \lim_n \sup\{p(x_n, y_m)\} : m \ge n\} = 0 \text{ and } \lim_n \eta(x_n, t_n) \text{ imply}$ $\lim_n \eta(y_n, t_n) = 0;$

 $(\tau_5) \quad \lim_n \eta(z_n, p(z_n, x_n)) = 0 \quad \text{and} \quad \lim_n \eta(z_n, p(z_n, y_n)) = 0 \quad \text{imply}$ $\lim_n d(x_n, y_n) = 0;$

We may replace (τ_2) by the following $(\tau_2)'$:

 $(\tau_2)'$ inf $\{\eta(x,t): t > 0\} = 0$ for all $x \in X$, and η is nondecreasing in the second variable.

Let us give some examples of τ -distance (see[2]).

Exemple 1.1. Let (X, d) be a metric space. Then the metric "d" is a τ -distance on X.

Exemple 1.2. Let (X, d) be a metric space and p be a *w*-distance on X. Then p is also a τ -distance on X.

Exemple 1.3. Let (X, d) be a metric space and p be a *w*-distance on X, let $h : \mathbb{R}_+ \to \mathbb{R}$ be a nondecreasing function such that $\int_0^\infty \frac{1}{1+h(r)} dr = \infty$, and let $z_0 \in X$ be fixed. Then a function $q : X \times X \to \mathbb{R}_+$ defined by:

$$q(x,y) = \int_{p(z_0,x)}^{p(z_0,x)+p(x,y)} \frac{dr}{1+h(r)},$$
 for all $x,y \in X$

is a τ -distance. For the proof of the main result we need of the definition of the p-Cauchy sequnce and the following lemmas (see [3]).

Definition 1.4.Let (X, d) be a metric space and let p be a τ -distance on X. Then a sequence $\{x_n\}$ in X is called p - Cauchy if there exists a function $\eta : X \times [0, \infty) \to [0, \infty)$ satisfying $(\tau_2) \cdot (\tau_5)$ and a sequence $\{z_n\}$ in X such that $\lim_n \sup\{\eta(z_n, p(z_n, x_m)) : m \ge n\} = 0.$

Lemma 1.5. Let (X, d) be a metric space and let p be a τ -distance on X. If a sequence $\{x_n\}$ in X satisfies $\lim_n \sup\{p(x_n, x_m) : m > n\} = 0$, then $\{x_n\}$ is a p-Cauchy sequence. Moreover, if a sequence $\{y_n\}$ in X satisfies $\lim_n p(x_n, y_n) =$ 0, then $\{y_n\}$ is also a p-Cauchy sequence and $\lim_n d(x_n, y_n) = 0$. **Lemma 1.6.** Let (X, d) be a metric space and let p be a τ -distance on X. If $\{x_n\}$ is a p-Cauchy sequence, then $\{x_n\}$ is a Cauchy sequence. Moreover, if $\{y_n\}$ is a sequence satisfying $\lim_n \sup\{p(x_n, y_m) : m > n\} = 0$, then $\{y_n\}$ is a p-Cauchy sequence and $\lim_n d(x_n, y_n) = 0$.

3 MAIN RESULT

Theorem Let (X, d) a complete metric space, $\tau : X \times X \to [0, \infty)$ a τ -distance in X and $f : X \to X$ a continuous operator, such that we have:

(i) there exists q < 1 such that:

$$\tau(f(x), f(y)) \le q\tau(x, y),$$

for every $x, y \in X$;

(ii) $\inf\{\tau(x,y) + q\tau(x,f(x)) | x \in X\} > 0$, for every $y \in X$ with $y \neq f(y)$. Then there exists $z \in X$ such that z = f(z) and $\tau(z,z) = 0$.

Proof. Let $u_0 \in X$ such that $u_1 = f(u_0)$. Then for $u_2 = f(u_1)$ we have $\tau(u_1, u_2) \leq q\tau(u_0, u_1)$. Thus we can define the sequence $\{u_n\} \in X$ such that $u_{n+1} = f(u_n)$ and $\tau(u_n, u_{n+1}) \leq q\tau(u_{n-1}, u_n)$ for every $n \in \mathbb{N}$.

Then we have, for any $n \in \mathbb{N}$ and q < 1,

$$\tau(u_n, u_{n+1}) \le q\tau(u_{n-1}, u_n) \le \dots \le q^n \tau(u_0, u_1).$$

and hence for any $m, n \in \mathbb{N}$ with $m \ge 1$

$$\tau(u_n, u_{n+m}) \le \tau(u_n, u_{n+1}) + \tau(u_{n+1}, u_{n+2}) + \dots + \tau(u_{n+m-1}, u_{n+m})$$
$$\le q^n \tau(u_0, u_1) + q^{n+1} \tau(u_0, u_1) + \dots + q^{n+m-1} \tau(u_0, u_1)$$
$$\le \frac{q^n}{1-q} \tau(u_0, u_1).$$

By the Lemma 1.5, $\{u_n\}$ is a p-Cauchy sequence and using Lemma 1.6 we have that the sequence $\{u_n\}$ is a Cauchy sequence . Then $\{u_n\}$ converges to some point $z \in X$. We fix $n \in \mathbb{N}$. Since $\tau(u, \cdot)$ is lower semicontinuous for any $u \in X$, we have:

$$\tau(u_n, z) \le \lim_{m \to \infty} \inf \tau(u_n, u_{n+m}) \le \frac{q^n}{1-q} \tau(u_0, u_1).$$

Assume that $z \neq f(z)$. Then, by hypothesis, we have:

$$0 < \inf\{\tau(x, z) + \tau(x, f(x)) | x \in X\}$$

$$\leq \inf\{\tau(u_n, z) + \tau(u_n, u_{n+1}) | n \in \mathbb{N}\}$$

$$\leq \inf\{\frac{q^n}{1-q}\tau(u_0, u_1) + q^n\tau(u_0, u_1) | n \in \mathbb{N}\} = 0$$

This is a contradiction. Therefore we have z = f(z). Then we have

$$\tau(z,z) = \tau(f(z), f(z)) \le q\tau(z, f(z)) = q\tau(z, z)$$

and hence $\tau(z, z) = 0.\square$

References

- T. Suzuki, Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Annales Societatis Mathematicae Polonae, XLV(1)(2005), (45-58).
- [2] T. Suzuki, Generalized Distance and Existence Theorems in Complete Metric Spaces, J.Math.Anal.Appl., 253(2001), 440-458.
- [3] T. Suzuki, Several Fixed Point Theorems Concerning τ-distance, Fixed Point Theory and Application, 3(2004), 195-209.