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EXISTENCE AND TESTABLE IMPLICATIONS OF
EXTREME STABLE MATCHINGS

FEDERICO ECHENIQUE, SANGMOK LEE, AND M. BUMIN YENMEZ

Abstract. We investigate the testable implications of the theory that
markets produce matchings that are optimal for one side of the market;
i.e. stable extremal matchings. A leading justification for the theory is
that markets proceed as if the deferred acceptance algorithm were in
place. We find that the theory of stable extremal matching is observa-
tionally equivalent to requiring that there be a unique stable matching,
or that the matching be consistent with unrestricted monetary transfers.
We also present results on rationalizing a matching as the median stable
matching.

We work with a general model of matching, which encompasses ag-
gregate and random matchings as special cases. As a consequence, we
need to work with a notion of strong stability, and extend the standard
theory on the existence and structure of extremal matchings.

1. Introduction

The celebrated deferred acceptance algorithm was first introduced by Gale

and Shapley (1962). It has been widely adapted to clearinghouses for cen-

tralized two-sided matching markets. The algorithm produces the outcome

which is the best outcome for one side of the market and the worst for the

other side (Roth and Sotomayor, 1990); dubbed as the extremal outcomes.

For instance, in the market for medical residents, the clearinghouse selects

the optimal matching for doctors, while in the application to school choice

the student-optimal matching is chosen (Roth, 2008). In fact, the deferred
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acceptance algorithm is not only viewed as a recipe of how we should clear

centralized markets, but also as a template for how actual decentralized

markets behave: Roth (2008, p. 550) notes that the algorithm corresponds

to a “folk model” of how markets proceed when they work in an orderly

fashion. Indeed, if offers in a labor market are driven by the firms then we

may expect a firm optimal matching. If men make most marriage proposals,

then perhaps marriages are optimal for men.

To empirically verify this intuition for decentralized markets, we need to

understand when there exist underlying preferences for agents that rational-

ize a matching as extremal. We suppose that we have data on who matches

with whom, but that we do not observe agents’ preferences. We want to

know which observed matchings are compatible with the outcome of the

deferred acceptance algorithm: this exercise is the main focus of our paper.

In other words, we study the testable implications of extremal selections in

cases where agents’ preferences are not known.

Our assumption on data is entirely realistic; as we shall see, a special

case of our model is the class of data empirical researchers use for studying

marriage matching. We want to know when we can say that agents have

matched as in the optimal matching for one side. For example, if we have

information on the decentralized matching of college freshmen to different

dorms, can we determine if the matching in this decentralized market is also

optimal for the freshmen? In a dating or marriage market, can we say if the

observed relationships correspond to a matching that is optimal for either

men or women? It turns out that our model can also accommodate random

matching, so that given a table of probabilistic assignments (for example one

matching children to schools, see Abdulkadirolu, Pathak, and Roth (2005)),

we can tell whether the random matching is compatible with stability and

extremal stability.

To lay some necessary groundwork, we first study stability in a general

model of population matching; including, as special cases, aggregate and ran-

dom matching. In doing so, we extend the basic theory of stable matching to

our general model; including proofs of the existence and polarity properties

of strongly stable matchings. These results are important because, in order
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to study extremal matchings empirically, we must first establish that they

exist and behave in the usual ways.

Our model encompasses aggregate matchings (Choo and Siow, 2006; Dagsvik,

2000; Echenique, Lee, and Shum, 2010), and random matching (Hylland and

Zeckhauser, 1979; Roth, Rothblum, and Vate, 1993; Kesten and Ünver, 2009;

Alkan and Gale, 2003) as special cases. We look at the notion of strong sta-

bility, which is the natural notion of stability for aggregate matching. For

random matching, strong stability captures the possibility of ex-ante trades

among agents, or, alternatively, it captures basic fairness properties. In con-

trast with standard (or weak) stability, strong stability results in non-linear

constraints on matchings. As a result, the geometry of stable matchings is

complicated, and we need to use fixed-point methods instead of the linear

programming approach.

Our main results are as follows. We characterize the matchings that are

rationalizable as the optimal matching for one side of the market.1 The

main implication of the characterization is that a matching is rationalizable

as optimal if and only if it is rationalizable as the unique stable matching in

the market; in turn this happens if and only if the matching is rationalizable

if the market allowed for transfers. Hence, the empirical content of the

hypothesis that marriage matching is man-optimal, or woman-optimal, is

the same as the hypothesis that there are unlimited quasilinear monetary

transfers in the market. In other words, the theory of one-sided optimal

stable matching is observationally equivalent to the theory of unique stable

matching; and observationally equivalent to the theory of transferable-utility

matching.

The theory of stable matching without transfers was first developed by

Gale and Shapley (1962). Gale and Shapley also propose the algorithm

that finds an extremal stable matching. On the other hand, the theory of

matching with transfers was developed by Shapley and Shubik (1971), and

1We do not study the deferred acceptance procedure per se, which is shown to produce
extremal outcomes for less general matching markets (Roth and Sotomayor, 1990), but
the extremal outcomes themselves. It is clear that in aggregate markets the Gale-Shapley
result still holds. Kesten and Ünver (2009) adopt the deferred acceptance algorithm to
environments when matchings can be non-integer.



4 ECHENIQUE, LEE, AND YENMEZ

(with great impact) applied to marriage matchings by Becker (1973). Our

results imply that from the purely empirical viewpoint, these theories are

equivalent. They have the same empirical content.

Our results are directly applicable to actual data on matchings. For exam-

ples, there are “marriage tables” readily available: these show the numbers

of agents of a particular age, level of education and income (for example)

that are married in a particular year. By simply inspecting these tables one

can test for extremal stability (or equivalently for unique stable matching).

Similarly, one could analyze a random matching, such as the one proposed

by a particular randomized mechanism for assigning students to schools. For

example, if we guarantee a set of students a strictly positive probability of

matching with a set of schools, then our results imply the resulting random

matching cannot be student (or school) optimal.

1.1. Related literature. A number of papers study the empirical content

of stability for aggregate matching (Choo and Siow, 2006; Dagsvik, 2000;

Echenique, Lee, and Shum, 2010). There are not results, however, on the

joint hypothesis that matchings are stable and optimal for one side of the

market. Echenique, Lee, and Shum (2010) characterize the aggregate match-

ings that are rationalizable as stable, but their results are silent on which

stable matching is selected when a matching is rationalized.

Random and fractional matchings are studied by Vande Vate (1989);

Rothblum (1992); Roth, Rothblum, and Vate (1993); Kesten and Ünver

(2009), but not from the revealed preference perspective of understanding

which random matchings are rationalizable when preferences are unobserved.

With the exception of Kesten and Ünver (2009), these papers focus on the

standard notion of stability for fractional matching. Roth, Rothblum, and

Vate (1993) introduce the idea of strong stability, as we use it, but obtain

only very weak results: as we explain in Section 5, the problem is that strong

stability gives rise to a system of quadratic equations (Vande Vate (1989);

Rothblum (1992); Roth, Rothblum, and Vate (1993) use linear programming

techniques). Our existence results are closer to Alkan and Gale (2003), who

present a general approach to stable matching. Alkan and Gale work with
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choice functions instead of the incomplete first-order stochastic dominance

preference relation that we use, but it is likely that their methods can be

adapted to show existence of extremal matchings in our model. Of course,

Alkan and Gale do not treat the issue of rationalizing a matching as stable

when preferences are unknown.

We use Tarski’s fixed point theorem to show the existence of stable match-

ings that are optimal for one side of the market. This approach has been

used in the matching literature before. For example, see Roth and So-

tomayor (1988); Adachi (2000); Fleiner (2003); Echenique and Oviedo (2004,

2006); Echenique and Yenmez (2007); Ostrovsky (2008); Hatfield and Mil-

grom (2005); Komornik, Komornik, and Viauroux (2010).

