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Theorem of existence of ruptures for mean values  

on finite numerical segments.   
Discrete case   

 
Alexander Harin 

 
Moscow Institute of Physics and Technology 

Modern University for the Humanities 
 

The proof of the theorem of existence of the ruptures, namely the 
proof of maximality, is improved.  The theorem may be used in 
economics and explain the well-known problems such as Allais’ paradox.  
Illustrated examples of ruptures are presented.   
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Introduction 

 
A man is the key subject of economic theory.  Decisions of a man are 

fundamental operations of it.  Utility theory, as a branch of the economic theory, is 
specially devoted to the research of decisions of a man.   

Bernoulli (1738) had given rise to researches of problems of the utility theory.  
Von Neumann and Morgenstern (1947) had provided promises of feasibility of 
correct and, naturally, rational fundamentals of the economic theory.  But Allais 
(1953) breached these promises.  Other later works of various authors had shown 
that real man’s decisions are undoubtedly inconsistent with rational models.  As 
pointed by Kahneman and Thaler (2006), these inconsistencies are still not 
overcome by the economic theory.   

These problems may be solved by taking into account ruptures.   
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1.  Example of ruptures 

1.1.  Two points 
 

Suppose a numerical segment  [A; B]  (see figure 1). Suppose two points are 
determined on this segment: a left point  xLeft  and a right point  xRight : xLeft<xRight.  
The coordinates of the middle, mean point may be calculated as  M=(xLeft+xRight)/2.   
 

 
 

Figure 1. A segment  [A, B].  Left  xLeft,  right  xRight   
and middle,  mean  M  points on it 

 
Suppose the points can not escape outside the boundaries of this segment. 

This means  A≤xLeft  and  xRight≤B.   
Suppose the points can not approach each other closer than a non-zero 

distance of two sigma  2σ>0.  This means  xRight≥xLeft+2σ  or  xLeft≤xRight-2σ.  At that,  
M-xLeft=xRight-M≥σ>0.   

For the sake of simplisity and obviousness, figures 1-3 represent a case:  
xRight=xLeft+2σ  and  xLeft=xRight-2σ  and  M-xLeft=xRight-M=σ.   
 

One can easily see two types of zones can exist on the segment:   
The mean point  M  can be located only in the zone which may be named 

"allowed" (see figure 2).   
The mean point  M  can not be located in the zones which may be named 

"forbidden" (see figure 3).   
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1.2.  Allowed zone 

 
Due to the conditions of the example, the left point  xLeft  may not be located 

more left than the left boundary of the segment  A≤xLeft  and the right point  xRight  
may not be located more right than the right boundary of the segment  xRight≤B.  For  
M  we have  M-xLeft=xRight-M=σ.   
 

 
 

Figure 2. Allowed zone for  M 
 

The allowed zone for  M  is equal to  (B-A)-2σ.  It is less than the segment on  
2σ.  If the distance  2σ  between the left  xLeft  and right  xRight  points is non-zero 
then the difference between the allowed zone and the segment is non-zero also.   

So, the mean point  M  can not be located in any position of the segment.   
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1.3.  Forbidden zones, ruptures 

 
If  A≤xLeft,  xRight≤B  and  xRight-xLeft≥2σ,  then there are the ruptures of one 

sigma between the mean point and the boundaries of the segment. So, the mean 
point  M  can not be located in two zones located near the boundaries of the 
segment. These zones may be named forbidden zones or ruptures.   
 

 
 

Figure 3. Forbidden zones, ruptures for  M 
 

As we can easily see, the non-zero ruptures exist between the allowed zone of 
the mean  M  of the quantity and the boundaries of the segment. The width of every 
rupture is equal to  σ.  If the distance  2σ  between the left  xLeft  and right  xRight  
points is non-zero then the forbidden zones, ruptures for  M  are non-zero also.   
 
 

1.4.  From possibility to inevitability of existence of ruptures 
 

It is enough to adduce only one example of existence of a phenomenon to 
prove the statement this phenomenon can exist.  In other words, it is enough to 
adduce only one counterexample of existence of a phenomenon to disprove a 
statement this phenomenon can not exist.   

So, by means of the above examples we have proved a statement:  At the 
condition of a non-zero scattering of data of a quantity, the non-zero ruptures can 
exist for mean value of the quantity near the boundaries of the numerical segment.   

Following theorem should specify conditions, namely the conditions of the 
scattering of data, at which the rupture must exist. 
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2.  General theorem of existence of ruptures  

2.1.  Preliminary notes 
2.1.1.  General conditions, assumptions and notations 

Suppose a numerical segment  X=[A, B] : 0<(B-A)<∞,  and a quantity  fK(xk) : 
k=1, 2, … K : 2≤K≤∞;  for  xk<A  and  xk>B,  the statement  fK(xk)≡0  is true; for  
A≤xk≤B  the statement  fK(xk)≥0  is true, and   

K

K

k
kK Wxf =∑

=1

)( ,  

where  WK  (the total weight of  fK(xk))  is such that   
∞<< KW0 .    

Keeping generality,  fK(xk)  may be normalized so that  WK=1.   
Let us denote a moment of  n-th  order  E(X-X0)n  of the quantity  fK(xk)  as 
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Suppose the mean value of the quantity  fK(xk)  exists   
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Suppose at least one central moment of the quantity  fK(xk)  exists such as  1<n<∞   
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2.1.2.  Maximal possible value of central moment  
for finite segment 

 
The maximal possible absolute value of a central moment of the quantity  

fK(xk)  may be estimated from its definition   
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More precise estimation (see Appendix A1) of this value is provided by the 
sum of modules of the central moments of the functions that are concentrated at the 
borders of the segment  (A-M)n(B-M)/(B-A)  and  (B-M)n(M-A)/(B-A)   
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It leads to the well-known maximum for  n=2  and  Mmax=(B-A)/2   
22 )

2
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and, for  n=2k>>1,  - to maximums at  Mmax≈A+(B-A)/2n  and  Mmax≈B-(B-A)/2n   
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2.2.  General lemma about tendency to zero for central moments  

If, for the quantity  fK(xk),  defined in the section 2.1.1,  M≡E(X)  tends to  A  
or to  B,  then, for  1<n<∞,  E(X-M)n  tends to  zero.   

The proof (in detail see, e.g., Harin 2010-2):  For  MA,   
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So,    if  (B-A)  and  n  are finite   and  MA  (that is  (M-A)0),    then    
E(X-M)n0.  For  MB,  the proof is similar.   

The lemma has been proved.   
Note.  More precise (see, e.g., Harin 2010-2) estimation may be obtained for 

central moments’ tendency to zero, e.g. for  MA   
0)()(|)(| 1  →−−≤− →

−
AM

nn AMABMXE  
 

2.3.  General theorem of existence of ruptures for mean values 
If there are: the quantity  fK(xk)  defined in the section 2.1.1,   n : 1<n<∞,   and  

rdispers : |E(X-M)n|≥rdispers>0,  then  rmean>0  exists such as the statement  
A<(A+rmean)≤E(X)≤(B-rmean)<B  is true.  

The proof (in detail see, e.g., Harin 2010-2):  From the lemma, for  MA,   
)()(2|)(|0 1 AMABMXEr nn

dispers −−≤−≤< −  
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For  MB,  the proof is similar.   
As long as (B-A),  n  and  rdispers  are finite and  rdispers>0,  then  rmean  is finite,  

rmean>0,  both  (M-A)≥rmean>0  and  (B-M)≥rmean>0.   
The theorem has been proved.   
 
So, if a finite  (n<∞)  central moment of a quantity, which is defined for a 

finite segment,  cannot approach  0  closer, than by a non-zero value  rdispers>0, then 
the mean value of the quantity also cannot approach a border of this segment closer, 
than by the non-zero value  rmean>0.    

More general:  If a quantity is defined for a finite segment and a non-zero 
rupture  rdispers>0  exists between zero and the zone of possible values of a finite  
(n<∞)  central moment of the quantity, then the non-zero ruptures  rmean>0  also 
exist between a border of the segment and the zone of possible values of the mean 
value of this quantity.   
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3.  Applications of theorem in economics 

 
The theorem of existence of the ruptures may be used in economics and 

explain the well-known problems and paradoxes.   
In the presence of a data scattering, the forbidden zones, the ruptures can exist 

for the mean values near the boundaries of finite numerical segments and of the 
probability scale.  These ruptures can bias the results of experiments.  This bias can 
explain (at least partially) the well-known problems and paradoxes of utility theory 
and economics.   