2. Model

2.1. Preliminary definitions. If S is a set, and ≤ is a partial order on S

we say that the pair (S,≤) is a partially ordered set. We say that x, y ∈ S
are comparable if x ≤ y or y ≤ x.

A partially ordered set (S,≤) is a lattice if, for every x, y ∈ S, the least

upper bound, and the greatest lower bound of {x, y} exist in S for the partial

order ≤. We denote the least upper bound of {x, y} by x∨y; and the greatest

lower bound of {x, y} by x∧y. A lattice (S,≤) is distributive if the following

holds: for all x, y, z ∈ S:

• x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and

• x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

An (undirected) graph is a pair G = (V, L), where V is a set and L is

a subset of V × V . A path in G is a sequence p = 〈v0, . . . , vN〉 such that

for n ∈ {0, . . . , N − 1}, (vn, vn+1) ∈ L. We write v ∈ p to denote that

v is a vertex in p. A path 〈v0, . . . , vN〉 connects the vertices v0 and vN . A

path 〈v0, . . . , vN〉 is minimal if there is no proper subsequence of 〈v0, . . . , vN〉
which is also a path connecting the vertices v0 and vN . The length of a path

〈v0, . . . , vN〉 is N .

A cycle in G is a path c = 〈v0, . . . , vN〉 with v0 = vN . A cycle is minimal

if for any two vertices vn and vn′ in c, the paths in c from vn to vn′ and from
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vn′ to vn are minimal. We call v and w adjacent in c if there is n such that

vn = v and vn+1 = w or vn = w and vn+1 = v. If c and c′ are two cycles,

and there is a path from a vertex of c to a vertex of c′, then we say that c

and c′ are connected.

If X = (xi,j) is a matrix then xi,· is the ith row and x·,j the jth column.

When it is not ambiguous, we write xi for xi,· and xj for x·,j.

2.2. Model. The primitives of the model are represented by a four-tuple

〈M,W,P,K〉, where

• M and W are finite and disjoints sets of, respectively types of men,

and types of women.

• P is a preference profile: a list of preferences Pm for every type of

man m and Pw for every type of woman w. Each Pw is a linear order

over W ∪ {∅}, and each Pm is a linear order over M ∪ {∅}. Here,

∅ represents the alternative of being unmatched. The weak order

associated with Pa is denoted by Ra for any a ∈M ∪W .

• K is a list of non-negative real numbers Km for each m ∈ M and

Kw for each w ∈ W . There are Km men of type m and Kw women

of type w.

Suppose that there are l types of women and n types of men. Therefore,

we can enumerate W as {w1, . . . , wl} and M as {m1, . . . ,mn}.
Let Xm =

{
x ∈ Rl+1

+ :
∑

i xi = Km

}
.2 Define a partial order ≤m on Xm

as follows y ≤m x iff

∀w ∈ W
∑

i:wiRmw

yi ≤
∑

i:wiRmw

xi;

interpret wl+1 as ∅, the option of remaining single. Note that ≤m is defined

by analogy to first order stochastic dominance. Letting Xw =
{
x ∈ Rn+1

+ :
∑

i xi = Kw

}
,

we define ≤w in an analogous way.

A matching is a matrix X = (xm,w)(m,w)∈M×W such that xm,w ∈ R+,∑
w xm,w ≤ Km and

∑
m xm,w ≤ Kw.

2R+ denotes the set of non-negative real numbers.
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We introduce two partial orders on matchings. Suppose X and Y are

matchings, then:

• X ≤M Y if, for all m, x′m ≤m y′m
• X ≤W Y if, for all w, x′w ≤w y

′
w.

where x′m is the vector in Rl+1
+ obtained from x·,w ∈ Rl

+ by assigning Km −∑
w xm,w to the entry corresponding to l+ 1 (Km−

∑
w xm,w being the mass

of single m-agents in X). Similarly for y′m, x′w and y′w.

Definition 1. A matching X is individually rational if xm,w > 0 implies

that w Rm ∅ and mRw ∅.
A pair (m,w) is a blocking pair for A if there is m′ and w′ such that

mPw m
′, w Pm w′, xm,w′ > 0, and xm′,w > 0.

A matching X is stable if it is individually rational and there are no

blocking pairs for X.

Denote by S(M,W,P,K) the set of all stable matchings in 〈M,W,P,K〉.

Two special cases of our model are worth emphasizing: The model of

random matching is obtained when Km = 1 for all m, and Kw is a posi-

tive integer, for all w. The interpretation of random matching is that men

are “students” and women are “schools.” Students are assigned a school at

random, and each school w has Kw seats available for students. In real-life

school choice, the randomization often results from indifferences in schools’

preferences over students (Abdulkadirolu, Pathak, and Roth, 2005); Match-

ing theory requires strict preferences, so a random “priority order” is pro-

duced for the schools in order to break indifferences. Random matchings

arise in many other situations as well because random assignment is often a

basic consequence of fairness considerations. Here we are mainly interested

in situations where a random assignment is given in unambiguous terms, but

preferences are unobserved (it is also possible that they are observed but we

suspect that they have been misrepresented, or observed with error).

The second model is that of aggregate matching, where all numbers Km

and Kw are natural numbers, and all entries of matchings X are natural

numbers. The interpretation is that there are Km men of type m, and Kw

women of type w, and that a matching X exhibits in xm,w how many men
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of type m matched to women of type w. The model of aggregate matching

captures actual observations in marriage models. We observe that men and

women are partitioned into types according to their observable characteris-

tics (age, income, education, etc.); and we are given a table showing how

many men of type m married women of type w. These observations are

essentially “flow” observations (marriages in a given year), so the aggregate

matchings do not have any single agents.

Finally, canonical matchings are those matchings X for which the entries

xm,w are either 0 or 1. Some of the results depend only on whether entries

are zero or positive, so canonical matchings play a key role in our analysis.

3. Testable Implications

We study the testable implications of extremal matchings. First, we es-

tablish that they exist for our general model of matchings. In fact, the

standard theory of the structure of stable matching extends.3

Theorem 2. (S(M,W,P,K),≤M) and (S(M,W,P,K),≤W ) are nonempty,

complete, and distributive lattices; in addition, for X, Y ∈ S(M,W,P,K)

(1) X ≤M Y iff Y ≤W X;

(2) for all types a ∈M ∪W , either xa ≤a ya or ya ≤a xa;

(3) for all m and w,
∑

w∈W xm,w =
∑

w∈W ym,w and
∑

m∈M xm,w =∑
m∈M ym,w.

Theorem 2 implies that there are two stable matchings, XM and XW ,

such that for all stable matchings X,

XW ≤M X ≤M XM

XM ≤W X ≤W XW ,

we refer to XM as the man-optimal (M-optimal) stable matching, and to

XW as the woman-optimal (W-optimal) stable matching. A matching X is

the unique stable matching if S(M,W,P,K) = {X}; in this case X coincides

with the M - and the W -optimal matchings.

3As we explain in Section 5, since we work with strong stability, the existing results on
stable random matchings do not apply to our case. For the model of aggregate matching,
there are no previous results on the structure of stable matchings.



TESTABLE IMPLICATIONS OF EXTREME MATCHINGS 9

Theorem 2 also presents versions of other classical results on matching for

our model. Statement (1) is a “polarity of interests” results, saying that a

stable matching X is better for men if and only if it is worse for women.

Statement (2) says that the outcomes in two stable matchings are always

comparable for an agent: note that ≤a is an incomplete preference relation.

Statement (3) is the “rural hospitals theorem,” which says that single agents

in any two stable matchings are the same.