The simple example of the problem:   
Suppose Mr. Somebody offers you a choice of two prizes  

A) a guaranteed gain, prize of  $99  (with the probability  100%),  or  
B) a probable gain of  $100  with the probability  99%.   

(For the experiment accuracy, both  $99  and  $100  should be in  $1  
banknotes. So  99  and  100  banknotes of  $1)   

The mean values to get the probable gain and to get the guaranteed gain are 
precisely equal to each other, but the well-determined experimental fact is: in 
similar experiments, the overwhelming majority of people choose the guaranteed 
gain instead of the probable one (see, e.g., Tversky and Wakker 1995).   

In the ideal standard explanations we have the mean values for the guaranteed 
and probable cases   

99$%10099$ =× , 
99$%99100$ =× , 

99$99$ = . 
So, in the ideal standard explanations the mean of the guaranteed gain and the mean 
of the probable gain are both equal to  $99  and are precisely equal to each other. 

If scattering of real data leads to the rupture (near  100%) which is more than  
1%  and is equal to, say,  3%,  then the probability of the probable gain cannot be 
equal to  99%  and is not more than  97%   

99$%10099$ =× , 
97$%97100$ =× , 

97$99$ > . 
So, the mean value of the probable gain is less than the mean value of the 

guaranteed gain.  The paradox can be explained by taking into account the rupture 
and the bias of mean result.   
 
 

Conclusions 
In the paper, the general possibility of existence of ruptures in the scale of 

possible values of mean values of quantities, which are defined for the finite 
segments, has been proved.  The possibility of existence of the ruptures in the 
probability scale both for the probability estimation and for the probability has been 
proved in, e.g., (Harin 2010-1).   

The theorem allows to obtain and to support solutions of a number of the well 
known paradoxes of the utility theory (see, e.g., Harin 2007 and 2009).   
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Appendix A1.  Detailed estimation of the maximal possible value 

of central moment for finite segment 
A1.1.  The proof of maximality 

A1.1.1.  Couple of elements 
 

Let us find a function that reaches maximal possible value of central moments 
on a segment  [A, B]   

Consider a couple of elements  fK(xA)  and  fK(xB)   
BxMxA BA ≤<<≤ . 

such as they are tied together by the conditions of constant total weight  f  and 
constant mean point  M   

Constfxfxf BKAK =≡+ )()( . 
)()()()( BKBAKA xfMxxfxM −=− . 

Consider the central moment of this couple of elements   
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Its absolute value do not exceed the sum of absolute values of its parts   
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A1.1.2.  Modification of the basic expression 
 

By substituting  fK(xB)  to  f  and  fK(xA)   

)()()( AK
B

A
AKBK xff

Mx
xMxfxf −=

−
−

= . 

and replacing  fK(xA)  and  fK(xB)  by functions of  xA  and  xB   
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this expression may be reorganized to the expression which depends only on  xA  
and  xB   
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A1.1.3.  Determination of maximum by analysis of derivatives 

 
Let us find a maximum of the absolute value of central moments of this pair of 

elements by the analysis of derivatives.   
Let us differentiate the expression for the absolute value of a central moment 

by  xA   
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The first derivative by  xA  is strictly less than zero for any  A≤xA<M  and its 
sign is independent of  xB  for any  M<xB≤B.  Hence, for any  xB : M<xB≤B,  the 
maximum of the absolute value of a central moment  E(X-M)n  is attained at the 
minimal  xA,  that is at  xA=A.   
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Let us differentiate the expression for the absolute value of a central moment 

by  xB   
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The first derivative by  xB  is strictly more than zero for any  M<xB≤B  and its 
sign is independent of  xA  for any  A≤xA<M.  Hence, for any  xA : A≤xA<M,  the 
maximum of the absolute value of the central moment  E(X-M)n  is attained at the 
maximal  xB,  that is at  xB=B.   

So, the maximum of the absolute value of the central moment  E(X-M)n  is 
attained at  xA=A  and  xB=B.  That is, it is attained for the functions that are 
concentrated at the boundaries of the finite numerical segment  [A, B]   
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