Having established that extremal matchings always exist, we turn to the

revealed preference question of when we can rationalize a given matching

as extremal stable. Formally, a matching X is M-optimal rationalizable if

there is a preference profile P = ((Pm)m∈M , (Pw)w∈W ) such that X is the

M-optimal stable matching in 〈M,W,P,K〉. Analogously, it is W-optimal

rationalizable if there is a preference profile such that X is the W-optimal

matching in the corresponding market. We assume that there are no singles

in our data: we observe only formed couples.4

It is worth remarking that rationalizing preferences must be strict. If we

assume weak preferences, there is a trivial rationalization by making each

agent be indifferent between all potential partners.

Given a matching X, we use a graph defined by the strictly positive entries

in X, where there is an edge between two entries in the same row, and

an edge between two entries in the same column. Formally, consider the

graph (V, L) for which the set of vertices is V := {(m,w)|m ∈ M,w ∈
W such that xm,w > 0}, and ((mi, wj), (mk, wl)) ∈ L if (mi, wj), (mk, wl) ∈
V and mi = mk or wj = wl.

Theorem 3. Let X be a matching. The following statements are equivalent:

(1) X is rationalizable as a M-optimal stable matching;

(2) X is rationalizable as a W -optimal stable matching;

(3) X is rationalizable as the unique stable matching;

(4) the graph (V, L) associated to X has no cycles.

The theorem is easily applicable to aggregate matchings or random match-

ings. For example consider a random matching where there is a set S of

4This is the case in actual data: see Echenique, Lee, and Shum (2010).
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students and C of schools. Suppose that there is a set of two students S0

which have a positive chance of being admitted at every school. Then the

resulting matching cannot be student optimal, no matter what the students’

preferences are, or what schools preferences (priorities) are chosen. To see

this simple point, imagine that students are men and schools are women

in the notation above. Then if we consider the rows corresponding to the

students in S0 we will have only positive entries:
...

...

. . . ps,c ps,c′ . . .

. . . ps′,c ps′,c′ . . .
...

...


The graph (V, L) would then contain as a subgraph the cycle

ps,c ps,c′

ps′,c ps′,c′

By Theorem 3, this random matching is not rationalizable as either student

optimal or school optimal, regardless of what preferences-priorities one may

assume for the two sides.

3.1. Transferable Utility. We now turn to the model of matching with

transfers. The focus of our paper is on the models without transfers, but

it is instructive to compare extremal rationalizability with rationalizability

under transfers.

Fix sets M , W and list K. For a matching X, suppose that a type m

man who matches with a type w woman can generate a surplus αm,w ∈ R.

So the total surplus generated by the matchings of types m and w in X is

xm,wαm,w. The surpluses are contained in a matrix

α = (αm,w)|M |×|W |.

We want to know when a matching X is rationalizable using the standard

model of matching with transfers.
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Let X be a matching. Say that X is TU-rationalizable by a matrix of

surplus α if X is the unique solution to the following problem.

(1)

maxX̃

∑
m,w αm,wx̃m,w

s.t.

∀w
∑

m x̃m,w = Km

∀m
∑

w x̃m,w = Kw

.

Remark 4. Note that we require X to be the unique maximizer in (1). If

we instead require X to be only one of the maximizers of (1), then any

matching can be rationalized with a constant surplus. (αi,j = c for all i, j).

Uniqueness in the TU model holds for almost all real matrices α, and it

seems to be the natural way to phrase the revealed preference question.

Corollary 5. A matching X is TU-rationalizable if and only if it is M-

optimal rationalizable.

The corollary follows from Theorem 3 above and Theorem 3.6 in Echenique,

Lee, and Shum (2010) that a matching X is TU rationalizable if and only if

the associated graph (V, L) has no cycles.

4. Median Stable Matching: Existence and Testable

Implications

Extremal stable matchings may be unreasonable because they favor one

side over the other. One may instead be interested in matchings that present

a compromise: median stable matchings are such a compromise. Informally,

the median stable matching gives each agent the partner that is in the me-

dian of his/her preference list, once the preference list is restricted to his/her

partners in some stable matching. To calculate the median we weight each

partner by the number of stable matching in which the two are matched.

It is not obvious that median stable matchings exist: for the standard

models of (deterministic) matching, existence was proven by Teo and Sethu-

raman (1998); see also Klaus and Klijn (2010), and Schwarz and Yenmez

(2007) for other matching markets. For our model, we shall first show the
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existence of median stable matching, and then present a sufficient condition

for rationalizability as median stable matchings.

In this section, we only consider aggregate matchings. So we assume a

market 〈M,W,P,K〉, where all numbers Km, Kw and entries of matchings

X are non-negative integers. As a result, the number of stable matchings

is finite, say k. Let S(M,W,P,K) = {X1, . . . , Xk} be the set of stable

matchings. For each agent a we consider all the stable outcomes and rank

them according to ≥a. We can rank all the outcomes by (2) of Theorem 2.

More formally, let {x(1)
a , . . . , x

(k)
a } = {x1

a, . . . , x
k
a} and x

(1)
a ≥a . . . ≥a x

(k)
a .

Using these ranked outcomes for all the agents we construct the following

matrices: y
(i)
m = x

(i)
m and y

(i)
w = x

(k+1−i)
w for all i = 1, . . . , k. The matrices

Y (i) give each type of men the i-th best outcome, and each type of women

the i-th worst outcome out of the outcomes in a stable matching.

Proposition 6. Y (i) is a stable aggregate matching.

If k is odd we term Y (k+1/2) the median stable matching. If k is even we

refer to Y (k/2) as the median stable matching (but of course this choice is

arbitrary). In our proofs we construct preferences such that the number of

stable matchings is odd, so our results do not depend on this choice.

Corollary 7. The median stable matching exists.

Having established that median matching always exists in the model of

aggregate matching, we proceed to understanding their testable implica-

tions. We want to know when a matching can be rationalized as the median

stable matching. Formally, an aggregate matching X is median rationaliz-

able if there is a preference profile P such that X is a median matching in

〈M,W,P,K〉.
Recall that if 〈v0, . . . vN〉 is a cycle, then N is an even number. Say that

a cycle c is balanced if

min {v0, v2, . . . , vN−2} = min {v1, v3, . . . , vN−1} .

Theorem 8. An aggregate matching X is median rationalizable if it is ra-

tionalizable and if all cycles of the associated graph (V, L) are balanced.
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Corollary 9. A canonical matching X is either not rationalizable or it is

median rationalizable.

Unfortunately, the result in Theorem 8 is only a sufficient condition for

median rationalizability. Corollary 9 gives a characterization, but for the

limited case of canonical matching. To sketch the boundaries of these results,

we present two examples. Example 10 shows that there are indeed matchings

that are not rationalizable as median matchings: so Corollary 9 does not

extend to all aggregate matchings. Example 11 shows that the sufficient

condition in Theorem 8 is not necessary.

Example 10. A rationalizable aggregate matching that cannot be rational-

ized as the median:

1 3

3 1

The only way to rationalize this aggregate matching is to direct the edges

so that the cycle is a flow, i.e., if w1Pm1w2 then m2Pw1m1, w2Pm2w1, and

m1Pw2m2. Similarly, if w2Pm1w1 then the preferences of agents are such

that there is a flow. Regardless of how the flow is directed, all the feasible

aggregate matchings are stable, so there are 5 stable aggregate matchings

in total. Therefore, the median aggregate stable matching is the one where

each agent is matched to both possible partners twice.

Example 11. The following example shows that the sufficient condition in

Theorem 8 is not necessary. Suppose that there are four types of men, three

types of women, and consider the aggregate matching

X =


0 0 2

0 2 1

1 3 0

3 1 0

 .

We choose the preferences such that the graph corresponding to X is as

follows. Note that we indicate preference with an arrow, so that for example
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xi,j → xi,h means that wh Pmi
wj.

0 oo

��

��

2

2 // 1

OO

1 //
OO 3

��

OO

3 oo 1.

Note that there is a cycle 〈x3,1, x3,2, x4,2, x4,1〉 and that . . .

By “rotating” the cycle 〈x3,1, x3,2, x4,2, x4,1〉 in a clockwise direction we

obtain the aggregate matching
0 0 2

0 2 1

0 4 0

4 0 0

 ,

which is better for the men. However, by counterclockwise rotations we

obtain the matchings
0 0 2

0 2 1

2 2 0

2 2 0

 ,


0 0 2

0 2 1

3 1 0

1 3 0

 ,


0 0 2

0 2 1

4 0 0

0 4 0

 ,

which are all better for women than X.

Now, with the rationalization in the arrows above, the following “joint”

rotation of the cycle and the upper entries of the matchings is stable as well:
0 1 1

0 1 2

0 4 0

4 0 0

 ,


0 2 0

0 0 3

0 4 0

4 0 0

 .



TESTABLE IMPLICATIONS OF EXTREME MATCHINGS 15

These two matchings are better for the men. In all, then, under the ratio-

nalizing preferences in the arrows, there are 7 stable matchings: and X is

the median matching.

There is a crucial aspect of the example that makes this possible. Note

that, if we are to rotate the upper part of the graph, we need preferences

to be as indicated by the arrows. In particular, we must have x2,3 → x1,3

for the graph to be rationalizable; then, to accommodate a > 0 entry in x1,2

after the rotation, we must have x1,3 → x1,2 or we would get a blocking pair

(m1, w3). But since we have positive entries in x1,3 and in x3,2, x1,3 → x1,2

implies that we need x1,2 → x3,2 (the long dotted arrow in the graph).

Now, a modification of X that has a positive entry in x1,2 is only possible

if we simultaneously set x3,1 = 0, as x3,1 → x3,2 and x1,2 → x3,2. Hence

the rotation of the upper side of the graph is not feasible under any of the

modification of X that improve the matches of the women.

There is, therefore, an asymmetry in the graph that allows us to offset

the unbalancedness of the number of men and women in the cycle.

5. Strong Stability

In this section we argue that (a) strong stability is the natural notion

of stability for aggregate matchings, and of ex-ante stability for random

matchings; and (b) that one cannot analyze strong stability using the stan-

dard linear programming tools.

First, it is rather obvious that strong stability is the natural notion of

stability for aggregate matchings. Concretely, if there is a pair (m,w) that

can block an aggregate matching X, then there are two agents: one man

of type m and one woman of type w, such that the two agents can block

in the usual sense. However, the case of random matching requires more

explaining.

If X is a random matching, we can view the row xm as a probability

distribution over the set of women who may be partners of m; similarly for

xw. Then (m,w) is a blocking pair (in the strong sense) if and only if there

are distributions x′m and x′w such that
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• x′m first order stochastically dominates xm and x′w first order stochas-

tically dominates xw;

• (m,w) can achieve x′m and x′w by mutual agreement, without the

consent of any other agents, because x′m,w̃ ≤ xm,w̃ and x′m̃,w ≤ xm̃,w

for any m̃ and w̃.

The ex-ante perspective makes sense if we think that agents can trade

probabilities or time shares — see Hylland and Zeckhauser (1979). After

agents trade, any random matching can be implemented physically by a de-

composition into deterministic, simultaneous, matchings (using the Birkhoff

von-Neumann theorem). If trades in probabilities or time-shares are some-

how ruled out, then one can still justify strong stability on fairness grounds

(Kesten and Ünver, 2009).

The standard notion of stability can be analyzed by linear programming

methods (Vande Vate, 1989; Rothblum, 1992; Roth, Rothblum, and Vate,

1993). The reason is that stability results in a collection of linear constraints

on matchings: a fractional matching X is stable if and only if it satisfies a

set of linear inequalities. Strong stability, on the other hand, does not result

in linear constraints.

Specifically, the property that an individually rational X is strongly stable

is equivalent to the following statement. For all pairs (m,w),( ∑
w′:wPmw′

xm,w′

)( ∑
m′:mPwm′

xm′,w

)
= 0.

Hence X is a strongly stable matching if and only if it is feasible, individually

rational, and satisfies a set of quadratic constraints. The resulting set of

matrices does not have the geometry that one can exploit for fractional stable

matching. On the other hand, observe that the weak notion of stability is

captured by the constraints: for all (m,w)∑
w′:wPmw′

xm,w′ +
∑

m′:mPwm′

xm′,w ≤ 1;

which conforms a linear system of inequalities.
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6. Conclusion

The deferred acceptance algorithm was first introduced in Gale and Shap-

ley (1962). However, it was already being used in several markets even be-

fore then (see Roth (2008)). Indeed, it is viewed as not only a recipe of how

we should organize clearinghouses for two-sided matching markets, but also

a folk model of how decentralized markets behave. Although economists

have built clearinghouses based on the deferred acceptance algorithm (NY

and Boston school mechanisms, the National Residence Matching Program,

etc.), there has been no analysis of whether the decentralized market out-

comes can be the deferred acceptance algorithm outcomes. We have filled

in this void.

We show for a general two-sided matching market that a matching can

be rationalized as the outcome of the deferred acceptance algorithm, which

produces extremal outcomes in the lattice of stable matchings, if and only if

there are no cycles in the graph associated with the matching which in turn

is equivalent to the rationalizability of the matching as a stable matching

if transfers were allowed between agents. Therefore, the empirical content

of rationalizability as an extremal outcome without transfers is the same as

rationalizability in the transferable utility setup.

Thus, our analysis provides the tools necessary for the empirical analysis

of matching data. To be specific, the question of whether a market behaves

as in the deferred acceptance algorithm can now be studied.

7. Proofs

7.1. Proof of Theorem 2. We split up the proof in short propositions.

Lemma 12. (Xm,≤m) is a complete lattice, with a largest and smallest

element.

Proof. That (Xm,≤m) is a partially ordered set follows from the definition

of ≤m. Take a subset Sm of Xm. We need to show that Sm has a least upper

bound and a greatest lower bound in (Xm,≤m) to complete the proof.

ReorderW∪{wl+1} according tom’s preference such that w1Pmw2Pm . . . Pmwl+1.
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Let z1 = sup{x1|x ∈ Sm}. Define zi inductively as follows: zi = sup{x1 +

. . . + xi|x ∈ Sm} − (z1 + . . . + zi−1). Note that by definition zi ≥ 0 and∑
i

zi = Km, so z ∈ Xm.

Claim: z is a least upper bound of Sm.

Proof: By definition,
j=i∑

j=1

zj = sup{x1 + . . .+ xi|x ∈ Sm} which is greater

than x1 + . . . + xi for all x ∈ Sm and i. Therefore, z ≥m x for all x ∈
Sm, which means that z is an upper bound. Suppose that z′ is another

upper bound of Sm. Therefore, z′1 + . . . + z′i ≥ x1 + . . . + xi for all x ∈
Sm and i. If we take the supremum of the right hand side, then we get

z′1 + . . . + z′i ≥ sup{x1 + . . . + xi|x ∈ Sm} for all i. On the other hand,

z1 + . . . + zi = sup{x1 + . . . + xi|x ∈ Sm} for all i by definition of z. The

last two impressions imply z′1 + . . .+ z′i ≥ z1 + . . .+ zi for all i, so z′ ≥m z.

Thus, z is a least upper bound.

Similarly we can construct a greatest lower bound as follows: u1 = inf{x1|x ∈
Sm}. Define ui inductively: ui = inf{x1 + . . .+xi|x ∈ Sm}−(u1 + . . .+ui−1).

The proof that u is a greatest lower bound is similar to the proof that z is

a least upper bound, so it is omitted. �

For each m, let the choice Cm be defined as follows. For a vector x ∈ Rl+1
+ ,

let Cm(x) be the vector in

{y ∈ Xm : yj ≤ xj, j = 1, . . . , l}

that is maximal for ≤m. In other words, if x represents the quantities of

women available for m, Cm chooses according to Pm from best choice down-

wards until filling quota Km. Note that if ∅ Pm wj then yj = 0, and that

yl+1 = Km −
∑

j:wjPm∅ yj. Define Cw analogously.

Proposition 13. (S(M,W,P,K),≤M) is a nonempty, complete lattice.

Proof. A man pre-matching is a matrix A = (am,w) such that am,w ∈ R+

and
∑

w am,w = Km. A woman pre-matching is a matrix B = (bm,w) such

that bm,w ∈ R+ and
∑

m bm,w = Kw.

We consider pairs (A,B), where A is a man prematching, and B is a

woman prematching, ordered by a partial order ≤. The order ≤ is defined
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as (A,B) ≤ (A′, B′) if

∀m∀w
(
am,· ≤m a′m,· ∧ b′·,w ≤w b·,w

)
.

The order ≤ is a product order of complete lattices by Lemma 12, so that

the set of all pairs (A,B) ordered by ≤ is a complete lattice.

We define a function C, mapping pairs (A,B) of prematchings into pairs

of prematchings. Fix (A,B): For a man m, the number of women of type

w who are willing to match with m at B is θm,w ≡
∑

i:mRwmi
bmi,w. Let

θm ≡ (θm,w1 , . . . , θm,wl
), i.e., the l-vector such that entry w is the number

of women of type w who are willing to match with m at B. Similarly, for

w ∈ W , let ηw be the vector for which entry m is the number of men of type

m who are willing to match with w at A. Now let C(A,B) = (A′, B′) where

a′m = Cm(θm) and b′w = Cw(ηw), with a′m being m’s row in A′ and b′w w’s

column in B′.

We now prove that C is isotone. Suppose that (A,B) ≤ (A′, B′). We

prove that C(A,B) ≤ C(A′, B′). Fix m. For any wj, note that if m is not

the top man in Rwj
we obtain∑

i:mRwj mi

bi,j = Kwj
−

∑
i:miPwj m

bi,j ≤ Kwj
−

∑
i:miPwj m

b′i,j =
∑

i:mRwj mi

b′i,j,

as b′wj
≤wj

bwj
. If m is the top man in Rwj

we obtain
∑

i:mRwj mi
b′i,j =

Kwj
=
∑

i:mRwj mi
bi,j. As a consequence, in B′ man m has weakly more

women of each type willing to match with him than in B: θm ≤ θ′m. Thus

Cm(θm) ≤m Cm(θ′m). Similarly, for women w, Cw(η′w) ≤w Cw(ηw). It follows

that C(A,B) ≤ C(A′, B′)

By Tarski’s fixed point theorem, there is a fixed point of C, the set of

fixed points of C is a complete lattice when ordered by ≤.

Let (A,B) = C(A,B) be a fixed point of C. Assume that amw > bmw

for some m and w. Cw(ηw) = bw and bmw < amw implies that although

amw number of type m men were available, only bmw of them are chosen by

Cw. Therefore, all nonnegative entries in bw are at least as good as m with

respect to Rw. This implies that θmw = bmw. Since bmw < amw, we get

θmw < amw which contradicts am = Cm(θm). Therefore, amw = bmw for all
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m and w. Hence a fixed point has the property that A = B is an aggregate

matching, not only prematchings.

Finally we prove that the set of fixed points of C is the set of stable

aggregate matchings. More precisely, (A,A) is a fixed point of C if and only

if A is a stable aggregate matching.

Suppose that a fixed point (A,A) is not stable. Then there is a blocking

pair (m,w). That is, there is m′ and w′ such that mPwm
′, wPmw

′, am,w′ > 0,

and am′,w > 0. Now, the number of women of type w who are willing to

match with m is

θm,w =
∑

i:mRwmi

ai,w ≥ am,w + am′,w > am,w,

as am′,w > 0. But θm,w > am,w and am = Cm(θm) contradicts that there is

w′ with w Pm w′ and am,w′ > 0.

Suppose that A is a stable aggregate matching. Fix m and we show that

am = Cm(θm) where θm,w =
∑

i:mRwmi
ai,w. Denote wj as the most preferred

type of women such that am,wj
6= (Cm(θm))j. By definition of Cm, am,wj

>

(Cm(θm))j is not feasible. For all wj′ preferred to wj, am,wj′
= (Cm(θm))j′ .

Thus, am,wj
> (Cm(θm))j implies either am,wj

> θm,wj
or
∑

j′:wj′Rmwj
am,wj′

>

Km. On the other hand, am,wj
< (Cm(θm))j contradicts that A is stable.

Although there are type wj women available more than am,wj
, some type

m men are matched to less preferred women; That is there is j′ such that

wjPmwj′ and am,wj′
> 0. (m,wj) is a blocking pair. Similarly, we can show

that aw = Cw(θw), and therefore (A,A) = C(A,A).

�

Proposition 14. Suppose that X and Y are two stable matchings. Then

for any men or women type a, either xa ≤a ya or ya ≤a xa. Consequently,

xa ∨a ya = max≤a{xa, ya} and xa ∧a ya = min≤a{xa, ya}.

Proof. We only prove the first part: that either xa ≤a ya or ya ≤a xa, in

three steps depending on whether X and Y have integer, rational, and real

entries. The second part is implied immediately: xa ∨a ya = max≤a{xa, ya}
and xa ∧a ya = min≤a{xa, ya}.
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Case 1 (Integer Entries) We first start with the case when X and

Y have integer entries. Therefore, Kw and Km are also integers. From

〈M,W,P,K〉, we create a many-to-one matching market (of colleges and

students) as follows.

The set of men remains the same; interpreted as the set of colleges. A

college m has a capacity of Km. Whereas, each woman w is split into

Kw copies, all of which have the same preferences Pw over men; women

are interpreted as students. On the other hand, man m’s preferences P ′m
replaces woman w in Pm with her copies enumerated from 1 to Kw, in

increasing order. Denote wi’s j-th copy by wj
i . So wj

i P
′
m wk

i if and only

if k > j. In addition, each man has responsive preferences over groups of

women. The new matching market with |M | men and
∑

w Kw women is a

many-to-one matching market where an outcome for a man is a group of

women and an outcome for a woman is either a man or being single.

Now, we construct a new matching, X ′, in the new market from X. It is

enough to describe the matches of women in X ′. Rank woman w’s outcomes

in X in decreasing order according to her preference Pw. Let the jth copy

of wi, w
j
i , match to the jth highest outcome of w in X. Similarly construct

Y ′ from Y .

We claim that X ′ and Y ′ are stable matchings in the new market. Suppose

for contradiction that X ′ is not a stable matching. Since X ′ is individually

rational by construction, there exists a blocking pair (m,wj
i ). This means

that wj
i ’s match is worse than m. Similarly, m’s match includes an agent

worse than wj
i : this agent cannot be wk

i where k < j by definition of P ′, and

it cannot be wk
i where k > j because by construction wk

i ’s match is worse

than wj
i ’s match with respect to Pwi

. Hence, one of m’s matches is worse

than wj
i , and not a copy of wi. This means that (m,wi) forms a blocking

pair in X: A contradiction to the stability of X. Therefore, X ′ must be

stable. Similarly, Y ′ is also stable.

Now, by Theorem 5.26 of Roth and Sotomayor (1990), for any man m

the outcomes in X ′ and Y ′ are comparable. This means that the responsive

preferences over groups of women inherited from P ′m, which is equivalent

to the first order stochastic dominance, can compare the outcomes of m in



22 ECHENIQUE, LEE, AND YENMEZ

these two stable matchings. Therefore, ≤m can compare the outcomes in X

and Y since Pm is a coarser order than P ′m.

An analogous argument shows that ≤w can compare Xw and Yw.

Case 2 (Rational Entries) Suppose for now that all entries of X and

Y are rational numbers. Therefore, Kw and Km are also rational numbers.

Define a new matching market from 〈M,W,P,K〉 as follows.

M , W , and P are the same. We change the capacities as follows. Find

a common factor of denominators in all entries in X and Y , say r, and

multiply all capacities by r. Therefore, the new market is 〈M,W,P, rK〉.
Define X ′ ≡ rX and Y ′ ≡ rY with non-negative integer entries. By the

argument above, for any agent a, rXa and rYa can be compared with respect

to ≤a which implies that Xa and Ya can also be compared.

Case 3 (Real Entries) Suppose now that entries of X and Y are real

numbers. We construct two sequences of matrices, X(n) and Y (n), as follows:

(1) X(n) and Y (n) have rational entries,

(2) x
(n)
ij = 0 ⇐⇒ xij = 0 and y

(n)
ij = 0 ⇐⇒ yij = 0 for all i, j,

(3) the sum of entries in row i and column j is the same for X(n) and

Y (n), and

(4) X(n) ⇒ X and Y (n) ⇒ Y as n⇒∞.

By construction the stability of X and Y imply stability of X(n) and Y (n)

where the capacities of types are adjusted. By the argument above, for

each type a, x
(n)
a and y

(n)
a can be compared with respect to ≤a. Take a

subsequence such that the ordering is the same for all entries. Therefore,

x
(n)
a ≤a y

(n)
a for all n or y

(n)
a ≤a x

(n)
a for all n. By taking n to ∞ we get that

either xa ≤a ya in the former case, or ya ≤a xa in the latter. �

Using the proposition above, we show that (S(M,W,P,K),≤M) is dis-

tributive.

Proposition 15. (S(M,W,P,K),≤M) is a distributive lattice.

Proof. We have shown that (S(M,W,P,K),≤M) is a lattice in Proposition

2. We show that the lattice is distributive.
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Suppose that X, Y , and Z are stable matchings. We are going to prove

that type a have the same matching in X ∧ (Y ∨Z) and (X ∧ Y )∨ (X ∧Z)

for all agents a:

(X ∧ (Y ∨ Z))a = min{xa,max{ya, za}}

= max{min{xa, ya},min{xa, za}}

= max{(X ∨ Y )a, (X ∨ Z)a}

= ((X ∧ Y ) ∨ (X ∧ Z))a,

where min and max operators are defined with respect to ≤a and where we

repeatedly use Proposition 14.

The proof that X ∨ (Y ∧ Z) = (X ∨ Y ) ∧ (X ∨ Z) is analogous. �

Proposition 16. Suppose that X and Y are stable matchings. Then
l∑

j=1

xij =

l∑
j=1

yij for all i and similarly
n∑

i=1

xij =
n∑

i=1

yij for all j.

Proof. The proof has the same structure as in the proof of Proposition 14: it

has three steps depending on whether X and Y have integer, rational, and

real entries.

Case 1 (Integer Entries) We first start with the case when X and

Y have integer entries. Therefore, Ka is also an integer for all a. From

〈M,W,P,K〉, we create a many-to-one matching market and also stable

matchings X ′ and Y ′ in this new market as in the proof of Proposition 14.

Now, by Theorem 5.12 of (Roth and Sotomayor, 1990), the set of positions

filled for any man m in X ′ and Y ′ are the same. Therefore,
l∑

j=1

xij =
l∑

j=1

yij

for all i. Similarly,
n∑

i=1

xij =
n∑

i=1

yij for all j.

Case 2 (Rational Entries) Suppose for now that all entries of X and

Y are rational numbers. Therefore, Ka is also a rational number for all a.

Define a new matching market from 〈M,W,P,K〉 as follows.

M , W , and P are the same. We change the capacities as follows. Find

a common factor of denominators in all entries in X and Y , say r, and
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multiply all capacities by r. Therefore, the new market is 〈M,W,P, rK〉.
Define X ′ ≡ rX and Y ′ ≡ rY with non-negative integer entries.

By the argument above,
l∑

j=1

rxij =
l∑

j=1

ryij for all i and
n∑

i=1

rxij =
n∑

i=1

ryij for

all j. The conclusion follows.

Case 3 (Real Entries)

Suppose now that entries of X and Y are real numbers. We construct two

sequences of matrices, X(n) and Y (n), as follows:

(1) X(n) and Y (n) have rational entries,

(2) x
(n)
ij = 0 ⇐⇒ xij = 0 and y

(n)
ij = 0 ⇐⇒ yij = 0 for all i, j,

(3) the sum of entries in row i and column j is the same for X(n) and

Y (n), and

(4) X(n) ⇒ X and Y (n) ⇒ Y as n⇒∞.

By construction, stability of X and Y imply stability of X(n) and Y (n)

where the capacities of agents are adjusted. By the argument above,
l∑

j=1

x
(n)
ij =

l∑
j=1

y
(n)
ij for all i and

n∑
i=1

x
(n)
ij =

n∑
i=1

y
(n)
ij . If we take the limit of these equalities

as n⇒∞, we get the desired equalities. �

7.2. Proof of Theorem 3. We proceed by proving first that rationaliz-

ability as either M - or W -optimal (i.e. extremal rationalizability) stable

matching implies the absence of cycles. Second, we prove that the absence

of cycles implies rationalizability as a unique stable matching. Since a unique

stable matching is trivially both M - and W -optimal, the result follows.

7.2.1. Proof that extremal rationalizability implies the absence of cycles. Let

X be an aggregate matching that is extremal rationalizable. There exists a

preference profile P such that X is M-optimal or W-optimal stable matching

in 〈M,W,P,K〉.
By means of contradiction, suppose that the graph (V, L) associated to

X has a minimal cycle c = 〈v0, . . . , vN〉. We denote mn for the type of the

men in vn, and wn for the type of the women in vn, respectively. We call an

edge ((m,w), (m′, w′)) ∈ L vertical if w = w′ and horizontal if m = m′. The

following result is Lemma 14 and 15 of Echenique, Lee, and Shum (2010).
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Lemma 17. If c = 〈v0, . . . , nN〉 is a minimal cycle, then no vertex appears

twice in c, and

(vn, vn+1) ∈ L is vertical ⇒ (vn+1, vn+2) ∈ L is horizontal

(vn, vn+1) ∈ L is horizontal ⇒ (vn+1, vn+2) ∈ L is vertical

An orientation of (V, L) is a mapping d : L→ {0, 1}. We shall often write

d((mi, wj), (mi, wk)) as dmi,wj ,wk
and d((mi, wj), (ml, wj)) as dwj ,mi,ml

. Fix

an orientation d of (V, L). A path 〈vn〉Nn=0 is a flow for d if d(vn, vn+1) = 1

for all n = 0, . . . , N − 1.

A preference profile (Pmi
, Pwj

) defines an orientation d by setting dwj ,mi,ml
=

1 ⇐⇒ mi Pwj
ml and dmi,wj ,wk

= 1 ⇐⇒ wj Pmi
wk. Let d be the orienta-

tion defined by the preference profile P that rationalizes X as an extremal

matching.

Lemma 18. The index of the cycle c can be chosen such that the path

〈vn〉N−1
n=0 is a flow for d.

A result similar to Lemma 18 is shown by Echenique, Lee, and Shum

(2010). By Lemma 18, for all n = 0, 1, . . . , N − 1, if edge (vn, vn+1) is

vertical (i.e. wn = wn+1), we have dwn,mn,mn+1 = 0, and when the edge is

horizontal, we have dmn,wn,wn+1 = 0.

In the following proof, we show that we can make the men (women) weakly

better (worse) off by “rematching” men and women whose matches are in-

volved in the cycle c while preserving stability. We can also make women

(men) weakly better (worse) off with a similar rematching. Therefore, X is

neither M-optimal nor W-optimal stable matching.

We capture “rematching,” using a matrix of differences in matches: let A
be the set of all |M | × |W | matrices A such that for all i and j:

(1) ai,j = 0 if (i, j) is not in the cycle c;

(2)
∑

h ai,h = 0,
∑

l al,j = 0; and

(3) ∀(i′, j′) |ai,j| ≤ xi′,j′ .

Claim 19. For all A ∈ A, the matrices X + A and X − A are stable in

〈M,W,P,K〉; and either

• X − A ≤M X ≤M X + A and X − A ≥W X ≥W X + A, or
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• X + A ≤M X ≤M X − A and X + A ≥W X ≥W X − A.

Proof. For any A ∈ A, X + A is a well defined matching: by Property (2)

the row and column sum of X + A respect the feasibility constrains; by

Property (1) and (3), the entries of X + A are non-negative. The matrix

X + A is also a stable matching, as

(X + A)i,j > 0⇒ Xi,j > 0.

Indeed, if there were a blocking pair of type mi and type wj under X + A,

it would also be a blocking pair under X. Since A ∈ A ⇒ −A ∈ A, X − A
is also well defined and stable.

Observe that as a consequence of Properties (2)-(1), amn,wn alternate in

sign. So that if amn,wn ≥ 0 then amn+1,wn+1 ≤ 0; and amn,wn > 0 then

amn+1,wn+1 < 0. This implies, first, that if amn,wn = 0 for some n then A = 0.

And, second, that one of the following two cases has to hold. (a) For all n,

if mn = mn+1 = m then am,wn > 0 and am,wn+1 < 0, and if wn = wn+1 = w

then amn,w < 0 and amn+1,w > 0. (b) For all n, if mn = mn+1 = m then

am,wn < 0 and am,wn+1 > 0, and if wn = wn+1 = w then amn,w > 0 and

amn+1,w < 0.

Clearly, if A = 0 then there is nothing to prove. We shall proceed by

assuming that we are in case (a), and we shall prove that X −A ≤M X ≤M

X + A. It will become clear that if we instead assume that we are in case

(b), we would establish that X + A ≤M X ≤M X − A.

Fix m ∈ M . By definition of minimal cycle, there is at most one n such

that vn, vn+1 ∈ c and mn = mn+1 = m. If no such n exists, by Property (1) of

A, (X−A)m,· = (X+A)m,· = xm,·. Thus (X−A)m,· ≤m xm,· ≤m (X+A)m,·.

If, on the other hand, there is vn, vn+1 ∈ c such that mn = mn+1 = m,

then (vn, vn+1) is horizontal and (vn+1, vn+2) is vertical. From the orientation

d, we have dm,wn,wn+1 = 1, which implies wn Pm wn+1.

In Am,·, only amn,wn and amn+1,wn+1 are non-zero, and 0 < amn,wn =

−amn+1,wn+1 , as we have assumed that we are in case (a). By definition

of ≤m, wn Pm wn+1 implies that (X − A)m,· ≤m Xm,· ≤m (X + A)m,·.
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Since the type m was arbitrary, we obtain X − A ≤M X ≤M X + A. By

Theorem 2, this also implies that X − A ≥W X ≥W X + A.

�

7.2.2. Proof of that the absence of cycles implies unique rationalizability. We

prove that if the graph (V, L) associated to X has no cycles, then there are

preferences P such that (M,W,P,K) has X as its unique stable matching.

The matching X is therefore both M - and W -optimal.

We introduce a particular set of preferences. Let U = (um,w) ∈ R|M |×|W |+

in which um,w 6= um′,w′ for all (m,w) 6= (m′, w′). For each m and w, a man of

type m and a woman of type w both receive utility um,w by being matched

to each other. We denote by PU the preferences induced by such utilities,

called perfectly correlated preferences.

Lemma 20. If preferences are perfectly correlated, there exists a unique

aggregate stable matching.

Proof. Suppose for contradiction that X and Y are two distinct stable

matchings. Let U be the set of numbers um,w for m and w such that

xm,w 6= ym,w. Let (m∗, w∗) be such that um∗,w∗ ∈ U and um∗,w∗ ≥ u for

all u ∈ U . Suppose, without loss of generality, that xm∗,w∗ < ym∗,w∗ . Note

that ∑
m:mPw∗m∗

xm,w∗ =
∑

m:mPw∗m∗

ym,w∗∑
w:wPm∗w∗

xm∗,w =
∑

w:wPm∗w∗

ym∗,w,

because m Pw∗ m
∗ ⇒ um,w∗ > um∗,w∗ ⇒ xm,w∗ = ym,w∗ by construction of

(m∗, w∗), and similarly for the second equality.
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Then, ∑
m:m∗Pw∗m

xm,w∗ = Kw∗ −
∑

m:mRw∗m∗

xm,w∗

= Kw∗ − xm∗,w∗ −
∑

m:mPw∗m∗

xm,w∗

> Kw∗ − ym∗,w∗ −
∑

m:mPw∗m∗

ym,w∗

≥ 0,

as xm∗,w∗ < ym∗,w∗ . Similarly,
∑

w:w∗Pm∗w
xm∗,w > 0 and (m∗, w∗) is a block-

ing pair of X; which contradicts the stability of X. �

We prove the result by using the absence of cycles to assign cardinal

utilities U = (um,w) so that agents’ preferences are perfectly correlated.

Then Lemma 20 guarantees that X is the unique stable matching.

We first prove the case when all nodes in V are connected, and later

generalize to the case where there are multiple connected components of

(V, L).

Suppose that the graph (V, L) associated to X has no minimal cycles; so

it has no cycles. Choose a vertex v0 in V . Since (V, L) contains no cycles,

for each v ∈ V there is a unique minimal path connecting v0 to v in (V, L).

Let η(v) be the length of the minimal path connecting v0 to v.

We construct correlated preferences that rationalize X by constructing

numbers U = (um,w). For v ∈ V (i.e. xmv ,wv > 0), umv ,wv = (1 + η(v)) +

εmv ,wv , and for all other (m,w) with xm,w = 0, um,w = εm,w. All εmv ,wv and

εm,w are positive, and distinct real numbers; we assume all εm,w are small

enough that if η(v) > η(v′) then umv ,wv > umv′ ,wv′
. Specifically, let (εm,w)

be a collection of distinct real numbers such that 0 < εm,w < 1/3 for all

(m,w).5

Suppose that a man of type m and a woman of type w both receive the

same utility um,w by being matched to each other. We show that X is a

5We use εmv,wv
and εm,w only to ensure strict preferences.
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stable matching in 〈M,W,PU , K〉. It follows that X is the unique stable

matching because preferences are correlated (Lemma 20).

Suppose for contradiction that a pair (mi, wj) blocks X. There exist mi′

and wj′ such that xmi,wj′
> 0, xmi′ ,wj

> 0, and umi,wj
> umi,wj′

and umi,wj
>

umi′ ,wj
. Since xmi,wj′

> 0 and xmi′ ,wj
> 0, they are nodes in V , and umi,wj′

>

1 and umi′ ,wj
> 1. Thus umi,wj

> max{umi′ ,wj
, umi,wj′

} > 1, by definition of

U , which implies xmi,wj
> 0. Therefore, 〈(mi′ , wj), (mi, wj), (mi, wj′)〉 is a

path.

There are unique paths from v0 to each (mi′ , wj), (mi, wj), and (mi, wj′).

Note that umi,wj
> umi′ ,wj

implies that η((mi, wj)) ≥ η((mi′ , wj)). Ob-

serve that if (v, v′) ∈ L then η(v) 6= η(v′) because if we had η(v) = η(v′)

then v would not lie in the path 〈v0, . . . , v
′〉 and v′ would not lie in the

path 〈v0, . . . , v〉, so (v, v′) ∈ L would imply the existence of a cycle. So we

establish that η(v) 6= η(v′). So η((mi, wj)) ≥ η((mi′ , wj)) implies that

(2) η((mi, wj)) > η((mi′ , wj)).

Now, (2) is only possible if the unique path from v0 to (mi, wj) contains

(mi′ , wj). Then η(mi, wj′) > η(mi, wi); but this contradicts that umi,wj
>

umi,wj′
. So (mi, wj) cannot be a blocking pair.

When (V, L) has multiple components, {(V1, L1), . . . , (VN , LN)}, we can

partition M and W as (M1, . . . ,MN) and (W1, . . . ,WN) such that for all

v ∈ Vn, mv ∈Mn and wn ∈ Wn.

For each (Vn, Ln) with associated sets Mn and Wn, we assign utilities

(um,w)(m,n)∈Mn×Wn similar to the single component case. For other m and

w, we assign um,w = εm,w. For all (m,w), εm,w are small and positive real

number, and εm,w 6= εm′,w′ when (m,w) 6= (m′, w′).

Suppose a type m man and a type w woman are not matched under X.

If there is n such that (m,w) ∈ Mn × Wn, then (m,w) is not a blocking

pair by the proof above for the case of a single connected component. If

(m,w) ∈ Mn ×Wl with n < l, then, by the construction of um,w, w′ Pm w

for any w′ with xm,w′ > 0. Thus (m,w) is again not a blocking pair; X is

stable matching. By Lemma 20 it is the unique stable matching.
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7.3. Proof of Theorem 8. Let X be a rationalizable aggregate matching

such that all cycles of the associated graph (V, L) are balanced. Direct the

edges of (V, L) such that each cycle is oriented as follows: if 〈v0, . . . vN〉 is

a cycle, then the edge (vn, vn+1) ∈ L is oriented such that d(vn+1, vn) = 1,

which we denote by vn → vn+1. For each path 〈v0, . . . vN〉, direct the edges in

a similar way. If the matching X is rationalizable, then such an orientation of

the edges exists and defines a rationalizing preferences profile P (Echenique,

Lee, and Shum, 2010). The rationalizing preferences have the property that

if xi,j = 0 and xi′,j′ > 0 then wj′ Pmi
wj if i = i′, and mi′ Pwj

mi if j = j′.

First, if X has no cycles, then it is rationalizable as the unique stable

matching (Theorem 3), so there is nothing to prove, as a unique stable

matching is also the median stable matching. Suppose then that X has at

least one cycle c = 〈v0, . . . vN〉. Enumerate the vertexes of the cycle such

that vn → vn+1 in the orientation (directed graph) of (V, L) above, and v0

lies in the same row as v1. Let

Θ = min {v0, v2, . . . , vN−2} = min {v1, v3, . . . , vN−1} .

Let A be the set of all |M |× |W | matrices A of integer numbers such that

• ai,j = 0 if (i, j) is not in the cycle c;

• for all i and j,
∑

h ai,h = 0
∑

l al,j = 0; and

• |ai,j| ≤ Θ.

We want to make two observations about the matrices in A. First, (X +

A)i,j > 0⇒ xi,j > 0, so X + A is a stable matching for all A ∈ A. Second,

A ∈ A if and only if −A ∈ A; and A ∈ A is such that xi,· ≤mi
(X + A)i,·

iff (X − A)i,· ≤mi
xi,·. Similarly, A ∈ A is such that x·,j ≤wj

(X + A)·,j iff

(X − A)·,j ≤wj
x·,j.

We need to prove that there are no other stable matchings than the ones

obtained through matrices in A: Then X is a median stable aggregate

matching.

Let Y 6= X be another stable matching in the resulting market 〈M,W,P,K〉.
We shall prove that yi,j 6= xi,j only if xi,j is a vertex in a minimal cycle of

X. Suppose then that yi,j 6= xi,j. The number of single agents of each type
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is the same in X as in Y (Proposition 16; in this case it is zero, as X has

no single agents). So, if xi,j < yi,j then there is h 6= j and l 6= i such that

yi,h < xi,h and yl,j < xl,j. Similarly, if xi,j > yi,j then there is h 6= j and

l 6= i such that yi,h < xi,h and yl,j < xl,j.

We can apply the previous observation repeatedly to obtain a sequence

(i1, j1), . . . (iN , jN) with (i1, j1) = (iN , jN) such that for each n mod N :

(1) (xin,jn − yin,jn)(xin+1,jn+1 − yin+1,jn+1) < 0

(2) in 6= in+1 ⇐⇒ jn = jn+1.

Claim 21. For n = 1, . . . , N , xin,jn > 0.

Suppose, by way of contradiction, that 0 = xi1,j1 < yi1,j1 . Without loss

of generality, assume that i1 = i2. By definition of the rationalization P ,

we have that wj2 Pmi1
wj1 , as xi1,j1 = 0 and xi1,j2 > yi1,j2 ≥ 0. We can now

show that if (in, jn) and (in+1, jn+1) differ in i, then jn prefers min+1 to min ;

and that if they differ in j, then in prefers wjn+1 to wjn . This fact, which we

prove in the next paragraph, establishes the contradiction: iN 6= iN−1, but

miN−1
PwiN

miN by definition of P and because 0 = xiN ,jN
= xi1,j1 .

To prove the fact, we reason by induction. We have already established

that wj2Pmi1
wj1 . Suppose that wjnPmin

wjn−1 . By Property 1 of the sequence

〈(in, jn)〉Nn=1, either xin−1,jn−1 > 0 and xin+1,jn+1 > 0; or yin−1,jn−1 > 0 and

yin+1,jn+1 > 0 (or both hold). Then the stability of X and Y implies that

min+1 Pwjn
min . The proof for the case when win Pwin

min−1 is similar.

The claim implies that the sequence 〈vn〉 = 〈xin,jn〉 is a cycle in (V, L).

Thus a stable Y can only differ from X in vertexes that are part of a cycle

of (V, L). Let A = Y −X; we shall prove that A ∈ A. We established above

that ai,j 6= 0 only if xi,j is a vertex in a cycle. We now prove that |ai,j| ≤ Θ.

Clearly, ai,j ≥ −xi,j ≥ −Θ. We show that if ai,j > 0 then there is h such

that ai,j + ai,h = 0.

If ai,j > −ai,h for all h 6= i then there is h1 and h2 such that some men of

type mi who are married to women of type h1 and h2 in X are married to

women of type wj in Y . Then we can define two cycles, and xi,j would be a

vertex in both of them. The first cycle has (xi,j, xi,h1) as the first edge, and

the remaining edges defined inductively, by the definition of 〈(in, jn)〉 above.
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The second cycle has (xi,j, xi,h2) as the first edge, and the remaining edges

defined inductively. The resulting two cycles would be connected, which

contradicts the hypothesis that X is rationalizable. So there must exist

some h with ai,j ≤ −ai,h. An analogous argument applied to ai,h implies

that ai,j ≥ −ai,h; so ai,j = −ai,h. Then, ai,j ≤ Θ, as ai,h ≥ −Θ.

7.4. Other proofs.

Proof of Proposition 6. The proof that Y (i) is a stable matching follows from

lattice structure with the operators ∨ and ∧ and essentially the same as

the proofs of median stable matchings presented in (Klaus and Klijn, 2006;

Schwarz and Yenmez, 2007). �
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